101
|
Scholtz B, Vo Minh D, Kiss C, Tar I, Kumar A, Tőzsér J, Csősz É, Márton I. Examination of Oral Squamous Cell Carcinoma and Precancerous Lesions Using Proximity Extension Assay and Salivary RNA Quantification. Biomedicines 2020; 8:biomedicines8120610. [PMID: 33327496 PMCID: PMC7764999 DOI: 10.3390/biomedicines8120610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Saliva is an easy-to access body fluid with high diagnostic potential. The utilization of saliva for oral cancer diagnosis can be an attractive possibility. Besides the oral cancer, it is important to better understand the precancerous lesions such as oral lichen planus (OLP) and leukoplakia (OLK). In order to examine the changes of salivary proteins in controls, patients with oral cancer, and patients with precancerous conditions, proximity extension assay was utilized. Some proteins and functions were characteristic to the examined groups and can serve as a starting point for further biomarker studies. The different nature of OLK and OLP was demonstrated, showing the malignant transformation and the inflammation as the prominent biological processes in the OLK and OLP, respectively. The salivary level of IL6 was verified using quantitative ELISA and the mRNA level was also studied. Elevated IL6 levels could be detected in precancerous groups compared to controls.
Collapse
Affiliation(s)
- Beáta Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Doan Vo Minh
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.V.M.); (A.K.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csongor Kiss
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ajneesh Kumar
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.V.M.); (A.K.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.V.M.); (A.K.)
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Correspondence: (É.C.); (I.M.); Tel.: +36-52-416432 (É.C.)
| | - Ildikó Márton
- Department of Restorative Dentistry, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (É.C.); (I.M.); Tel.: +36-52-416432 (É.C.)
| |
Collapse
|
102
|
Vu NB, Nguyen HT, Palumbo R, Pellicano R, Fagoonee S, Pham PV. Stem cell-derived exosomes for wound healing: current status and promising directions. Minerva Med 2020; 112:384-400. [PMID: 33263376 DOI: 10.23736/s0026-4806.20.07205-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing, especially of chronic wounds, is still an unmet therapeutic area since assessment and management are extremely complicated. Although many efforts have been made to treat wounds, all strategies have achieved limited results for chronic wounds. Stem cell-based therapy is considered a promising approach for complex wounds such as those occurring in diabetics. Mesenchymal stem cell transplantation significantly improves wound closure, angiogenesis and wound healing. However, cell therapy is complex, expensive and time-consuming. Recent studies have shown that stem cell-derived exosomes can be an exciting approach to treat wounds. Exosomes derived from mesenchymal stem cells can induce benefit in almost all stages of wound healing, including control of immune responses, inhibition of inflammation, promoting cell proliferation and angiogenesis, while reducing scar formation during the wound healing process. This review aimed at offering an updated overview of the use of exosomes in biological applications, such as wound healing, and addresses not only current applications but also new directions for this next-generation approach in wound healing.
Collapse
Affiliation(s)
- Ngoc B Vu
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Hoa T Nguyen
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam.,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Rosanna Palumbo
- Institute of Biostructure and Bioimaging (CNR), Naples, Italy
| | | | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, Turin, Italy
| | - Phuc V Pham
- Stem Cell Institute, University of Science, Ho Chi Minh, Vietnam - .,Vietnam National University - Ho Chi Minh City, Ho Chi Minh, Vietnam.,Laboratory of Stem Cell Research and Application, Ho Chi Minh, Vietnam
| |
Collapse
|
103
|
Monteleone MC, Billi SC, Viale L, Catoira NP, Frasch AC, Brocco MA. Search of brain-enriched proteins in salivary extracellular vesicles for their use as mental disease biomarkers: A pilot study of the neuronal glycoprotein M6a. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2020. [DOI: 10.1016/j.jadr.2020.100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
104
|
Wani S, Man Law IK, Pothoulakis C. Role and mechanisms of exosomal miRNAs in IBD pathophysiology. Am J Physiol Gastrointest Liver Physiol 2020; 319:G646-G654. [PMID: 33026230 PMCID: PMC7792667 DOI: 10.1152/ajpgi.00295.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exosomes represent secretory membranous vesicles used for the information exchange between cells and organ-to-organ communication. Exosome crosstalk mechanisms are involved in the regulation of several inflammatory bowel disease (IBD)-associated pathophysiological intestinal processes such as barrier function, immune responses, and intestinal flora. Functional biomolecules, mainly noncoding RNAs (ncRNAs), are believed to be transmitted between the mammalian cells via exosomes that likely play important roles in cell-to-cell communication, both locally and systemically. MicroRNAs (miRNAs) encapsulated in exosomes have generated substantial interest because of their critical roles in multiple pathophysiological processes. In addition, exosomal miRNAs are implicated in the gut health. MiRNAs are selectively and actively loaded into the exosomes and then transferred to the target recipient cell where they manipulate cell function through posttranscriptional silencing of target genes. Intriguingly, miRNA profile of exosomes differs from their cellular counterparts suggesting an active sorting and packaging mechanism of exosomal miRNAs. Even more exciting is the involvement of posttranscriptional modifications in the specific loading of miRNAs into exosomes, but the underlying mechanisms of how these modifications direct ncRNA sorting have not been established. This review gives a brief overview of the status of exosomes and exosomal miRNAs in IBD and also discusses potential mechanisms of exosomal miRNA sorting and delivering.
Collapse
Affiliation(s)
- Sameena Wani
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Ivy Ka Man Law
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
105
|
Exosomes in head and neck cancer: Roles, mechanisms and applications. Cancer Lett 2020; 494:7-16. [DOI: 10.1016/j.canlet.2020.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
|
106
|
Deep dive on the proteome of salivary extracellular vesicles: comparison between ultracentrifugation and polymer-based precipitation isolation. Anal Bioanal Chem 2020; 413:365-375. [PMID: 33159572 DOI: 10.1007/s00216-020-03004-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/26/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
Salivary extracellular vesicles (EVs), as novel functional carriers and potential biomarkers, are usually obtained by ultracentrifugation (UC) and polyethylene glycol (PEG)-based precipitation methods. However, salivary EVs obtained by these two methods have not been systematically compared. Here, we perform an in-depth analysis on EVs isolated by these two methods using proteomics. Both methods obtain EVs ranging from 40 to 210 nm, with the PEG method resulting in a wider size distribution. PEG-separated products were irregularly shaped and aggregated, while UC-separated ones were monodispersed and teacup-shaped. Additionally, the expression of EV-specific markers was higher in UC-separated EVs. Using tandem mass spectrometry proteomics, we identified and quantified 1217 kinds of saliva exosomal proteins and 361 kinds of differential proteins, showing that UC can isolate more EV-related proteins. These results offer some guidance for EV separating and provide potential direction for the use of EVs in non-invasive diagnosis.
Collapse
|
107
|
Wu M, Chen Z, Xie Q, Xiao B, Zhou G, Chen G, Bian Z. One-step quantification of salivary exosomes based on combined aptamer recognition and quantum dot signal amplification. Biosens Bioelectron 2020; 171:112733. [PMID: 33096430 DOI: 10.1016/j.bios.2020.112733] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
As promising fluid biomarkers for non-invasive diagnosis, naturally-occurring exosomes in saliva have attracted a wide interest for their potential application in oral diseases especially oral cancers. However, accurate quantification of salivary exosomes is still challenging due to the current difficulties in simultaneous identification and measurement of these nano-sized vesicles. In this study, we developed a novel fluorescent biosensor for one-step sensitive quantification of salivary exosomes based on magnetic and fluorescent bio-probes (MFBPs). Within the MFBPs, self-assembled DNA concatamers loaded with numerous quantum dots (QDs) were ingeniously tethered to aptamers, which were anchored on the surface of magnetic microspheres (MMs). Efficient recognition and capture of an exosome by the aptamer would simultaneously trigger the release of a DNA concatamer as the detection signal carrier, thereby generating a "one exosome-numerous QDs" amplification effect. As the result, this biosensor allowed one-step quantification with less assay time and achieved a high sensitivity with low limit of detection. Moreover, unique fluorescent properties of QDs and the superparamagnetism of MMs offered a strong anti-interference ability, enabling a robust quantification in complex matrices. Furthermore, this biosensor exhibited a good clinical feasibility with favorable accuracy comparable to nanoscale flow cytometry, and a superiority in label-free analysis and convenient operation. This study provides a novel and general strategy for one-step sensitive quantification of exosomes from body fluids, facilitating the development of exosome-based liquid biopsy for disease diagnosis.
Collapse
Affiliation(s)
- Min Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuokun Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Qihui Xie
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Bolin Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
108
|
Lee KS, Lee J, Lee P, Kim CU, Kim DJ, Jeong YJ, Park YJ, Tesh VL, Lee MS. Exosomes released from Shiga toxin 2a-treated human macrophages modulate inflammatory responses and induce cell death in toxin receptor expressing human cells. Cell Microbiol 2020; 22:e13249. [PMID: 32772454 DOI: 10.1111/cmi.13249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Shiga toxins (Stxs) produced by Stx-producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx-mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte-derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage-like differentiated THP-1 cells treated with Stxs secreted Stx-associated exosomes (Stx-Exo) of 90-130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3 )-dependent manner. Stx2-Exo engulfed by Gb3 -positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK-2. Stx2-Exo contained pro-inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2-Exo-mediated human renal cell death. Stx2-Exo isolated from human primary monocyte-derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx-containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin-sensitive cells. Therapeutic interventions targeting Stx-containing exosomes may prevent or ameliorate Stx-mediated acute vascular dysfunction.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jieun Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Pureum Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Young-Jun Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, Bryan, Texas, USA
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
109
|
Royo F, Théry C, Falcón-Pérez JM, Nieuwland R, Witwer KW. Methods for Separation and Characterization of Extracellular Vesicles: Results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells 2020; 9:cells9091955. [PMID: 32854228 PMCID: PMC7563174 DOI: 10.3390/cells9091955] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 02/05/2023] Open
Abstract
Research on extracellular vesicles (EVs) is growing exponentially due to an increasing appreciation of EVs as disease biomarkers and therapeutics, an expanding number of EV-containing materials under study, and application of new preparation, detection, and cargo analysis methods. Diversity of both sources and methodologies imposes challenges on the comparison of measurement results between studies and laboratories. While reference guidelines and minimal requirements for EV research have achieved the important objective of assembling community consensus, it is also essential to understand which methodologies and quality controls are currently being applied, and how usage trends are evolving. As an initial response to this need, the International Society for Extracellular Vesicles (ISEV) performed a worldwide survey in 2015 on "Techniques used for the isolation and characterization of extracellular vesicles" and published the results from this survey in 2016. In 2019, a new survey was performed to assess the changing state of the field. The questionnaire received more than 600 full or partial responses, and the present manuscript summarizes the results of this second worldwide survey. The results emphasize that separation methods such as ultracentrifugation and density gradients are still the most commonly used methods, the use of size exclusion chromatography has increased, and techniques based on tangential flow and microfluidics are now being used by more than 10% of respondents. The survey also reveals that most EV researchers still do not perform sample quality controls before or after isolation of EVs. Finally, the majority of EV researchers emphasize that separation and characterization of EVs should receive more attention.
Collapse
Affiliation(s)
- Felix Royo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France;
| | - Juan M. Falcón-Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Exosomes Laboratory, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam UMC, Location AMC, University of Amsterdam, 19268 Amsterdam, The Netherlands
- Vesicle Observation Centre, Amsterdam UMC, Location AMC, University of Amsterdam, 19268 Amsterdam, The Netherlands
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| | - Kenneth W. Witwer
- School of Medicine, Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: (J.M.F.-P.); (R.N.); (K.W.W.)
| |
Collapse
|
110
|
Abstract
Exosomes are small extracellular vesicles released by cells under physiological and pathological conditions. There is emerging evidence associating exosomes with tumorigenesis. They carry cargo (DNA, RNA, miRNA and protein) pertaining to the cell of origin and play a key role in intercellular communication, influencing several cellular processes. Moreover, exosomes can be shed and found in almost all body fluids, providing a source of biomarkers for tumor diagnosis and prognosis. In addition, the use of exosomes for cancer therapeutics is another research area that is gaining attention. This book chapter aims to explore the role of exosomes in tumor biogenesis, progression and clinical applications, comprehensively compiling the research for three tumor types, namely head and neck cancer, lung cancer and glioblastoma.
Collapse
|
111
|
Bentata M, Morgenstern G, Nevo Y, Kay G, Granit Mizrahi A, Temper M, Maimon O, Monas L, Basheer R, Ben-Hur A, Peretz T, Salton M. Splicing Factor Transcript Abundance in Saliva as a Diagnostic Tool for Breast Cancer. Genes (Basel) 2020; 11:genes11080880. [PMID: 32756364 PMCID: PMC7463790 DOI: 10.3390/genes11080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the second leading cause of death in women above 60 years in the US. Screening mammography is recommended for women above 50 years; however, 22% of breast cancer cases are diagnosed in women below this age. We set out to develop a test based on the detection of cell-free RNA from saliva. To this end, we sequenced RNA from a pool of ten women. The 1254 transcripts identified were enriched for genes with an annotation of alternative pre-mRNA splicing. Pre-mRNA splicing is a tightly regulated process and its misregulation in cancer cells promotes the formation of cancer-driving isoforms. For these reasons, we chose to focus on splicing factors as biomarkers for the early detection of breast cancer. We found that the level of the splicing factors is unique to each woman and consistent in the same woman at different time points. Next, we extracted RNA from 36 healthy subjects and 31 breast cancer patients. Recording the mRNA level of seven splicing factors in these samples demonstrated that the combination of all these factors is different in the two groups (p value = 0.005). Our results demonstrate a differential abundance of splicing factor mRNA in the saliva of breast cancer patients.
Collapse
Affiliation(s)
- Mercedes Bentata
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Guy Morgenstern
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE at the Hebrew University of Jerusalem and Hadassah Medical Center, Jerusalem 9112102, Israel;
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
| | - Avital Granit Mizrahi
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Mark Temper
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Ofra Maimon
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Liza Monas
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Reham Basheer
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Asa Ben-Hur
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Hebrew University Medical School, Jerusalem 9112102, Israel; (A.G.M.); (M.T.); (O.M.); (L.M.); (R.B.); (T.P.)
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel; (M.B.); (G.M.); (G.K.)
- Correspondence:
| |
Collapse
|
112
|
Salivary exosomes: properties, medical applications, and isolation methods. Mol Biol Rep 2020; 47:6295-6307. [PMID: 32676813 DOI: 10.1007/s11033-020-05659-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023]
Abstract
Salivary exosomes are extracellular vesicles (EVs) with abundant CD63 immunoreactivity on their surface. Based on their size and protein composition, these exosomes can be categorized into two classes of exosomes I (mean diameter of 83.5 nm) and II (mean diameter of 40.5 nm). We have attempted to review the features of these exosomes, including origin, composition, separation methods, and their application in medicine. Not only the composition of salivary exosomes is invaluable in term of diagnosis, but can also afford an understanding in roles of the contents and components of these exosomes in the fundamental pathophysiologic processes of different diseases. since these EVs can cross the epithelial barriers they may be essential for transporting of multifarious components from the blood into saliva. Thus, in comparison to other bodily fluids, salivary exosomes are probably a better and accessible tool to examine the function of exosomes in the diagnosis and treatment of disease.
Collapse
|
113
|
Fernandes M, Lopes I, Teixeira J, Botelho C, Gomes AC. Exosome-like Nanoparticles: A New Type of Nanocarrier. Curr Med Chem 2020; 27:3888-3905. [PMID: 30706777 DOI: 10.2174/0929867326666190129142604] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
Nanoparticles are one of the most commonly used systems for imaging or therapeutic drug delivery. Exosomes are nanovesicular carriers that transport cargo for intercellular communication. These nanovesicles are linked to the pathology of some major diseases, in some cases with a central role in their progression. The use of these carriers to transport therapeutic drugs is a recent and promising approach to treat diseases such as cancer and Alzheimer disease. The physiological production of these structures is limited impairing its collection and subsequent purification. These drawbacks inspired the search for mimetic alternatives. The collection of exosome-like nanoparticles from plants can be a good alternative, since they are easier to extract and do not have the drawbacks of those produced in animal cells. Both natural and synthetic exosome-like nanoparticles, produced from serial extrusion of cells or by bottom up synthesis, are currently some of the most promising, biocompatible, high efficiency systems for drug delivery.
Collapse
Affiliation(s)
- Mário Fernandes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ivo Lopes
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José Teixeira
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
114
|
He L, Zhu C, Jia J, Hao XY, Yu XY, Liu XY, Shu MG. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci Rep 2020; 40:BSR20192549. [PMID: 32342982 PMCID: PMC7214401 DOI: 10.1042/bsr20192549] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous wound is a soft tissue injury that is difficult to heal during aging. It has been demonstrated that adipose-derived stem cells (ADSCs) and its secreted exosomes exert crucial functions in cutaneous wound healing. The present study aimed to elucidate the mechanism of exosomes derived from ADSCs (ADSC-Exos) containing MALAT1 in wound healing. ADSCs were isolated from human normal subcutaneous adipose tissues and identified by flow cytometry analysis. Exosomes were extracted from ADSC supernatants and MALAT1 expression was determined using qRT-PCR analysis. HaCaT and HDF cells were exposed to hydrogen peroxide (H2O2) for simulating the skin lesion model. Subsequently, CCK-8, flow cytometry, wound healing and transwell assays were employed to validate the role of ADSC-Exos containing MALAT1 in the skin lesion model. Besides, cells were transfected with sh-MALAT1 to verify the protective role of MALAT1 in wound healing. The binding relationship between MALAT1 and miR-124 were measured by dual-luciferase reporter assay. ADSC-Exos promoted cell proliferation, migration, and inhibited cell apoptosis of HaCaT and HDF cells impaired by H2O2. However, the depletion of MALAT1 in ADSC-Exos lose these protective effects on HaCaT and HDF cells. Moreover, miR-124 was identified to be a target of MALAT1. Furthermore, ADSC-Exos containing MALAT1 could mediate H2O2-induced wound healing by targeting miR-124 and activating Wnt/β-catenin pathway. ADSC-Exos containing MALAT1 play a positive role in cutaneous wound healing possibly via targeting miR-124 through activating the Wnt/β-catenin pathway, which may provide novel insights into the therapeutic target for cutaneous wound healing.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiao-Yan Hao
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xue-Yuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiang-Yu Liu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
115
|
Sanwlani R, Fonseka P, Chitti SV, Mathivanan S. Milk-Derived Extracellular Vesicles in Inter-Organism, Cross-Species Communication and Drug Delivery. Proteomes 2020; 8:11. [PMID: 32414045 PMCID: PMC7356197 DOI: 10.3390/proteomes8020011] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Milk is considered as more than a source of nutrition for infants and is a vector involved in the transfer of bioactive compounds and cells. Milk contains abundant quantities of extracellular vesicles (EVs) that may originate from multiple cellular sources. These nanosized vesicles have been well characterized and are known to carry a diverse cargo of proteins, nucleic acids, lipids and other biomolecules. Milk-derived EVs have been demonstrated to survive harsh and degrading conditions in gut, taken up by various cell types, cross biological barriers and reach peripheral tissues. The cargo carried by these dietary EVs has been suggested to have a role in cell growth, development, immune modulation and regulation. Hence, there is considerable interest in understanding the role of milk-derived EVs in mediating inter-organismal and cross-species communication. Furthermore, various attributes such as it being a natural source, as well as its abundance, scalability, economic viability and lack of unwarranted immunologic reactions, has generated significant interest in deploying milk-derived EVs for clinical applications such as drug delivery and disease therapy. In this review, the role of milk-derived EVs in inter-organismal, cross-species communication and in drug delivery is discussed.
Collapse
Affiliation(s)
| | | | | | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083, Australia; (R.S.); (P.F.); (S.V.C.)
| |
Collapse
|
116
|
GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration. J Mol Histol 2020; 51:251-263. [PMID: 32388839 DOI: 10.1007/s10735-020-09877-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
It remains a clinical challenge for cutaneous wound healing and skin regeneration. Endothelial cells participate in the formation of blood vessels and play an important role in the whole process of wound healing. Recent studies suggested that exosomes contribute to the intercellular communication through paracrine pathways, and sustained release of exosomes from hydrogel-based materials provide a promising strategy for curing wound defects. In this study, we isolated exosomes derived from human umbilical vein endothelial cells (HUVECs) and found that HUVECs derived exosomes (HUVECs-Exos) could promote the proliferation and migration activities of keratinocytes and fibroblasts, which are two important effector cells for skin regeneration. Then we developed gelatin methacryloyl (GelMA) hydrogel as the wound dressing to incorporate HUVECs-Exos and applied it to the full-thickness cutaneous wounds. It demonstrated that GelMA scaffold could not only repair the wound defect, but also achieve sustained release of exosomes. The in vivo results showed accelerated re-epithelialization, promotion of collagen maturity and improvement of angiogenesis. Collectively, our findings suggested that HUVECs-Exos could accelerate wound healing and GelMA mediated controlled release of HUVECs-Exos might offer a new method for repairing cutaneous wound defects.
Collapse
|
117
|
Langevin SM, Kuhnell D, Biesiada J, Zhang X, Medvedovic M, Talaska GG, Burns KA, Kasper S. Comparability of the small RNA secretome across human biofluids concomitantly collected from healthy adults. PLoS One 2020; 15:e0229976. [PMID: 32275679 PMCID: PMC7147728 DOI: 10.1371/journal.pone.0229976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Small extracellular vesicles (sEV) are nano-sized (40–150 nm), membrane-encapsulated vesicles that are released by essentially all cells into the extracellular space and function as intercellular signaling vectors through the horizontal transfer of biologic molecules, including microRNA (miRNA) and other small non-coding RNA (ncRNA), that can alter the phenotype of recipient cells. sEV are present in essentially all extracellular biofluids, including serum, urine and saliva, and offer a new avenue for discovery and development of novel biomarkers of various disease states and exposures. The objective of this study was to systematically interrogate similarities and differences between sEV ncRNA derived from saliva, serum and urine, as well as cell-free small ncRNA (cf-ncRNA) from serum. Saliva, urine and serum were concomitantly collected from 4 healthy donors to mitigate potential bias that can stem from interpersonal and temporal variability. sEV were isolated from each respective biofluid, along with cf-RNA from serum. sEV were isolated from the respective biofluids via differential ultracentrifugation with a 30% sucrose cushion to minimize protein contamination. Small RNA-sequencing was performed on each sample, and cluster analysis was performed based on ncRNA profiles. While some similarities existed in terms of sEV ncRNA cargo across biofluids, there are also notable differences in ncRNA class and ncRNA secretion, with sEV in each biofluid bearing a unique ncRNA profile, including major differences in composition by ncRNA class. We conclude that sEV ncRNA cargo varies according to biofluid, so thus should be carefully selected and interpreted when designing or contrasting translational or epidemiological studies.
Collapse
Affiliation(s)
- Scott M Langevin
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America.,Cincinnati Cancer Center, Cincinnati, OH, United States of America
| | - Damaris Kuhnell
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Xiang Zhang
- Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Mario Medvedovic
- Cincinnati Cancer Center, Cincinnati, OH, United States of America.,Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Glenn G Talaska
- Division of Environmental & Industrial Hygiene, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Katherine A Burns
- Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Susan Kasper
- Cincinnati Cancer Center, Cincinnati, OH, United States of America.,Division of Environmental Genetics & Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| |
Collapse
|
118
|
Busso CS, Guidry JJ, Gonzalez JJ, Zorba V, Son LS, Winsauer PJ, Walvekar RR. A comprehensive analysis of sialolith proteins and the clinical implications. Clin Proteomics 2020; 17:12. [PMID: 32265614 PMCID: PMC7110646 DOI: 10.1186/s12014-020-09275-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 03/06/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sialolithiasis or salivary gland stones are associated with high clinical morbidity. The advances in the treatment of sialolithiasis has been limited, however, by our understanding of their composition. More specifically, there is little information regarding the formation and composition of the protein matrix, the role of mineralogical deposition, or the contributions of cell epithelium and secretions from the salivary glands. A better understanding of these stone characteristics could pave the way for future non-invasive treatment strategies. METHODS Twenty-nine high-quality ductal stone samples were analyzed. The preparation included successive washings to avoid contamination from saliva and blood. The sialoliths were macerated in liquid nitrogen and the maceration was subjected to a sequential, four-step, protein extraction. The four fractions were pooled together, and a standardized aliquot was subjected to tandem liquid chromatography mass spectrometry (LCMS). The data output was subjected to a basic descriptive statistical analysis for parametric confirmation and a subsequent G.O.-KEGG data base functional analysis and classification for biological interpretation. RESULTS The LC-MS output detected 6934 proteins, 824 of which were unique for individual stones. An example of our sialolith protein data is available via ProteomeXchange with the identifier PXD012422. More important, the sialoliths averaged 53% homology with bone-forming proteins that served as a standard comparison, which favorably compared with 62% homology identified among all sialolith sample proteins. The non-homologous protein fraction had a highly variable protein identity. The G.O.-KEGG functional analysis indicated that extracellular exosomes are a primary cellular component in sialolithiasis. Light and electron microscopy also confirmed the presence of exosomal-like features and the presence of intracellular microcrystals. CONCLUSION Sialolith formation presents similarities with the hyperoxaluria that forms kidney stones, which suggests the possibility of a common origin. Further verification of a common origin could fundamentally change the way in which lithiasis is studied and treated.
Collapse
Affiliation(s)
- Carlos S. Busso
- Department of Otolaryngology and Bio-communication, Louisiana State University Medical School Health Sciences Center, 533 Bolivar St. Suite 566, New Orleans, LA 70112 USA
| | - Jessie J. Guidry
- Department of Biochemistry and Molecular Biology, and The LSUHSC Proteomics Facility Core, Louisiana State University Medical School Health Sciences Center, 533 Bolivar St. Suite 331, New Orleans, LA 70112 USA
| | - Jhanis J. Gonzalez
- Laser Technologies Group Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory 70R0108B, University of California Berkeley, 1 Cyclotron Road, Berkeley, CA 94720 USA
- Applied Spectra, Inc, 950 Riverside Parkway, West Sacramento, CA 95605 USA
| | - Vassilia Zorba
- Laser Technologies Group Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory 70R0108B, University of California Berkeley, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Leslie S. Son
- Department of Academic Affairs, Our Lady of the Lake Regional Medical Center, 7777 Hennessy Blvd, Baton Rouge, LA 70808 USA
| | - Peter J. Winsauer
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112 USA
| | - Rohan R. Walvekar
- Department of Otolaryngology Head Neck Surgery, Louisiana State University Medical School Health Sciences Center, 533 Bolivar St. Suite 566, New Orleans, LA 70112 USA
| |
Collapse
|
119
|
Hornung S, Dutta S, Bitan G. CNS-Derived Blood Exosomes as a Promising Source of Biomarkers: Opportunities and Challenges. Front Mol Neurosci 2020; 13:38. [PMID: 32265650 PMCID: PMC7096580 DOI: 10.3389/fnmol.2020.00038] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs) including exosomes, ectosomes, and microvesicles. Exosomes are nanovesicles, 30–200 nm in diameter, that carry cell- and cell-state-specific cargo of proteins, lipids, and nucleic acids, including mRNA and miRNA. Recent studies have shown that central nervous system (CNS)-derived exosomes may carry amyloidogenic proteins and facilitate their cell-to-cell transfer, thus playing a critical role in the progression of neurodegenerative diseases, such as tauopathies and synucleinopathies. CNS-derived exosomes also have been shown to cross the blood-brain-barrier into the bloodstream and therefore have drawn substantial attention as a source of biomarkers for various neurodegenerative diseases as they can be isolated via a minimally invasive blood draw and report on the biochemical status of the CNS. However, although isolating specific brain-cell-derived exosomes from the blood is theoretically simple and the approach has great promise, practical details are of crucial importance and may compromise the reproducibility and utility of this approach, especially when different laboratories use different protocols. In this review we discuss the role of exosomes in neurodegenerative diseases, the usefulness of CNS-derived blood exosomes as a source of biomarkers for these diseases, and practical challenges associated with the methodology of CNS-derived blood exosomes and subsequent biomarker analysis.
Collapse
Affiliation(s)
- Simon Hornung
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Suman Dutta
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
120
|
Setti G, Pezzi ME, Viani MV, Pertinhez TA, Cassi D, Magnoni C, Bellini P, Musolino A, Vescovi P, Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E907. [PMID: 32019170 PMCID: PMC7037322 DOI: 10.3390/ijms21030907] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
: Background: The aberrant expression of microRNAs (miRNAs) has been associated with several diseases, including cancer, inflammatory, and autoimmune conditions. Interest in salivary miRNAs as non-invasive tools for the diagnosis of malignancies and systemic diseases is rapidly increasing. The present systematic review was developed for answering the question: "Are salivary microRNAs reliable biomarkers for diagnosis of cancer and systemic diseases?" METHODS The application of inclusion and exclusion criteria led to the selection of 11 papers. Critical appraisals and quality assessments of the selected studies were performed through the National Institute of Health "Study Quality Assessment Tool" and the classification of the Oxford Center for Evidence-Based Medicine. RESULTS Seven studies reported statistically significant correlations between one or more salivary miRNAs and the investigated disease. The critical analysis allowed us to classify only two studies (18.2%) as having "good" quality, the rest being scored as "intermediate" (8; 73%) and "poor" (1; 9%). Evidence exists that salivary miR-940 and miR-3679-5p are reliable markers for pancreatic cancer and that miR140-5p and miR301a are promising molecules for the salivary diagnosis of gastric cancer. CONCLUSIONS Further studies, possibly avoiding the risk of bias highlighted here, are necessary to consolidate these findings and to identify new reliable salivary biomarkers.
Collapse
Affiliation(s)
- Giacomo Setti
- Molecular Medicine Ph.D. School, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
- Dentistry and Oral and Maxillofacial Surgery—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Margherita E. Pezzi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Maria Vittoria Viani
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Thelma A. Pertinhez
- Department of Medicine and Surgery—Via Volturno 39, 43125 Parma, Italy;
- Transfusion Medicine Unit, Azienda USL—IRCCS di Reggio Emilia—Viale Umberto I, 50, 42123 Reggio Emilia, Italy
| | - Diana Cassi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Cristina Magnoni
- Dermatology—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Pierantonio Bellini
- Dentistry and Oral and Maxillofacial Surgery—Department of Surgical, Medical, Dental and Morphological Science with interest in Transplant Oncological and Regenerative Medicine—University of Modena and Reggio Emilia, Largo del Pozzo 71, 41125 Modena, Italy;
| | - Antonino Musolino
- Medical Oncology and Breast Unit, University Hospital of Parma – Via Gramsci 14, 43125 Parma, Italy;
| | - Paolo Vescovi
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| | - Marco Meleti
- Centro Universitario di Odontoiatria—University of Parma, Via Gramsci 14, 43126 Parma, Italy; (M.E.P.); (M.V.V.); (D.C.); (P.V.); (M.M.)
| |
Collapse
|
121
|
Cooper LF, Ravindran S, Huang CC, Kang M. A Role for Exosomes in Craniofacial Tissue Engineering and Regeneration. Front Physiol 2020; 10:1569. [PMID: 32009978 PMCID: PMC6971208 DOI: 10.3389/fphys.2019.01569] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering and regenerative medicine utilize mesenchymal stem cells (MSCs) and their secretome in efforts to create or induce functional tissue replacement. Exosomes are specific extracellular vesicles (EVs) secreted by MSCs and other cells that carry informative cargo from the MSC to targeted cells that influence fundamental cellular processes including apoptosis, proliferation, migration, and lineage-specific differentiation. In this report, we review the current knowledge regarding MSC exosome biogenesis, cargo and function. This review summarizes the use of MSC exosomes to control or induce bone, cartilage, dentin, mucosa, and pulp tissue formation. The next-step engineering of exosomes provides additional avenues to enhance oral and craniofacial tissue engineering and regeneration.
Collapse
Affiliation(s)
- Lyndon F. Cooper
- College of Dentistry, The University of Illinois at Chicago, Chicago, IL, United States
| | | | | | | |
Collapse
|
122
|
Rodríguez Zorrilla S, García García A, Blanco Carrión A, Gándara Vila P, Somoza Martín M, Gallas Torreira M, Pérez Sayans M. Exosomes in head and neck cancer. Updating and revisiting. J Enzyme Inhib Med Chem 2020; 34:1641-1651. [PMID: 31496355 PMCID: PMC6746279 DOI: 10.1080/14756366.2019.1662000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Exosomes have gone from being considered simple containers of intracellular waste substances to be considered important carriers of cellular signals. Its broad capacity to promote tumour growth, both in situ and metastatic, has greatly intensified scientific research on them. In the same way and depending on its content, its tumour suppressive properties have opened a window of light and hope in the fight against cancer. In the present review we try to gather in a simple and understandable way the most relevant knowledge to date on the role of exosomes in oral squamous cell carcinoma, helping to understand their process of formation, release and activity on the tumour microenvironment.
Collapse
Affiliation(s)
- Samuel Rodríguez Zorrilla
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Abel García García
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| | - Andrés Blanco Carrión
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Pilar Gándara Vila
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Manuel Somoza Martín
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mercedes Gallas Torreira
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, University of Santiago de Compostela , Santiago de Compostela , Spain
| | - Mario Pérez Sayans
- Oral Surgery and Implantology Unit, School of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS) , Santiago de Compostela , Spain
| |
Collapse
|
123
|
Interests of Exosomes in Bone and Periodontal Regeneration: A Systematic Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1341:67-87. [PMID: 33159304 DOI: 10.1007/5584_2020_593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Periodontitis is an infectious inflammatory disease characterized by clinical attachment loss and tooth supporting tissue destruction. As exosomes demonstrated pro-regenerative ability, their use in periodontal treatment has been suggested. The aim of this systematic review is to gather and summarize the most recent data regarding exosomes to determine their potential impact in bone and periodontal regeneration. Electronic databases (Pubmed, Web of Science) were searched up to February 2020. Studies assessing the impact of exosomes administration in experimental bone and periodontal defects have been identified according to PRISMA guidelines. Among the 183 identified articles, 16 met the inclusion criteria and were included in this systematic review. Experimental bone defects were mainly surgically induced with a dental bur or distraction tools. All studies considered bone healing after exosomes administration as the primary outcome. Results showed that mesenchymal stem cells derived exosomes administration promoted bone healing and neovascularization. Nevertheless, a dose-effect relationship was observed. Exosomes administration appears to promote significantly the bone healing and periodontal regeneration. However, only a limited number of studies have been carried out so far and the optimized protocols in this context need to be evaluated.
Collapse
|
124
|
Katsani KR, Sakellari D. Saliva proteomics updates in biomedicine. ACTA ACUST UNITED AC 2019; 26:17. [PMID: 31890650 PMCID: PMC6909541 DOI: 10.1186/s40709-019-0109-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022]
Abstract
In the years of personalized (or precision) medicine the 'omics' methodologies in biomedical sciences-genomics, transcriptomics, proteomics and metabolomics-are helping researchers to detect quantifiable biological characteristics, or biomarkers, that will best define the human physiology and pathologies. Proteomics use high throughput and high efficiency approaches with the support of bioinformatic tools in order to identify and quantify the total protein content of cells, tissues or biological fluids. Saliva receives a lot of attention as a rich biological specimen that offers a number of practical and physiological advantages over blood and other biological fluids in monitoring human health. The aim of this review is to present the latest advances in saliva proteomics for biomedicine.
Collapse
Affiliation(s)
- Katerina R Katsani
- 1Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitra Sakellari
- 2Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
125
|
Cristaldi M, Mauceri R, Di Fede O, Giuliana G, Campisi G, Panzarella V. Salivary Biomarkers for Oral Squamous Cell Carcinoma Diagnosis and Follow-Up: Current Status and Perspectives. Front Physiol 2019; 10:1476. [PMID: 31920689 PMCID: PMC6914830 DOI: 10.3389/fphys.2019.01476] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
Oral cancer is the sixth most common cancer type in the world, and 90% of it is represented by oral squamous cell carcinoma (OSCC). Despite progress in preventive and therapeutic strategies, delay in OSCC diagnosis remains one of the major causes of high morbidity and mortality; indeed the majority of OSCC has been lately identified in the advanced clinical stage (i.e., III or IV). Moreover, after primary treatment, recurrences and/or metastases are found in more than half of the patients (80% of cases within the first 2 years) and the 5-year survival rate is still lower than 50%, resulting in a serious issue for public health. Currently, histological investigation represents the “gold standard” of OSCC diagnosis; however, recent studies have evaluated the potential use of non-invasive methods, such as “liquid biopsy,” for the detection of diagnostic and prognostic biomarkers in body fluids of oral cancer patients. Saliva is a biofluid containing factors such as cytokines, DNA and RNA molecules, circulating and tissue-derived cells, and extracellular vesicles (EVs) that may be used as biomarkers; their analysis may give us useful information to do early diagnosis of OSCC and improve the prognosis. Therefore, the aim of this review is reporting the most recent data on saliva biomarker detection in saliva liquid biopsy from oral cancer patients, with particular attention to circulating tumor DNA (ctDNA), EVs, and microRNAs (miRNAs). Our results highlight that saliva liquid biopsy has several promising clinical uses in OSCC management; it is painless, accessible, and low cost and represents a very helpful source of diagnostic and prognostic biomarker detection. Even if standardized protocols for isolation, characterization, and evaluation are needed, recent data suggest that saliva may be successfully included in future clinical diagnostic processes, with a considerable impact on early treatment strategies and a favorable outcome.
Collapse
Affiliation(s)
- Marta Cristaldi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Olga Di Fede
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanna Giuliana
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
126
|
González DA, Barbieri van Haaster MM, Quinteros Villarruel E, Hattab C, Ostuni MA, Orman B. Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase activities. Mol Cell Biochem 2019; 463:1-11. [PMID: 31531757 DOI: 10.1007/s11010-019-03624-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
We reported previously that the rat submandibular gland is able to release nanovesicles capable to hydrolyse millimolar concentrations of ATP, ADP and AMP in vitro. Here, we show that rat saliva also contains nanovesicles with the ability to hydrolyse ATP. Our aim was to identify and characterize vesicular nucleotidases by using kinetic, immunological and in silico approaches. Nucleotidase activity in the absence or presence of specific inhibitors allowed us to assume the participation of NTPDase1, -2 and -3, together with ecto-5'-nucleotidase, confirmed using specific antibodies. At neutral pH, initial ATPase activity would be mostly due to NTPDase2, which was thereafter inactivated, leaving NTPDase1 and NTPDase3 to hydrolyse ATP and ADP with an efficacy ATPase/ADPase around 2. Ecto-5'nucleotidase would be mainly responsible for AMP hydrolysis and adenosine accumulation. We proposed a kinetic model for NTPDase2 as a tool to isolate and analyse the turnover of this enzyme in the presence of different ATP concentrations, including those expected in extracellular media. Our study characterizes the ectonucleotidases carried by extracellular vesicles which contribute to modulate ATP and adenosine concentrations in the oral cavity, essential players in purinergic signalling.
Collapse
Affiliation(s)
- Débora A González
- Cátedra de Biofísica y Bioestadística, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina.
| | - Martín M Barbieri van Haaster
- Cátedra de Biofísica y Bioestadística, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| | - Emmanuel Quinteros Villarruel
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| | - Claude Hattab
- Université de Paris, Integrated Biology of Red Blood Cell UMR_S1134, INSERM, 75015, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 6 Rue Alexandre Cabanel, 75015, Paris, France
| | - Mariano A Ostuni
- Université de Paris, Integrated Biology of Red Blood Cell UMR_S1134, INSERM, 75015, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 6 Rue Alexandre Cabanel, 75015, Paris, France
| | - Betina Orman
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| |
Collapse
|
127
|
Abstract
PURPOSE OF REVIEW The purpose of this article is to draw attention to the role of Epstein-Barr virus (EBV) virus in the pathogenesis of the primary Sjögren's syndrome. The article introduces the problem of consequences of EBV acute infection, and its reactivation, in association with the immune response modulation by the virus and with an increased risk of developing systemic autoimmune diseases and EBV-associated cancers. RECENT FINDINGS The knowledge about the mechanisms by which the virus may stay for years in a latent phase, unrecognized by the host response immune cells is constantly expanding. There are several mechanisms and theories about EBV influence on the autoimmune process in Sjogren's syndrome (pSS), including the similarity (molecular mimicry) between viral EBNA-2 protein and Ro-60 antigen or EBER-1 and EBER-2 viral proteins and La antigen. SUMMARY The influence of EBV infection on the development and course of pSS has been proven. It has also been established that both EBV and pSS result in the increased risk of tumor (especially lymphoma) development. In the light of these findings, new ways to manage EBV infections are being sought. Optimal methods for assessing EBV infection status are being devised. Research also aims at finding therapies, which target EBV through the inhibition of the autoimmune process and of viral activity. The present article is an attempt to discuss the most important phenomena and elements linking EBV infection to the primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Maria Maślińska
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic, Spartanska1, Warsaw, Poland
| |
Collapse
|
128
|
Zhan C, Yang X, Yin X, Hou J. Exosomes and other extracellular vesicles in oral and salivary gland cancers. Oral Dis 2019; 26:865-875. [PMID: 31390111 DOI: 10.1111/odi.13172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/20/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs, including exosomes) are a group of heterogeneous nanometer-sized vesicles that are released by all types of cells and serve as functional mediators of cell-to-cell communication. This ability is primarily due to their capacity to package and transport various proteins, lipids, and nucleic acids-namely DNA and messenger RNA (mRNA), but also microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These contents can influence the function and fate of both recipient and donor cells. More and more studies have shown that EVs are involved in every phase of cancer development, mediating bidirectional cross talk between cancer cells and their tissue microenvironment. More specifically, EVs can promote tumor progression by modifying vesicular contents and establishing a distant premetastatic niche with molecules that favor cancer cell proliferation, migration, invasion, metastasis, angiogenesis, and even drug resistance. Given that the packaging of these molecules is known to be tissue-specific, EVs can not only serve as novel prognostic and diagnostic markers but also be used as potential therapeutic targets and vehicles for drug delivery. The present review discusses the current understanding of the multifaceted roles of EVs in the progression of oral and salivary gland cancers, as well as their potential use in clinical applications.
Collapse
Affiliation(s)
- Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuemin Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
129
|
Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther 2019; 10:242. [PMID: 31391108 PMCID: PMC6686455 DOI: 10.1186/s13287-019-1358-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular membranous nanovesicles that mediate local and systemic intercellular communication by transporting proteins or nucleic acids (DNA and RNA) into target cells, thus altering the behaviors of recipient cells. Recent studies have revealed that these vesicles play a critical role in many biological functions, such as cell proliferation, immune regulation, nerve regeneration, and cancer. Adipose-derived stem cells (ADSCs) are now considered a multipotent and abundant tool in the field of cell therapy and regenerative medicine. ADSCs can produce and secrete many exosomes, which inherit multiple functions of cells. Therefore, in this review, we will introduce the characteristics of exosomes derived from ADSCs (ADSC-Exos), describe their functions in different biological processes, summarize the latest research achievements, describe their limitations in cell-free therapy, and provide further insights into their clinical application potential for the treatment of certain diseases.
Collapse
Affiliation(s)
- Pengyu Hong
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Hao Yang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Yue Wu
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| | - Zhangui Tang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
130
|
Kaczor-Urbanowicz KE, Wei F, Rao SL, Kim J, Shin H, Cheng J, Tu M, Wong DTW, Kim Y. Clinical validity of saliva and novel technology for cancer detection. Biochim Biophys Acta Rev Cancer 2019; 1872:49-59. [PMID: 31152821 PMCID: PMC6692231 DOI: 10.1016/j.bbcan.2019.05.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
Cancer, a local disease at an early stage, systemically evolves as it progresses by triggering alterations in surrounding microenvironment, disturbing immune surveillance and further disseminating its molecular contents into circulation. This pathogenic characteristic of cancer makes the use of biofluids such as blood/serum/plasma, urine, tear and cerebrospinal fluids credible surrogates harboring tumor tissue-derived molecular alterations for the detection of cancer. Most importantly, a number of recent reports have credentialed the clinical validity of saliva for the detection of systemic diseases including cancers. In this review, we discussed the validity of saliva as credible biofluid and clinical sample type for the detection of cancers. We have presented the molecular constituents of saliva that could mirror the systemic status of our body and recent findings of salivaomics associated with cancers. Recently, liquid biopsy to detect cancer-derived circulating tumor DNA has emerged as a credible cancer-detection tool with potential benefits in screening, diagnosis and also risk management of cancers. We have further presented the clinical validity of saliva for liquid biopsy of cancers and a new technology platform based on electrochemical detection of cancer-derived ctDNA in saliva with superior sensitivity and point-of-care potential. The clinical utilities of saliva for the detection of cancers have been evidenced, but biological underpinning on the existence of molecular signatures of cancer-origin in saliva, such as via exosomal distribution, should be addressed in detail.
Collapse
Affiliation(s)
- Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Section of Orthodontics, UCLA School of Dentistry, University of California at Los Angeles, United States of America
| | - Fang Wei
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Shannon Liu Rao
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jinseok Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Heebum Shin
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Jordan Cheng
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America
| | - Michael Tu
- EZLife Bio Inc., 21250 Califa St #101, Woodland Hills, CA 9367, United States of America
| | - David T W Wong
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| | - Yong Kim
- Center for Oral and Head/Neck Oncology Research, School of Dentistry, University of California at Los Angeles, United States of America; UCLA's Jonsson Comprehensive Cancer Center, United States of America.
| |
Collapse
|
131
|
Zhang W, Zhou Q, Wei Y, Da M, Zhang C, Zhong J, Liu J, Shen J. The exosome-mediated PI3k/Akt/mTOR signaling pathway in cervical cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2474-2484. [PMID: 31934074 PMCID: PMC6949546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cervical cancer is the second most common cancer and one of the leading causes of cancer deaths among women worldwide. OBJECTIVE To evaluate the clinical significance of the PI3k/Akt/mTOR signaling pathway in cancer tissues and exosomes extracted from vaginal secretions. METHODS Immunohistochemical staining was used to detect the protein expression of PI3k, Akt, and mTOR in tissue samples from the control group, the CIN (cervical intraepithelial neoplasia) group, and the cervical cancer group. qPCR (quantitative PCR) was used to detect the expressions of PI3k, Akt, and mTOR in cervical cancer tissues, the corresponding adjacent tissues, and exosomes extracted from vaginal secretions. RESULTS Compared with those of healthy people and CIN, the PI3k/Akt/mTOR protein levels in extracts from tissues were higher in the cervical cancer patients. The PI3k/Akt/mTOR gene and protein levels increased in the cervical cancer tissues with the increase in the degree of malignancy of the cancer. There was no significant difference in PI3k/Akt/mTOR gene expression between the cervical cancer tissues and the exosomes extracted from vaginal secretions, but both were significantly higher than the expressions of the corresponding adjacent tissues. CONCLUSIONS The PI3k/Akt/mTOR signaling pathway mediated by exosomes extracted from vaginal secretions may provide candidate diagnostic biomarkers or potential therapeutic targets.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Department of Gynaecology, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Qing Zhou
- Department of Nursing, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Yunhai Wei
- Department of Surgery, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Miao Da
- Medical College of Nursing, Huzhou UniversityHuzhou, Zhejiang Province, China
| | - Chun Zhang
- Infectious Disease, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Jing Zhong
- Central Laboratory, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Jin Liu
- Department of Pathology, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central HospitalHuzhou, Zhejiang Province, China
| |
Collapse
|
132
|
Lin M, Zhou C, He S, Yu H, Guo T, Ye J, Feng X, Bian X. The research advances of exosomes in esophageal cancer. Biomark Med 2019; 13:685-695. [PMID: 31161775 DOI: 10.2217/bmm-2018-0314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Esophageal carcinoma (EC) is one of the most common human digestive tract tumors, with high morbidity and mortality. It is necessary to elucidate the mechanism of cancer progression and seek early EC diagnostic markers for prompt detection and intervention. Exosomes are membrane nanovesicles secreted from many nucleated cells, 30-100 nm in diameter, containing various proteins, lipids and nucleic acids. They exist in peripheral blood, urine, ascites and other body fluids, widely engaged with intercellular material exchange and signal communication. Exosomes secreted from EC cells or tissues conduct important functions in tumor growth and progression. The detection and analysis of tumor-derived or tumor-associated exosomes has potential for EC early diagnosis and prognosis assessment. In the present paper, the exosomes' biological behaviors, isolation, detection and functions in EC progression - using as potential biomarkers for EC diagnosis or prognosis - are reviewed.
Collapse
Affiliation(s)
- Mei Lin
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Chenglin Zhou
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Siyu He
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Hong Yu
- Pathology Department, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Ting Guo
- Clinical Medical Institute, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Jun Ye
- Clinical Medical Institute, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Xiaoqian Feng
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| | - Xuefeng Bian
- Clinical Laboratory, Taizhou People's Hospital Affiliated to Nantong University, Taizhou 225300, Jiangsu Province, PR China
| |
Collapse
|
133
|
Rody WJ, Truzman EL, Foster DT, Smith LN, Rocha FG, Sorenson HL, Wallet SM, Holliday LS. Clastic cells in orthodontic treatment: Translational challenges and recent advances. Orthod Craniofac Res 2019; 22 Suppl 1:180-185. [PMID: 31074132 DOI: 10.1111/ocr.12285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Orthodontic treatment consists of numerous appliance activations that rely on stimulation of osteoclasts at alveolar bone sites. However, the action of osteoclast-like cells on dentin ("odontoclasts") is a pathological side effect of orthodontic treatment. The aim of this article is twofold: (a) To report preliminary results from ongoing cell culture experiments to identify unique markers of dentin resorption, and (b) To discuss our work using nanoparticle tracking analysis (NTA) and exosomes for developing biological fluid-based biopsies to monitor clastic cell activity. SETTING AND SAMPLE POPULATION Twelve healthy volunteers in permanent dentition. MATERIAL AND METHODS For the in vitro experiments, murine clastic cell precursors were cultured on dentin or bone slices for 7 days and phage-display biopanning was used to identify molecular surface differences between osteoclasts and odontoclasts. In the human study, gingival crevicular fluid (GCF) samples were collected using different tools and analysed for protein and exosome recovery. RESULTS Biopanning generated antibody fragments that were uniquely reactive to odontoclasts. Numerous nanoparticles in the size range of exosomes were detected in all of the human GCF samples. CONCLUSIONS Our results support that there are molecular differences between osteoclasts and odontoclasts. Emerging technologies may allow the use of exosomes in GCF as a clinical tool to detect markers of root resorption.
Collapse
Affiliation(s)
- Wellington J Rody
- Department of Orthodontics and Pediatric Dentistry, Stony Brook University, Stony Brook, New York
| | - Estela L Truzman
- Department of Orthodontics, University of Florida, Gainesville, Florida
| | - Desmond T Foster
- Department of Orthodontics, University of Florida, Gainesville, Florida
| | - Leigh N Smith
- Department of Orthodontics, University of Florida, Gainesville, Florida
| | - Fernanda G Rocha
- Department of Oral Biology, University of Florida, Gainesville, Florida
| | - Heather L Sorenson
- School of Dental Medicine, East Carolina University, Greenville, North Carolina
| | - Shannon M Wallet
- School of Dental Medicine, East Carolina University, Greenville, North Carolina
| | | |
Collapse
|
134
|
Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem 2019; 120:10847-10854. [PMID: 30681184 DOI: 10.1002/jcb.28376] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Cutaneous wounds, a type of soft tissue injury, are difficult to heal in aging. Differentiation, migration, proliferation, and apoptosis of skin cells are identified as key factors during wound healing processes. Mesenchymal stem cells have been documented as possible candidates for wound healing treatment because their use could augment the regenerative capacity of many tissues. However, the effects of exosomes derived from adipose-derived stem cell (ADSC-exos) on cutaneous wound healing remain to be carefully elucidated. In this present study, HaCaT cells were exposed to hydrogen peroxide (H2 O 2 ) for the establishment of the skin lesion model. Cell Counting Kit-8 assay, migration assay, and flow cytometry assay were conducted to detect the biological function of ADSC-exos in skin lesion model. Finally, the possible mechanism was further investigated using Western blot assay. The successful construction of the skin lesion model was confirmed by results of the enhanced cell apoptosis of HaCaT cells induced by H 2 O 2 , the increased Bax expression and decreased Bcl-2 expression. CD9 and CD63 expression evidenced the existence of ADSC-exos. The results of functional experiments demonstrated that ADSC-exos could prompt cell proliferation and migration of HaCaT cells, and repress cell apoptosis of HaCaT cells. In addition, the activation of Wnt/β-catenin signaling was confirmed by the enhanced expression of β-catenin at the protein level. Collectively, our findings suggest that ADSC-exos play a positive role in cutaneous wound healing possibly via Wnt/β-catenin signaling. Our study may provide new insights into the therapeutic target for cutaneous wound healing.
Collapse
Affiliation(s)
- Tao Ma
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bingchuan Fu
- Department of Medical Cosmetology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Department of Otolaryngology, The 161th Hospital of the Chinese People's Liberation Army, Wuhan, Hubei, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Mengxiong Pan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
135
|
Yu J, Lin Y, Xiong X, Li K, Yao Z, Dong H, Jiang Z, Yu D, Yeung SCJ, Zhang H. Detection of Exosomal PD-L1 RNA in Saliva of Patients With Periodontitis. Front Genet 2019; 10:202. [PMID: 30923536 PMCID: PMC6426748 DOI: 10.3389/fgene.2019.00202] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is the most prevalent inflammatory disease of the periodontium, and is related to oral and systemic health. Exosomes are emerging as non-invasive biomarker for liquid biopsy. We here evaluated the levels of programmed death-ligand 1 (PD-L1) mRNA in salivary exosomes from patients with periodontitis and non-periodontitis controls. The purposes of this study were to establish a procedure for isolation and detection of mRNA in exosomes from saliva of periodontitis patients, to characterize the level of salivary exosomal PD-L1, and to illustrate its clinical relevance. Bioinformatics analysis suggested that periodontitis was associated with an inflammation gene expression signature, that PD-L1 expression positively correlated with inflammation in periodontitis based on gene set enrichment analysis (GSEA) and that PD-L1 expression was remarkably elevated in periodontitis patients versus control subjects. Exosomal RNAs were successfully isolated from saliva of 61 patients and 30 controls and were subjected to qRT-PCR. Levels of PD-L1 mRNA in salivary exosomes were higher in periodontitis patients than controls (P < 0.01). Salivary exosomal PD-L1 mRNA showed significant difference between the stages of periodontitis. In summary, the protocols for isolating and detecting exosomal RNA from saliva of periodontitis patients were, for the first time, characterized. The current study suggests that assay of exosomes-based PD-L1 mRNA in saliva has potential to distinguish periodontitis from the healthy, and the levels correlate with the severity/stage of periodontitis.
Collapse
Affiliation(s)
- Jialiang Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Xiao Xiong
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Kai Li
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou, China
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
| | - Zuojie Jiang
- Cancer Research Center, Shantou University Medical College, Shantou, China
| | - Dan Yu
- Department of Stomatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sai-Ching Jim Yeung
- Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hao Zhang
- Institute of Precision Cancer and Pathology, Jinan University Medical College, Guangzhou, China
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
136
|
Otero-Ortega L, Laso-García F, Gómez-de Frutos M, Fuentes B, Diekhorst L, Díez-Tejedor E, Gutiérrez-Fernández M. Role of Exosomes as a Treatment and Potential Biomarker for Stroke. Transl Stroke Res 2018; 10:241-249. [PMID: 30105420 DOI: 10.1007/s12975-018-0654-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
Approximately, 16 million strokes occur worldwide each year, causing 6 million deaths and considerable disability, implying an enormous social, individual health, and economic burden. Due to this high incidence, strategies to promote stroke recovery are urgently needed. Research into new therapeutic approaches for stroke has determined that intravenous administration of mesenchymal stem cells (MSCs) is a good strategy to improve recovery by amplifying mechanisms implicated in brain plasticity. Recent studies have demonstrated the efficacy of MSCs in stroke, with no need for them to reach the area of brain injury. Although the mechanisms by which they mediate restorative effects are still unknown, the evidence suggests that MSCs might use specialised communication by sending and receiving biological information included in elements called exosomes. Exosomes are nanosized extracellular vesicles released into physical environments, and they have recently been suggested to mediate restorative stem cell effects. Moreover, after stroke, exosomes can also be synthesised and released from brain cells, passing through the blood-brain barrier (BBB), and can be detected in peripheral blood or in cerebrospinal fluid. Thus, exosomes could possibly be biomarkers that reflect pathological progress and promote stroke recovery. This review discusses the translational aspects of MSC-derived exosomes and their various roles in brain repair and as circulating biomarkers in stroke.
Collapse
Affiliation(s)
- Laura Otero-Ortega
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Fernando Laso-García
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - MariCarmen Gómez-de Frutos
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Blanca Fuentes
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Luke Diekhorst
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Exuperio Díez-Tejedor
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María Gutiérrez-Fernández
- Neuroscience and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, La Paz University Hospital, Neuroscience Area of IdiPAZ Health Research Institute, Autonomous University of Madrid, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|