101
|
Eissa N, Kittana H, Gomes-Neto JC, Hussein H. Mucosal immunity and gut microbiota in dogs with chronic enteropathy. Res Vet Sci 2018; 122:156-164. [PMID: 30504001 DOI: 10.1016/j.rvsc.2018.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/19/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022]
Abstract
Chronic enteropathy (CE) in dogs is a chronic and relapsing immunopathology, of unknown etiology, that usually manifests with a plethora of clinical signs reflecting the underlying heterogeneity in its pathogenesis. Alterations of the mucosal immune responses and the gut microbiota composition are thought to play an essential role in CE. Similar to humans, it is hypothesized that the breakdown in mucosal tolerance leads to aberrant and pathological immune responses toward the gut microbiota, that in turn, may contribute to the severity of disease, at least for certain CE subsets. Therefore, in this review, we discuss some of the most relevant and recent insights microbiological and immunological aspects characterizing CE in dogs.
Collapse
Affiliation(s)
- Nour Eissa
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada.
| | - Hatem Kittana
- Department of Food Science and Technology, University of Nebraska-, Lincoln, NE, USA
| | - João Carlos Gomes-Neto
- Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Hayam Hussein
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
102
|
Moen AEF, Lindstrøm JC, Tannæs TM, Vatn S, Ricanek P, Vatn MH, Jahnsen J. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Sci Rep 2018; 8:17278. [PMID: 30467421 PMCID: PMC6250705 DOI: 10.1038/s41598-018-35243-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022] Open
Abstract
Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls.
Collapse
Affiliation(s)
- Aina E Fossum Moen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Jonas Christoffer Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Tone Møller Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway.
| | - Simen Vatn
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | | |
Collapse
|
103
|
Mukherjee S, Joardar N, Sengupta S, Sinha Babu SP. Gut microbes as future therapeutics in treating inflammatory and infectious diseases: Lessons from recent findings. J Nutr Biochem 2018; 61:111-128. [PMID: 30196243 PMCID: PMC7126101 DOI: 10.1016/j.jnutbio.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/24/2018] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
Abstract
The human gut microbiota has been the interest of extensive research in recent years and our knowledge on using the potential capacity of these microbes are growing rapidly. Microorganisms colonized throughout the gastrointestinal tract of human are coevolved through symbiotic relationship and can influence physiology, metabolism, nutrition and immune functions of an individual. The gut microbes are directly involved in conferring protection against pathogen colonization by inducing direct killing, competing with nutrients and enhancing the response of the gut-associated immune repertoire. Damage in the microbiome (dysbiosis) is linked with several life-threatening outcomes viz. inflammatory bowel disease, cancer, obesity, allergy, and auto-immune disorders. Therefore, the manipulation of human gut microbiota came out as a potential choice for therapeutic intervention of the several human diseases. Herein, we review significant studies emphasizing the influence of the gut microbiota on the regulation of host responses in combating infectious and inflammatory diseases alongside describing the promises of gut microbes as future therapeutics.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Nikhilesh Joardar
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Subhasree Sengupta
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
| | - Santi P Sinha Babu
- Parasitology Laboratory, Department of Zoology (Centre for Advanced Studies), Siksha-Bhavana, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
104
|
Fang X, Monk JM, Nurk S, Akseshina M, Zhu Q, Gemmell C, Gianetto-Hill C, Leung N, Szubin R, Sanders J, Beck PL, Li W, Sandborn WJ, Gray-Owen SD, Knight R, Allen-Vercoe E, Palsson BO, Smarr L. Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome Samples From a Crohn's Disease Patient. Front Microbiol 2018; 9:2559. [PMID: 30425690 PMCID: PMC6218438 DOI: 10.3389/fmicb.2018.02559] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Dysbiosis of the gut microbiome, including elevated abundance of putative leading bacterial triggers such as E. coli in inflammatory bowel disease (IBD) patients, is of great interest. To date, most E. coli studies in IBD patients are focused on clinical isolates, overlooking their relative abundances and turnover over time. Metagenomics-based studies, on the other hand, are less focused on strain-level investigations. Here, using recently developed bioinformatic tools, we analyzed the abundance and properties of specific E. coli strains in a Crohns disease (CD) patient longitudinally, while also considering the composition of the entire community over time. In this report, we conducted a pilot study on metagenomic-based, strain-level analysis of a time-series of E. coli strains in a left-sided CD patient, who exhibited sustained levels of E. coli greater than 100X healthy controls. We: (1) mapped out the composition of the gut microbiome over time, particularly the presence of E. coli strains, and found that the abundance and dominance of specific E. coli strains in the community varied over time; (2) performed strain-level de novo assemblies of seven dominant E. coli strains, and illustrated disparity between these strains in both phylogenetic origin and genomic content; (3) observed that strain ST1 (recovered during peak inflammation) is highly similar to known pathogenic AIEC strains NC101 and LF82 in both virulence factors and metabolic functions, while other strains (ST2-ST7) that were collected during more stable states displayed diverse characteristics; (4) isolated, sequenced, experimentally characterized ST1, and confirmed the accuracy of the de novo assembly; and (5) assessed growth capability of ST1 with a newly reconstructed genome-scale metabolic model of the strain, and showed its potential to use substrates found abundantly in the human gut to outcompete other microbes. In conclusion, inflammation status (assessed by the blood C-reactive protein and stool calprotectin) is likely correlated with the abundance of a subgroup of E. coli strains with specific traits. Therefore, strain-level time-series analysis of dominant E. coli strains in a CD patient is highly informative, and motivates a study of a larger cohort of IBD patients.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Margarita Akseshina
- St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Gemmell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Connor Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nelly Leung
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jon Sanders
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul L Beck
- Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | - Weizhong Li
- Human Longevity Inc., San Diego, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Inflammatory Bowel Disease Center, University of California, San Diego, La Jolla, CA, United States
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,California Institute for Telecommunications and Information Technology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
105
|
Khan S, Imran A, Malik A, Chaudhary AA, Rub A, Jan AT, Syed JB, Rolfo C. Bacterial imbalance and gut pathologies: Association and contribution of E. coli in inflammatory bowel disease. Crit Rev Clin Lab Sci 2018; 56:1-17. [DOI: 10.1080/10408363.2018.1517144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, India
| | - Ahamad Imran
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Pharmacology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdur Rub
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jakeera Begum Syed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
- College of Medicine and Dentistry, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department and Multidisciplinary Oncology Center Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
106
|
Butera A, Di Paola M, Pavarini L, Strati F, Pindo M, Sanchez M, Cavalieri D, Boirivant M, De Filippo C. Nod2 Deficiency in mice is Associated with Microbiota Variation Favouring the Expansion of mucosal CD4+ LAP+ Regulatory Cells. Sci Rep 2018; 8:14241. [PMID: 30250234 PMCID: PMC6155205 DOI: 10.1038/s41598-018-32583-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Nucleotide-binding Oligomerization Domain-2 (NOD2) mutations are associated with an increased risk to develop Crohn's Disease. In previous studies, we have shown that Nod2-/- mice manifest increased proportion of Lamina Propria (LP) CD4+ LAP+ Foxp3- regulatory cells, when compared with Nod2+/+ mice, while CD4+ Foxp3 + regulatory cells were not affected. Here, we investigated the Nod2 gut microbiota, by 16S rRNA pyrosequencing, at steady state and after TNBS-colitis induction in mice reared separately or in cohousing, correlating the microbial profiles with LP regulatory T cells proportion and tissue cytokines content. We found that enrichment of Rikenella and Alistipes (Rikenellaceae) in Nod2-/- mice at 8 weeks of age reared separately was associated with increased proportion of CD4+ LAP+ Foxp3- cells and less severe TNBS-colitis. In co-housed mice the acquisition of Rickenellaceae by Nod2+/+ mice was associated with increased CD4+ LAP+ Foxp3- proportion and less severe colitis. Severe colitis was associated with enrichment of gram-negative pathobionts (Escherichia and Enterococcus), while less severe colitis with protective bacteria (Barnesiella, Odoribacter and Clostridium IV). Environmental factors acting on genetic background with different outcomes according to their impact on microbiota, predispose in different ways to inflammation. These results open a new scenario for therapeutic attempt to re-establish eubiosis in Inflammatory Bowel Disease patients with NOD2 polymorphisms.
Collapse
Affiliation(s)
- A Butera
- Pharmacological Research and Experimental Therapy Section, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - M Di Paola
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Meyer Children Hospital, Florence, Italy.,Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - L Pavarini
- Research and Innovation Centre, Fondazione E. Mach, S. Michele all'Adige, Trento, Italy
| | - F Strati
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - M Pindo
- Research and Innovation Centre, Fondazione E. Mach, S. Michele all'Adige, Trento, Italy
| | - M Sanchez
- Cytometry Unit - Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - D Cavalieri
- Department of Biology, University of Florence, Sesto Fiorentino, Florence, Italy
| | - M Boirivant
- Pharmacological Research and Experimental Therapy Section, National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | - C De Filippo
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council (CNR), Pisa, Italy.
| |
Collapse
|
107
|
Sicard JF, Vogeleer P, Le Bihan G, Rodriguez Olivera Y, Beaudry F, Jacques M, Harel J. N-Acetyl-glucosamine influences the biofilm formation of Escherichia coli. Gut Pathog 2018; 10:26. [PMID: 29977346 PMCID: PMC6013987 DOI: 10.1186/s13099-018-0252-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Background The intestinal mucous layer is a physical barrier that limits the contact between bacteria and host epithelial cells. There is growing evidence that microbiota-produced metabolites can also be specifically sensed by gut pathogens as signals to induce or repress virulence genes. Many E. coli, including adherent and invasive (AIEC) strains, can form biofilm. This property can promote their intestinal colonization and resistance to immune mechanisms. We sought to evaluate the impact of mucus-derived sugars on biofilm formation of E. coli. Results We showed that the mucin sugar N-acetyl-glucosamine (NAG) can reduce biofilm formation of AIEC strain LF82. We demonstrated that the inactivation of the regulatory protein NagC, by addition of NAG or by mutation of nagC gene, reduced the biofilm formation of LF82 in static condition. Interestingly, real-time monitoring of biofilm formation of LF82 using microfluidic system showed that the mutation of nagC impairs the early process of biofilm development of LF82. Thus, NAG sensor NagC is involved in the early steps of biofilm formation of AIEC strain LF82 under both static and dynamic conditions. Its implication is partly due to the activation of type 1 fimbriae. NAG can also influence biofilm formation of other intestinal E. coli strains. Conclusions This study highlights how catabolism can be involved in biofilm formation of E. coli. Mucus-derived sugars can influence virulence properties of pathogenic E. coli and this study will help us better understand the mechanisms used to prevent colonization of the intestinal mucosa by pathogens. Electronic supplementary material The online version of this article (10.1186/s13099-018-0252-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Félix Sicard
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| | - Philippe Vogeleer
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| | - Guillaume Le Bihan
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| | - Yaindrys Rodriguez Olivera
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| | - Francis Beaudry
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| | - Mario Jacques
- 2Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2 Canada
| | - Josée Harel
- 1Groupe de Recherche sur les Maladies Infectieuses en Production Animale, Centre de Recherche en Infectiologie Porcine et Avicole, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|
108
|
Rahmouni O, Vignal C, Titécat M, Foligné B, Pariente B, Dubuquoy L, Desreumaux P, Neut C. High carriage of adherent invasive E. coli in wildlife and healthy individuals. Gut Pathog 2018; 10:23. [PMID: 29946365 PMCID: PMC6001069 DOI: 10.1186/s13099-018-0248-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Adherent invasive Escherichia coli (AIEC) are suspected to be involved in the pathogenesis of inflammatory bowel diseases. Since AIEC was first described in 1999, despite important progress on its genomic and immune characterizations, some crucial questions remain unanswered, such as whether there exists a natural reservoir, or whether there is asymptomatic carriage. The ECOR collection, including E. coli strains isolated mainly from the gut of healthy humans and animals, constitutes an ideal tool to investigate AIEC prevalence in healthy condition. A total of 61 E. coli strains were examined for characteristics of AIEC. METHODS The adhesion, invasion and intramacrophage replication capabilities (AIEC phenotype) of 61 intestinal E. coli strains were determined. The absence of virulence-associated diarrheagenic E. coli pathotypes (EPEC, ETEC, EIEC, EHEC, DAEC, EAEC), and uropathogenic E. coli was checked. RESULTS Out of 61 intestinal strains, 13 (21%) exhibit the AIEC phenotype, 7 are from human origin and 6 are from animal origin. Prevalence of AIEC strains is about 24 and 19% in healthy humans and animals respectively. These strains are highly genetically diverse as they are distributed among the main described phylogroups. Among E. coli strains from the ECOR collection, we also detected strains able to detach I-407 cells. CONCLUSIONS Our study described for the first time AIEC strains isolated from the feces of healthy humans and animals.
Collapse
Affiliation(s)
- Oumaïra Rahmouni
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
| | - Cécile Vignal
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
| | - Marie Titécat
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
- Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Benoît Foligné
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
| | - Benjamin Pariente
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
- Service des Maladies de l’Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, CHU Lille, 59037 Lille, France
| | - Laurent Dubuquoy
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
| | - Pierre Desreumaux
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
- Service des Maladies de l’Appareil Digestif et de la Nutrition, Hôpital Claude Huriez, CHU Lille, 59037 Lille, France
| | - Christel Neut
- Lille Inflammation Research International Center, UMR 995 Inserm, Lille University, CHRU Lille, Lille, France
- Laboratoire de Bactériologie, 3, Rue de Pr. Laguesse, B.P. 83, 59006 Lille Cedex, France
| |
Collapse
|
109
|
Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC SYSTEMS BIOLOGY 2018; 12:66. [PMID: 29890970 PMCID: PMC5996543 DOI: 10.1186/s12918-018-0587-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023]
Abstract
Background Escherichia coli is considered a leading bacterial trigger of inflammatory bowel disease (IBD). E. coli isolates from IBD patients primarily belong to phylogroup B2. Previous studies have focused on broad comparative genomic analysis of E. coli B2 isolates, and identified virulence factors that allow B2 strains to reside within human intestinal mucosa. Metabolic capabilities of E. coli strains have been shown to be related to their colonization site, but remain unexplored in IBD-associated strains. Results In this study, we utilized pan-genome analysis and genome-scale models (GEMs) of metabolism to study metabolic capabilities of IBD-associated E. coli B2 strains. The study yielded three results: i) Pan-genome analysis of 110 E. coli strains (including 53 isolates from IBD studies) revealed discriminating metabolic genes between B2 strains and other strains; ii) Both comparative genomic analysis and GEMs suggested that B2 strains have an advantage in degrading and utilizing sugars derived from mucus glycan, and iii) GEMs revealed distinct metabolic features in B2 strains that potentially allow them to utilize energy more efficiently. For example, B2 strains lack the enzymes to degrade amadori products, but instead rely on neighboring bacteria to convert these substrates into a more readily usable and potentially less sought after product. Conclusions Taken together, these results suggest that the metabolic capabilities of B2 strains vary significantly from those of other strains, enabling B2 strains to colonize intestinal mucosa.The results from this study motivate a broad experimental assessment of the nutritional effects on E. coli B2 pathophysiology in IBD patients. Electronic supplementary material The online version of this article (10.1186/s12918-018-0587-5) contains supplementary material, which is available to authorized users.
Collapse
|
110
|
Olivares-Morales MJ, De La Fuente MK, Dubois-Camacho K, Parada D, Diaz-Jiménez D, Torres-Riquelme A, Xu X, Chamorro-Veloso N, Naves R, Gonzalez MJ, Quera R, Figueroa C, Cidlowski JA, Vidal RM, Hermoso MA. Glucocorticoids Impair Phagocytosis and Inflammatory Response Against Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Front Immunol 2018; 9:1026. [PMID: 29867993 PMCID: PMC5964128 DOI: 10.3389/fimmu.2018.01026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory bowel disorder characterized by deregulated inflammation triggered by environmental factors. Notably, adherent-invasive Escherichia coli (AIEC), a bacterium with the ability to survive within macrophages is believed to be one of such factors. Glucocorticoids are the first line treatment for CD and to date, it is unknown how they affect bactericidal and inflammatory properties of macrophages against AIEC. The aim of this study was to evaluate the impact of glucocorticoid treatment on AIEC infected macrophages. First, THP-1 cell-derived macrophages were infected with a CD2-a AIEC strain, in the presence or absence of the glucocorticoid dexamethasone (Dex) and mRNA microarray analysis was performed. Differentially expressed mRNAs were confirmed by TaqMan-qPCR. In addition, an amikacin protection assay was used to evaluate the phagocytic and bactericidal activity of Dex-treated macrophages infected with E. coli strains (CD2-a, HM605, NRG857c, and HB101). Finally, cytokine secretion and the inflammatory phenotype of macrophages were evaluated by ELISA and flow cytometry, respectively. The microarray analysis showed that CD2-a, Dex, and CD2-a + Dex-treated macrophages have differential inflammatory gene profiles. Also, canonical pathway analysis revealed decreased phagocytosis signaling by Dex and anti-inflammatory polarization on CD2-a + Dex macrophages. Moreover, amikacin protection assay showed reduced phagocytosis upon Dex treatment and TaqMan-qPCR confirmed Dex inhibition of three phagocytosis-associated genes. All bacteria strains induced TNF-α, IL-6, IL-23, CD40, and CD80, which was inhibited by Dex. Thus, our data demonstrate that glucocorticoids impair phagocytosis and induce anti-inflammatory polarization after AIEC infection, possibly contributing to the survival of AIEC in infected CD patients.
Collapse
Affiliation(s)
- Mauricio Javier Olivares-Morales
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Marjorie Katherine De La Fuente
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Karen Dubois-Camacho
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Daniela Parada
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - David Diaz-Jiménez
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Alejandro Torres-Riquelme
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Nayaret Chamorro-Veloso
- Enteropathogens Laboratory, Microbiology and Mycology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Rodrigo Naves
- Neuroimmunology Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Maria-Julieta Gonzalez
- Cell Biology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Rodrigo Quera
- Gastroenterology Department, Clínica Las Condes, Santiago, Chile
| | | | - John Anthony Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
| | - Roberto Mauricio Vidal
- Enteropathogens Laboratory, Microbiology and Mycology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| | - Marcela Alejandra Hermoso
- Innate Immunity Laboratory, Immunology Program, Faculty of Medicine, Biomedical Sciences Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
111
|
Roche-Lima A, Carrasquillo-Carrión K, Gómez-Moreno R, Cruz JM, Velázquez-Morales DM, Rogozin IB, Baerga-Ortiz A. The Presence of Genotoxic and/or Pro-inflammatory Bacterial Genes in Gut Metagenomic Databases and Their Possible Link With Inflammatory Bowel Diseases. Front Genet 2018; 9:116. [PMID: 29692798 PMCID: PMC5902703 DOI: 10.3389/fgene.2018.00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/22/2018] [Indexed: 01/19/2023] Open
Abstract
Background: The human gut microbiota is a dynamic community of microorganisms that mediate important biochemical processes. Differences in the gut microbial composition have been associated with inflammatory bowel diseases (IBD) and other intestinal disorders. In this study, we quantified and compared the frequencies of eight genotoxic and/or pro-inflammatory bacterial genes found in metagenomic Whole Genome Sequences (mWGSs) of samples from individuals with IBD vs. a cohort of healthy human subjects. Methods: The eight selected gene sequences were clbN, clbB, cif, cnf-1, usp, tcpC from Escherichia coli, gelE from Enterococcus faecalis and murB from Akkermansia muciniphila. We also included the sequences for the conserved murB genes from E. coli and E. faecalis as markers for the presence of Enterobacteriaceae or Enterococci in the samples. The gene sequences were chosen based on their previously reported ability to disrupt normal cellular processes to either promote inflammation or to cause DNA damage in cultured cells or animal models, which could be linked to a role in IBD. The selected sequences were searched in three different mWGS datasets accessed through the Human Microbiome Project (HMP): a healthy cohort (N = 251), a Crohn's disease cohort (N = 60) and an ulcerative colitis cohort (N = 17). Results: Firstly, the sequences for the murB housekeeping genes from Enterobacteriaceae and Enterococci were more frequently found in the IBD cohorts (32% E. coli in IBD vs. 12% in healthy; 13% E. faecalis in IBD vs. 3% in healthy) than in the healthy cohort, confirming earlier reports of a higher presence of both of these taxa in IBD. For some of the sequences in our study, especially usp and gelE, their frequency was even more sharply increased in the IBD cohorts than in the healthy cohort, suggesting an association with IBD that is not easily explained by the increased presence of E. coli or E. faecalis in those samples. Conclusion: Our results suggest a significant association between the presence of some of these genotoxic or pro-inflammatory gene sequences and IBDs. In addition, these results illustrate the power and limitations of the HMP database in the detection of possible clinical correlations for individual bacterial genes.
Collapse
Affiliation(s)
- Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities - RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Kelvin Carrasquillo-Carrión
- Center for Collaborative Research in Health Disparities - RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Ramón Gómez-Moreno
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.,Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan M Cruz
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Dayanara M Velázquez-Morales
- Center for Collaborative Research in Health Disparities - RCMI Program, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Igor B Rogozin
- National Center for Biotechnology Information, U.S. National Library of Medicine, Bethesda, MD, United States
| | - Abel Baerga-Ortiz
- Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.,Molecular Sciences Research Center, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
112
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
113
|
Ramachandran RA, Lupfer C, Zaki H. The Inflammasome: Regulation of Nitric Oxide and Antimicrobial Host Defence. Adv Microb Physiol 2018; 72:65-115. [PMID: 29778217 DOI: 10.1016/bs.ampbs.2018.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) is a gaseous signalling molecule that plays diverse physiological functions including antimicrobial host defence. During microbial infection, NO is synthesized by inducible NO synthase (iNOS), which is expressed by host immune cells through the recognition of microbial pattern molecules. Therefore, sensing pathogens or their pattern molecules by pattern recognition receptors (PRRs), which are located at the cell surface, endosomal and phagosomal compartment, or in the cytosol, is key in inducing iNOS and eliciting antimicrobial host defence. A group of cytosolic PRRs is involved in inducing NO and other antimicrobial molecules by forming a molecular complex called the inflammasome. Assembled inflammasomes activate inflammatory caspases, such as caspase-1 and caspase-11, which in turn process proinflammatory cytokines IL-1β and IL-18 into their mature forms and induce pyroptotic cell death. IL-1β and IL-18 play a central role in immunity against microbial infection through activation and recruitment of immune cells, induction of inflammatory molecules, and regulation of antimicrobial mediators including NO. Interestingly, NO can also regulate inflammasome activity in an autocrine and paracrine manner. Here, we discuss molecular mechanisms of inflammasome formation and the inflammasome-mediated regulation of host defence responses during microbial infections.
Collapse
Affiliation(s)
| | | | - Hasan Zaki
- UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
114
|
Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Abedi V, Bassaganya-Riera J. NLRX1 Modulates Immunometabolic Mechanisms Controlling the Host-Gut Microbiota Interactions during Inflammatory Bowel Disease. Front Immunol 2018. [PMID: 29535731 PMCID: PMC5834749 DOI: 10.3389/fimmu.2018.00363] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interactions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). Nlrx1−/− mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic Nlrx1−/− mice compared to wild-type (WT) mice. Cell-specificity studies using cre-lox mice demonstrate that the loss of NLRX1 in intestinal epithelial cells (IEC) recapitulate the increased sensitivity to DSS colitis observed in whole body Nlrx1−/− mice. Further, organoid cultures of Nlrx1−/− and WT epithelial cells confirm the altered patterns of proliferation, amino acid metabolism, and tight junction expression. These differences in IEC behavior can impact the composition of the microbiome. Microbiome analyses demonstrate that colitogenic bacterial taxa such as Veillonella and Clostridiales are increased in abundance in Nlrx1−/− mice and in WT mice co-housed with Nlrx1−/− mice. The transfer of an Nlrx1−/−-associated gut microbiome through co-housing worsens disease in WT mice confirming the contributions of the microbiome to the Nlrx1−/− phenotype. To validate NLRX1 effects on IEC metabolism mediate gut–microbiome interactions, restoration of WT glutamine metabolic profiles through either exogenous glutamine supplementation or administration of 6-diazo-5-oxo-l-norleucine abrogates differences in inflammation, microbiome, and overall disease severity in Nlrx1−/− mice. The influence NLRX1 deficiency on SIRT1-mediated effects is identified to be an upstream controller of the Nlrx1−/− phenotype in intestinal epithelial cell function and metabolism. The altered IEC function and metabolisms leads to changes in barrier permeability and microbiome interactions, in turn, promoting greater translocation and inflammation and resulting in an increased disease severity. In conclusion, NLRX1 is an immunoregulatory molecule and a candidate modulator of the interplay between mucosal inflammation, metabolism, and the gut microbiome during IBD.
Collapse
Affiliation(s)
- Andrew Leber
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Raquel Hontecillas
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | - Nuria Tubau-Juni
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| | | | - Vida Abedi
- Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical and Translational Informatics, Geisinger Health System, Danville, PA, United States
| | - Josep Bassaganya-Riera
- Landos Biopharma, Inc., Blacksburg, VA, United States.,Nutritional Immunology and Molecular Medicine Laboratory, Biocomplexity Institute of Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
115
|
Sarabi Asiabar A, Asadzadeh Aghdaei H, Sabokbar A, Zali MR, Feizabadi MM. Investigation of adherent-invasive E. coli in patients with Crohn's disease. Med J Islam Repub Iran 2018; 32:11. [PMID: 30159262 PMCID: PMC6108281 DOI: 10.14196/mjiri.32.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Crohn's disease and Ulcerative colitis are known as inflammatory bowel disease with high morbidity which are as a result of increasing immune responses to intestinal microbiota in genetically susceptible individuals. The association of adherent invasive Escherichia coli with Crohn's disease in human has been discussed for decades. The principal aim of this study was to assess the relationship between adherent invasive Escherichia coli in Iranian patients with Crohn's disease. Methods: The presence of adherent invasive Escherichia coli DNA and viable adherent invasive Escherichia coli cells were identified through PCR and conventional culture methods, respectively. All the specimens were subsequently cultured in Hi Chrome Agar medium. Results: Using molecular assay, the invasive plasmid antigen H and invasion-association locus genes were detected from tissue samples confirming the presence of adherent-invasive Escherichia coli. The invasive plasmid antigen H was detected in 46.7% of CD and 13.3% of healthy peoples. The invasion-association locus gene was found in 36.7% of patients with Crohn's disease and 10% in individuals without IBD. Conclusion: This study demonstrated an increased frequency of adherent invasive E. coli with invasive plasmid antigen H and invasion-association locus genes from patients with CD in comparison to control individuals. Moreover, it was shown that adherent invasive E. coli with the invasive plasmid antigen H and invasion-association locus genes can act as a predisposing factor in the development of IBD.
Collapse
Affiliation(s)
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Reza Zali
- Department of Inflammatory Bowel Disease, Research Center for Gastroenterology and Liver Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran, & Thoracic Research Center, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
116
|
Camprubí-Font C, Lopez-Siles M, Ferrer-Guixeras M, Niubó-Carulla L, Abellà-Ametller C, Garcia-Gil LJ, Martinez-Medina M. Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli. Sci Rep 2018; 8:2695. [PMID: 29426864 PMCID: PMC5807354 DOI: 10.1038/s41598-018-20843-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 01/19/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn's disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - Mireia Lopez-Siles
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | | | - Laura Niubó-Carulla
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | - Carles Abellà-Ametller
- Laboratory of Molecular Microbiology, Biology Department, Universitat de Girona, Girona, Spain
| | | | | |
Collapse
|
117
|
Rifaximin decreases virulence of Crohn's disease-associated Escherichia coli and epithelial inflammatory responses. J Antibiot (Tokyo) 2018; 71:485-494. [PMID: 29410518 DOI: 10.1038/s41429-017-0022-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
Abstract
Escherichia coli with an adherent and invasive pathotype (AIEC) is implicated in the pathogenesis of Crohn's disease (CD). Rifaximin improves symptoms in mild-to-moderate CD. It is unclear if this outcome is due to its effects on bacteria or intestinal epithelial inflammatory responses. We examined the effects of rifaximin on the growth and virulence of CD-associated E. coli and intestinal epithelial inflammatory responses. Seven well-characterized CD-associated E. coli strains (six AIEC, one non-AIEC; four rifaximin-resistant, three sensitive) were evaluated. We assessed the effects of rifaximin on CD-associated E. coli growth, adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and survival in macrophages. Additionally, we determined the effects of rifaximin on intestinal epithelial inflammatory responses. In vitro rifaximin exerted a dose-dependent effect on the growth of sensitive strains but did not affect the growth of resistant strains. Rifaximin reduced adhesion, invasion, virulence gene expression and motility of CD-associated E. coli in a manner that was independent of its antimicrobial effect. Furthermore, rifaximin reduced IL-8 secretion from pregnane X receptor-expressing T84 colonic epithelial cells. The effect of rifaximin on adhesion was largely attributable to its action on bacteria, whereas decreases in invasion and cytokine secretion were due to its effect on the epithelium. In conclusion, our results show that rifaximin interferes with multiple steps implicated in host-AIEC interactions related to CD, including adhesion to, and invasion of epithelial cells, virulence gene expression, motility, and pro-inflammatory cytokine secretion. Further study is required to determine the relationship of these effects to clinical responses in CD patients.
Collapse
|
118
|
Aygun H, Karamese M, Ozic C, Uyar F. The effects of mucosal media on some pathogenic traits of Crohn's disease-associated Escherichia coli LF82. Future Microbiol 2018; 13:141-149. [DOI: 10.2217/fmb-2017-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Adherent-invasive Escherichia coli (AIEC) pathovar has been identified in intestinal mucosa of patients with Crohn's disease. Our aim was to compare the impact of sterile mucosal media (Muc-M) originated from different parts of the intestine on some pathogenic traits of AIEC LF82 strain. Materials & methods: Muc-M composed of certain rates of cell culture medium or M63 minimal medium and mucosal contents obtained from different part of intestine were designed for cell-infection experiments and biofilm-formation assays. Results: The results showed that Muc-M reduced usually pathogenic properties of AIEC LF82. However, LF82 adhesion, invasion and specific biofilm formations were markedly higher in Muc-MCR than those in Muc-MIR . Conclusion: In this context, the findings of present study could help the endeavors related to determining molecular targets for AIEC bacteria.
Collapse
Affiliation(s)
- Husamettin Aygun
- Department of Biology, Faculty of Science, Dicle University, Diyarbakir 21280, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Cem Ozic
- Department of Bioengineering, Faculty of Engineering & Architecture, Kafkas University, Kars, 36100, Turkey
| | - Fikret Uyar
- Department of Biology, Faculty of Science, Dicle University, Diyarbakir 21280, Turkey
| |
Collapse
|
119
|
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, Giske CG, Naas T, Carattoli A, Martínez-Medina M, Bosch J, Retamar P, Rodríguez-Baño J, Baquero F, Soto SM. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev 2018; 40:437-463. [PMID: 28201713 DOI: 10.1093/femsre/fuw005] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/23/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is one of the most-studied microorganisms worldwide but its characteristics are continually changing. Extraintestinal E. coli infections, such as urinary tract infections and neonatal sepsis, represent a huge public health problem. They are caused mainly by specialized extraintestinal pathogenic E. coli (ExPEC) strains that can innocuously colonize human hosts but can also cause disease upon entering a normally sterile body site. The virulence capability of such strains is determined by a combination of distinctive accessory traits, called virulence factors, in conjunction with their distinctive phylogenetic background. It is conceivable that by developing interventions against the most successful ExPEC lineages or their key virulence/colonization factors the associated burden of disease and health care costs could foreseeably be reduced in the future. On the other hand, one important problem worldwide is the increase of antimicrobial resistance shown by bacteria. As underscored in the last WHO global report, within a wide range of infectious agents including E. coli, antimicrobial resistance has reached an extremely worrisome situation that ‘threatens the achievements of modern medicine’. In the present review, an update of the knowledge about the pathogenicity, antimicrobial resistance and clinical aspects of this ‘old friend’ was presented.
Collapse
Affiliation(s)
- J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - E Sáez-López
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - J R Johnson
- VA Medical Center, Minneapolis, MN, USA, and University of Minnesota, Minneapolis, MN, USA
| | - U Römling
- Karolinska Institute, Stockholm, Sweden
| | - U Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - R Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - C G Giske
- Karolinska Institute, Stockholm, Sweden
| | - T Naas
- Hôpital de Bicêtre, Université Paris Sud, Le Kremlin-Bicêtre, France
| | - A Carattoli
- Department of infectious, parasitic and immune-mediated diseases, Istituto Superiore di Sanità, Rome, Italy
| | - M Martínez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona, Spain
| | - J Bosch
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Department of Clinical Microbiology, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - P Retamar
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospitales Universitarios Virgen Macarena y Virgen del Rocío, Departamento de Medicina, Universidad de Sevilla, Seville, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - F Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - S M Soto
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
120
|
Manasson J, Shen N, Garcia Ferrer HR, Ubeda C, Iraheta I, Heguy A, Von Feldt JM, Espinoza LR, Garcia Kutzbach A, Segal LN, Ogdie A, Clemente JC, Scher JU. Gut Microbiota Perturbations in Reactive Arthritis and Postinfectious Spondyloarthritis. Arthritis Rheumatol 2018; 70:242-254. [PMID: 29073348 DOI: 10.1002/art.40359] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Reactive arthritis (ReA) is an inflammatory disorder occurring several weeks after gastrointestinal or genitourinary tract infections. HLA-B27 positivity is considered a risk factor, although it is not necessarily predictive of disease incidence. Among nongenetic factors, the intestinal microbiome may play a role in disease susceptibility. The objective of this study was to characterize the gut microbiota and host gene interactions in ReA and postinfectious spondyloarthritis. METHODS Adult subjects with peripheral spondyloarthritis and control subjects with preceding infections who did not develop arthritis were prospectively recruited from a geographic region with a high prevalence of ReA. Clinical variables, HLA status, and 16S ribosomal RNA gene sequencing of intestinal microbiota were analyzed. RESULTS Subjects with ReA showed no significant differences from controls in gut bacterial richness or diversity. However, there was a significantly higher abundance of Erwinia and Pseudomonas and an increased prevalence of typical enteropathogens associated with ReA. Subjects with ultrasound evidence of enthesitis were enriched in Campylobacter, while subjects with uveitis and radiographic sacroiliitis were enriched in Erwinia and unclassified Ruminococcaceae, respectively; both were enriched in Dialister. Host genetics, particularly HLA-A24, were associated with differences in gut microbiota diversity irrespective of disease status. We identified several co-occurring taxa that were also predictive of HLA-A24 status. CONCLUSION This is the first culture-independent study characterizing the gut microbial community in postinfectious arthritis. Although bacterial factors correlated with disease presence and clinical features of ReA, host genetics also appeared to be a major independent driver of intestinal community composition. Understanding of these gut microbiota-host genetic relationships may further clarify the pathogenesis of postinfectious spondyloarthritides.
Collapse
Affiliation(s)
- Julia Manasson
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| | - Nan Shen
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Helga R Garcia Ferrer
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | - Carles Ubeda
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain, and CIBER en Epidemiologia y Salud Publica, Madrid, Spain
| | - Isa Iraheta
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | - Adriana Heguy
- New York University School of Medicine, New York, New York
| | | | - Luis R Espinoza
- Louisiana State University Health Science Center, New Orleans
| | - Abraham Garcia Kutzbach
- Guatemalan Association Against Rheumatic Diseases and Universidad Francisco Marroquin, Guatemala City, Guatemala
| | | | | | | | - Jose U Scher
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| |
Collapse
|
121
|
Chen Y, Zhou W, Roh T, Estes MK, Kaplan DL. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS One 2017; 12:e0187880. [PMID: 29186150 PMCID: PMC5706668 DOI: 10.1371/journal.pone.0187880] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/28/2017] [Indexed: 12/30/2022] Open
Abstract
There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.
Collapse
Affiliation(s)
- Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States of America
| | - Wenda Zhou
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States of America
| | - Terrence Roh
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States of America
- * E-mail:
| |
Collapse
|
122
|
Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017. [PMID: 29183332 DOI: 10.1186/s13073-017-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that is associated with changes in the gut microbiome. Here, we sought to identify strain-specific functional correlates with IBD outcomes. METHODS We performed metagenomic sequencing of monthly stool samples from 20 IBD patients and 12 controls (266 total samples). These were taxonomically profiled with MetaPhlAn2 and functionally profiled using HUMAnN2. Differentially abundant species were identified using MaAsLin and strain-specific pangenome haplotypes were analyzed using PanPhlAn. RESULTS We found a significantly higher abundance in patients of facultative anaerobes that can tolerate the increased oxidative stress of the IBD gut. We also detected dramatic, yet transient, blooms of Ruminococcus gnavus in IBD patients, often co-occurring with increased disease activity. We identified two distinct clades of R. gnavus strains, one of which is enriched in IBD patients. To study functional differences between these two clades, we augmented the R. gnavus pangenome by sequencing nine isolates from IBD patients. We identified 199 IBD-specific, strain-specific genes involved in oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, potentially conferring an adaptive advantage for this R. gnavus clade in the IBD gut. CONCLUSIONS This study adds further evidence to the hypothesis that increased oxidative stress may be a major factor shaping the dysbiosis of the microbiome observed in IBD and suggests that R. gnavus may be an important member of the altered gut community in IBD.
Collapse
Affiliation(s)
- Andrew Brantley Hall
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Moran Yassour
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jenny Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Current address: Vatche and Tamar Manoukian Division of Digestive Disease, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ashley Garner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofang Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy Arthur
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georgia K Lagoudas
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nadine Fornelos
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robin Wilson
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Madeline Bertha
- Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Melissa Cohen
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Garber
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hamed Khalili
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Current address: Janssen Human Microbiome Institute, Janssen Research & Development, Cambridge, MA, 02142, USA
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Subra Kugathasan
- Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| | - Paul Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
123
|
Zhang SL, Wang SN, Miao CY. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol 2017; 8:1674. [PMID: 29234327 PMCID: PMC5712343 DOI: 10.3389/fimmu.2017.01674] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with chronic and recurrent characteristics caused by multiple reasons. Although the pathogenic factors have not been clarified yet, recent studies have demonstrated that intestinal microbiota plays a major role in UC, especially in the immune system. This review focuses on the description of several major microbiota communities that affect UC and their interactions with the host. In this review, eight kinds of microbiota that are highly related to IBD, including Faecalibacterium prausnitzii, Clostridium clusters IV and XIVa, Bacteroides, Roseburia species, Eubacterium rectale, Escherichia coli, Fusobacterium, and Candida albicans are demonstrated on the changes in amount and roles in the onset and progression of IBD. In addition, potential therapeutic targets for UC involved in the regulation of microbiota, including NLRPs, vitamin D receptor as well as secreted proteins, are discussed in this review.
Collapse
Affiliation(s)
- Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
124
|
Hall AB, Yassour M, Sauk J, Garner A, Jiang X, Arthur T, Lagoudas GK, Vatanen T, Fornelos N, Wilson R, Bertha M, Cohen M, Garber J, Khalili H, Gevers D, Ananthakrishnan AN, Kugathasan S, Lander ES, Blainey P, Vlamakis H, Xavier RJ, Huttenhower C. A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients. Genome Med 2017; 9:103. [PMID: 29183332 PMCID: PMC5704459 DOI: 10.1186/s13073-017-0490-5] [Citation(s) in RCA: 503] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract that is associated with changes in the gut microbiome. Here, we sought to identify strain-specific functional correlates with IBD outcomes. METHODS We performed metagenomic sequencing of monthly stool samples from 20 IBD patients and 12 controls (266 total samples). These were taxonomically profiled with MetaPhlAn2 and functionally profiled using HUMAnN2. Differentially abundant species were identified using MaAsLin and strain-specific pangenome haplotypes were analyzed using PanPhlAn. RESULTS We found a significantly higher abundance in patients of facultative anaerobes that can tolerate the increased oxidative stress of the IBD gut. We also detected dramatic, yet transient, blooms of Ruminococcus gnavus in IBD patients, often co-occurring with increased disease activity. We identified two distinct clades of R. gnavus strains, one of which is enriched in IBD patients. To study functional differences between these two clades, we augmented the R. gnavus pangenome by sequencing nine isolates from IBD patients. We identified 199 IBD-specific, strain-specific genes involved in oxidative stress responses, adhesion, iron-acquisition, and mucus utilization, potentially conferring an adaptive advantage for this R. gnavus clade in the IBD gut. CONCLUSIONS This study adds further evidence to the hypothesis that increased oxidative stress may be a major factor shaping the dysbiosis of the microbiome observed in IBD and suggests that R. gnavus may be an important member of the altered gut community in IBD.
Collapse
Affiliation(s)
- Andrew Brantley Hall
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Moran Yassour
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Jenny Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Current address: Vatche and Tamar Manoukian Division of Digestive Disease, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ashley Garner
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Xiaofang Jiang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Timothy Arthur
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georgia K Lagoudas
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nadine Fornelos
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Robin Wilson
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Madeline Bertha
- Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Melissa Cohen
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - John Garber
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hamed Khalili
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Current address: Janssen Human Microbiome Institute, Janssen Research & Development, Cambridge, MA, 02142, USA
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Subra Kugathasan
- Emory University School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| | - Paul Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
125
|
Shen Z, Zhu C, Quan Y, Yuan W, Wu S, Yang Z, Luo W, Tan B, Wang X. Update on intestinal microbiota in Crohn's disease 2017: Mechanisms, clinical application, adverse reactions, and outlook. J Gastroenterol Hepatol 2017; 32:1804-1812. [PMID: 28677158 DOI: 10.1111/jgh.13861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
The pathogenesis of Crohn's disease (CD) is complex, and it is thought to be associated with the environment, immune, hereditary, microbe, and other factors. If the balance between the host and the intestinal microbes in CD patients was broken, immune-inflammatory response of susceptible individuals might be triggered. Probiotics could improve the intestinal microbial flora balance and treat human effectively. There are several new mechanisms that might explain the role of probiotics. Fecal microbiota transplantation (FMT) is becoming more and more attractive in treating a large amount of digestive system diseases that are related to the dysbiosis of intestinal microbiota. FMT has been widely used in recurrent Clostridium difficile infection. More and more attention has been paid on the clinical application of FMT in CD, while the exact mechanism is still a mystery. So in this review, we explore the mechanism, clinical application, and adverse reactions of intestinal microbiota in CD so that we can use the tool to cure more diseases. Enteric microbiota leads to new therapeutic strategies for CD.
Collapse
Affiliation(s)
- Zhaohua Shen
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Changxin Zhu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Yongsheng Quan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Wei Yuan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Shuai Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Zhenyu Yang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Weiwei Luo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Bei Tan
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
126
|
Khajah MA. The potential role of fecal microbiota transplantation in the treatment of inflammatory Bowel disease. Scand J Gastroenterol 2017; 52:1172-1184. [PMID: 28685630 DOI: 10.1080/00365521.2017.1347812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of an unknown etiology. Its pathogenesis involves an interplay of infectious, genetic, environmental, and immunological factors. The current therapeutic options have various limitations in terms of cost, side effect profile, and the development of drug resistance and dependence. Therefore, there is a need to develop future therapeutic options which are safe and effective to control the inflammatory process. This review focuses in a method for the administration of fecal matters (which contains a mixture of various commensals) from a healthy donor to the inflamed colon called fecal microbiota transplantation (FMT) aiming to correct the underlying dysbiosis in the gut as one of the major driving force for the inflammatory process. IBD patients have reduced number of protective (e.g., clostridia and bacteroids) and increased number of pathogenic (e.g., adhesive invasive E. coli and mycobacterium avium paratuberculosis) commensals, and this method is aimed to shift these changes in the gut. Recent studies from animal models and clinical trials suggest promising effects of this method in treating patients with IBD, but more studies are urgently needed to confirm its efficacy and safety, since the etiology of this chronic inflammatory disease is not fully understood and caution should be taken when transplanting fecal matters between individuals which might transfer other infectious organisms and diseases.
Collapse
Affiliation(s)
- Maitham Abbas Khajah
- a Pharmacology & Therapeutics, Faculty of Pharmacy , Kuwait University , Kuwait , Kuwait
| |
Collapse
|
127
|
Rakitina DV, Manolov AI, Kanygina AV, Garushyants SK, Baikova JP, Alexeev DG, Ladygina VG, Kostryukova ES, Larin AK, Semashko TA, Karpova IY, Babenko VV, Ismagilova RK, Malanin SY, Gelfand MS, Ilina EN, Gorodnichev RB, Lisitsyna ES, Aleshkin GI, Scherbakov PL, Khalif IL, Shapina MV, Maev IV, Andreev DN, Govorun VM. Genome analysis of E. coli isolated from Crohn's disease patients. BMC Genomics 2017; 18:544. [PMID: 28724357 PMCID: PMC5517970 DOI: 10.1186/s12864-017-3917-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. RESULTS We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. CONCLUSIONS Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.
Collapse
Affiliation(s)
- Daria V. Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexander I. Manolov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Sofya K. Garushyants
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Julia P. Baikova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry G. Alexeev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute for Physics and Technology, Moscow, Russia
| | - Valentina G. Ladygina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena S. Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Andrei K. Larin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Tatiana A. Semashko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Y. Karpova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladislav V. Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ruzilya K. Ismagilova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Fundamental Medicine and Biology of Kazan Federal University, Kazan, Russia
| | - Sergei Y. Malanin
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Fundamental Medicine and Biology of Kazan Federal University, Kazan, Russia
| | - Mikhail S. Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Elena N. Ilina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Roman B. Gorodnichev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Eugenia S. Lisitsyna
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Gennady I. Aleshkin
- The Gamaleya Research Institute for Epidemiology and Microbiology of the Russian Academy of Medical Science, Moscow, Russia
| | - Petr L. Scherbakov
- Central Scientific Institute of Gastroenterology, Moscow Clinical Research Centre, Moscow, Russia
| | - Igor L. Khalif
- State Scientific Center of Coloproctology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Marina V. Shapina
- State Scientific Center of Coloproctology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Igor V. Maev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Ministry of Health of Russian Federation, Moscow, Russia
| | - Dmitry N. Andreev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Ministry of Health of Russian Federation, Moscow, Russia
| | - Vadim M. Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute for Physics and Technology, Moscow, Russia
| |
Collapse
|
128
|
Van Raay T, Allen-Vercoe E. Microbial Interactions and Interventions in Colorectal Cancer. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0004-2016. [PMID: 28643625 PMCID: PMC11687491 DOI: 10.1128/microbiolspec.bad-0004-2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Recently, several lines of evidence that indicate a strong link between the development of colorectal cancer (CRC) and aspects of the gut microbiota have become apparent. However, it remains unclear how changes in the gut microbiota might influence carcinogenesis or how regional organization of the gut might influence the microbiota. In this review, we discuss several leading theories that connect gut microbial dysbiosis with CRC and set this against a backdrop of what is known about proximal-distal gut physiology and the pathways of CRC development and progression. Finally, we discuss the potential for gut microbial modulation therapies, for example, probiotics, antibiotics, and others, to target and improve gut microbial dysbiosis as a strategy for the prevention or treatment of CRC.
Collapse
Affiliation(s)
- Terence Van Raay
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
129
|
Céspedes S, Saitz W, Del Canto F, De la Fuente M, Quera R, Hermoso M, Muñoz R, Ginard D, Khorrami S, Girón J, Assar R, Rosselló-Mora R, Vidal RM. Genetic Diversity and Virulence Determinants of Escherichia coli Strains Isolated from Patients with Crohn's Disease in Spain and Chile. Front Microbiol 2017; 8:639. [PMID: 28596755 PMCID: PMC5443141 DOI: 10.3389/fmicb.2017.00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/29/2017] [Indexed: 12/20/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are genetically variable and virulence factors for AIEC are non-specific. FimH is the most studied pathogenicity-related protein, and there have been few studies on other proteins, such as Serine Protease Autotransporters of Enterobacteriacea (SPATEs). The goal of this study is to characterize E. coli strains isolated from patients with Crohn's disease (CD) in Chile and Spain, and identify genetic differences between strains associated with virulence markers and clonality. We characterized virulence factors and genetic variability by pulse field electrophoresis (PFGE) in 50 E. coli strains isolated from Chilean and Spanish patients with CD, and also determined which of these strains presented an AIEC phenotype. Twenty-six E. coli strains from control patients were also included. PFGE patterns were heterogeneous and we also observed a highly diverse profile of virulence genes among all E. coli strains obtained from patients with CD, including those strains defined as AIEC. Two iron transporter genes chuA, and irp2, were detected in various combinations in 68–84% of CD strains. We found that the most significant individual E. coli genetic marker associated with CD E. coli strains was chuA. In addition, patho-adaptative fimH mutations were absent in some of the highly adherent and invasive strains. The fimH adhesin, the iron transporter irp2, and Class-2 SPATEs did not show a significant association with CD strains. The V27A fimH mutation was detected in the most CD strains. This study highlights the genetic variability of E. coli CD strains from two distinct geographic origins, most of them affiliated with the B2 or D E. coli phylogroups and also reveals that nearly 40% of Chilean and Spanish CD patients are colonized with E.coli with a characteristic AIEC phenotype.
Collapse
Affiliation(s)
- Sandra Céspedes
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Waleska Saitz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Felipe Del Canto
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Rodrigo Quera
- Gastroenterology Unit, Clínica Las CondesSantiago, Chile
| | - Marcela Hermoso
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | - Rául Muñoz
- Institut Mediterrani d'Estudis Avançats (CSIC-UIB)Illes Balears, Spain
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Sam Khorrami
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son EspasesPalma de Mallorca, Spain
| | - Jorge Girón
- Department of Pediatrics, University of Virginia School of MedicineCharlottesville, VA, USA
| | - Rodrigo Assar
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| | | | - Roberto M Vidal
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de ChileSantiago, Chile
| |
Collapse
|
130
|
Khan AA, Khan Z, Malik A, Kalam MA, Cash P, Ashraf MT, Alshamsan A. Colorectal cancer-inflammatory bowel disease nexus and felony of Escherichia coli. Life Sci 2017; 180:60-67. [PMID: 28506682 DOI: 10.1016/j.lfs.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/24/2017] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) has a multifactorial etiology. Although the exact cause of CRC is still elusive, recent studies have indicated microbial involvement in its etiology. Escherichia coli has emerged as an important factor in CRC development since the bacterium can cause changes in the gut that lead to cancerous transformation. A number of studies indicate that chronic inflammation induced by microorganisms, including E. coli, during inflammatory bowel disease (IBD) predisposes an individual to CRC. The evidence that support the role of E. coli in the etiology of CRC, through IBD, is not limited only to chronic inflammation. The growth of E. coli as an intracellular pathogen during IBD and CRC enable the bacteria to modulate the host cell cycle, induce DNA damage and accumulate mutations. These are some of the contributing factors behind the etiology of CRC. The present article considers the current status of the involvement of E. coli, through IBD, in the etiology of CRC. We discuss how intracellular E. coli infection can cause changes in the gut that can eventually lead to cellular transformation. In addition, the recent management strategies that target E. coli for prevention of CRC are also discussed.
Collapse
Affiliation(s)
- Abdul Arif Khan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Baverly Blvd., Los Angeles, CA 90048, USA
| | - Abdul Malik
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Phillip Cash
- The Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | - Aws Alshamsan
- Nanomedicine Research Unit, Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
131
|
Dufour N, Debarbieux L. [Phage therapy: a realistic weapon against multidrug resistant bacteria]. Med Sci (Paris) 2017; 33:410-416. [PMID: 28497737 DOI: 10.1051/medsci/20173304011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous increase in antibiotic resistance among bacteria in infectious diseases associated with the lack of new antibiotics able to circumvent them are urging physicians, researchers and politicians to look for others options for treatments. Among those, phage therapy (use of natural viruses that infect bacteria, called bacteriophages) is one of the most promising approaches. In this review, we first focus on the problematic raised by multidrug resistant bacteria before addressing the main biological characteristics of bacteriophages, as well as the credibility and the relevance of phage therapy. We then introduce human applications, their potentials and limits.
Collapse
Affiliation(s)
- Nicolas Dufour
- Institut Pasteur, groupe interactions bactériophages bactéries chez l'animal, département de microbiologie, 25, rue du Docteur Roux, 75015 Paris, France - Centre hospitalier René Dubos, Service de réanimation médico-chirurgicale, 95500 Pontoise, France
| | - Laurent Debarbieux
- Institut Pasteur, groupe interactions bactériophages bactéries chez l'animal, département de microbiologie, 25, rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
132
|
Garg M, Ooi CY. The Enigmatic Gut in Cystic Fibrosis: Linking Inflammation, Dysbiosis, and the Increased Risk of Malignancy. Curr Gastroenterol Rep 2017; 19:6. [PMID: 28155088 DOI: 10.1007/s11894-017-0546-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Intestinal inflammation, dysbiosis, and increased gastrointestinal malignancy risks are well-described in patients with cystic fibrosis (CF). However, there is limited understanding of their pathophysiology. This review aims to discuss these issues and assess potential links between them. RECENT FINDINGS Evidence of links between intestinal inflammation and dysbiosis (an imbalance in intestinal microbial populations) exist. Recent studies have demonstrated reduction in intestinal inflammation with probiotic administration. Both bacterial dysbiosis and gut inflammation contribute to the suboptimal nutritional status seen in children with CF. Short-chain fatty acids may be reduced in the gut lumen as a result of bacterial imbalances and may promote inflammation. Inflammation and bacterial dysbiosis in CF may also contribute to emerging adult complications such as gastrointestinal malignancy. An increase in carcinogenic microbes and reduction in microbes protective against cancer have been found in CF, linking bacterial dysbiosis and cancer. Murine studies suggest the CF gene, cystic fibrosis transmembrane conductance regulator (CFTR) gene, itself may be a tumour suppressor gene. The pathophysiology of interactions among intestinal inflammation, dysbiosis, and malignancy in CF is not clearly understood and requires further research.
Collapse
Affiliation(s)
- Millie Garg
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia
| | - Chee Y Ooi
- School of Women's and Children's Health, Medicine, University of New South Wales, Randwick, NSW, 2031, Australia.
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
133
|
Shawki A, McCole DF. Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli. Cell Mol Gastroenterol Hepatol 2017; 3:41-50. [PMID: 28174756 PMCID: PMC5247418 DOI: 10.1016/j.jcmgh.2016.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function.
Collapse
Key Words
- AIEC, adherent-invasive Escherichia coli
- AJ, adherens junction
- AJC, apical junctional complex
- BP, bacterial peptidoglycans
- CD, Crohn’s disease
- CEACAM6, carcinoembryonic antigen–related cell-adhesion molecule
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- IFN, interferon
- IL, interleukin
- Inflammatory Bowel Disease
- Intestinal Permeability
- JAM-A, junctional adhesion molecule-A
- LPF, long polar fimbriae
- MLC, myosin light chain
- MLCK, myosin light chain kinase
- NF-κB, nuclear factor-κB
- NOD2, nucleotide-binding oligomerization domain 2
- PDZ, PSD95-DlgA-zonula occludens-1 homology domain
- TJ, tight junction
- TNF, tumor necrosis factor
- Tight Junctions
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| |
Collapse
|
134
|
Abstract
The pathophysiology of Crohn's disease (CD), a chronic inflammatory bowel disease, remains imperfectly elucidated. Consequently, the therapeutic armamentarium remains limited and has not changed the natural history of CD hitherto. Accordingly, physicians need to identify new therapeutic targets to be able to alter the intestinal damage. The most recent hypothesis considered CD as resulting from an abnormal interaction between microbiota and host immune system influenced by genetics and environmental factors. Several experimental and genetic evidence point out intestinal macrophages in CD etiology. An increase of macrophages number and the presence of granulomas are especially observed in the intestinal mucosa of patients with CD. These macrophages could be defective and particularly in responses to infectious agents like CD-associated Escherichia coli. This review focuses on, what is currently known regarding the role of macrophages, macrophages/E. coli interaction, and the impact of CD therapies on macrophages in CD. We also speculate that macrophages modulation could lead to important translational implications in CD with the end goal of promoting gut health.
Collapse
|
135
|
Mydock-McGrane L, Cusumano Z, Han Z, Binkley J, Kostakioti M, Hannan T, Pinkner JS, Klein R, Kalas V, Crowley J, Rath NP, Hultgren SJ, Janetka JW. Antivirulence C-Mannosides as Antibiotic-Sparing, Oral Therapeutics for Urinary Tract Infections. J Med Chem 2016; 59:9390-9408. [PMID: 27689912 PMCID: PMC5087331 DOI: 10.1021/acs.jmedchem.6b00948] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Gram-negative
uropathogenic Escherichia coli (UPEC)
bacteria are a causative pathogen of urinary tract infections
(UTIs). Previously developed antivirulence inhibitors of the type
1 pilus adhesin, FimH, demonstrated oral activity in animal models
of UTI but were found to have limited compound exposure due to the
metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having
the O-glycosidic bond replaced with carbon linkages
had improved stability and inhibitory activity against FimH. We report
on the design, synthesis, and in vivo evaluation of this promising
new class of carbon-linked C-mannosides that show
improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically
modulated by hydroxyl substitution on the methylene linker, where
the R-hydroxy isomer has a 60-fold increase in potency.
This new class of C-mannoside antagonists have significantly
increased compound exposure and, as a result, enhanced efficacy in
mouse models of acute and chronic UTI.
Collapse
Affiliation(s)
| | - Zachary Cusumano
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | - Thomas Hannan
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | | | | | | | | | - Nigam P Rath
- Department of Chemistry and Biochemistry, University of Missouri , Saint Louis, Missouri 63121 United States
| | - Scott J Hultgren
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| | - James W Janetka
- Fimbrion Therapeutics, Inc. , Saint Louis, Missouri 63108 United States
| |
Collapse
|
136
|
Pilarczyk-Zurek M, Strus M, Adamski P, Heczko PB. The dual role of Escherichia coli in the course of ulcerative colitis. BMC Gastroenterol 2016; 16:128. [PMID: 27724868 PMCID: PMC5057264 DOI: 10.1186/s12876-016-0540-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Abstract
Background This study examines the dual role of Escherichia coli in the course of ulcerative colitis (UC). The intestinal microbiota is considered to play an important role in UC pathogenesis, but how E. coli contributes to inflammation in UC is still unknown. On the one hand, we demonstrated that there was a significant increase in the number of E. coli at the sites of inflammation in patients with UC, which can lead to immune system activation, whilst, on the other hand, E. coli may contribute to the resolution of inflammatory reactions since E. coli can inhibit hydroxyl radical formation by eliminating substrates of the Fenton reaction, by assimilating ferrous iron (Fe2+) and inducing the decomposition of hydrogen peroxide (H2O2). On this way, E. coli may affect the initiation and/or prolongation of remission stages of UC. Methods Ten E. coli strains were isolated from the colonic mucosa of patients in the acute phase of UC. Using PCR, we examined the presence of genes encoding catalases (katG and katE) and proteins participating in iron acquisition (feoB, fepA, fhuA, fecA, iroN, fyuA, and iutA) in these E. coli strains. To determine if iron ions influence the growth rate of E. coli and its ability to decompose H2O2, we grew E. coli in defined culture media without iron (M9(-)) or with ferrous ions (M9(Fe2+)). Expression levels of genes encoding catalases were examined by real-time PCR. Results All investigated E. coli strains had catalase genes (katG, katE), genes coding for receptors for Fe2+ (feoB) and at least one of the genes responsible for iron acquisition related to siderophores (fepA, fhuA, fecA, iroN, fyuA, iutA). E. coli cultured in M9(Fe2+) grew faster than E. coli in M9(-). The presence of Fe2+ in the media contributed to the increased rate of H2O2 decomposition by E. coli and induced katG gene expression. Conclusions E. coli eliminates substrates of the Fenton reaction by assimilating Fe2+ and biosynthesizing enzymes that catalyze H2O2 decomposition. Thus, E. coli can inhibit hydroxyl radical formation, and affects the initiation and/or prolongation of remission stages of UC.
Collapse
Affiliation(s)
- Magdalena Pilarczyk-Zurek
- Department of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Cracow, Poland
| | - Magdalena Strus
- Department of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Cracow, Poland.
| | - Pawel Adamski
- Polish Academy of Sciences, Institute of Nature Conservation, 33 Mickiewicza Avenue, 31-120, Cracow, Poland
| | - Piotr B Heczko
- Department of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Cracow, Poland
| |
Collapse
|
137
|
Small CL, Xing L, McPhee JB, Law HT, Coombes BK. Acute Infectious Gastroenteritis Potentiates a Crohn's Disease Pathobiont to Fuel Ongoing Inflammation in the Post-Infectious Period. PLoS Pathog 2016; 12:e1005907. [PMID: 27711220 PMCID: PMC5053483 DOI: 10.1371/journal.ppat.1005907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/30/2016] [Indexed: 12/18/2022] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory condition of diverse etiology. Exposure to foodborne pathogens causing acute gastroenteritis produces a long-term risk of CD well into the post-infectious period but the mechanistic basis for this ongoing relationship to disease onset is unknown. We developed two novel models to study the comorbidity of acute gastroenteritis caused by Salmonella Typhimurium or Citrobacter rodentium in mice colonized with adherent-invasive Escherichia coli (AIEC), a bacterial pathobiont linked to CD. Here, we show that disease activity in the post-infectious period after gastroenteritis is driven by the tissue-associated expansion of the resident AIEC pathobiont, with an attendant increase in immunopathology, barrier defects, and delays in mucosal restitution following pathogen clearance. These features required AIEC resistance to host defense peptides and a fulminant inflammatory response to the enteric pathogen. Our results suggest that individuals colonized by AIEC at the time of acute infectious gastroenteritis may be at greater risk for CD onset. Importantly, our data identify AIEC as a tractable disease modifier, a finding that could be exploited in the development of therapeutic interventions following infectious gastroenteritis in at-risk individuals. Western societies have a disproportionately high rate of inflammatory bowel disease (IBD), with growing incidence especially in the adolescent population. A large body of evidence supports the view that bacteria in the gut participate in the pathophysiology of human bowel diseases. The unifying concept is chronic inflammation that is driven by microbial stimulation of the mucosal immune system. However, the mechanisms by which pathogenic or commensal microbes work in concert with each other and with host responses to perpetuate this inflammation is not well known. Adherent-invasive E. coli (AIEC) are Crohn’s disease (CD)-associated bacteria that are implicated in disease pathology. AIEC are pro-inflammatory and may play a central role in maintaining chronic inflammation in response to other CD risk factors, such as acute infectious gastroenteritis. Here, we show that indeed, acute infectious gastroenteritis creates an inflammatory environment in the gut that drives AIEC expansion and worsens disease severity. The increase in disease severity strictly correlates with this AIEC bloom because blocking this bloom by sensitizing AIEC to host defenses also improves the health status of the host. The long time period between recovery from acute gastroenteritis and new onset CD may allow for targeted interventions to mitigate the risk of CD in AIEC-positive individuals.
Collapse
Affiliation(s)
- Cherrie L. Small
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
| | - Lydia Xing
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
| | - Joseph B. McPhee
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
| | - Hong T. Law
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
138
|
Schäffler H, Herlemann DPR, Alberts C, Kaschitzki A, Bodammer P, Bannert K, Köller T, Warnke P, Kreikemeyer B, Lamprecht G. Mucosa-attached bacterial community in Crohn's disease coheres with the clinical disease activity index. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:614-621. [PMID: 27083382 DOI: 10.1111/1758-2229.12411] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In inflammatory bowel diseases (IBD), microbial communities often become imbalanced suggesting abnormal microbial-gut interactions. In this study, we analysed the mucosa-attached gut microbiota from 26 Crohn's disease (CD) patients using 16S rRNA gene amplicon sequencing. The samples were stratified according to their disease activity (Crohn's disease activity index, CDAI). The different disease activity categories had a comparable bacterial richness. Bacterial communities of patients in remission and intermediate CDAI (0-220) were relatively similar and dominated by the genus Bacteroides (>40%). The bacterial composition of patients assigned to a high CDAI category was dominated by Pelomonas (25%) and Flavobacterium (13%) but had a low relative abundance of Bacteroidetes (4%). This indicates the presence of specific abundant bacterial taxa at different CDAI levels. In addition, bacterial communities were also significantly influenced when a tumour necrosis factor (TNF)-α inhibitor was applied or by the local mucosal inflammation level. As a consequence, a shift of the microbial composition may also indicate a change of the disease activity in CD patients.
Collapse
Affiliation(s)
- Holger Schäffler
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Daniel P R Herlemann
- Leibniz-Institut für Ostseeforschung Warnemünde (IOW), Biological Oceanography, Seestrasse 15, D-18119, Rostock, Germany
| | - Christian Alberts
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Annika Kaschitzki
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Peggy Bodammer
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Karen Bannert
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| | - Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Hospital Rostock, Rostock, Germany
| | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Department of Medicine II, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
139
|
Chiodini RJ, Dowd SE, Galandiuk S, Davis B, Glassing A. The predominant site of bacterial translocation across the intestinal mucosal barrier occurs at the advancing disease margin in Crohn's disease. MICROBIOLOGY-SGM 2016; 162:1608-1619. [PMID: 27418066 DOI: 10.1099/mic.0.000336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crohn's disease is characterized by increased permeability of the intestinal mucosal barriers and an abnormal or dysregulated immune response to specific and/or commensal bacteria arising from the intestinal lumen. To determine the types of bacteria that are transgressing the mucosal barrier and colonizing the intestinal submucosal tissues, we performed 16S rRNA gene microbiota sequencing of the submucosal and mucosal tissues at the advancing disease margin in ileal Crohn's disease. Microbial populations were compared between mucosa and submucosa and non-inflammatory bowel disease (non-IBD) controls, as well as to microbial populations previously found at the centre of the disease lesion. There was no significant increase in bacteria within the submucosa of non-IBD controls at any taxonomic level when compared to the corresponding superjacent mucosa, indicating an effective mucosal barrier within the non-IBD population. In contrast, there was a statistically significant increase in 13 bacterial families and 16 bacterial genera within the submucosa at the advancing disease margin in Crohn's disease when compared to the superjacent mucosa. Major increases within the submucosa included bacteria of the Families Sphingomonadaceae, Alicyclobacillaceae, Methylobacteriaceae, Pseudomonadaceae and Prevotellaceae. Data suggest that the primary site of bacterial translocation across the mucosal barrier occurs at the margin between diseased and normal tissue, the advancing disease margin. The heterogeneity of the bacterial populations penetrating the mucosal barrier and colonizing the submucosal intestinal tissues and, therefore, contributing to the inflammatory processes, suggests that bacterial translocation is secondary to a primary event leading to a breakdown of the mucosal barrier.
Collapse
Affiliation(s)
- Rodrick J Chiodini
- St Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, MT, USA.,Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| | - Scot E Dowd
- Molecular Research (Mr. DNA), Shallowater, TX, USA
| | - Susan Galandiuk
- Hiram C. Polk, Jr. MD, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Brian Davis
- Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Angela Glassing
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, MT, USA
| |
Collapse
|
140
|
Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 2016; 7:1081. [PMID: 27462309 PMCID: PMC4939298 DOI: 10.3389/fmicb.2016.01081] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/28/2016] [Indexed: 12/17/2022] Open
Abstract
The collection of microbes and their genes that exist within and on the human body, collectively known as the microbiome has emerged as a principal factor in human health and disease. Humans and microbes have established a symbiotic association over time, and perturbations in this association have been linked to several immune-mediated inflammatory diseases (IMID) including inflammatory bowel disease, rheumatoid arthritis, and multiple sclerosis. IMID is a term used to describe a group of chronic, highly disabling diseases that affect different organ systems. Though a cornerstone commonality between IMID is the idiopathic nature of disease, a considerable portion of their pathobiology overlaps including epidemiological co-occurrence, genetic susceptibility loci and environmental risk factors. At present, it is clear that persons with an IMID are at an increased risk for developing comorbidities, including additional IMID. Advancements in sequencing technologies and a parallel explosion of 16S rDNA and metagenomics community profiling studies have allowed for the characterization of microbiomes throughout the human body including the gut, in a myriad of human diseases and in health. The main challenge now is to determine if alterations of gut flora are common between IMID or, if particular changes in the gut community are in fact specific to a single disease. Herein, we review and discuss the relationships between the gut microbiota and IMID.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Gary Van Domselaar
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Charles N. Bernstein
- Department of Internal Medicine and the IBD Clinical and Research Centre, University of Manitoba, WinnipegMB, Canada
| |
Collapse
|
141
|
Blumberg JB, Basu A, Krueger CG, Lila MA, Neto CC, Novotny JA, Reed JD, Rodriguez-Mateos A, Toner CD. Impact of Cranberries on Gut Microbiota and Cardiometabolic Health: Proceedings of the Cranberry Health Research Conference 2015. Adv Nutr 2016; 7:759S-70S. [PMID: 27422512 PMCID: PMC4942875 DOI: 10.3945/an.116.012583] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent advances in cranberry research have expanded the evidence for the role of this Vaccinium berry fruit in modulating gut microbiota function and cardiometabolic risk factors. The A-type structure of cranberry proanthocyanidins seems to be responsible for much of this fruit's efficacy as a natural antimicrobial. Cranberry proanthocyanidins interfere with colonization of the gut by extraintestinal pathogenic Escherichia coli in vitro and attenuate gut barrier dysfunction caused by dietary insults in vivo. Furthermore, new studies indicate synergy between these proanthocyanidins, other cranberry components such as isoprenoids and xyloglucans, and gut microbiota. Together, cranberry constituents and their bioactive catabolites have been found to contribute to mechanisms affecting bacterial adhesion, coaggregation, and biofilm formation that may underlie potential clinical benefits on gastrointestinal and urinary tract infections, as well as on systemic anti-inflammatory actions mediated via the gut microbiome. A limited but growing body of evidence from randomized clinical trials reveals favorable effects of cranberry consumption on measures of cardiometabolic health, including serum lipid profiles, blood pressure, endothelial function, glucoregulation, and a variety of biomarkers of inflammation and oxidative stress. These results warrant further research, particularly studies dedicated to the elucidation of dose-response relations, pharmacokinetic/metabolomics profiles, and relevant biomarkers of action with the use of fully characterized cranberry products. Freeze-dried whole cranberry powder and a matched placebo were recently made available to investigators to facilitate such work, including interlaboratory comparability.
Collapse
Affiliation(s)
- Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA;
| | | | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | | | - Janet A Novotny
- USDA Beltsville Human Nutrition Research Center, Beltsville, MD
| | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI; University of Wisconsin-Madison, Madison, WI
| | | | - Cheryl D Toner
- The Cranberry Institute, Carver, MA; and CDT Consulting, LLC, Herndon, VA
| |
Collapse
|
142
|
Beutin L, Delannoy S, Fach P. Genetic Analysis and Detection of fliC H1 and fliC H12 Genes Coding for Serologically Closely Related Flagellar Antigens in Human and Animal Pathogenic Escherichia coli. Front Microbiol 2016; 7:135. [PMID: 26913025 PMCID: PMC4753304 DOI: 10.3389/fmicb.2016.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/25/2016] [Indexed: 01/29/2023] Open
Abstract
The E. coli flagellar types H1 and H12 show a high serological cross-reactivity and molecular serotyping appears an advantageous method to establish a clear discrimination between these flagellar types. Analysis of fliCH1 and fliCH12 gene sequences showed that they were 97.5% identical at the nucleotide level. Because of this high degree of homology we developed a two-step real-time PCR detection procedure for reliable discrimination of H1 and H12 flagellar types in E. coli. In the first step, a real-time PCR assay for common detection of both fliCH1 and fliCH12 genes is used, followed in a second step by real-time PCR assays for specific detection of fliCH1 and fliCH12, respectively. The real-time PCR for common detection of fliCH1 and fliCH12 demonstrated 100% sensitivity and specificity as it reacted with all tested E. coli H1 and H12 strains and not with any of the reference strains encoding all the other 51 flagellar antigens. The fliCH1 and fliCH12 gene specific assays detected all E. coli H1 and all E. coli H12 strains, respectively (100% sensitivity). However, both assays showed cross-reactions with some flagellar type reference strains different from H1 and H12. The real-time PCR assays developed in this study can be used in combination for the detection and identification of E. coli H1 and H12 strains isolated from different sources.
Collapse
Affiliation(s)
- Lothar Beutin
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Maisons-Alfort, France
| |
Collapse
|
143
|
Mydock-McGrane LK, Cusumano ZT, Janetka JW. Mannose-derived FimH antagonists: a promising anti-virulence therapeutic strategy for urinary tract infections and Crohn’s disease. Expert Opin Ther Pat 2016; 26:175-97. [DOI: 10.1517/13543776.2016.1131266] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
144
|
Costanzo M, Cesi V, Prete E, Negroni A, Palone F, Cucchiara S, Oliva S, Leter B, Stronati L. Krill oil reduces intestinal inflammation by improving epithelial integrity and impairing adherent-invasive Escherichia coli pathogenicity. Dig Liver Dis 2016; 48:34-42. [PMID: 26493628 DOI: 10.1016/j.dld.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/03/2015] [Accepted: 09/19/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Krill oil is a marine derived oil rich in phospholipids, astaxanthin and omega-3 fatty acids. Several studies have found benefits of krill oil against oxidative and inflammatory damage. AIMS We aimed at assessing the ability of krill oil to reduce intestinal inflammation by improving epithelial barrier integrity, increasing cell survival and reducing pathogenicity of adherent-invasive Escherichia coli. METHODS CACO2 and HT29 cells were exposed to cytomix (TNFα and IFNγ) to induce inflammation and co-exposed to cytomix and krill oil. E-cadherin, ZO-1 and F-actin levels were analyzed by immunofluorescence to assess barrier integrity. Scratch test was performed to measure wound healing. Cell survival was analyzed by flow cytometry. Adherent-invasive Escherichia coli LF82 was used for adhesion/invasion assay. RESULTS In inflamed cells E-cadherin and ZO-1 decreased, with loss of cell-cell adhesion, and F-actin polymerization increased stress fibres; krill oil restored initial conditions and improved wound healing, reduced bacterial adhesion/invasion in epithelial cells and survival within macrophages; krill oil reduced LF82-induced mRNA expression of pro-inflammatory cytokines. CONCLUSIONS Krill oil improves intestinal barrier integrity and epithelial restitution during inflammation and controls bacterial adhesion and invasion to epithelial cells. Thus, krill oil may represent an innovative tool to reduce intestinal inflammation.
Collapse
Affiliation(s)
| | - Vincenzo Cesi
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Enrica Prete
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | - Anna Negroni
- Department of Radiobiology and Human Health, ENEA, Rome, Italy
| | | | - Salvatore Cucchiara
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Salvatore Oliva
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Beatrice Leter
- Department of Paediatrics and Infantile Neuropsychiatry, Paediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Italy
| | - Laura Stronati
- Department of Radiobiology and Human Health, ENEA, Rome, Italy.
| |
Collapse
|
145
|
Khan S. Potential role of Escherichia coli DNA mismatch repair proteins in colon cancer. Crit Rev Oncol Hematol 2015; 96:475-482. [PMID: 26014615 DOI: 10.1016/j.critrevonc.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/15/2015] [Accepted: 05/05/2015] [Indexed: 02/07/2023] Open
Abstract
The epithelium of gastrointestinal tract organizes many innate defense systems against microbial intruders such as integrity of epithelial, rapid eviction of infected cells, quick turnover of epithelial cell, intrinsic immune responses and autophagy. However, Enteropathogenic Escherichia coli (EPEC) are equipped with well developed infectious tricks that evade the host defense systems and utilize the gastrointestinal epithelium as a multiplicative foothold. During multiplication on and within the epithelium, EPEC secrete various toxins that can weaken, usurp, and use many host cellular systems. However, the possible mechanisms of pathogenesis are still poorly elusive. Recent study reveals the existence of EPEC in colorectal cancer patients and their potential role in depletion of DNA mismatch repair (MMR) proteins of host cell in colonic cell lines. The EPEC colonised intracellularly in colon mucosa of colorectal carcinoma whereas extracellular strain was detected in mucosa of normal colon cells. Interestingly, alteration in MutS, MutL complexes and MUTYH of mammalian cells may be involved in development of CRC. These data propose that MMR of E. coli may be potential therapeutic targets and early detection biomarkers for CRC. This article reviews the potential role of E. coli MutS, MutL and MutY protein in CRC aetiology.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
146
|
Gibold L, Garenaux E, Dalmasso G, Gallucci C, Cia D, Mottet-Auselo B, Faïs T, Darfeuille-Michaud A, Nguyen HTT, Barnich N, Bonnet R, Delmas J. The Vat-AIEC protease promotes crossing of the intestinal mucus layer by Crohn's disease-associated Escherichia coli. Cell Microbiol 2015; 18:617-31. [PMID: 26499863 DOI: 10.1111/cmi.12539] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/07/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022]
Abstract
The aetiology of Crohn's disease (CD) involves disorders in host genetic factors and intestinal microbiota. Adherent-invasive Escherichia coli (AIEC) are receiving increased attention because in studies of mucosa-associated microbiota, they are more prevalent in CD patients than in healthy subjects. AIEC are associated both with ileal and colonic disease phenotypes. In this study, we reported a protease called Vat-AIEC from AIEC that favours the mucosa colonization. The deletion of the Vat-AIEC-encoding gene resulted in an adhesion-impaired phenotype in vitro and affected the colonization of bacteria in contact with intestinal epithelial cells in a murine intestinal loop model, and also their gut colonization in vivo. Furthermore, unlike LF82Δvat-AIEC, wild-type AIEC reference strain LF82 was able to penetrate a mucus column extensively and promoted the degradation of mucins and a decrease in mucus viscosity. Vat-AIEC transcription was stimulated by several chemical conditions found in the ileum environment. Finally, the screening of E. coli strains isolated from CD patients revealed a preferential vat-AIEC association with AIEC strains belonging to the B2 phylogroup. Overall, this study revealed a new component of AIEC virulence that might favour their implantation in the gut of CD patients.
Collapse
Affiliation(s)
- Lucie Gibold
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Estelle Garenaux
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Camille Gallucci
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France
| | - David Cia
- Equipe Biophysique Neurosensorielle, Faculté de Pharmacie, Université d'Auvergne, UMR INSERM 1107, Clermont-Ferrand, France
| | - Benoit Mottet-Auselo
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Tiphanie Faïs
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Arlette Darfeuille-Michaud
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Nicolas Barnich
- Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Richard Bonnet
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| | - Julien Delmas
- Laboratoire de Bactériologie, Centre Hospitalo-Universitaire Clermont-Ferrand, Clermont-Ferrand, France.,Microbes, Intestins, Inflammation et Susceptibilité de l'Hôte, Université d'Auvergne, INSERM U1071, INRA USC2018, Clermont-Ferrand, France
| |
Collapse
|
147
|
Hu S, Peng L, Kwak YT, Tekippe EM, Pasare C, Malter JS, Hooper LV, Zaki MH. The DNA Sensor AIM2 Maintains Intestinal Homeostasis via Regulation of Epithelial Antimicrobial Host Defense. Cell Rep 2015; 13:1922-36. [PMID: 26655906 DOI: 10.1016/j.celrep.2015.10.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Microbial pattern molecules in the intestine play immunoregulatory roles via diverse pattern recognition receptors. However, the role of the cytosolic DNA sensor AIM2 in the maintenance of intestinal homeostasis is unknown. Here, we show that Aim2(-/-) mice are highly susceptible to dextran sodium sulfate-induced colitis that is associated with microbial dysbiosis as represented by higher colonic burden of commensal Escherichia coli. Colonization of germ-free mice with Aim2(-/-) mouse microbiota leads to higher colitis susceptibility. In-depth investigation of AIM2-mediated host defense responses reveals that caspase-1 activation and IL-1β and IL-18 production are compromised in Aim2(-/-) mouse colons, consistent with defective inflammasome function. Moreover, IL-18 infusion reduces E. coli burden as well as colitis susceptibility in Aim2(-/-) mice. Altered microbiota in inflammasome-defective mice correlate with reduced expression of several antimicrobial peptides in intestinal epithelial cells. Together, these findings implicate DNA sensing by AIM2 as a regulatory mechanism for maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Shuiqing Hu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Youn-Tae Kwak
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Erin McElvania Tekippe
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center, Dallas, TX 75390, USA
| | | | - James S Malter
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX 75390, USA; The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Md Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
148
|
Yasueda A, Mizushima T, Nezu R, Sumi R, Tanaka M, Nishimura J, Kai Y, Hirota M, Osawa H, Nakajima K, Mori M, Ito T. The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis. Surg Today 2015; 46:939-49. [DOI: 10.1007/s00595-015-1261-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
|
149
|
Chiodini RJ, Dowd SE, Chamberlin WM, Galandiuk S, Davis B, Glassing A. Microbial Population Differentials between Mucosal and Submucosal Intestinal Tissues in Advanced Crohn's Disease of the Ileum. PLoS One 2015. [PMID: 26222621 PMCID: PMC4519195 DOI: 10.1371/journal.pone.0134382] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since Crohn's disease is a transmural disease, we hypothesized that examination of deep submucosal tissues directly involved in the inflammatory disease process may provide unique insights into bacterial populations transgressing intestinal barriers and bacterial populations more representative of the causes and agents of the disease. We performed deep 16s microbiota sequencing on isolated ilea mucosal and submucosal tissues on 20 patients with Crohn's disease and 15 non-inflammatory bowel disease controls with a depth of coverage averaging 81,500 sequences in each of the 70 DNA samples yielding an overall resolution down to 0.0001% of the bacterial population. Of the 4,802,328 total sequences generated, 98.9% or 4,749,183 sequences aligned with the Kingdom Bacteria that clustered into 8545 unique sequences with <3% divergence or operational taxonomic units enabling the identification of 401 genera and 698 tentative bacterial species. There were significant differences in all taxonomic levels between the submucosal microbiota in Crohn's disease compared to controls, including organisms of the Order Desulfovibrionales that were present within the submucosal tissues of most Crohn's disease patients but absent in the control group. A variety of organisms of the Phylum Firmicutes were increased in the subjacent submucosa as compared to the parallel mucosal tissue including Ruminococcus spp., Oscillospira spp., Pseudobutyrivibrio spp., and Tumebacillus spp. In addition, Propionibacterium spp. and Cloacibacterium spp. were increased as well as large increases in Proteobacteria including Parasutterella spp. and Methylobacterium spp. This is the first study to examine the microbial populations within submucosal tissues of patients with Crohn's disease and to compare microbial communities found deep within the submucosal tissues with those present on mucosal surfaces. Our data demonstrate the existence of a distinct submucosal microbiome and ecosystem that is not well reflected in the mucosa and/or downstream fecal material.
Collapse
Affiliation(s)
- Rodrick J. Chiodini
- St. Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, Montana, United States of America
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, Montana, United States of America
- * E-mail:
| | - Scot E. Dowd
- Mr. DNA Molecular Research Laboratory, Shallowater, Texas, United States of America
| | - William M. Chamberlin
- St. Vincent Healthcare, Sisters of Charity of Leavenworth Health System, Billings, Montana, United States of America
| | - Susan Galandiuk
- Department of Surgery, University of Louisville, Louisville, Kentucky, United States of America
| | - Brian Davis
- Department of Surgery, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Angela Glassing
- Department of Biological and Physical Sciences, Montana State University-Billings, Billings, Montana, United States of America
| |
Collapse
|
150
|
Yan FY, Ju J, Gao F, Wang XQ. Application of fecal microbiota transplantation in inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:3406-3412. [DOI: 10.11569/wcjd.v23.i21.3406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is the transplantation of the fecal microbiota from a healthy donor into the intestine of a patient via a special way, which can help regulate the intestinal flora and make the patient restore normal intestinal micro ecology system. FMT represents a novel treatment for intestinal flora imbalance caused by a variety of intestinal diseases, with the aim to restore the normal intestinal flora and improve the abnormal intestinal inflammation, immune status, energy metabolism, and neurotransmitter activation. FMT is a selective, rather than primary, treatment for patients after failed conventional treatment. Currently, FMT has been reported to be used for treatment of more and more diseases; however, there has been no unified standard for this promising treatment. Greater efforts should be taken to standardize FMT. This article reviews the application of FMT in inflammatory bowel disease (IBD).
Collapse
|