101
|
Azevedo RI, Soares MV, Albuquerque AS, Tendeiro R, Soares RS, Martins M, Ligeiro D, Victorino RM, Lacerda JF, Sousa AE. Long-Term Immune Reconstitution of Naive and Memory T Cell Pools after Haploidentical Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2013; 19:703-12. [DOI: 10.1016/j.bbmt.2013.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/19/2013] [Indexed: 02/04/2023]
|
102
|
Ringhoffer S, Rojewski M, Döhner H, Bunjes D, Ringhoffer M. T-cell reconstitution after allogeneic stem cell transplantation: assessment by measurement of the sjTREC/βTREC ratio and thymic naive T cells. Haematologica 2013; 98:1600-8. [PMID: 23585532 DOI: 10.3324/haematol.2012.072264] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The immune reconstitution after allogeneic hematopoietic stem cell transplantation comprises thymus-dependent and thymus-independent pathways. We wanted to improve the understanding of this complex process using two different measurements at definite checkpoints of T-cell neogenesis. We therefore assessed the thymus-dependent pathway by combining measurements of single joint T-cell receptor excision circles (sjTREC) and β T-cell receptor excision circles (βTREC) in an improved quantitative light-cycler hybridization polymerase chain reaction assay. In a subgroup of patients, we additionally assessed the proliferation kinetics of the CD31(+) thymic naïve cell population, which corresponds to recent thymic emigrants by six-color immunostaining. After the establishment of normal values in 22 healthy volunteers, we applied our polymerase chain reaction to 66 patients undergoing allogeneic hematopoietic stem cell transplantation at a median age of 44 years. It took more than 2 years after transplant to restore the pre-transplant thymic proliferation capacity. Only one third of the patients in our longitudinal study reached age-adjusted normal values for both sjTREC and βTREC at a median follow-up of 558 days, with acute graft-versus-host disease being the most prominent negative factor by univariate analysis. We observed several patterns of sjTREC and βTREC recovery suggesting different mechanisms of thymic damage in individual patients. In a comparison of CD31(+) thymic naïve cells between volunteers and patients after transplant we found a significantly higher peak proliferation rate within the latter population in the first year after transplantation. The combination of measurements of sjTREC and βTREC by our simplified polymerase chain reaction assay provides insight about the stage of T-cell development affected by different types of damage and may help to choose the correct therapeutic intervention. Besides the sole thymic T-cell neogenesis, proliferation within the CD31(+) thymic naïve cell compartment contributed to the replenishment of the naïve T-cell pool after transplantation.
Collapse
|
103
|
Bains I, Yates AJ, Callard RE. Heterogeneity in thymic emigrants: implications for thymectomy and immunosenescence. PLoS One 2013; 8:e49554. [PMID: 23468830 PMCID: PMC3584139 DOI: 10.1371/journal.pone.0049554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/15/2012] [Indexed: 01/19/2023] Open
Abstract
The development of mature, antigen-inexperienced (naive) T cells begins in the thymus and continues after export into the periphery. Post-thymic maturation of naive T cells, in humans, coincides with the progressive loss of markers such as protein tyrosine kinase 7 (PTK7) and platelet endothelial cell adhesion molecule-1 (CD31). As a consequence, subpopulations of naive T cells can be recognised raising questions about the processes that give rise to the loss of these markers and their exact relationship to recent thymic emigrants (RTE). Here, we combine a mathematical survival analysis approach and data from healthy and thymectomised humans to understand the apparent persistence of populations of ‘veteran’ PTK7+T cells in thymectomised individuals. We show that a model of heterogeneity in rates of maturation, possibly linked to natural variation in TCR signalling thresholds or affinity for self-antigens, can explain the data. This model of maturation predicts that the average post-thymic age of PTK7+T cells will increase linearly with the age of the host suggesting that, despite the immature phenotype, PTK7+cells do not necessarily represent a population of RTE. Further, the model predicts an accelerated increase in the average post-thymic age of residual PTK7+T cells following thymectomy and may also explain in part the prematurely aged phenotype of the naive T cell pool in individuals thymectomised early in life.
Collapse
Affiliation(s)
- Iren Bains
- Immune Cell Biology, National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | |
Collapse
|
104
|
Pekalski ML, Ferreira RC, Coulson RMR, Cutler AJ, Guo H, Smyth DJ, Downes K, Dendrou CA, Castro Dopico X, Esposito L, Coleman G, Stevens HE, Nutland S, Walker NM, Guy C, Dunger DB, Wallace C, Tree TIM, Todd JA, Wicker LS. Postthymic expansion in human CD4 naive T cells defined by expression of functional high-affinity IL-2 receptors. THE JOURNAL OF IMMUNOLOGY 2013; 190:2554-66. [PMID: 23418630 DOI: 10.4049/jimmunol.1202914] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As the thymus involutes with age, the maintenance of peripheral naive T cells in humans becomes strongly dependent on peripheral cell division. However, mechanisms that orchestrate homeostatic division remain unclear. In this study we present evidence that the frequency of naive CD4 T cells that express CD25 (IL-2 receptor α-chain) increases with age on subsets of both CD31(+) and CD31(-) naive CD4 T cells. Analyses of TCR excision circles from sorted subsets indicate that CD25(+) naive CD4 T cells have undergone more rounds of homeostatic proliferation than their CD25(-) counterparts in both the CD31(+) and CD31(-) subsets, indicating that CD25 is a marker of naive CD4 T cells that have preferentially responded to survival signals from self-Ags or cytokines. CD25 expression on CD25(-) naive CD4 T cells can be induced by IL-7 in vitro in the absence of TCR activation. Although CD25(+) naive T cells respond to lower concentrations of IL-2 as compared with their CD25(-) counterparts, IL-2 responsiveness is further increased in CD31(-) naive T cells by their expression of the signaling IL-2 receptor β-chain CD122, forming with common γ-chain functional high-affinity IL-2 receptors. CD25 plays a role during activation: CD25(+) naive T cells stimulated in an APC-dependent manner were shown to produce increased levels of IL-2 as compared with their CD25(-) counterparts. This study establishes CD25(+) naive CD4 T cells, which are further delineated by CD31 expression, as a major functionally distinct immune cell subset in humans that warrants further characterization in health and disease.
Collapse
Affiliation(s)
- Marcin L Pekalski
- Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lai KP, Lai JJ, Chang P, Altuwaijri S, Hsu JW, Chuang KH, Shyr CR, Yeh S, Chang C. Targeting thymic epithelia AR enhances T-cell reconstitution and bone marrow transplant grafting efficacy. Mol Endocrinol 2012; 27:25-37. [PMID: 23250486 DOI: 10.1210/me.2012-1244] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although thymic involution has been linked to the increased testosterone in males after puberty, its detailed mechanism and clinical application related to T-cell reconstitution in bone marrow transplantation (BMT) remain unclear. By performing studies with reciprocal BMT and cell-specific androgen receptor (AR) knockout mice, we found that AR in thymic epithelial cells, but not thymocytes or fibroblasts, played a more critical role to determine thymic cellularity. Further dissecting the mechanism using cell-specific thymic epithelial cell-AR knockout mice bearing T-cell receptor transgene revealed that elevating thymocyte survival was due to the enhancement of positive selection resulting in increased positively selected T-cells in both male and female mice. Targeting AR, instead of androgens, either via genetic knockout of thymic epithelial AR or using an AR-degradation enhancer (ASC-J9®), led to increased BMT grafting efficacy, which may provide a new therapeutic approach to boost T-cell reconstitution in the future.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- George H Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Sauce D, Larsen M, Fastenackels S, Roux A, Gorochov G, Katlama C, Sidi D, Sibony-Prat J, Appay V. Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. THE JOURNAL OF IMMUNOLOGY 2012; 189:5541-8. [PMID: 23136199 DOI: 10.4049/jimmunol.1201235] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reduced thymopoiesis and continuous mobilization of naive T cells into the effector-memory pool can lead to severe alterations of the naive T cell compartment. However, maintenance of the naive T cell population is essential to mount effective immune responses. Evidence of homeostatic regulation of naive T cells is currently debated in animal models. In humans, the situation remains unresolved, in particular with advanced age. In this study, we analyzed the CD4(+) and CD8(+) naive T cell compartments from elderly, young adults thymectomized during early childhood, and HIV-1-infected patients, which are characterized by T lymphocytopenia. We show a direct association between increased turnover and decreased frequency of naive T cells. Moreover, the IL-7-induced pathway was fully functional in naive T cells from elderly and young adults thymectomized during early childhood, who are characterized by elevated IL-7 plasma levels. Our findings support the establishment of homeostatic regulation of naive T cell proliferation in humans. This regulation is particularly active in lymphopenic hosts, such as elderly and thymectomized patients.
Collapse
Affiliation(s)
- Delphine Sauce
- INSERM Unité Mixte de Recherche S 945, Infections and Immunity, Université Pierre et Marie Curie-Paris 6, Hôpital Pitié-Salpêtrière, 75013 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Haynes L, Swain SL. Aged-related shifts in T cell homeostasis lead to intrinsic T cell defects. Semin Immunol 2012; 24:350-5. [PMID: 22564707 PMCID: PMC3415577 DOI: 10.1016/j.smim.2012.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/23/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Our recent studies indicate that the longer peripheral persistence of naïve CD4 T cells that occurs with age is necessary for the development of the key aging defects that lead to compromised responses to vaccination and to new pathogens or new strains of circulating infectious agents. This longer persistence is in turn is linked to the decrease in development of new thymic emigrants and thymic involution that occur at adolescence. Therefore the process of development of naïve CD4 aging defects, is closely tied to the homeostasis of T cells and the shifts that occur in their homeostasis with age. Here we review this connection between age-related changes in T cell homeostasis and the development of T cell defects and discuss the implication for approaches to better vaccinating the elderly.
Collapse
|
108
|
Ratts RB, Weng NP. Homeostasis of lymphocytes and monocytes in frequent blood donors. Front Immunol 2012; 3:271. [PMID: 22936935 PMCID: PMC3424600 DOI: 10.3389/fimmu.2012.00271] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/07/2012] [Indexed: 11/13/2022] Open
Abstract
Age-associated decline of immune function is believed to be mainly due to alterations of immune cells. However, longitudinal changes of human immune cells with age have not yet been adequately addressed. To test the hypothesis that regeneration of lymphocytes and monocytes is robust throughout most of adult life until advanced age, we examined six leukapheresis donors (3 young and 3 middle-aged/old) who donated approximately 10% of their peripheral blood mononuclear cells (PBMC) every other month over 3–5 years. We found the number of both lymphocytes and monocytes were quite stable in the blood of all six donors. As expected, young donors had more T cell receptor excision circles (TRECs), CD31{}+ cells (CD4 only) and longer telomeres in T cells than did the middle-aged donors. Interestingly, more variation in TREC number, Vβ usages, and telomere lengths were observed in young donors during the 3–5 years course of donation whereas the middle-aged/old donors showed a rather striking stability in these measurements. This may reflect a more prominent role of thymic output in T cell regeneration in young than in middle-aged/old donors. Together, these findings provide an in vivo glimpse into the homeostasis of lymphocytes and monocytes in the blood at different ages, and support the notion that regeneration of lymphocytes and monocytes is robust throughout adult life up to the early 70s.
Collapse
Affiliation(s)
- Robert B Ratts
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | |
Collapse
|
109
|
Andrade RM, Hygino J, Kasahara TM, Vieira MM, Xavier LF, Blanco B, Damasco PV, Silva RM, Lima DB, Oliveira AL, Lemos AS, Andrade AFB, Bento CAM. High IL-10 production by aged AIDS patients is related to high frequency of Tr-1 phenotype and low in vitro viral replication. Clin Immunol 2012; 145:31-43. [PMID: 22922271 DOI: 10.1016/j.clim.2012.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 08/05/2012] [Accepted: 08/06/2012] [Indexed: 01/05/2023]
Abstract
This work aims to elucidate the effects of age and HIV-1 infection on the frequency and function of T cell subsets in response to HIV-specific and non-specific stimuli. As compared with the younger AIDS group, the frequencies of naive and central memory T cells were significantly lower in aged AIDS patients. Although there was also a dramatic loss of classical CD4(+)FoxP3(+)CD25(+)Treg cells in this patient group, high frequencies of IL-10-producing CD4(+)FoxP3(-) T cells were observed. In our system, the increased production of IL-10 in aged AIDS patients was mainly derived from Env-specific CD4(+)FoxP3(-)CD152(+) T cells. Interestingly, while the blockade of IL-10 activity by monoclonal antibody clearly enhanced the release of IL-6 and IL-1β by Env-stimulated PBMC cultures from aged AIDS patients, this monoclonal antibody enhanced in vitro HIV-1-replication. In conclusion, HIV infection and aging undoubtedly contribute synergistically to a complex immune dysfunction in T cell compartment of HAART-treated older HIV-infected individuals.
Collapse
Affiliation(s)
- Regis M Andrade
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Mekker A, Tchang VS, Haeberli L, Oxenius A, Trkola A, Karrer U. Immune senescence: relative contributions of age and cytomegalovirus infection. PLoS Pathog 2012; 8:e1002850. [PMID: 22916013 PMCID: PMC3420944 DOI: 10.1371/journal.ppat.1002850] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/15/2012] [Indexed: 01/11/2023] Open
Abstract
Immune senescence, defined as the age-associated dysregulation and dysfunction of the immune system, is characterised by impaired protective immunity and decreased efficacy of vaccines. Recent clinical, epidemiological and immunological studies suggest that Cytomegalovirus (CMV) infection may be associated with accelerated immune senescence, possibly by restricting the naïve T cell repertoire. However, direct evidence whether and how CMV-infection is implicated in immune senescence is still lacking. In this study, we have investigated whether latent mouse CMV (MCMV) infection with or without thymectomy (Tx) alters antiviral immunity of young and aged mice. After infection with lymphocytic choriomeningitis virus (LCMV) or Vaccinia virus, specific antiviral T cell responses were significantly reduced in old, old MCMV-infected and/or Tx mice compared to young mice. Importantly, control of LCMV replication was more profoundly impaired in aged MCMV-infected mice compared to age-matched MCMV-naïve or young mice. In addition, latent MCMV infection was associated with slightly reduced vaccination efficacy in old Tx mice. In contrast to the prevailing hypothesis of a CMV-mediated restriction of the naïve T cell repertoire, we found similar naïve T cell numbers in MCMV-infected and non-infected mice, whereas ageing and Tx clearly reduced the naïve T cell pool. Instead, MCMV-infection expanded the total CD8+ T cell pool by a massive accumulation of effector memory T cells. Based on these results, we propose a new model of increased competition between CMV-specific memory T cells and any ‘de novo’ immune response in aged individuals. In summary, our results directly demonstrate in a mouse model that latent CMV-infection impairs immunity in old age and propagates immune senescence. Cytomegalovirus (CMV) persistently infects 50–90% of the human population. After primary infection, constant immune surveillance is required to prevent CMV-related disease. During ageing, increasing T cell resources are expended to keep CMV under control. Recent human studies have suggested that this investment may come at the cost of accelerated immune senescence, a condition describing the age-associated decline of the immune system's functionality. In the present study, we have developed a mouse model to directly investigate whether and how CMV-infection might impair immunity of aged individuals. We demonstrate that old mice with long-lasting CMV-infection are more susceptible to viral infections than old mice without CMV since their virus specific T cell response is suppressed. Contrary to the prevailing hypothesis we found no indication for a CMV-associated shrinking of the naïve T cell compartment. Instead, CMV-infection precipitated a massive expansion of memory T cells. Thus, we propose an alternative mechanism of CMV-enhanced immune senescence based on T cell competition between CMV-specific memory T cells and de novo generated T cell responses. In summary, we provide the first direct evidence that CMV-infection is indeed a propagating factor for poor immunity in the elderly.
Collapse
Affiliation(s)
- Andrea Mekker
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
- Molecular Life Science Graduate School, University of Zurich, Zurich, Switzerland
| | - Vincent S. Tchang
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Lea Haeberli
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zurich, HCI 4, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Urs Karrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
111
|
T-cell suicide gene therapy prompts thymic renewal in adults after hematopoietic stem cell transplantation. Blood 2012; 120:1820-30. [PMID: 22709689 DOI: 10.1182/blood-2012-01-405670] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The genetic modification of T cells with a suicide gene grants a mechanism of control of adverse reactions, allowing safe infusion after partially incompatible hematopoietic stem cell transplantation (HSCT). In the TK007 clinical trial, 22 adults with hematologic malignancies experienced a rapid and sustained immune recovery after T cell-depleted HSCT and serial infusions of purified donor T cells expressing the HSV thymidine kinase suicide gene (TK+ cells). After a first wave of circulating TK+ cells, the majority of T cells supporting long-term immune reconstitution did not carry the suicide gene and displayed high numbers of naive lymphocytes, suggesting the thymus-dependent development of T cells, occurring only upon TK+ -cell engraftment. Accordingly, after the infusions, we documented an increase in circulating TCR excision circles and CD31+ recent thymic emigrants and a substantial expansion of the active thymic tissue as shown by chest tomography scans. Interestingly, a peak in the serum level of IL-7 was observed after each infusion of TK+ cells, anticipating the appearance of newly generated T cells. The results of the present study show that the infusion of genetically modified donor T cells after HSCT can drive the recovery of thymic activity in adults, leading to immune reconstitution.
Collapse
|
112
|
Abstract
Higher morbidity and mortality following infections, particularly influenza, is observed in the elderly population. Because of this, people over 65 years old are often targeted for preventive immunization. Many vaccines, however, are not as effective in generating protective antibodies in older individuals. CD4+ T cells, through their B cell helper functions, play a central role in the humoral response. Aging has deleterious effects on the immune system, and understanding how aging impairs CD4+ T cell functions is of critical importance to design new immunization and treatment strategies targeted to the elderly population. In this paper, we review some of the qualitative and quantitative changes in the CD4+ T cell compartment that arise with aging. We also summarize the age-related intrinsic defects that impact naïve, memory and regulatory CD4+ T cell functions.
Collapse
Affiliation(s)
- Julie S Lefebvre
- Trudeau Institute, 154 Algonquin ave, Saranac Lake, NY, 12983, USA
| | - Laura Haynes
- Trudeau Institute, 154 Algonquin ave, Saranac Lake, NY, 12983, USA
| |
Collapse
|
113
|
Abstract
In this issue of Immunity, den Braber et al. (2012) highlight differences in naive T cell lifespan between mice and humans. Their data suggest that mechanisms of naive T cell maintenance may differ between mice and men.
Collapse
Affiliation(s)
- Shirley L. Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avinash Bhandoola
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
114
|
Schuster RM, Gonzalez R. Substance Abuse, Hepatitis C, and Aging in HIV: Common Cofactors that Contribute to Neurobehavioral Disturbances. ACTA ACUST UNITED AC 2012; 2012:15-34. [PMID: 24014165 DOI: 10.2147/nbhiv.s17408] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the prevalence of neurocognitive disturbances among individuals with HIV has decreased in recent years, rates of impairment still remain high. This review presents findings from comorbid conditions that may contribute to further neurocognitive impairments in this already vulnerable population. We will focus on three co-factors that have received substantial attention in the neuroAIDS literature: drug use, hepatitis C co-infection (HCV), and aging. All three conditions commonly co-occur with HIV and likely interact with HIV in complex ways. Collectively, the extant literature suggests that drug use, HCV, and aging serve to worsen the neurocognitive profile of HIV through several overlapping mechanisms. A better understanding of how specific comorbidities interact with HIV may reveal specific phenotypes of HIV-associated neurocognitive disorder that may aid in the development of more targeted behavioral and pharmacological treatment efforts.
Collapse
|
115
|
den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R, Bregje de Boer A, Willems N, Schrijver E, Spierenburg G, Gaiser K, Mul E, Otto S, Ruiter A, Ackermans M, Miedema F, Borghans J, de Boer R, Tesselaar K. Maintenance of Peripheral Naive T Cells Is Sustained by Thymus Output in Mice but Not Humans. Immunity 2012; 36:288-97. [DOI: 10.1016/j.immuni.2012.02.006] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 05/02/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
|
116
|
Foster AD, Sivarapatna A, Gress RE. The aging immune system and its relationship with cancer. ACTA ACUST UNITED AC 2011; 7:707-718. [PMID: 22121388 DOI: 10.2217/ahe.11.56] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of most common cancers increases with age. This occurs in association with, and is possibly caused by a decline in immune function, termed immune senescence. Although the size of the T-cell compartment is quantitatively maintained into older age, several deleterious changes (including significant changes to T-cell subsets) occur over time that significantly impair immunity. This article highlights some of the recent findings regarding the aging immune system, with an emphasis on the T-cell compartment and its role in cancer.
Collapse
Affiliation(s)
- Anthony D Foster
- National Cancer Institute (NCI), Experimental Transplantation & Immunology Branch (ETIB), 10 Center Dr. 10 CRC, 3-3330 Bethesda, MD 20814, USA
| | | | | |
Collapse
|
117
|
Multiple sclerosis: a disorder of altered T-cell homeostasis. Mult Scler Int 2011; 2011:461304. [PMID: 22096637 PMCID: PMC3197186 DOI: 10.1155/2011/461304] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/21/2011] [Indexed: 11/17/2022] Open
Abstract
Uncertainty exists as to whether similar or different mechanisms contribute to the pathogenesis of different subtypes of multiple sclerosis (MS). Detailed analysis of naive T cell homeostasis shows that patients with relapsing-remitting MS (RRMS) and with primary progressive MS (PPMS) have early-onset thymic involution that causes reduced thymic output. The reduced thymic output leads to secondary peripheral homeostatic alterations in naïve CD4 T-cells, which closely mimic T-cell alterations observed in an experimental animal model of diabetes mellitus. Homeostatic T-cell receptor (TCR) signalling and proliferation of naïve T cells are induced by self-peptides. Consequently, the findings of increased TCR signalling of naïve CD4 T-cells, without increased proliferation, in PPMS, and the increased homeostatic proliferation of naïve CD4 T-cells in RRMS favour the development of autoimmunity. Thus, it seems highly likely that peripheral T-cell alterations secondary to a thymic abnormality contribute to the pathogenesis of both MS subtypes.
Collapse
|
118
|
Immune dysregulation after cardiothoracic surgery and incidental thymectomy: maintenance of regulatory T cells despite impaired thymopoiesis. Clin Dev Immunol 2011; 2011:915864. [PMID: 21776289 PMCID: PMC3138054 DOI: 10.1155/2011/915864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 02/06/2023]
Abstract
Thymectomy is performed in infants during cardiothoracic surgery leaving many patients with reduced thympopoiesis. An association between immune disorders and regulatory T cells (Treg) after incidental thymectomy has not been investigated. Questionnaires soliciting symptoms of atopic or autoimmune disease and biomarkers were measured in children and adults with congenital heart disease and either reduced or preserved thymopoiesis. Tregs were examined. Atopic or autoimmune-like symptoms and elevated anti-dsDNA antibodies were common after surgery in individuals with low thymopoiesis. Total Treg number and function were maintained but with fewer naïve Treg. TCR spectratypes were similar to other memory T cells. These data suggest that thymectomy does not reduce total Treg number but homeostasis is affected with reduced naïve Treg. Prevalence of autoimmune or atopic symptoms after surgery is not associated with total number or proportion of Tregs but appears to be due to otherwise unknown factors that may include altered Treg homeostasis.
Collapse
|
119
|
Ross EA, Coughlan RE, Flores-Langarica A, Bobat S, Marshall JL, Hussain K, Charlesworth J, Abhyankar N, Hitchcock J, Gil C, López-Macías C, Henderson IR, Khan M, Watson SP, MacLennan ICM, Buckley CD, Cunningham AF. CD31 is required on CD4+ T cells to promote T cell survival during Salmonella infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:1553-65. [PMID: 21734076 DOI: 10.4049/jimmunol.1000502] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hematopoietic cells constitutively express CD31/PECAM1, a signaling adhesion receptor associated with controlling responses to inflammatory stimuli. Although expressed on CD4(+) T cells, its function on these cells is unclear. To address this, we have used a model of systemic Salmonella infection that induces high levels of T cell activation and depends on CD4(+) T cells for resolution. Infection of CD31-deficient (CD31KO) mice demonstrates that these mice fail to control infection effectively. During infection, CD31KO mice have diminished numbers of total CD4(+) T cells and IFN-γ-secreting Th1 cells. This is despite a higher proportion of CD31KO CD4(+) T cells exhibiting an activated phenotype and an undiminished capacity to prime normally and polarize to Th1. Reduced numbers of T cells reflected the increased propensity of naive and activated CD31KO T cells to undergo apoptosis postinfection compared with wild-type T cells. Using adoptive transfer experiments, we show that loss of CD31 on CD4(+) T cells alone is sufficient to account for the defective CD31KO T cell accumulation. These data are consistent with CD31 helping to control T cell activation, because in its absence, T cells have a greater propensity to become activated, resulting in increased susceptibility to become apoptotic. The impact of CD31 loss on T cell homeostasis becomes most pronounced during severe, inflammatory, and immunological stresses such as those caused by systemic Salmonella infection. This identifies a novel role for CD31 in regulating CD4 T cell homeostasis.
Collapse
Affiliation(s)
- Ewan A Ross
- Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Vallejo AN, Mueller RG, Hamel DL, Way A, Dvergsten JA, Griffin P, Newman AB. Expansions of NK-like αβT cells with chronologic aging: novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells. Ageing Res Rev 2011; 10:354-61. [PMID: 20932941 DOI: 10.1016/j.arr.2010.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/01/2023]
Abstract
As the repertoire of αβT cell receptors (TCR) contracts with advancing age, there is an associated age-dependent accumulation of oligoclonal T cells expressing of a variety of receptors (NKR), normally expressed on natural killer (NK) cells. Evidences for differential regulation of expression of particular NKRs between T cells and NK cells suggest that NKR expression on T cells is physiologically programmed rather than a random event of the aging process. Experimental studies show NKRs on aged αβT cells may function either as independent receptors, and/or as costimulatory receptors to the TCR. Considering the reported deficits of conventional αβTCR-driven activation and also functional deficits of classical NK cells, NKR(+) αβT cells likely represent novel immune effectors that are capable of combining innate and adaptive functions. Inasmuch as immunity is a determinant of individual fitness, the type and density of NKRs could be important contributing factors to the wide heterogeneity of health characteristics of older adults, ranging from institutionalized frail elders who are unable to mount immune responses to functionally independent community-dwelling elders who exhibit protective immunity. Understanding the biology of NKR(+) αβT cells could lead to new avenues for age-specific intervention to improve protective immunity.
Collapse
|
121
|
Marek N, Trzonkowski P. Homeostatic proliferation of NK cells: friend or foe in cellular immunotherapy? Immunotherapy 2011; 3:727-9. [PMID: 21668309 DOI: 10.2217/imt.11.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NK cells are an important tool in cellular immunotherapy owing to their role in infections and antitumor immunity. Until recently, these cells have been thought to be short-lived cytotoxic effectors that are cleared from the body soon after resolution of an immune response. In the commented study, Sun et al. confirmed that, similar to T cells, NK cells sensed the space in the immune system and underwent homeostatic proliferation in order to provide necessary protection to the body. Moreover, homeostatically driven NK cells persisted in the tissues for a long time without loss of activity. These findings have important consequences for immunotherapy, suggesting that the mechanisms of homeostatic expansion can be deployed in order to expand NK cells for therapeutic purposes in vivo. As homeostatically driven NK cells are long-lived effectors, such therapies can exert prolonged effects for the immunity of the patients.
Collapse
Affiliation(s)
- Natalia Marek
- Department of Clinical Immunology & Transplantology, Medical University of Gdańsk, Ul. Děbinki 7, 80-952 Gdańsk, Poland
| | | |
Collapse
|
122
|
Abstract
Older individuals (≥50 years of age) are increasingly becoming a new at-risk group for HIV-1 infection and, together with those surviving longer due to the introduction of anti-retroviral therapy (ART), it is predicted that more than half of all HIV-1-infected individuals in the United States will be greater than 50 years of age in the year 2015. Older individuals diagnosed with HIV-1 are prone to faster disease progression and reduced T-cell reconstitution despite successful virologic control with anti-retroviral therapy (ART). There is also growing evidence that the T-cell compartment in HIV-1(+) adults displays an aged phenotype, and HIV-1-infected individuals are increasingly diagnosed with clinical conditions more commonly seen in older uninfected persons. As aging in the absence of HIV infection is associated with alterations in T-cell function and immunosenescence, the combined impact of both HIV-1 infection and aging may provide an explanation for poorer clinical outcomes observed in older HIV-1-infected individuals. Thus, the development of novel therapeutics to stimulate immune function and delay immunosenescence is critical and would be beneficial to both the elderly and HIV-1-infected individuals.
Collapse
Affiliation(s)
- Tammy M Rickabaugh
- UCLA AIDS Institute and Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095-1745, USA
| | | |
Collapse
|
123
|
Ferrando-Martínez S, Ruiz-Mateos E, Hernández A, Gutiérrez E, Rodríguez-Méndez MDM, Ordoñez A, Leal M. Age-related deregulation of naive T cell homeostasis in elderly humans. AGE (DORDRECHT, NETHERLANDS) 2011; 33:197-207. [PMID: 20700658 PMCID: PMC3127472 DOI: 10.1007/s11357-010-9170-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/15/2010] [Indexed: 05/20/2023]
Abstract
Immunosenescence is characterized by phenotypic and functional changes of effector memory T cells. In spite of the well-described senescent defects of these experienced T cells, immune responses to new pathogens are also deeply affected in elderly humans, suggesting that naive T cells could also show age-related defects. It has been reported in both, animal models and humans, alterations of the naive T cell turnover associated to advanced age or low thymic function. However, as far as we know, homeostatic mechanisms involved in the deregulation of naive T cell peripheral dynamics and their consequences are still not well understood. Thus, the aim of our study was to analyze homeostatic parameters of peripheral naive T cells and their relationship with thymic function in young and elderly humans. Our results show that lower naive T cell numbers were associated with a lower thymic function and higher activation and proliferating naive T cell levels. We then analyzed sjTREC numbers and relative telomere length from sorted naive T cells. Our results show that the aberrant activation and proliferation status was related to lower sjTREC numbers (a peripheral proliferation marker) and both, higher CD57 expression levels and shortened telomeres (replicative senescence-related markers). Elderly individuals show a greater contraction of the CD8 naive T cell numbers and all homeostatic alterations were more severe in this compartment. In addition, we found that low functional thymus show a CD4-biased thymocyte production. Taken together, our results suggest a homeostatic deregulation, affecting mostly the naive CD8 T cell subset, leading to the accumulation of age-associated defects in, otherwise, phenotypically naive T cells.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| | - Ana Hernández
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | | | - Maria del Mar Rodríguez-Méndez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Department of Clinical Biochemistry, IBIS/CSIC/University of Seville, Virgen del Rocío University Hospital, Seville, Spain
| | - Antonio Ordoñez
- Cardiac Surgery, Virgen del Rocio University Hospital, Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS). Service of Infectious Diseases, Virgen del Rocío University Hospital, Avda. Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|
124
|
Abstract
Progressive loss of renal function is associated with a dysregulation of circulating T cells that may underlie their impaired T-cell immunity. Here we tested whether end-stage renal disease (ESRD)-related T-cell alterations are compatible with the concept of premature immunological aging. Younger patients (25-45 years old) with ESRD were found to resemble older healthy controls (60-80 years old) as they had a significant loss of naive T cells and a relative increase of memory T cells showing progressive terminal differentiation. A significant decrease in the content of T-cell receptor excision circles and telomere length in patients with ESRD confirmed these phenotypic data. The loss of naive T cells in patients with ESRD was associated with an excessive age-related decrease of recent thymic emigrants, indicating a premature decline in thymic function. Additionally, increased homeostatic proliferation of naive T cells was found in patients with ESRD, similar to that of older healthy individuals, with an increased susceptibility for activation-induced apoptosis. Therefore, both decreased thymic output and increased susceptibility of naive T cells for apoptosis may play a role in the loss of naive T cells in ESRD patients. Thus, our results are compatible with premature aging of the T-cell system of patients with ESRD comparable with that of healthy individuals 20-30 years older.
Collapse
|
125
|
Haegert DG, Hackenbroch JD, Duszczyszyn D, Fitz-Gerald L, Zastepa E, Mason H, Lapierre Y, Antel J, Bar-Or A. Reduced thymic output and peripheral naïve CD4 T-cell alterations in primary progressive multiple sclerosis (PPMS). J Neuroimmunol 2011; 233:233-9. [DOI: 10.1016/j.jneuroim.2010.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/28/2022]
|
126
|
Exley AR, Buckenham S, Hodges E, Hallam R, Byrd P, Last J, Trinder C, Harris S, Screaton N, Williams AP, Taylor AMR, Shneerson JM. Premature ageing of the immune system underlies immunodeficiency in ataxia telangiectasia. Clin Immunol 2011; 140:26-36. [PMID: 21459046 DOI: 10.1016/j.clim.2011.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 02/18/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
ATM kinase modulates pathways implicated in premature ageing and ATM genotype predicts survival, yet immunodeficiency in ataxia telangiectasia is regarded as mild and unrelated to age. We address this paradox in a molecularly characterised sequential adult cohort with classical and mild variant ataxia telangiectasia. Immunodeficiency has the characteristics of premature ageing across multiple cellular and molecular immune parameters. This immune ageing occurs without previous CMV infection. Age predicts immunodeficiency in genetically homogeneous ataxia telangiectasia, and in comparison with controls, calendar age is exceeded by immunological age defined by thymic naïve CD4+ T cell levels. Applying ataxia telangiectasia as a model of immune ageing, pneumococcal vaccine responses, characteristically deficient in physiological ageing, are predicted by thymic naïve CD4+ T cell levels. These data suggest inherited defects of DNA repair may provide valuable insight into physiological ageing. Thymic naïve CD4+ T cells may provide a biomarker for vaccine responsiveness in elderly cohorts.
Collapse
Affiliation(s)
- Andrew Robert Exley
- Immunology Laboratory, Department of Pathology, Papworth Hospital NHS Foundation Trust, Cambridge University Health Partners, Cambridge CB23 3RE, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
As a result of age-associated thymic atrophy, T cell production declines with age. Some studies suggest that production undergoes an exponential decline starting at birth, while others consider the decline to be in a biphasic manner with a rapid reduction in output occurring before middle age followed by a phase in which output declines at a regular, albeit much slower, rate. Both approaches provide estimations of the time of termination of thymic output, but on the basis of limited amounts of data. We have analysed blood from more than 200 individuals between the ages of 58 and 104 years to determine changes in thymic output using signal-joint T cell receptor excision circles (sjTREC)/T cells as our measure. To reduce any potential geographical or nutritional bias we have obtained samples from five different European countries. Our results reveal that while the absolute number of T cells per microlitre of blood does not change significantly across the age range we tested, the values of sjTREC per microlitre show wide variation and reveal an age-associated decline in thymic output. In addition we show gender differences, with notably higher thymic output in females than males at each decade. More importantly, we noted a significant decline in sjTREC/T cell levels in those more than 90 years of age in both males and females. Our results provide information about the potential end-point for thymic output and suggest that sjTREC analysis may be a biomarker of effective ageing.
Collapse
Affiliation(s)
- W A Mitchell
- Department of Immunology, Imperial College, London Translational Medicine Group, Cranfield University, Beds, UK
| | | | | |
Collapse
|
128
|
Rickabaugh TM, Kilpatrick RD, Hultin LE, Hultin PM, Hausner MA, Sugar CA, Althoff KN, Margolick JB, Rinaldo CR, Detels R, Phair J, Effros RB, Jamieson BD. The dual impact of HIV-1 infection and aging on naïve CD4 T-cells: additive and distinct patterns of impairment. PLoS One 2011; 6:e16459. [PMID: 21298072 PMCID: PMC3027697 DOI: 10.1371/journal.pone.0016459] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/16/2010] [Indexed: 02/04/2023] Open
Abstract
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults.
Collapse
Affiliation(s)
- Tammy M. Rickabaugh
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ryan D. Kilpatrick
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lance E. Hultin
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia M. Hultin
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mary Ann Hausner
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Catherine A. Sugar
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Keri N. Althoff
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Joseph B. Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Charles R. Rinaldo
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Roger Detels
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - John Phair
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Rita B. Effros
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Pathology and Laboratory Medicine, UCLA AIDS Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Beth D. Jamieson
- Department of Medicine, UCLA AIDS Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
129
|
Gain and loss of T cell subsets in old age--age-related reshaping of the T cell repertoire. J Clin Immunol 2011; 31:137-46. [PMID: 21243520 DOI: 10.1007/s10875-010-9499-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
The immune system is affected by the aging process and undergoes significant age-related changes, termed immunosenescence. Different T cell subsets are affected by this process. Alterations within the bone marrow and thymus lead to a shift in the composition of the T cell repertoire from naïve to antigen-experienced T cells, thereby compromising the diversity of the T cell pool. Additional infection with latent pathogens such as cytomegalovirus aggravates this process. In this review, we focus on the major age-related changes that occur in the naïve and the antigen-experienced T cell population. We discuss the mechanisms responsible for the generation and maintenance of these subsets and how age-related changes can be delayed or prevented by clinical interventions.
Collapse
|
130
|
Yonkers NL, Sieg S, Rodriguez B, Anthony DD. Reduced naive CD4 T cell numbers and impaired induction of CD27 in response to T cell receptor stimulation reflect a state of immune activation in chronic hepatitis C virus infection. J Infect Dis 2011; 203:635-45. [PMID: 21220773 DOI: 10.1093/infdis/jiq101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic hepatitis C virus (HCV) infection is characterized by reduced numbers of functional HCV-specific T cells. In addition, chronically HCV-infected individuals have reduced response to vaccine. Alterations in naive CD4 T cell phenotype or function may contribute to these immune impairments. METHODS Using flow cytometric analysis and enzyme-linked immunospot assay, we examined peripheral naive CD4 T cell phenotype and function in chronically HCV-infected patients and control subjects. RESULTS We observed significantly lower absolute cell numbers of naive CD4 T cells in HCV-infected patients, localized to the CD127(+)CD25(low/-) and CD31(+) (RTE) subsets. Moreover, we found greater percentages of naive cells expressing CD25 and KI67 in HCV-infected patients, consistent with immune activation, further supported by higher plasma sCD27 levels. Functional analysis revealed an intact interferon-γ response to allogeneic B cell stimulus. However, after direct TCR stimulation, naive CD4 T cells from HCV-infected patients had altered up-regulation of KI67 and CD25 and less CD27 expression. The latter was associated with elevated baseline activation state. In addition, naive CD4 T cells from HCV-infected patients were more susceptible to cell death. CONCLUSIONS These numerical and functional defects may contribute to inadequate formation of virus and neoantigen-specific T cell responses during chronic HCV infection.
Collapse
Affiliation(s)
- Nicole L Yonkers
- Department of Pathology, Division of Infectious and Rheumatic Diseases, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
131
|
Huang MC, Greig NH, Luo W, Tweedie D, Schwartz JB, Longo DL, Ferrucci L, Ershler WB, Goetzl EJ. Preferential enhancement of older human T cell cytokine generation, chemotaxis, proliferation and survival by lenalidomide. Clin Immunol 2010; 138:201-11. [PMID: 21130040 DOI: 10.1016/j.clim.2010.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 01/05/2023]
Abstract
Lenalidomide, an analog of thalidomide, modified responses of stimulated T cells from healthy young (ages 21-40 years) and old (≥ age 65 years) subjects. At 0.03 μM to 1 μM, lenalidomide enhanced generation of IL-2 and IFN-γ by T cell receptor-stimulated T cells of young subjects up to respective maximum increases of 17-fold and three-fold, but at 0.3 μM and 1 μM suppressed IL-17 generation. The same concentrations of lenalidomide enhanced IL-2 and IFN-γ generation by stimulated T cells of old subjects more, with greater respective maximal increases of up to 120-fold and six-fold, without suppressing IL-17 generation. Lenalidomide enhanced proliferation and suppressed apoptosis of stimulated T cells from old subjects, by IL-2-dependent mechanisms, and restored diminished T cell chemotactic responses to CCL21 and sphingosine 1-phosphate. The reversal of T cell abnormalities of immunosenescence by low concentrations of lenalidomide suggest a potential for improvement of immunity in the elderly.
Collapse
Affiliation(s)
- Mei-Chuan Huang
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Tsukamoto H, Huston GE, Dibble J, Duso DK, Swain SL. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. THE JOURNAL OF IMMUNOLOGY 2010; 185:4535-44. [PMID: 20844198 DOI: 10.4049/jimmunol.1001668] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With age, peripheral naive CD4 T cells become both longer lived and functionally impaired and they express reduced levels of Bim, a proapoptotic Bcl family member. In this study, we show that reduced Bim expression by naive CD4 T cells intrinsically mediates their longer lifespan in the periphery. Moreover, using mixed bone marrow chimeras reconstituted with Bim(+/+) and Bim(+/-) bone marrow cells, Bim(+/-) naive CD4 T cells exhibit accelerated development of age-associated dysfunctions, including reduced proliferation and IL-2 production and defective helper function for B cells, without any increase in their turnover. However, newly generated Bim(+/-) naive CD4 T cells in middle-aged mice are not defective, indicating an additional requirement for their persistence in the periphery. These age-associated immune defects develop independently of the "aged" host environment and without extensive division, distinguishing them from classic "senescence." We suggest that the reduction of Bim levels with age in naive CD4 T cell is the initiating step that leads to increased cellular lifespan and development of age-associated functional defects.
Collapse
|
133
|
Elgbratt K, Kurlberg G, Hahn-Zohric M, Hörnquist EH. Rapid migration of thymic emigrants to the colonic mucosa in ulcerative colitis patients. Clin Exp Immunol 2010; 162:325-36. [PMID: 20840654 DOI: 10.1111/j.1365-2249.2010.04230.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is associated with imbalances of the local intestinal immune responses, with dysregulated CD4(+) T cells contributing to the chronic inflammation. Having demonstrated altered T cell maturation in the thymus in two different mouse models of colitis, we set out to investigate whether abnormalities in T cell maturation is present in patients with ulcerative colitis (UC) or Crohn's disease (CD). Specimens were obtained from peripheral blood (CD; n = 14, UC; n = 22), colon and small intestinal specimens (CD; n = 6, UC; n = 13). As controls, peripheral blood specimens were obtained from healthy volunteers, patients with adenocarcinomas (n = 18) and colonic specimens from patients with adenocarcinomas (n = 14). Recent thymic emigrants were estimated by analysis of the normalized ratio of T cell receptor excision circles (TRECs) by real-time polymerase chain reaction (PCR). The frequency of naive- and proliferating T lymphocytes and markers of extrathymic T cell maturation in the mucosa was analyzed by flow cytometry and real time-PCR. TREC levels in peripheral blood T lymphocytes were similar between IBD patients and controls. In contrast, UC patients demonstrated significantly increased levels of TRECs both in intraepithelial and lamina propria lymphocytes from the colonic mucosa compared to patients with adenocarcinomas and CD. However, markers for extrathymic T cell maturation in the mucosa were not different between controls and IBD patients. The increased TREC levels in mucosal but not peripheral blood lymphocytes in UC patients in the absence of increased extrathymic maturation in situ in the mucosa together demonstrate that recent thymic emigrants are recruited rapidly to the inflamed mucosa of these patients.
Collapse
Affiliation(s)
- K Elgbratt
- Department of Clinical Medicine, Örebro University, Sweden
| | | | | | | |
Collapse
|
134
|
Crooks CV, Cross ML, Wall CR. Age-related differences in integrin expression in peripheral blood lymphocytes. IMMUNITY & AGEING 2010; 7:5. [PMID: 20420705 PMCID: PMC2873253 DOI: 10.1186/1742-4933-7-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/26/2010] [Indexed: 01/20/2023]
Abstract
Alpha integrins play an important role in cell to cell and cell to extra-cellular matrix interactions required for an effective T-lymphocyte-mediated immune response, however little is known about age related differences in expression of alpha integrins on T-cells in humans. We here measured alpha-4 (α4) integrin (CD49d) expression on T-lymphocytes via peripheral blood sampling, comparing parameters between cohorts of young and old adults. No age-related differences were found for the absolute numbers of T-cells, although the percentage of CD4+ T-cells in older adults was significantly greater and the percentage of CD8+ T-cells lower than in younger cohorts. Percentage and absolute numbers of CD3+ T-cells co-expressing CD49d were significantly lower in older adults compared to younger cohorts, and the percentage of gated CD4+ and CD8+ cells that co-labelled positively for CD49d was also reduced in this group. There were no age-related differences in circulating levels of cytokines (Type I interferons) that are known to regulate cell surface integrin expression. Reduced expression of alpha integrins on T-cells may be an early indicator of the loss of homeostatic control that occurs with ageing, contributing to diminished effector T-cell responses during senescence.
Collapse
Affiliation(s)
- Christine V Crooks
- Institute Food, Nutrition and Human Health, Massey University, Auckland, New Zealand.
| | | | | |
Collapse
|
135
|
Matsuoka KI, Kim HT, McDonough S, Bascug G, Warshauer B, Koreth J, Cutler C, Ho VT, Alyea EP, Antin JH, Soiffer RJ, Ritz J. Altered regulatory T cell homeostasis in patients with CD4+ lymphopenia following allogeneic hematopoietic stem cell transplantation. J Clin Invest 2010; 120:1479-93. [PMID: 20389017 DOI: 10.1172/jci41072] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/27/2010] [Indexed: 12/13/2022] Open
Abstract
CD4+CD25+Foxp3+ Tregs have an indispensable role in the maintenance of tolerance after allogeneic HSC transplantation (HSCT). Patients with chronic graft-versus-host disease (GVHD) have fewer circulating Tregs, but the mechanisms that lead to this deficiency of Tregs after HSCT are not known. Here, we analyzed reconstitution of Tregs and conventional CD4+ T cells (Tcons) in patients who underwent allogeneic HSCT after myeloablative conditioning. Following transplant, thymic generation of naive Tregs was markedly impaired, and reconstituting Tregs had a predominantly activated/memory phenotype. In response to CD4+ lymphopenia after HSCT, Tregs underwent higher levels of proliferation than Tcons, but Tregs undergoing homeostatic proliferation also showed increased susceptibility to Fas-mediated apoptosis. Prospective monitoring of CD4+ T cell subsets revealed that Tregs rapidly expanded and achieved normal levels by 9 months after HSCT, but Treg levels subsequently declined in patients with prolonged CD4+ lymphopenia. This resulted in a relative deficiency of Tregs, which was associated with a high incidence of extensive chronic GVHD. These studies indicate that CD4+ lymphopenia is a critical factor in Treg homeostasis and that prolonged imbalance of Treg homeostasis after HSCT can result in loss of tolerance and significant clinical disease manifestations.
Collapse
Affiliation(s)
- Ken-ichi Matsuoka
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Duszczyszyn DA, Williams JL, Mason H, Lapierre Y, Antel J, Haegert DG. Thymic involution and proliferative T-cell responses in multiple sclerosis. J Neuroimmunol 2010; 221:73-80. [PMID: 20223525 DOI: 10.1016/j.jneuroim.2010.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 01/06/2023]
Abstract
We investigated naïve CD4 T-cell homeostasis in relapsing-remitting multiple sclerosis (RRMS). Quantification of signal joint T-cell receptor excision circles in FACS-isolated CD31hi cells, which correspond closely to CD4 recent thymic emigrants (RTEs), indicates that young patients have reduced generation of CD4 RTEs compared to age-matched controls. In RRMS, compared to controls, CXCR4 analyses indicate age-associated thymic output of progressively immature CD4 RTEs, and Ki-67 data demonstrate altered T-cell proliferative responses that fail to maintain naïve CD4 T-cell numbers with age. Thus, RRMS patients have early thymic involution with compensatory homeostatic peripheral T-cell proliferative responses that may predispose patients to autoreactivity.
Collapse
|
137
|
Mayerl C, Prelog M. Immunosenescence and juvenile idiopathic arthritis. Autoimmun Rev 2010; 11:297-300. [PMID: 20172056 DOI: 10.1016/j.autrev.2010.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/15/2010] [Indexed: 11/17/2022]
Abstract
Aging of the immune system (immunosenescence) is characterized by diminished thymus function, decreased output of recent thymic emigrants, compensatory peripheral proliferation of mature T cells and oligoclonal expansions of specific CD28(-) T cells. Clinical consequences are poor responses to new antigens or vaccinations, increased infection rates with higher morbidity and mortality, and increasing incidence of autoimmune diseases with advancing age. Premature immunosenescence is suggested to play a role in the pathogenesis of adult rheumatoid arthritis and in children with juvenile idiopathic arthritis (JIA). However, so far, there is not enough evidence for supporting one of the two theories: the first, favoring premature immunosenscence in children developing autoimmune conditions as the primary defect causing break-down of self-tolerance; the second, that premature immunosenescence in children with autoimmune disorders is secondary to chronic stimulation and activation of the immune system by inflammatory processes by the autoimmune disease itself. This contradictory view of etiology and pathogenesis of autoimmune diseases in the very young underlines the need for population-based longitudinal studies on immune-risk factors for autoimmune diseases beginning at infancy.
Collapse
Affiliation(s)
- Christina Mayerl
- Division of Experimental Pathophysiologie and Immunology, Department Biocenter, Medical University Innsbruck, Austria
| | | |
Collapse
|
138
|
Zlamy M, Prelog M. Thymectomy in early childhood: a model for premature T cell immunosenescence? Rejuvenation Res 2010; 12:249-58. [PMID: 19673593 DOI: 10.1089/rej.2009.0864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The thymus is the main source of recent thymic emigrants (RTE) and naïve T cells. The aging of the immune system (immunosenescence) is characterized by loss of thymic function, decreased numbers of RTE, peripheral proliferation of mature T cells, and oligoclonal expansions of specific T cell subpopulations. As shown in several studies, thymectomized patients demonstrate signs of premature immunosenescence reminiscent of aged people, such as decreased proportions of naïve T cells and RTE, a compensatory increase of mature T cell subpopulations with increased proliferation rates, restriction of the T cell receptor repertoire, and a delayed response to new antigens and vaccinations. This review demonstrates that, despite some limitations, childhood thymectomy may serve as an useful model for premature immunosenescence, mimicking changes expected after physiological thymus involution in the elderly. Thus, it may prove an insightful tool for obtaining better understanding of human naïve T cell development, thymic function, and maintenance of the naïve T cell pool.
Collapse
Affiliation(s)
- Manuela Zlamy
- Department of Pediatrics, Pediatrics I, Medical University Innsbruck, Austria
| | | |
Collapse
|
139
|
Tanaskovic S, Fernandez S, Price P, Lee S, French MA. CD31 (PECAM-1) is a marker of recent thymic emigrants among CD4+ T-cells, but not CD8+ T-cells or gammadelta T-cells, in HIV patients responding to ART. Immunol Cell Biol 2010; 88:321-7. [PMID: 20065992 DOI: 10.1038/icb.2009.108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Some severely immunodeficient HIV patients experience poor recovery of CD4(+) T-cell counts on antiretroviral therapy (ART). Evaluation of the function of thymopoiesis in T-cell production in individual patients requires a simple marker of T-cells that have recently emigrated from the thymus. Here, we address whether expression of CD31 on CD4(+) T-cells, CD8(+) T-cells, regulatory T-cells and gammadelta T-cells correlates with other indicators of thymus function. Adult HIV-1 patients (n=27) with nadir CD4(+) T-cell counts <100 per mul and a sustained virological response to ART and healthy controls (n=23) were studied. CD31 expression was assessed by flow cytometry, T-cell receptor excision circles content by real-time PCR and thymic volume by spiral computed tomography. Proportions of CD4(+) T-cells expressing CD45RA and CD31 declined with age in HIV patients (P=0.03) and healthy controls (P<0.0001), and correlated directly with other markers of thymus function. In controls, proportions of CD8(+) T-cells expressing CD45RA and CD31 declined with age (P=0.003) and correlated directly with some markers of thymus function, but this was not seen in HIV patients. Proportions of CD45RA(+) CD31(+) gammadelta T-cells were higher in patients than controls (P=0.007) and did not correlate with thymus volume. In controls, proportion of gammadelta T-cells co-expressing CD45RA and CD31 increased with age (P=0.002). These data support the use of CD31 as a marker of recent thymic origin in CD4(+) T-cells, but not CD8(+) T-cells in HIV patients receiving ART. In such patients, CD31 expression is unlikely to indicate thymic origin in gammadelta T-cells.
Collapse
Affiliation(s)
- Sara Tanaskovic
- School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | | | | | | | | |
Collapse
|
140
|
CD31+ T cells represent a functionally distinct vascular T cell phenotype. Blood Cells Mol Dis 2009; 44:74-8. [PMID: 19897387 DOI: 10.1016/j.bcmd.2009.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/01/2009] [Accepted: 10/01/2009] [Indexed: 11/24/2022]
Abstract
In contrast to CD3(+)/CD31(-) cells, CD3(+)/CD31(+) cells aid in endothelial repair and revascularization. There are limited data regarding the functional differences between circulating CD3(+)/CD31(+) and CD3(+)/CD31(-) cells that may contribute to their divergent cardiovascular effects. The aim of the present study was to characterize functional differences between CD3(+)/CD31(+) and CD3(+)/CD31(-) cells. To address this aim, migratory capacity, proangiogenic cytokine release and apoptotic susceptibility of CD3(+)/CD31(+) and CD3(+)/CD31(-) cells were determined. Human CD3(+)/CD31(+) and CD3(+)/CD31(-)cells from peripheral blood were isolated using magnetic-activated cell sorting. CD3(+)/CD31(+) cells demonstrated significantly higher ( approximately 60%) migratory capacity to the chemokines SDF-1alpha (655+/-99 vs. 273+/-54 AU) and VEGF (618+/-99 vs. 259+/-57 AU) vs. CD3(+)/CD31(-) cells. Release of angiogenic cytokines G-CSF, interleukin-8 and matrix metallopeptidase-9 were all approximately 100% higher (P<0.05) in CD3(+)/CD31(+) than CD3(+)/CD31(-) cells. CD3(+)/CD31(+) cells exhibited significantly higher intracellular concentrations of active caspase-3 (2.61+/-0.60 vs. 0.34+/-0.09 ng/mL) and cytochrome-c (21.8+/-1.4 vs. 13.7+/-1.0 ng/mL). In summary, CD3(+)/CD31(+) cells have greater migratory and angiogenic cytokine release capacity, but are more susceptible to apoptosis compared with CD3(+)/CD31(-) cells. Enhanced migratory capacity and angiogenic cytokine release may contribute to the vasculogenic properties of this unique T cell subpopulation.
Collapse
|
141
|
Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci U S A 2009; 106:18333-8. [PMID: 19815516 DOI: 10.1073/pnas.0910139106] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With age, T-cell generation from the thymus is much reduced, yet a substantial naïve T-cell pool is maintained even in aged animals, suggesting that naïve T cells either persist longer or turn over faster to maintain T-cell homeostasis. We found that with age, naïve CD4 T cells became progressively longer-lived. Their longer lifespan did not depend on recognition of self-peptide/class II. Newly generated naïve T cells derived from aged stem cells had a shorter lifespan, like that of young naïve T cells. Conversely, naïve CD4 T cells derived from middle-aged thymectomized mice were longer-lived in vivo, and their development of functional defects was accelerated. These observations suggest that naïve T cells develop their longer lifespan during their sojourn in the periphery. Increased longevity of naïve CD4 T cells correlated well with reduced expression of proapoptotic molecule Bim. We suggest that the intrinsic increase in longevity helps maintain naïve T-cell homeostasis but facilitates the development of functional defects in mice.
Collapse
|
142
|
Fernández MN. Improving the outcome of cord blood transplantation: use of mobilized HSC and other cells from third party donors. Br J Haematol 2009; 147:161-76. [DOI: 10.1111/j.1365-2141.2009.07766.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
143
|
Bains I, Thiébaut R, Yates AJ, Callard R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. THE JOURNAL OF IMMUNOLOGY 2009; 183:4329-36. [PMID: 19734223 DOI: 10.4049/jimmunol.0900743] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Understanding T cell homeostasis requires knowledge of the export rate of new T cells from the thymus, a rate that has been surprisingly difficult to estimate. TCR excision circle (TREC) content has been used as a proxy for thymic export, but this quantity is influenced by cell division and loss of naive T cells and is not a direct measure of thymic export. We present in this study a method for quantifying thymic export in humans by combining two simple mathematical models. One uses Ki67 data to calculate the rate of peripheral naive T cell production, whereas the other tracks the dynamics of TRECs. Combining these models allows the contributions of the thymus and cell division to the daily production rate of T cells to be disentangled. The method is illustrated with published data on Ki67 expression and TRECs within naive CD4+ T cells in healthy individuals. We obtain a quantitative estimate for thymic export as a function of age from birth to 20 years. The export rate of T cells from the thymus follows three distinct phases, as follows: an increase from birth to a peak at 1 year, followed by rapid involution until approximately 8 years, and then a more gradual decline until 20 years. The rate of involution shown by our model is compatible with independent estimates of thymic function predicted by thymic epithelial space. Our method allows nonintrusive estimation of thymic output on an individual basis and may provide a means of assessing the role of the thymus in diseases such as HIV.
Collapse
Affiliation(s)
- Iren Bains
- Immunobiology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | | | | | | |
Collapse
|
144
|
Ehrlenbach S, Willeit P, Kiechl S, Willeit J, Reindl M, Schanda K, Kronenberg F, Brandstätter A. Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol 2009; 38:1725-34. [PMID: 19666704 DOI: 10.1093/ije/dyp273] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Telomeres play a key role in the maintenance of chromosome integrity. Short telomeres are linked to age-associated diseases and cancer. Our aim was to determine the decrease rate of relative telomere length (RTL) over 10 years and whether this rate was influenced by age, sex and smoking behaviour. METHODS We compared RTL in 510 sample pairs from the longitudinal population-based Bruneck Study, which were collected in 1995 and recollected in 2005, and additionally determined RTL from 159 participants who died during follow-up. RTL were determined by a high-throughput real-time PCR assay and by applying a mathematical model. RESULTS The telomeres shortened, on average, by 455 bp over 10 years. The RTL shortening rate was highly correlated with baseline RTL (r = 0.674, P < 0.001). Participants who died within the observed period had considerably shorter telomeres than those who survived (median RTL of 0.98 vs 1.49; P < 0.001). In contrast to previous studies, smoking behaviour had no influence on RTL and on telomere shortening. CONCLUSION This is the first comprehensive longitudinal study of individuals who were, on average, 60 at baseline, and who were re-evaluated 10 years later. Our methodology proved to be a reliable tool for a rapid, accurate and cost-efficient determination of RTL with a low amount of DNA.
Collapse
Affiliation(s)
- Silvia Ehrlenbach
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
145
|
van Gent R, van Tilburg CM, Nibbelke EE, Otto SA, Gaiser JF, Janssens-Korpela PL, Sanders EAM, Borghans JAM, Wulffraat NM, Bierings MB, Bloem AC, Tesselaar K. Refined characterization and reference values of the pediatric T- and B-cell compartments. Clin Immunol 2009; 133:95-107. [PMID: 19586803 DOI: 10.1016/j.clim.2009.05.020] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 05/21/2009] [Accepted: 05/27/2009] [Indexed: 11/26/2022]
Abstract
Work in the past years has led to a refined phenotypical description of functionally distinct T- and B-cell subsets. Since both lymphocyte compartments are established and undergo dramatic changes during childhood, redefined pediatric reference values of both compartments are needed. In a cohort of 145 healthy children, aged 0-18 years, the relative and absolute numbers of the various T- and B-cell subsets were determined. In addition, we found that besides thymic output, naive (CD27(+)CD45RO(-)) T-cell proliferation contributed significantly to the establishment of the naive T-cell compartment. At birth, regulatory (CD25(+)CD127(-)CD4(+)) T cells (Tregs) mainly had a naive (CD27(+)CD45RO(-)) phenotype whereas 'memory or effector-like' (CD45RO(+)) Tregs accumulated slowly during childhood. Besides the CD27(+)IgM(+)IgD(+) memory B-cell population, the recently identified CD27(-)IgG(+) and CD27(-)IgA(+) memory B-cell populations were already present at birth. These data provide reference values of the T- and B-cell compartments during childhood for studies of immunological disorders or immune reconstitution in children.
Collapse
Affiliation(s)
- R van Gent
- Department of Immunology, University Medical Center Utrecht, Lundlaan 6, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol 2009; 30:301-5. [PMID: 19541537 PMCID: PMC3755270 DOI: 10.1016/j.it.2009.04.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/16/2009] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
Abstract
It is well established that increasing age is associated with a decreased capacity of the immune system to mediate effective immune responses to vaccination and invading pathogens. Because of the inherent limitations of conducting experiments in humans, much of what we have learned is owed to the utility of experimental mouse models of aging. Recent studies performed in the mouse have demonstrated mechanisms responsible for age-related declines in the function of CD4(+) and CD8(+) cells. This review describes key findings regarding age-related defects in T-cell function and discusses the impact these defects have on vaccine efficacy and immunity.
Collapse
|
147
|
Lorenzi AR, Morgan TA, Anderson A, Catterall J, Patterson AM, Foster HE, Isaacs JD. Thymic function in juvenile idiopathic arthritis. Ann Rheum Dis 2009; 68:983-90. [PMID: 18628282 PMCID: PMC2674551 DOI: 10.1136/ard.2008.088112] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2008] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Thymic function declines exponentially with age. Impaired thymic function has been associated with autoimmune disease in adults but has never been formally assessed in childhood autoimmunity. Therefore, thymic function in children with the autoimmune disease juvenile idiopathic arthritis (JIA) was determined. METHODS Thymic function was measured in 70 children and young adults with JIA (age range 2.1-30.8 (median 10.4)) and 110 healthy age-matched controls using four independent assays. T cell receptor excision circles (WBLogTREC/ml) and the proportion of CD4(+) CD45RA(+)CD31(+) T cells (representing recent thymic emigrants; %RTEs) were quantified and intrathymic proliferation measured by calculating the alphaTREC/SigmabetaTREC ratio. Lastly, regulatory T cells (T(Reg)) of thymic origin (CD4(+)FOXP3(+)) were quantified in peripheral blood to assess the ability of the thymus in JIA to generate this T cell subset. RESULTS Thymic function was equivalent by all four parameters in JIA when compared with the control population. Furthermore, there was no consistent effect of JIA subtype on thymic function, although intrathymic proliferation was higher in the small rheumatoid factor (RF)(+) polyarticular group. There were no significant effects of disease-modifying antirheumatic drugs (DMARDs) or oral corticosteroids on thymic function, although those with the worst prognostic ILAR (International League of Associations for Rheumatology) subtypes were also those most likely to be on a DMARD. CONCLUSIONS It is demonstrated that children and young adults with JIA, unlike adults with autoimmune diseases, have thymic function that is comparable with that of healthy controls. The varied pathologies represented by the term "JIA" suggest this observation may not be disease specific and raises interesting questions about the aetiology of thymic impairment in adult autoimmunity.
Collapse
Affiliation(s)
- A R Lorenzi
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | | | | | | | | | | |
Collapse
|
148
|
Ferrando-Martínez S, Franco JM, Hernandez A, Ordoñez A, Gutierrez E, Abad A, Leal M. Thymopoiesis in elderly human is associated with systemic inflammatory status. AGE (DORDRECHT, NETHERLANDS) 2009; 31:87-97. [PMID: 19507053 PMCID: PMC2693727 DOI: 10.1007/s11357-008-9084-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 12/23/2008] [Indexed: 05/12/2023]
Abstract
Immunosenescence studies of age-related immune system damage focused on clinical lymphopenic situations or androgenic blockade have revealed new insights about adult human immune reconstitution. However, as far as we know, the extent of lymphopoiesis in the thymus of elderly humans remains unclear. To this effect, we have analyzed 65 adult human thymuses (from 36 to 81 years; median age 68.6 years) obtained from patients who underwent cardiac surgery. Our results show a correlation between CD4(+)CD8(+) double-positive (DP) cells and both the age (inverse) and percentage (direct) of peripheral naive T cells, indicating that the thymus is still able to affect the peripheral lymphocyte pool even in the elderly. We also found significant correlation between the degree of thymopoiesis and the inflammation markers, as shown by the inverse correlations between DP and the percentage of neutrophils and IL-6 levels and the percentage of peripheral lymphocytes. Furthermore, in a multivariate linear regression the percentage of DP and IL-7 levels, but not age, were independently associated with the percentage of neutrophils. In conclusion, the thymus maintains, even in the elderly, an active thymopoiesis that rejuvenates the peripheral naive T-cell pool. Moreover, age-related thymopoietic decay is associated with the peripheral inflammation markers.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Service of Infectious Diseases, Virgen del Rocío University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Jaime M. Franco
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Service of Infectious Diseases, Virgen del Rocío University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Ana Hernandez
- Cardiac Surgery, Virgen del Rocio University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Antonio Ordoñez
- Cardiac Surgery, Virgen del Rocio University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Encarna Gutierrez
- Cardiac Surgery, Virgen del Rocio University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Antonia Abad
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Service of Infectious Diseases, Virgen del Rocío University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Biomedicine Institute of Seville (IBIS), Service of Infectious Diseases, Virgen del Rocío University Hospital, Manuel Siurot s/n, 41013 Seville, Spain
| |
Collapse
|
149
|
Abstract
A pool of immature T cells with a seemingly unrestricted repertoire of antigen specificities is generated life-long in the thymus. Amongst these cells are, however, thymocytes that express a strongly self-reactive antigen receptor and hence hold the potential to trigger autoimmunity. To prevent such an outcome, the thymus employs several independent but functionally related strategies that act in parallel to enforce self-tolerance. The deletion of strongly self-reactive thymocytes and the generation of regulatory T cells constitute the two most efficient mechanisms to induce and maintain immunological tolerance. Thymic epithelial cells of the medulla express for this purpose tissue-restricted self-antigens. This review will focus on the cellular and molecular mechanisms operative in the thymus to shape a repertoire of mature T cells tolerant to self-antigens.
Collapse
Affiliation(s)
- G A Holländer
- Department of Clinical-Biological Sciences, Laboratory of Pediatric Immunology, Center for Biomedicine, University of Basel and The University Children's Hospital, Switzerland.
| | | |
Collapse
|
150
|
Modelling naive T-cell homeostasis: consequences of heritable cellular lifespan during ageing. Immunol Cell Biol 2009; 87:445-56. [PMID: 19290017 DOI: 10.1038/icb.2009.11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within an individual, the population of mature naive T cells is maintained throughout life by both input from the thymus and homeostatic proliferation in the periphery. Here, we develop a mathematical model of this process of naive T-cell homeostasis, and use it to explore questions of lifespan, inheritance and receptor repertoire during ageing. By assuming lifespan is largely determined by a heritable trait reset on mitosis, we show that homeostatic proliferation leads naturally to a longer lived population with age. A plausible candidate for the heritable trait influencing lifespan is T-cell receptor affinity for major histocompatibility molecules loaded with self-peptides. Concurrently with increasing lifespan, receptor diversity decreases with age, thus quantitatively linking these two phenomena. These results depend on the thymus involuting with age so that homeostatic proliferation becomes the dominant mode of replacement of the naive T-cell repertoire.
Collapse
|