101
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
102
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
103
|
Li Y, Shi W, Sun Z, Zhang W. Chemoreceptor MCP4580 of Vibrio splendidus mediates chemotaxis toward L-glutamic acid contributing to bacterial virulence. Microbiol Res 2024; 289:127917. [PMID: 39368257 DOI: 10.1016/j.micres.2024.127917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Chemotaxis has an essential function in flagellar bacteria that allows them to sense and respond to specific environmental signals, enabling their survival and colonization. Vibrio splendidus is an important opportunistic pathogen that infects a wide range of hosts including fish, bivalve, and sea cucumber. Our study demonstrated that V. splendidus AJ01 exhibited chemotaxis toward L-glutamic acid (L-Glu), an abundant amino acid in the intestinal and respiratory tree tissues of the sea cucumber. Bacterial samples collected from two locations in soft agar swimming plates were subjected to RNA-sequencing (RNA-Seq) analysis to identify the methyl-accepting chemotaxis protein (MCP) respond to L-Glu. Among the 40 annotated chemoreceptors, MCP4580 was identified as the MCP that mediates L-Glu-response. Molecular docking and site-directed mutagenesis revealed that L-arginine at residue 81 (R81) and L-glutamine at residue 88 (Q88) in the ligand-binding domain (LBD) are crucial for L-Glu recognition. Bacterial two-hybrid assay (BTH) showed that MCP4580 forms dimers and interacts with the histidine kinase CheA via the coupling protein CheW1 and CheW2. Phosphorylation analysis showed that the binding of L-Glu to MCP4580 results in the inhibition of CheA phosphorylation mainly via CheW1. Notably, sea cucumbers stimulated with each mutant strain of chemotaxis protein exhibited reduced mortality, highlighting the importance of chemotaxis in V. splendidus virulence. The present study provides valuable insights into the molecular components and signal transduction involved in the chemotaxis of V. splendidus toward L-Glu, and highlights the importance of chemotaxis in its virulence.
Collapse
Affiliation(s)
- Ya Li
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weibo Shi
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Zihao Sun
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo 315832, PR China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo 315832, PR China.
| |
Collapse
|
104
|
Fan X, Qu PY, Luan KF, Sun CY, Ren HP, Sun XH, Lan J. A cleaved adhesin DNA vaccine targeting dendritic cell against Porphyromonas gingivalis-induced periodontal disease. Mol Oral Microbiol 2024; 39:433-445. [PMID: 38696249 DOI: 10.1111/omi.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Arg-gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin-binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis-induced periodontal disease. METHODS C57 mice were immunized prophylactically with pVAX1-CA, pVAX1-HA, pVAX1, and phosphate-buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis-induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA-seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co-delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro-computed tomography. RESULTS After the immunization, both the pVAX1-CA and pVAX1-HA groups exhibited significantly elevated P. gingivalis-specific IgG and IgG1, as well as a reduction in bone loss around periodontitis-affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) in DCs. Furthermore, the RNA-seq analysis revealed a significant increase in the chemokine (C-C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co-labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon-gamma (IFN-γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19-CA immunization. This outcome effectively illustrated the preservation of peri-implant bone mass in rats afflicted with P. gingivalis-induced peri-implantitis (p < 0.05). CONCLUSIONS The co-administration of a CCL19-conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis-induced periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Xin Fan
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Peng-Yu Qu
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Ke-Feng Luan
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Chen-Yu Sun
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Hui-Ping Ren
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xue-Hui Sun
- Department of Stomatology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jing Lan
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| |
Collapse
|
105
|
Zhang B, Wang J, Chen X, Xue T, Xin J, Liu Y, Wang X, Li X. Laminaria japonica Polysaccharide Regulates Fatty Hepatosis Through Bile Acids and Gut Microbiota in Diabetes Rat. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1165-1178. [PMID: 39207652 DOI: 10.1007/s10126-024-10365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, β-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.
Collapse
Affiliation(s)
- Bo Zhang
- Linyi University, Linyi, Shandong, China
| | - Jiacai Wang
- Linyi University, Linyi, Shandong, China
- Guizhou University, Guiyang, Guizhou, China
| | | | - Tao Xue
- Linyi University, Linyi, Shandong, China
| | - Jie Xin
- Linyi University, Linyi, Shandong, China
| | | | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xinpeng Li
- Linyi University, Linyi, Shandong, China.
| |
Collapse
|
106
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
107
|
Zanditenas E, Ankri S. Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance. Virulence 2024; 15:2289775. [PMID: 38058008 PMCID: PMC10761080 DOI: 10.1080/21505594.2023.2289775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
Bacterial biofilms have attracted significant attention due to their involvement in persistent infections, food and water contamination, and infrastructure corrosion. This review delves into the intricate interactions between bacterial biofilms and unicellular parasites, shedding light on their impact on biofilm formation, structure, and function. Unicellular parasites, including protozoa, influence bacterial biofilms through grazing activities, leading to adaptive changes in bacterial communities. Moreover, parasites like Leishmania and Giardia can shape biofilm composition in a grazing independent manner, potentially influencing disease outcomes. Biofilms, acting as reservoirs, enable the survival of protozoan parasites against environmental stressors and antimicrobial agents. Furthermore, these biofilms may influence parasite virulence and stress responses, posing challenges in disease treatment. Interactions between unicellular parasites and fungal-containing biofilms is also discussed, hinting at complex microbial relationships in various ecosystems. Understanding these interactions offers insights into disease mechanisms and antibiotic resistance dissemination, paving the way for innovative therapeutic strategies and ecosystem-level implications.
Collapse
Affiliation(s)
- Eva Zanditenas
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
108
|
Li H, Shen N, Ren J, Yang S, Chen Y, Gao Z. Biotransformation characteristics of urate-lowering probiotic fermented apple juice and potential regulatory mechanisms for ameliorating hyperuricemia via mediating gut microbiota and metabolic pathways. Food Chem 2024; 460:140462. [PMID: 39032298 DOI: 10.1016/j.foodchem.2024.140462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/16/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Hyperuricemia has evolved into a global public health concern, and applying probiotics fermented apple juice holds promise for alleviating this condition. This study aimed to investigate the biotransformation and metabolic features of urate-lowering probiotics sequentially fermented dealcoholized apple juice (PSFA), and assess its ameliorative effects and potential mechanisms on hyperuricemia mice. Results showed that CICC 6074 and 20,292 possessed excellent purine, nucleotide and nucleoside degradation and acid and bile salt resistance; sequential fermentation decreased the fructose in apple juice, and viable counts reached 3.76 × 108 CFU/mL. Histopathological analysis showed that PSFA ameliorated kidney damage in hyperuricemia mice. Furthermore, PSFA significantly reduced Urea, Creatinine and Uric acid levels in hyperuricemia mice; and inhibited xanthine oxidase activity and the expression of pro-inflammatory factors. Importantly, PSFA reversed gut microbiota dysbiosis and raised the abundance of beneficial bacteria (Lactobacillush, Faecalibaculum and Lachnospiraceae_NK4A136_group). KEGG and COG functional prediction results revealed that the potential mechanism of PSFA to ameliorate hyperuricemia may be lipid metabolism and glycolysis pathways.
Collapse
Affiliation(s)
- Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Ning Shen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Jiani Ren
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Yue Chen
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China.
| |
Collapse
|
109
|
Rao W, Wu J, Fang Z, Chen Z, Wu J, Fang X. Antibacterial mechanism of metabolites of Lactobacillus plantarum against Pseudomonas lundensis and their application in dry-aged beef preservation. Food Chem 2024; 460:140463. [PMID: 39047473 DOI: 10.1016/j.foodchem.2024.140463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
In this study, the antibacterial mechanism of metabolites of Lactobacillus plantarum SCB2505 (MLp SCB2505) against Pseudomonas lundensis (P. lundensis) SCB2605 was investigated, along with evaluation of their preservative effects on dry-aged beef. The results demonstrated the effective inhibition of MLp SCB2505 on the growth and biofilm synthesis of P. lundensis. The treatment with MLp SCB2505 led to the compromised membrane integrity, as evidenced by reduced intracellular ATP content, increased extracellular AKPase, K+ and protein content, as well as disrupted cell morphology. Further metabolomics analysis revealed that MLp SCB2505 interfered amino acid metabolism, nucleotide metabolism, cofactor and vitamin metabolism, lipid metabolism and respiratory chain in P. lundensis, ultimately leading to the interrupted life activities and even death of the bacteria. Besides, MLp SCB2505 could effectively inhibit the growth of Pseudomonas in dry-aged beef and delay spoilage. These findings propose the potential application of MLp SCB2505 as an antibacterial agent in meat products.
Collapse
Affiliation(s)
- Wei Rao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jinchong Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Ziying Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhaomin Chen
- Weyran Food Biotechnology (Shenzhen) Co., LTD., Shenzhen 518048, China
| | - Jianfeng Wu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
110
|
Duncan JD, Devillers H, Camarasa C, Setati ME, Divol B. Oxygen alters redox cofactor dynamics and induces metabolic shifts in Saccharomyces cerevisiae during alcoholic fermentation. Food Microbiol 2024; 124:104624. [PMID: 39244375 DOI: 10.1016/j.fm.2024.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.
Collapse
Affiliation(s)
- James D Duncan
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Hugo Devillers
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa; UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
111
|
Wang X, Chang S, Zhang X, Guo X, Xu Y, Yang D, Luo L, Wang J, Wu H, Cui Y, Wang J, Ji Y. A highly sensitive dual-mode lateral flow immunoassay based on plasmonic hollow Ag/Au nanostars enhancing light absorption. Talanta 2024; 280:126683. [PMID: 39151315 DOI: 10.1016/j.talanta.2024.126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The conventional lateral flow immunoassay (LFIA) based on gold nanoparticles (Au NPs) is limited by low sensitivity due to the insufficient brightness of Au NPs. To address this problem, noble metal nanomaterials with localized surface plasmon resonance (LSPR) and synthetic tunability are potential signal outputs for LFIA, which can achieve better optical properties by adjusting the preparation conditions. Herein, this study prepared the hollow silver/gold nano-stars (HAg/Au NSts) as LFIA signal output via the galvanic replacement method. HAg/Au NSts with anisotropic hollow alloy nanostructures exhibit a wide visible light absorption band and great NIR thermal conversion efficiency (η = 37.32 %), which endows them with enhanced colorimetric and photothermal signals. Further, we constructed a colorimetric-photothermal (CM-PT) dual-signal HAg/Au NSts-LFIA and chose staphylococcal enterotoxin B as the target analyte. The linear range of HAg/Au NSts-LFIA is 0.19-100 ng mL-1, and the limit of detection (LOD) is up to 0.29 ng mL-1 and 0.09 ng mL-1 in the colorimetric and photothermal modes respectively. Compared with the conventional Au NPs-LFIA, HAg/Au NSts-CM/PT-LFIA effectively improved the detection performance of LFIA. In addition, HAg/Au NSts-LFIA also showed satisfactory sensitivity (vLOD = 0.78 ng mL-1) and recovery (89.06-114.74 %) in milk and pork samples. Therefore, this work provides a new shape design idea for noble metal nanomaterials in biosensor applications.
Collapse
Affiliation(s)
- Xiatong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Shaohe Chang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Xiaoling Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Xuhua Guo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Yongjun Xu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Di Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Jiamin Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Haofen Wu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Yan Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, China.
| |
Collapse
|
112
|
Verburg I, Hernández Leal L, Waar K, Rossen JWA, Schmitt H, García-Cobos S. Klebsiella pneumoniae species complex: From wastewater to the environment. One Health 2024; 19:100880. [PMID: 39263320 PMCID: PMC11387367 DOI: 10.1016/j.onehlt.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Klebsiella pneumoniae plays a significant role in nosocomial infections and spreading antibiotic resistance, and therefore forms a major threat to public health. In this study, we investigated the role of the wastewater pathway in the spread of pathogenic bacteria and more specifically, in the spread of antibiotic resistant Klebsiella pneumoniae subspecies. Whole-genome sequencing was performed of 185 K. pneumoniae isolates collected from hospital, nursing home, and community wastewater, the receiving wastewater treatment plant (WWTP), and clinical isolates from the investigated hospital. K. pneumoniae isolates from different sources were not genetically related, except for WWTP influent (46.5%) and effluent (62.5%), revealing survival of bacteria from wastewater treatment. The content of antibiotic resistance (ARGs), virulence, and plasmid replicon genes differed between K. pneumoniae subspecies and their origin. While chromosomal bla genes were specific for each K. pneumoniae subspecies, bla genes predicted in plasmid contigs were found in several K. pneumoniae subspecies, implying possible gene transfer between subspecies. Transferable ARGs were most abundant in patients and hospital isolates (70%), but the average number of plasmid replicon genes per isolate was similar across all sources, showing plasmid content being more relevant than plasmid quantity. Most patient (90%) and hospital wastewater (34%) isolates were K. pneumoniae subsp. pneumoniae, and the yersiniabactin cluster genes ybt, fyuA, and irp12 were only found in this subspecies, as were the IncFII(pECLA), IncHI2A, and IncHI2 plasmid replicon genes, suggesting the clinical origin of these type of plasmids.
Collapse
Affiliation(s)
- Ilse Verburg
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Lucia Hernández Leal
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
| | - Karola Waar
- Certe Medische Microbiologie Friesland, 8900, JA, Leeuwarden, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water Technology, 8900, CC, Leeuwarden, the Netherlands
- Institute for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721, MA, Bilthoven, the Netherlands
| | - Silvia García-Cobos
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, 9713, GZ, Groningen, the Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
113
|
Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Comput Struct Biotechnol J 2024; 23:537-548. [PMID: 38235361 PMCID: PMC10791570 DOI: 10.1016/j.csbj.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
CRISPR-Cas9 systems constitute bacterial adaptive immune systems that protect against phage infections. Bacteriophages encode anti-CRISPR proteins (Acrs) that mitigate the bacterial immune response. However, the structural basis for their inhibitory actions from a molecular perspective remains elusive. In this study, through microsecond atomistic molecular dynamics simulations, we demonstrated the remarkable flexibility of Streptococcus pyogenes Cas9 (SpyCas9) and its conformational adaptability during interactions with AcrIIA4 and AcrIIA2. Specifically, we demonstrated that the binding of AcrIIA4 and AcrIIA2 to SpyCas9 induces a conformational rearrangement that causes spatial separation between the nuclease and cleavage sites, thus making the endonuclease inactive. This separation disrupts the transmission of signals between the protospacer adjacent motif recognition and nuclease domains, thereby impeding the efficient processing of double-stranded DNA. The simulation also reveals that AcrIIA4 and AcrIIA2 cause different structural variations of SpyCas9. Our research illuminates the precise mechanisms underlying the suppression of SpyCas9 by AcrIIA4 and AcrIIA2, thus presenting new possibilities for controlling genome editing with higher accuracy.
Collapse
Affiliation(s)
- Shuixiu Wen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Yuxin Zhao
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Xinyu Qi
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Mingzhu Cai
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Kaisheng Huang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Liu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
114
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
115
|
Coenye T, Ahonen M, Anderson S, Cámara M, Chundi P, Fields M, Foidl I, Gnimpieba EZ, Griffin K, Hinks J, Loka AR, Lushbough C, MacPhee C, Nater N, Raval R, Slater-Jefferies J, Teo P, Wilks S, Yung M, Webb JS. Global challenges and microbial biofilms: Identification of priority questions in biofilm research, innovation and policy. Biofilm 2024; 8:100210. [PMID: 39221168 PMCID: PMC11364012 DOI: 10.1016/j.bioflm.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Priority question exercises are increasingly used to frame and set future research, innovation and development agendas. They can provide an important bridge between the discoveries, data and outputs generated by researchers, and the information required by policy makers and funders. Microbial biofilms present huge scientific, societal and economic opportunities and challenges. In order to identify key priorities that will help to advance the field, here we review questions from a pool submitted by the international biofilm research community and from practitioners working across industry, the environment and medicine. To avoid bias we used computational approaches to group questions and manage a voting and selection process. The outcome of the exercise is a set of 78 unique questions, categorized in six themes: (i) Biofilm control, disruption, prevention, management, treatment (13 questions); (ii) Resistance, persistence, tolerance, role of aggregation, immune interaction, relevance to infection (10 questions); (iii) Model systems, standards, regulatory, policy education, interdisciplinary approaches (15 questions); (iv) Polymicrobial, interactions, ecology, microbiome, phage (13 questions); (v) Clinical focus, chronic infection, detection, diagnostics (13 questions); and (vi) Matrix, lipids, capsule, metabolism, development, physiology, ecology, evolution environment, microbiome, community engineering (14 questions). The questions presented are intended to highlight opportunities, stimulate discussion and provide focus for researchers, funders and policy makers, informing future research, innovation and development strategy for biofilms and microbial communities.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
- ESCMID Study Group on Biofilms (ESGB), Basel, Switzerland
| | - Merja Ahonen
- Satakunta University of Applied Sciences, Finland
| | - Skip Anderson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Matthew Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Ines Foidl
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Kristen Griffin
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Jamie Hinks
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | | | - Cait MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Natasha Nater
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Rasmita Raval
- National Biofilms Innovation Centre, Open Innovation Hub for Antimicrobial Surfaces, Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jo Slater-Jefferies
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Pauline Teo
- Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | - Sandra Wilks
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| | - Maria Yung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Singapore
| | | | - Jeremy S. Webb
- National Biofilms Innovation Centre, School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
116
|
Camilotti E, Furian TQ, Borges KA, Ortiz Granados OF, Zottis Chitolina G, de Brites Weber T, Tonini da Rocha D, Nascimento VPD, Souza Moraes HLD, Salle CTP. Galleria mellonella larvae as an alternative model to determine the pathogenicity of avian pathogenic Escherichia coli. Avian Pathol 2024; 53:507-519. [PMID: 38845537 DOI: 10.1080/03079457.2024.2365932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
RESEARCH HIGHLIGHTS Galleria mellonella larvae are a viable model for determining APEC pathogenicity.Larval disease score is the main variable for determining APEC pathogenicity.Response variables should be evaluated up to 24 h post-inoculation.
Collapse
Affiliation(s)
- Elisar Camilotti
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Oscar Fernando Ortiz Granados
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Thaína de Brites Weber
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Daniela Tonini da Rocha
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Medicina Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| |
Collapse
|
117
|
Mao L, Yin B, Ye Z, Kang J, Sun R, Wu Z, Ge J, Ping W. Plant growth-promoting microorganisms drive K strategists through deterministic processes to alleviate biological stress caused by Fusarium oxysporum. Microbiol Res 2024; 289:127911. [PMID: 39303412 DOI: 10.1016/j.micres.2024.127911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Soybean root rot, caused by soil-borne pathogens such as Fusarium oxysporum, frequently occurs in Northeast China and leads to a decline in soil health and becoming a bottleneck for soybean yield in the region. To address this issue, applying beneficial microorganisms and altering soil microbial community structure have become effective strategies. In this study, the 90-day soybean pot experiment was conducted to explore the assembly process and life strategy selection of bacterial communities in the rhizosphere of healthy (inoculated with Funneliformis mosseae, F group and treated with Pseudomonas putida, P group) and diseased (inoculated with F. oxysporum, O group) soybean plants, as well as the recovery effect of beneficial microorganisms on soil-borne diseases (combined treatments OP and OF). Results indicated that in healthy soils (P and F), microbial community assembly process in the soybean rhizosphere was entirely governed by heterogeneous selection (HeS, 100 %). However, inoculated with P. putida (OP) was primarily driven by stochastic processes (HeS 40 %, dispersal limitation (DL) 60 %), and the F. mosseae treatment (OF) predominantly followed a deterministic process (HeS 89 %, DL 11 %) in diseased soils. Inoculation of plant growth-promoting microorganisms (PGPMs) in diseased soil drove the life strategy of the rhizosphere bacterial community from r- to K-strategy, evident from the lower rRNA operon (rrn) copy numbers (O 3.7, OP 2.1, OF 2.3), higher G+ to G- ratios (O 0.47, OP 0.58, OF 0.57), and a higher abundance of oligotrophs (O 50 %, OP 53 %, OF 54 %). In healthy (P and F) and diseased (O, OP, OF) rhizosphere soils, OTU820, OTU6142, and OTU8841 under the K-strategy, and OTU6032 and OTU6917 under the r-strategy, which served as keystone species, had a significant promoting relationship with plant biomass and defense capabilities ( p <0.05). Additionally, inoculation of PGPMs improved autotoxin degradation and positively correlated with bacterial life strategies in both healthy and diseased soils (P, F, OP and OF) ( p <0.05). These findings enhance our understanding of soil-microbe interactions and offer new insights and precise control measures for soybean disease management and soil environment remediation.
Collapse
Affiliation(s)
- Liangyang Mao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bo Yin
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zhenchao Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
118
|
Piombo E, Tzelepis G, Ruus AG, Rafiei V, Jensen DF, Karlsson M, Dubey M. Sterol regulatory element-binding proteins mediate intrinsic fungicide tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea IK726. Microbiol Res 2024; 289:127922. [PMID: 39368255 DOI: 10.1016/j.micres.2024.127922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors governing various biological processes in fungi, including virulence and fungicide tolerance, by regulating ergosterol biosynthesis and homeostasis. While studied in model fungal species, their role in fungal species used for biocontrol remains elusive. This study delves into the biological and regulatory function of SREBPs in the fungal biocontrol agent (BCA) Clonostachys rosea IK726, with a specific focus on fungicide tolerance and antagonism. Clonostachys rosea genome contains two SREBP coding genes (sre1 and sre2) with distinct characteristics. Deletion of sre1 resulted in mutant strains with pleiotropic phenotypes, including reduced C. rosea growth on medium supplemented with prothioconazole and boscalid fungicides, hypoxia mimicking agent CoCl2 and cell wall stressor SDS, and altered antagonistic abilities against Botrytis cinerea and Rhizoctonia solani. However, Δsre2 strains showed no significant effect. Consistent with the gene deletion results, overexpression of sre1 in Saccharomyces cerevisiae enhanced tolerance to prothioconazole. The functional differentiation between SRE1 and SRE2 was elucidated by the yeast-two-hybridization assay, which showed an interaction between SREBP cleavage-activating protein (SCAP) and SRE1 but not between SRE2 and SCAP. Transcriptome analysis of the Δsre1 strain unveiled SRE1-mediated expression regulation of genes involved in lipid metabolism, respiration, and xenobiotic tolerance. Notably, genes coding for antimicrobial compounds chitinases and polyketide synthases were downregulated, aligning with the altered antagonism phenotype. This study uncovers the role of SREBPs in fungal BCAs, providing insights for C. rosea IK726 application into integrated pest management strategies.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alma Gustavsson Ruus
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Vahideh Rafiei
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
119
|
Khadraoui N, Essid R, Damergi B, Fares N, Gharbi D, Forero AM, Rodríguez J, Abid G, Kerekes EB, Limam F, Jiménez C, Tabbene O. Myrtus communis leaf compounds as novel inhibitors of quorum sensing-regulated virulence factors and biofilm formation: In vitro and in silico investigations. Biofilm 2024; 8:100205. [PMID: 38988475 PMCID: PMC11231753 DOI: 10.1016/j.bioflm.2024.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Antibiotic resistance of the Gram-negative bacterium Pseudomonas aeruginosa and its ability to form biofilm through the Quorum Sensing (QS) mechanism are important challenges in the control of infections caused by this pathogen. The extract of Myrtus communis (myrtle) showed strong anti-QS effect on C hromobacterium . violaceum 6267 by inhibiting 80 % of the production of violacein pigment at a sub-MIC concentration of 1/8 (31.25 μg/mL). In addition, the extract exhibited an inhibitory effect on virulence factors of P. aeruginosa PAO1 at half MIC (125 μg/mL), significantly reducing the formation of biofilms (72.02 %), the swarming activity (75 %), and the production of protease (61.83 %) and pyocyanin (97 %). The active fraction also downregulated the expression of selected regulatory genes involved in the biofilm formation and QS in the P. aeruginosa PAO1 strain. These genes included the autoinducer synthase genes (lasI and rhlI), the genes involved in the expression of their corresponding receptors (lasR and rhlR), and the pqsA genes. The analysis of the active fraction by HPLC/UV/MS and NMR allowed the identification of three phenolic compounds, 3,5-di-O-galloylquinic acid, myricetin 3-O-α-l-rhamnopyranoside (myricitrin), and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside. In silico studies showed that 3,5-di-O-galloylquinic acid, with an affinity score of -9.20 kcal/mol, had the highest affinity to the active site of the CviR protein (3QP8), a QS receptor from C. violaceum. Additionally, myricetin 3-O-α-l-rhamnopyranoside (myricitrin) and myricetin 3-O-(2″-O-galloyl)-ß-d-galactopyranoside interact to a lesser extent with 3QP8. In conclusion, this study contributed significantly to the discovery of new QS inhibitors from M. communis leaves against resistant Gram-negative pathogens.
Collapse
Affiliation(s)
- Nadine Khadraoui
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Rym Essid
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Bilel Damergi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Nadia Fares
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Dorra Gharbi
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Abel Mateo Forero
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Jaime Rodríguez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre de Biotechnology de Borj Cedria, BP-901, 2050, Hammam-Lif, Tunisia
| | - Erika-Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, Hungary
| | - Ferid Limam
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| | - Carlos Jiménez
- CICA-Centro Interdisciplinar de Química e Bioloxía e Departamento de Química, Facultade de Ciencias. Universidade da Coruña, 15071, A Coruña, Spain
| | - Olfa Tabbene
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, BP-901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
120
|
Kollár L, Grabrijan K, Hrast Rambaher M, Bozovičar K, Imre T, Ferenczy GG, Gobec S, Keserű GM. Boronic acid inhibitors of penicillin-binding protein 1b: serine and lysine labelling agents. J Enzyme Inhib Med Chem 2024; 39:2305833. [PMID: 38410950 PMCID: PMC10901194 DOI: 10.1080/14756366.2024.2305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.
Collapse
Affiliation(s)
- Levente Kollár
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | - Tímea Imre
- MS Metabolomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
121
|
Li D, Li Z, Wang L, Zhang Y, Ning S. Oral inoculation of Fusobacterium nucleatum exacerbates ulcerative colitis via the secretion of virulence adhesin FadA. Virulence 2024; 15:2399217. [PMID: 39221673 PMCID: PMC11385161 DOI: 10.1080/21505594.2024.2399217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Fusobacterium nucleatum (F. nucleatum), an anaerobic resident of the oral cavity, is increasingly recognized as a contributing factor to ulcerative colitis (UC). The adhesive properties of F. nucleatum are mediated by its key virulence protein, FadA adhesin. However, further investigations are needed to understand the pathogenic mechanisms of this oral pathogen in UC. The present study aimed to explore the role of the FadA adhesin in the colonization and invasion of oral F. nucleatum in dextran sulphate sodium (DSS)-induced colitis mice via molecular techniques. In this study, we found that oral inoculation of F. nucleatum strain carrying the FadA adhesin further exacerbated DSS-induced colitis, leading to elevated alveolar bone loss, disease severity, and mortality. Additionally, CDH1 gene knockout mice treated with DSS presented increases in body weight and alveolar bone density, as well as a reduction in disease severity. Furthermore, FadA adhesin adhered to its mucosal receptor E-cadherin, leading to the phosphorylation of β-catenin and the degradation of IκBα, the activation of the NF-κB signalling pathway and the upregulation of downstream cytokines. In conclusion, this research revealed that oral inoculation with F. nucleatum facilitates experimental colitis via the secretion of the virulence adhesin FadA. Targeting the oral pathogen F. nucleatum and its virulence factor FadA may represent a promising therapeutic approach for a portion of UC patients.
Collapse
Affiliation(s)
- Donghao Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Zongwei Li
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Lei Wang
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| | - Yan Zhang
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shoubin Ning
- Department of Gastroenterology, Air Force Medical Center of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
122
|
Yu X, Bai M, Li X, Yang P, Wang Q, Wang Z, Weng L, Ye H. Tetracycline removal by immobilized indigenous bacterial consortium using biochar and biomass: Removal performance and mechanisms. BIORESOURCE TECHNOLOGY 2024; 413:131463. [PMID: 39277055 DOI: 10.1016/j.biortech.2024.131463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The significant influx of antibiotics into the environment represents ecological risks and threatens human health. Microbial degradation stands as a highly effective method for reducing antibiotic pollution. This study explored the potential of immobilized microbial consortia to efficiently degrade tetracycline. Concurrently, the suitability of different immobilization materials were assessed, with reed charcoal-immobilized consortia exhibiting the highest efficiency in removing tetracycline (92%). Similarly, wheat-bran-loaded bacterial consortia displayed a remarkable 11.43-fold increase in tetracycline removal compared with free consortia. Moreover, adding the carriers increased the nutrients, while the activities of both intracellular and extracellular catalases increased significantly post-immobilization, thus highlighting this enzyme's crucial role in tetracycline degradation. Finally, analysis of the microbial communities revealed the prevalence of Achromobacter and Parapedobacter, signifying their potential as key degraders. Overall, the immobilized consortia not only hold promise for application in the bioremediation of tetracycline-contaminated environment but also provide theoretical underpinnings for environmental remediation by microorganisms.
Collapse
Affiliation(s)
- Xinping Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Pinpin Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Qiuzhen Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China.
| | - Zhennan Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
123
|
Yuya W, Yuansong Y, Susu L, Chen L, Yong W, Yining W, YouChun W, Changfa F. Progress and challenges in development of animal models for dengue virus infection. Emerg Microbes Infect 2024; 13:2404159. [PMID: 39312399 PMCID: PMC11423536 DOI: 10.1080/22221751.2024.2404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
ABSTRACTThe severity of the dengue epidemic is on the rise, with its geographic range had expanded to southern Europe by 2024. In this August, the WHO updated the pathogens that could spark the next pandemic, dengue virus was on the list. Vaccines and drugs serve as powerful tools for both preventing dengue infections and treating patients. Animal models play a pivotal role in vaccine development and drug screening. Available potential susceptible animals, including non-human primates, rodents, pigs, and tree shrews, have been extensively explored to establish animal models of dengue disease. Despite significant advancements, there are still notable limitations. Different animal models exhibit distinct constraining factors such as viraemia, host susceptibility, immune function of the host, clinical symptoms, ADE (antibody-dependent enhancement) phenomena, cytokine storm response to various serotypes and strain variations. Furthermore, despite extensive research on the dengue virus receptor in recent years, genetically modified animal models immunocompetent harbouring dengue virus susceptibility receptors have not yet been available. This work reviewed the research progress of dengue virus receptors and dengue animal models, suggesting that the development of genetically modified murine models expressing dengue virus functional receptors may hold a promise for future dengue disease research, especially for its vaccine development.
Collapse
Affiliation(s)
- Wang Yuya
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Yang Yuansong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Liu Susu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Ling Chen
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
- College of Life Science school, Northwest University, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Xi’an, People’s Republic of China
| | - Wu Yong
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang Yining
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| | - Wang YouChun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, People’s Republic of China
| | - Fan Changfa
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control (NIFDC), Beijing, People’s Republic of China
| |
Collapse
|
124
|
Wakahara H, Mizokoshi T, Yamagami K, Fukiya S, Yokota A, Maeda T. Improved fermentative gamma-aminobutyric acid production from glucose by the inactivation of respiratory chain components NDH-I and Cytbo₃ in Escherichia coli. J Biosci Bioeng 2024; 138:501-506. [PMID: 39245588 DOI: 10.1016/j.jbiosc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Gamma-aminobutyric acid (GABA), which is synthesized from l-glutamic acid via glutamate decarboxylase (Gad), is used as food, supplements, and biodegradable plastics. Our previous study demonstrated an Escherichia coli mutant (ΔΔ) strain, lacking type I NADH dehydrogenase (NDH-I) and cytochrome bo3 oxidase (Cytbo3), produced 7 g/L glutamic acid on MS1 glucose-minimal medium. In this study, the ΔΔ strain was used for improving GABA production. A plasmid (pMBL19-gadB') expressing a mutated E. coli GadB (Glu89Gln/Δ452-466), retaining activity at neutral pH, was introduced into the ΔΔ strain and its parent strain (W1485). The ΔΔ strain carrying pMBL19-gadB' exhibited a twofold increase in GABA production compared to the W1485 strain carrying pMBL19-gadB'. Deleting the C-terminal (Δ471-511) of GadC antiporter in the ΔΔ strain further improved GABA yield to 1.5 g/L when cultured in MS1 glucose-minimal medium. On the other hand, a large amount of glutamic acid produced by the ΔΔ strain was not fully converted to GABA, likely due to the inhibition of GadB activity by the accumulation of acetic acid. Although there is room for improvement, these results indicate the efficacy of the ΔNDH-IΔCytbo3 double mutation in augmenting GABA production.
Collapse
Affiliation(s)
- Hiroki Wakahara
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Takuya Mizokoshi
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kotaro Yamagami
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
125
|
Zhou YM, Duan L, Luo L, Guan JQ, Yang ZK, Qu JJ, Zou X. The composition and function of bacterial communities in Bombyx mori (Lepidoptera: Bombycidae) changed dramatically with infected fungi: A new potential to culture Cordyceps cicadae. INSECT MOLECULAR BIOLOGY 2024; 33:613-625. [PMID: 38709468 DOI: 10.1111/imb.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
Cordyceps cicadae (Hypocreales: Cordycipitaceae) is a renowned entomopathogenic fungus used as herbal medicine in China. However, wild C. cicadae resources have been threatened by heavy harvesting. We hypothesised that Bombyx mori L. (Lepidoptera: Bombycidae) could be a new alternative to cultivate C. cicadae due to the low cost of rearing. Bacterial communities are crucial for the formation of Cordyceps and for promoting the production of metabolites. To better understand the bacterial community structure associated with Cordyceps, three Claviciptaceae fungi were used to explore the pathogenicity of the silkworms. Here, fifth-instar silkworms were infected with C. cicadae, Cordyceps cateniannulata (Hypocreales: Cordycipitaceae) and Beauveria bassiana (Hypocreales: Cordycipitaceae). Subsequently, we applied high-throughput sequencing to explore the composition of bacterial communities in silkworms. Our results showed that all three fungi were highly pathogenic to silkworms, which suggests that silkworms have the potential to cultivate Cordyceps. After fungal infection, the diversity of bacterial communities in silkworms decreased significantly, and the abundance of Staphylococcus increased in mummified larvae, which may play a role in the death process when the host suffers infection by entomopathogenic fungi. Furthermore, there were high similarities in the bacterial community composition and function in the C. cicadae and C. cateniannulata infected samples, and the phylogenetic analysis suggested that these similarities may be related to the fungal phylogenetic relationship. Our findings reveal that infection with different entomopathogenic fungi affects the composition and function of bacterial communities in silkworms and that the bacterial species associated with Cordyceps are primarily host dependent, while fungal infection affects bacterial abundance.
Collapse
Affiliation(s)
- Ye-Ming Zhou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Lin Duan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Li Luo
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jing-Qiang Guan
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zheng-Kai Yang
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Jiao-Jiao Qu
- College of Tea Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
126
|
Yang S, Guo Z, Sun J, Wei J, Ma Q, Gao X. Recent advances in microbial synthesis of free heme. Appl Microbiol Biotechnol 2024; 108:68. [PMID: 38194135 PMCID: PMC10776470 DOI: 10.1007/s00253-023-12968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Heme is an iron-containing porphyrin compound widely used in the fields of healthcare, food, and medicine. Compared to animal blood extraction, it is more advantageous to develop a microbial cell factory to produce heme. However, heme biosynthesis in microorganisms is tightly regulated, and its accumulation is highly cytotoxic. The current review describes the biosynthetic pathway of free heme, its fermentation production using different engineered bacteria constructed by metabolic engineering, and strategies for further improving heme synthesis. Heme synthetic pathway in Bacillus subtilis was modified utilizing genome-editing technology, resulting in significantly improved heme synthesis and secretion abilities. This technique avoided the use of multiple antibiotics and enhanced the genetic stability of strain. Hence, engineered B. subtilis could be an attractive cell factory for heme production. Further studies should be performed to enhance the expression of heme synthetic module and optimize the expression of heme exporter and fermentation processes, such as iron supply. KEY POINTS: • Strengthening the heme biosynthetic pathway can significantly increase heme production. • Heme exporter overexpression helps to promote heme secretion, thereby further promoting excessive heme synthesis. • Engineered B. subtilis is an attractive alternative for heme production.
Collapse
Affiliation(s)
- Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China.
| | - Zihao Guo
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Jiuyu Sun
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Jingxuan Wei
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Qinyuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China.
| |
Collapse
|
127
|
De Luca V, Giovannuzzi S, Supuran CT, Capasso C. A comprehensive investigation of the anion inhibition profile of a β-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J Enzyme Inhib Med Chem 2024; 39:2372731. [PMID: 39012078 PMCID: PMC467105 DOI: 10.1080/14756366.2024.2372731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the β-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
128
|
Schlichter Kadosh Y, Muthuraman S, Nisaa K, Ben-Zvi A, Karsagi Byron DL, Shagan M, Brandis A, Mehlman T, Gopas J, Saravana Kumar R, Kushmaro A. Pseudomonas aeruginosa quorum sensing and biofilm attenuation by a di-hydroxy derivative of piperlongumine (PL-18). Biofilm 2024; 8:100215. [PMID: 39148892 PMCID: PMC11326495 DOI: 10.1016/j.bioflm.2024.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial communication, Quorum Sensing (QS), is a target against virulence and prevention of antibiotic-resistant infections. 16 derivatives of Piperlongumine (PL), an amide alkaloid from Piper longum L., were screened for QS inhibition. PL-18 had the best QSI activity. PL-18 inhibited the lasR-lasI, rhlR-rhlI, and pqs QS systems of Pseudomonas aeruginosa. PL-18 inhibited pyocyanin and rhamnolipids that are QS-controlled virulence elements. Iron is an essential element for pathogenicity, biofilm formation and resilience in harsh environments, its uptake was inhibited by PL-18. Pl-18 significantly reduced the biofilm biovolume including in established biofilms. PL-18-coated silicon tubes significantly inhibited biofilm formation. The transcriptome study of treated P. aeruginosa showed that PL-18 indeed reduced the expression of QS and iron homeostasis related genes, and up regulated sulfur metabolism related genes. Altogether, PL-18 inhibits QS, virulence, iron uptake, and biofilm formation. Thus, PL-18 should be further developed against bacterial infection, antibiotic resistance, and biofilm formation.
Collapse
Affiliation(s)
- Yael Schlichter Kadosh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Khairun Nisaa
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat Ben-Zvi
- Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Danit Lisa Karsagi Byron
- Department of Civil and Environmental Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marilou Shagan
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Gopas
- Department of Microbiology, Immunology and Genetics Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, Israel
- School of Sustainability and Climate Change, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
129
|
Qulsum U, Azad MTA, Kato K. Efficacy of medicinal plants and their derived biomolecules against Plasmodium falciparum. Parasitol Int 2024; 103:102946. [PMID: 39128649 DOI: 10.1016/j.parint.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Many apicomplexan pathogens pose significant threats to humans and domestic animals, with the lack of effective drugs and drug resistance representing major challenges in disease management. To address this, the search for new and potent antimalarial drugs is crucial. Plant-based formulations offer a promising alternative for such drug development. Here, we evaluated the in vitro antiplasmodial activity of nine plant extracts, traditionally used to treat fever-like symptoms in Bangladesh. We assessed the antimalarial activity of plant extracts by using the Plasmodium falciparum 3D7 growth inhibition assay, an invasion assay, and a cytotoxicity assay. Of the nine plants studied, ethanolic and methanolic leaf extracts of Ficus hispida, Streblus asper, and Boerhavia repens exhibited high antiplasmodial activity, with IC50 values of 9.31, 4.13, 9.63 μg/ml (ethanolic) and 15.12, 6.63, 7.58 μg/ml (methanolic), respectively, and minimal toxicity (cell viability >80%). Clerodendrum viscosum displayed antiplasmodial effects with IC50 values of 28.90 μg/ml (ethanolic) and 30.57 μg/ml (methanolic). Adhatoda vasica, Mussaenda corymbosa, and Amaranthus spinosus ethanolic extracts showed antimalarial effects with IC50 values of 61.78 μg/ml, 66.31 μg/ml, and 64.14 μg/ml, respectively. However, methanolic extracts of A. vasica and A. spinosus had IC50 values >100 μg/ml. The ethanolic and methanolic extracts of A. vasica, A. spinosus, F. hispida, S. asper, and B. repens significantly reduced parasitemia by inhibiting invasion into erythrocytes. This study highlights the robust antimalarial activity and low cytotoxicity of leaf extracts of F. hispida, S. asper, and B. repens, indicating the presence of antimalarial compounds that warrant further investigation.
Collapse
Affiliation(s)
- Umme Qulsum
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan; Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan.
| |
Collapse
|
130
|
Peng Q, Zheng H, Li J, Li S, Huang J, Xu Y, Xie G. Impact of Bacillus subtilis on Chinese yellow rice wine (Huangjiu) fermentation: Method variations and flavor analysis. Food Chem 2024; 460:140658. [PMID: 39126949 DOI: 10.1016/j.foodchem.2024.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiachen Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shanshan Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiaxin Huang
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co.,Ltd., Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China..
| |
Collapse
|
131
|
Park J, Park S, Kim J, Cho YJ, Lee JS. Ctr9 promotes virulence of Candida albicans by regulating methionine metabolism. Virulence 2024; 15:2405616. [PMID: 39316797 PMCID: PMC11423685 DOI: 10.1080/21505594.2024.2405616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
Candida albicans, a part of normal flora, is an opportunistic fungal pathogen and causes severe health issues in immunocompromised patients. Its pathogenicity is intricately linked to the transcriptional regulation of its metabolic pathways. Paf1 complex (Paf1C) is a crucial transcriptional regulator that is highly conserved in eukaryotes. The objective of this study was to explore the role of Paf1C in the metabolic pathways and how it influences the pathogenicity of C. albicans. Paf1C knockout mutant strains of C. albicans (ctr9Δ/Δ, leo1Δ/Δ, and cdc73Δ/Δ) were generated using the CRISPR-Cas9 system. To investigate the effect of Paf1C on pathogenicity, macrophage interaction assays and mouse survival tests were conducted. The growth patterns of the Paf1C knockout mutants were analyzed through spotting assays and growth curve measurements. Transcriptome analysis was conducted under yeast conditions (30°C without serum) and hyphal conditions (37°C with 10% FBS), to further elucidate the role of Paf1C in the pathogenicity of C. albicans. CTR9 deletion resulted in the attenuation of C. albicans virulence, in macrophage and mouse models. Furthermore, we confirmed that the reduced virulence of the ctr9Δ/Δ mutant can be attributed to a decrease in C. albicans cell abundance. Moreover, transcriptome analysis revealed that metabolic processes required for cell proliferation are impaired in ctr9Δ/Δ mutant. Notably, CTR9 deletion led to the downregulation of methionine biosynthetic genes and the cAMP-PKA signaling pathway-related hypha essential genes, which are pivotal for virulence. Our results suggest that Ctr9-regulated methionine metabolism is a crucial factor for determining C. albicans pathogenicity.
Collapse
Affiliation(s)
- Jiyeon Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jueun Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, Republic of Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
132
|
Nuñez LFN, Chacón RD, Charlys da Costa A, Santander-Parra SH, da Costa Pereira Innocentini R, Sánchez-Llatas CJ, Cea-Callejo P, Valdeiglesias Ichillumpa S, Astolfi Ferreira CS, de Sá LRM, Piantino Ferreira AJ. Detection and molecular characterization of chicken parvovirus and chicken megrivirus in layer breeders affected by intestinal dilatation syndrome. Avian Pathol 2024; 53:520-532. [PMID: 38916258 DOI: 10.1080/03079457.2024.2372486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
RESEARCH HIGHLIGHTS IDS presented pathognomonic dilatation of the jejunum up to Meckel's diverticulum.IDS caused weight loss, decreased egg production, and increased culling and mortality.Chicken parvovirus (ChPV) was consistently detected through PCR assays.Chicken megrivirus (ChMV) was consistently detected through viral metagenomics.
Collapse
Affiliation(s)
- Luis Fabian N Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Ruy D Chacón
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | | | - Silvana H Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Quito, Ecuador
| | | | - Christian J Sánchez-Llatas
- Faculty of Biology, Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Pablo Cea-Callejo
- Faculty of Biology, Department of Genetics, Physiology, and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Stefhany Valdeiglesias Ichillumpa
- Laboratorio de Fisiología Molecular, Instituto de Investigación en Ganadería y Biotecnología, Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Amazonas, Peru
| | - Claudete S Astolfi Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Lilian Rose Marques de Sá
- Laboratory of Diagnostic and Environmental Pathology, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| | - Antonio J Piantino Ferreira
- Laboratory of Avian Diseases, School of Veterinary Medicine and Animal Science, Department of Pathology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
133
|
Silver LW, McLennan EA, Beaman J, da Silva KB, Timms P, Hogg CJ, Belov K. Using bioinformatics to investigate functional diversity: a case study of MHC diversity in koalas. Immunogenetics 2024; 76:381-395. [PMID: 39367971 PMCID: PMC11496358 DOI: 10.1007/s00251-024-01356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/15/2024] [Indexed: 10/07/2024]
Abstract
Conservation genomics can greatly improve conservation outcomes of threatened populations, including those impacted by disease. Understanding diversity within immune gene families, including the major histocompatibility complex (MHC) and toll-like receptors (TLR), is important due to the role they play in disease resilience and susceptibility. With recent advancements in sequencing technologies and bioinformatic tools, the cost of generating high-quality sequence data has significantly decreased and made it possible to investigate diversity across entire gene families in large numbers of individuals compared to investigating only a few genes or a few populations previously. Here, we use the koala as a case study for investigating functional diversity across populations. We utilised previous target enrichment data and 438 whole genomes to firstly, determine the level of sequencing depth required to investigate MHC diversity and, secondly, determine the current level of diversity in MHC genes in koala populations. We determined for low complexity, conserved genes such as TLR genes 10 × sequencing depth is sufficient to reliably genotype more than 90% of variants, whereas for complex genes such as the MHC greater than 20 × and preferably 30 × sequencing depth is required. We used whole genome data to identify 270 biallelic SNPs across 24 MHC genes as well as copy number variation (CNV) within class I and class II genes and conduct supertype analysis. Overall, we have provided a bioinformatic workflow for investigating variation in a complex immune gene family from whole genome sequencing data and determined current levels of diversity within koala MHC genes.
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julian Beaman
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Karen Burke da Silva
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5001, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
134
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
135
|
Xu Q, Xie M, Yang X, Liu X, Ye L, Chen K, Chan EWC, Chen S. Conjugative transmission of virulence plasmid in Klebsiella pneumoniae mediated by a novel IncN-like plasmid. Microbiol Res 2024; 289:127896. [PMID: 39260133 DOI: 10.1016/j.micres.2024.127896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Klebsiella pneumoniae (Kp) is increasingly recognized as a reservoir for a range of antibiotic resistance genes and a pathogen that frequently causes severe infections in both hospital and community settings. In this study, we have identified a novel mechanism of conjugative transfer of a non-conjugative virulence plasmid through the formation of a fusion plasmid between the virulence plasmid and a novel 59,162 bp IncN- plasmid. This plasmid was found to be a multidrug-resistance (MDR) plasmid and carried a T4SS cluster, which greatly facilitated the efficient horizontal transfer of the fusion plasmid between Kp strains. The fused virulence plasmid conferred the resistance of serum killing and macrophage phagocytosis to the transconjugants. Importantly, this plasmid was shown to be essential for Kp virulence in a mouse model. Mechanistic analysis revealed that the virulence factors encoded by this virulence plasmid contributed to resistance to in vivo clearance and induced a high level of proinflammatory cytokine IL-1β, which acts as an inducer for more neutrophil recruitment. The transmission of the fusion plasmid in Kp has the potential to convert it into both MDR and hypervirulent Kp, accelerating its evolution, and posing a serious threat to human health. The findings of this study provide new insights into the rapid evolution of MDR and hypervirulent Kp in recent years.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Miaomiao Xie
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuemei Yang
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaoxuan Liu
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Lianwei Ye
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
136
|
Cebeci T, Tanrıverdi ES, Otlu B. A first study of meat-borne enterococci from butcher shops: prevalence, virulence characteristics, antibiotic resistance and clonal relationship. Vet Res Commun 2024; 48:3669-3682. [PMID: 39215893 DOI: 10.1007/s11259-024-10516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
IntroductionEnterococcus, which used to be thought of as a harmless commensal living in the digestive tract, has now become a highly resistant and highly contagious pathogen that makes nosocomial infections much more common. This study examined enterococci species and their antibiotic resistance phenotypes and genotypes and virulence gene content in Turkish ground beef samples. Methodology A total of 100 ground beef samples were analyzed between May 2020 and May 2021. The isolated strains were identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and confirmed using polymerase chain reaction (PCR) after which they were divided into several species using PCR and tested for antibiotic resistance against 19 antimicrobial agents using the disc diffusion method. The genetic similarity analysis, pulsed-field gel electrophoresis (PFGE) was performed. Results A total of 93 isolates in ground beef were identified, comprised of E. faecalis 72.04%; E. hirae- 11.82%; E. casseliflavous- 7.52%; E. faecium- 5.3%; E. gallinarium- 3.23%. The virulence genes observed in Enterococcus species were distributed as follows: gelE 88.1%, ace 53.7%, efaA 40.8%, asaI 19.3%, esp 6.4%, and cylA 1.07%. A high antibiotic resistance was recorded for tetracycline (43.01%), followed by ampicilin (17.2%), and chloramphenicol (13.9%). 17.2% of Enterococcus isolates were multidrug-resistant. The study determined the high prevalence of antibiotic resistance genes, specifically for tet(L) 10 (10.7%), aac(6')Ie-aph(2")-la 3 (3.2%), and ermB 3 (3.2%). The presence of efflux pump genes were identified in 74.1% of Enterococcus isolates. Genetic characterization of 67 E. faecalis isolates by PFGE revealed 41 pulsed-field gel electrophoresis (PFGE) patterns that were grouped into 15 clusters, which presented more than one strain with 100% similarity. Conclusion Isolates obtained from several areas and butchers had comparable patterns of PFGE, suggesting that the presence of circulating E. faecalis poses a potential public health concern in diverse districts. To mitigate the health hazards associated with the contamination of enterococci from raw to cooked meats, it is necessary to enhance the disinfection of butcheries, promote excellent hand hygiene among butchers, and implement appropriate meat storage and handling methods to prevent bacterial development.
Collapse
Affiliation(s)
- Tugba Cebeci
- Espiye Vocational School, Department of Medical Services and Techniques, Giresun University, Giresun, Turkey.
| | - Elif Seren Tanrıverdi
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Barış Otlu
- Department of Medical Microbiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
137
|
Zhou J, Liu J, Wang D, Ruan Y, Gong S, Gou J, Zou X. Fungal communities are more sensitive to mildew than bacterial communities during tobacco storage processes. Appl Microbiol Biotechnol 2024; 108:88. [PMID: 38194134 DOI: 10.1007/s00253-023-12882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Mildew poses a significant threat to tobacco production; however, there is limited information on the structure of the abundant and rare microbial subcommunities in moldy tobacco leaves. In this study, we employed high-throughput sequencing technology to discern the disparities in the composition, diversity, and co-occurrence patterns of abundant and rare fungal and bacterial subcommunities between moldy and normal tobacco leaves collected from Guizhou, Shanghai, and Jilin provinces, China. Furthermore, we explored the correlation between microorganisms and metabolites by integrating the metabolic profiles of moldy and normal tobacco leaves. The results showed that the fungi are more sensitive to mildew than bacteria, and that the fungal abundant taxa exhibit greater resistance and environmental adaptability than the rare taxa. The loss of rare taxa results in irreversible changes in the diversity, richness, and composition of the fungal community. Moreover, rare fungal taxa and abundant bacterial taxa played crucial roles in maintaining the stability and functionality of the tobacco microecosystem. In moldy tobacco, however, the disappearance of rare taxa as key nodes resulted in reduced connectivity and stability within the fungal network. In addition, metabolomic analysis showed that the contents of indoles, pyridines, polyketones, phenols, and peptides were significantly enriched in the moldy tobacco leaves, while the contents of amino acids, carbohydrates, lipids, and other compounds were significantly reduced in these leaves. Most metabolites showed negative correlations with Dothideomycetes, Alphaproteobacteria, and Gammaproteobacteria, but showed positive correlations with Eurotiales and Bacilli. This study has demonstrated that abundant fungal taxa are the predominant biological agents responsible for tobacco mildew, while bacteria may indirectly contribute to this process through the production and degradation of metabolites. KEY POINTS: • Fungi exhibited greater sensitivity to mildew of tobacco leaf compared to bacteria • Rare fungal taxa underwent significant damage during the mildew process • Mildew may damage the defense system of the tobacco leaf microecosystem.
Collapse
Affiliation(s)
- Jiaxi Zhou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Postdoctoral Research Workstation of China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jing Liu
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Dongfei Wang
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Yibin Ruan
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Shuang Gong
- China Tobacco Guizhou Industrial Co. Ltd, Guiyang, China
| | - Jianyu Gou
- Guizhou Tobacco Company Zunyi Branch, Zunyi, China
| | - Xiao Zou
- Department of Ecology / Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, China.
| |
Collapse
|
138
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
139
|
Li R, Zhu X, Zhang P, Wu X, Jin Q, Pan J. Ser/Thr protein kinase Stk1 phosphorylates the key transcriptional regulator AlgR to modulate virulence and resistance in Pseudomonas aeruginosa. Virulence 2024; 15:2367649. [PMID: 38898809 PMCID: PMC11197903 DOI: 10.1080/21505594.2024.2367649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections worldwide and has emerged as a serious public health threat, due in large part to its multiple virulence factors and remarkable resistance capabilities. Stk1, a eukaryotic-type Ser/Thr protein kinase, has been shown in our previous work to be involved in the regulation of several signalling pathways and biological processes. Here, we demonstrate that deletion of stk1 leads to alterations in several virulence- and resistance-related physiological functions, including reduced pyocyanin and pyoverdine production, attenuated twitching motility, and enhanced biofilm production, extracellular polysaccharide secretion, and antibiotic resistance. Moreover, we identified AlgR, an important transcriptional regulator, as a substrate for Stk1, with its phosphorylation at the Ser143 site catalysed by Stk1. Intriguingly, both the deletion of stk1 and the mutation of Ser143 of AlgR to Ala result in similar changes in the above-mentioned physiological functions. Furthermore, assays of algR expression in these strains suggest that changes in the phosphorylation state of AlgR, rather than its expression level, underlie changes in these physiological functions. These findings uncover Stk1-mediated phosphorylation of AlgR as an important mechanism for regulating virulence and resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Rui Li
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Zhu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Pengfei Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qian Jin
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianyi Pan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
140
|
Qi Y, Wang C, Lang H, Wang Y, Wang X, Zheng H, Lu Y. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth Syst Biotechnol 2024; 9:853-860. [PMID: 39139857 PMCID: PMC11320372 DOI: 10.1016/j.synbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.
Collapse
Affiliation(s)
- Yue Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
141
|
Su M, Wang Y, Yan J, Xu X, Zheng H, Cheng J, Du X, Liu Y, Ying J, Zhao Y, Wang Z, Duan X, Yang Y, Cheng C, Ye Z, Sun J, Sun D, Song H. Isolation and characterization of a novel S1-gene insertion porcine epidemic diarrhea virus with low pathogenicity in newborn piglets. Virulence 2024; 15:2397512. [PMID: 39282989 PMCID: PMC11407387 DOI: 10.1080/21505594.2024.2397512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes diarrhea and vomiting in piglets, leading to a mortality rate of 100%. Due to the high frequency of mutation, it is important to monitor the evolution of PEDV and develop potential vaccine candidates. In this study, two PEDV strains (ZJ2022 and ZQ2022) were identified by PCR. These strains were subsequently isolated, and their genome sequences, growth characteristics, and pathogenicity were compared. Phylogenetic and recombination analyses revealed that both strains belonged to GIIa-subgroup, and ZQ2022 was identified as a recombinant strain derived from ZJ2022. Further sequence analysis showed that the ZJ2022 strain had a modified top region of the S1 protein due to a three amino acid insertion (T380_Y380insGGE) in the S1 gene. According to the virus growth curve, ZJ2022 exhibited better cellular adaptation than ZQ2022, with higher viral titers from 8 hpi to 24 hpi. Additionally, ZQ2022 exhibited a high level of pathogenicity, causing severe diarrhea in piglets at 36 hpi and a 100% mortality rate by 96 hpi. In contrast, ZJ2022 showed lower pathogenicity, inducing severe diarrhea in piglets at 60 hpi, with a mortality rate of 60% at 96 hpi and 100% at 120 hpi. In summary, our findings provided evidence of the undergoing mutations in Chinese PEDV strains. Furthermore, the S gene insertion strain ZJ2022 exhibited strong cellular adaptability and low pathogenicity, making it a potential candidate strain for vaccine development.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Ziqi Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Zhihui Ye
- Ningbo Creator Animal Pharmaceutical Co. Ltd, Ningbo, Zhejiang Province, PR China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Dongbo Sun
- Laboratory for the Prevention and Control of Swine Infectious Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, PR China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
142
|
Chen SC, Musat F, Richnow HH, Krüger M. Microbial diversity and oil biodegradation potential of northern Barents Sea sediments. J Environ Sci (China) 2024; 146:283-297. [PMID: 38969457 DOI: 10.1016/j.jes.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 07/07/2024]
Abstract
The Arctic, an essential ecosystem on Earth, is subject to pronounced anthropogenic pressures, most notable being the climate change and risks of crude oil pollution. As crucial elements of Arctic environments, benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination. Yet, the Arctic benthic microbiomes are among the least explored biomes on the planet. Here we combined geochemical analyses, incubation experiments, and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea. The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere, such as Chloroflexi, Atribacteria, and Bathyarcheaota. The topmost benthic communities were spatially structured by sedimentary organic carbon, lacking a clear distinction among geographic regions. With increasing sediment depth, the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments. The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways. Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere. These include Alkalimarinus and Halioglobus, previously unrecognized as hydrocarbon-degrading genera, both harboring the full genetic potential for aerobic alkane oxidation. These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Florin Musat
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655, Hannover, Germany
| |
Collapse
|
143
|
Li H, E W, Zhao D, Liu H, Pei J, Du B, Liu K, Zhu X, Wang C. Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved. Appl Microbiol Biotechnol 2024; 108:17. [PMID: 38170316 DOI: 10.1007/s00253-023-12916-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 01/05/2024]
Abstract
Polymyxins are cationic peptide antibiotics and regarded as the "final line of defense" against multidrug-resistant bacterial infections. Meanwhile, some polymyxin-resistant strains and the corresponding resistance mechanisms have also been reported. However, the response of the polymyxin-producing strain Paenibacillus polymyxa to polymyxin stress remains unclear. The purpose of this study was to investigate the stress response of gram-positive P. polymyxa SC2 to polymyxin B and to identify functional genes involved in the stress response process. Polymyxin B treatment upregulated the expression of genes related to basal metabolism, transcriptional regulation, transport, and flagella formation and increased intracellular ROS levels, flagellar motility, and biofilm formation in P. polymyxa SC2. Adding magnesium, calcium, and iron alleviated the stress of polymyxin B on P. polymyxa SC2, furthermore, magnesium and calcium could improve the resistance of P. polymyxa SC2 to polymyxin B by promoting biofilm formation. Meanwhile, functional identification of differentially expressed genes indicated that an ABC superfamily transporter YwjA was involved in the stress response to polymyxin B of P. polymyxa SC2. This study provides an important reference for improving the resistance of P. polymyxa to polymyxins and increasing the yield of polymyxins. KEY POINTS: • Phenotypic responses of P. polymyxa to polymyxin B was performed and indicated by RNA-seq • Forming biofilm was a key strategy of P. polymyxa to alleviate polymyxin stress • ABC transporter YwjA was involved in the stress resistance of P. polymyxa to polymyxin B.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui E
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dongying Zhao
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haiyang Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jian Pei
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Binghai Du
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chengqiang Wang
- College of Life Sciences, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Shandong Engineering Research Center of Plant-Microbia Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
144
|
Jureckova K, Nykrynova M, Slaninova E, Fleuriot-Blitman H, Amstutz V, Hermankova K, Bezdicek M, Mrazova K, Hrubanova K, Zinn M, Obruca S, Sedlar K. Cultivation driven transcriptomic changes in the wild-type and mutant strains of Rhodospirillum rubrum. Comput Struct Biotechnol J 2024; 23:2681-2694. [PMID: 39035834 PMCID: PMC11259993 DOI: 10.1016/j.csbj.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Purple photosynthetic bacteria (PPB) are versatile microorganisms capable of producing various value-added chemicals, e.g., biopolymers and biofuels. They employ diverse metabolic pathways, allowing them to adapt to various growth conditions and even extreme environments. Thus, they are ideal organisms for the Next Generation Industrial Biotechnology concept of reducing the risk of contamination by using naturally robust extremophiles. Unfortunately, the potential of PPB for use in biotechnology is hampered by missing knowledge on regulations of their metabolism. Although Rhodospirillum rubrum represents a model purple bacterium studied for polyhydroxyalkanoate and hydrogen production, light/chemical energy conversion, and nitrogen fixation, little is known regarding the regulation of its metabolism at the transcriptomic level. Using RNA sequencing, we compared gene expression during the cultivation utilizing fructose and acetate as substrates in case of the wild-type strain R. rubrum DSM 467T and its knock-out mutant strain that is missing two polyhydroxyalkanoate synthases PhaC1 and PhaC2. During this first genome-wide expression study of R. rubrum, we were able to characterize cultivation-driven transcriptomic changes and to annotate non-coding elements as small RNAs.
Collapse
Affiliation(s)
- Katerina Jureckova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Eva Slaninova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Hugo Fleuriot-Blitman
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Véronique Amstutz
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Kristyna Hermankova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Matej Bezdicek
- Department of Internal Medicine – Haematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Department of Internal Medicine – Haematology and Oncology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Katerina Mrazova
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Kamila Hrubanova
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Brno, Czech Republic
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais-Wallis (HES-SO Valais-Wallis), Sion, Switzerland
| | - Stanislav Obruca
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
145
|
Li F, Yang W, Fu B, Yu Y, Mao Y. The global transcription factor Clp exerts positive regulatory effects in the walnut bacterial black spot pathogen, Xanthomonas arboricola pv. juglandis. Microbiol Res 2024; 289:127921. [PMID: 39362058 DOI: 10.1016/j.micres.2024.127921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Walnut blight caused by the bacterium Xanthomonas arboricola pv. juglandis (Xaj) is one of the most common diseases of walnut (Juglans spp.), resulting in serious yield decline and significant economic losses. Crp-like protein (Clp) is an important global regulatory transcription factor in bacteria. In this study, we sought to elucidate the role of Clp in the pathogenicity of Xaj strain DW3F3 and the associated regulatory mechanism. The results indicated that clp gene deficiency significantly reduced the pathogenicity of Xaj DW3F3 in walnut without affecting the growth of the bacterium. We found that Clp positively regulates biofilm formation, extracellular polysaccharide production, exoenzyme secretion, and motility of Xaj, which was consistent with the transcript levels of virulence factor-encoding genes. However, overexpression of clp does not enhance the expression of all virulence genes, it may inhibit the expression of a part of virulence factor-related genes. EMSA assay further showed that Clp specifically binds to the promoters of these genes and regulates their expression, and CD spectra test certified that the ligand of Clp was c-di-GMP. Our findings contribute to the in-depth understanding of the pathogenic mechanism of Xaj and highlight the potential of Clp as a drug target for the development of agents to prevent and control walnut diseases.
Collapse
Affiliation(s)
- Feng Li
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Wenzhong Yang
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Benzhong Fu
- Department of Plant Pathology, College of Agronomy, Xinjiang Agriculture University, Urumqi 830052, China
| | - Yonghong Yu
- Guangdong Food and Drug Vocational College, Guangzhou 510520, China
| | - Yahui Mao
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China.
| |
Collapse
|
146
|
Peralta FT, Shi C, Widanagamage GW, Speight RE, O'Hara I, Zhang Z, Navone L, Behrendorff JB. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 413:131558. [PMID: 39362341 DOI: 10.1016/j.biortech.2024.131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Engineered strains of Yarrowia lipolytica with modified lipid profiles and other desirable properties for microbial oil production are widely reported but are almost exclusively characterized in synthetic laboratory-grade media. Ensuring translatable performance between synthetic media and industrially scalable lignocellulosic feedstocks is a critical challenge. Yarrowia lipolytica growth and lipid production were characterized in media derived from two-step acid-catalyzed glycerol pretreatment of sugarcane bagasse. Fermentation performance was benchmarked against laboratory-grade synthetic growth media, including detailed characterization of media composition, nitrogen utilization, biomass and lipid production, and fatty acid product profile. A Yarrowia lipolytica strain modified to enable xylose consumption consumed all sugars, glycerol, and acetic acid, accumulating lipids to 34-44 % of cell dry weight. Growth and lipid content when grown in sugarcane bagasse-derived media were equivalent to or better than that observed with synthetic media. These sugarcane bagasse-derived media are suitable for transferable development of Yarrowia lipolytica fermentations from synthetic media.
Collapse
Affiliation(s)
- Francisco T Peralta
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Changrong Shi
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Gevindu Wathsala Widanagamage
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Robert E Speight
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD 4102, Australia.
| | - Ian O'Hara
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Industrial Transformation Training Centre for Bioplastics and Biocomposites, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - Laura Navone
- ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| | - James B Behrendorff
- Centre for Agriculture and the Bioeconomy, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; ARC Centre of Excellence for Synthetic Biology, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; Australia China Joint Research Centre for Biofuels and Biorefining, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; School for Biology and Environmental Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.
| |
Collapse
|
147
|
Bhatnagar S, Sadhukhan D, Sundd M. Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:309-314. [PMID: 39313636 DOI: 10.1007/s12104-024-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Propionyl CoA carboxylase (PCC) is a multimeric enzyme composed of two types of subunits, α and β arranged in α6β6 stoichiometry. The α-subunit consists of an N-terminal carboxylase domain, a carboxyl transferase domains, and a C-terminal biotin carboxyl carrier protein domain (BCCP). The β-subunit is made up of an N- and a C- carboxyl transferase domain. During PCC catalysis, the BCCP domain plays a central role by transporting a carboxyl group from the α-subunit to the β-subunit, and finally to propionyl CoA carboxylase, resulting in the formation of methyl malonyl CoA. A point mutation in any of the subunits interferes with multimer assembly and function. Due to the association of this enzyme with propionic acidemia, a genetic metabolic disorder found in humans, PCC has become an enzyme of wide spread interest. Interestingly, unicellular eukaryotes like Leishmania also possess a PCC in their mitochondria that displays high sequence conservation with the human enzyme. Thus, to understand the function of this enzyme at the molecular level, we have initiated studies on Leishmania major PCC (LmPCC). Here we report chemical shift assignments of LmPCC BCCP domain using NMR. Conformational changes in LmPCC BCCP domain upon biotinylation, as well as upon interaction with its cognate biotinylating enzyme (Biotin protein ligase from L. major) have also been reported. Our studies disclose residues important for LmPCC BCCP interaction and function.
Collapse
Affiliation(s)
- Sonika Bhatnagar
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debodyuti Sadhukhan
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Monica Sundd
- National Institute of Immunology, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
148
|
Berger A, Pérez-Valera E, Blouin M, Breuil MC, Butterbach-Bahl K, Dannenmann M, Besson-Bard A, Jeandroz S, Valls J, Spor A, Subramaniam L, Pétriacq P, Wendehenne D, Philippot L. Microbiota responses to mutations affecting NO homeostasis in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 244:2008-2023. [PMID: 39329426 DOI: 10.1111/nph.20159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Interactions between plants and microorganisms are pivotal for plant growth and productivity. Several plant molecular mechanisms that shape these microbial communities have been identified. However, the importance of nitric oxide (NO) produced by plants for the associated microbiota remains elusive. Using Arabidopsis thaliana isogenic mutants overproducing NO (nox1, NO overexpression) or down-producing NO (i.e. nia1nia2 impaired in the expression of both nitrate reductases NR1/NIA1 and NR2/NIA2; the 35s::GSNOR1 line overexpressing nitrosoglutathione reductase (GSNOR) and 35s::AHB1 line overexpressing haemoglobin 1 (AHB1)), we investigated how altered NO homeostasis affects microbial communities in the rhizosphere and in the roots, soil microbial activity and soil metabolites. We show that the rhizosphere microbiome was affected by the mutant genotypes, with the nox1 and nia1nia2 mutants causing opposite shifts in bacterial and fungal communities compared with the wild-type (WT) Col-0 in the rhizosphere and roots, respectively. These mutants also exhibited distinctive soil metabolite profiles than those from the other genotypes while soil microbial activity did not differ between the mutants and the WT Col-0. Our findings support our hypothesis that changes in NO production by plants can influence the plant microbiome composition with differential effects between fungal and bacterial communities.
Collapse
Affiliation(s)
- Antoine Berger
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Eduardo Pérez-Valera
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Manuel Blouin
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | | | - Klaus Butterbach-Bahl
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
- Land-CRAFT, Department of Agroecology, University of Aarhus, 8000, Aarhus, Denmark
| | - Michael Dannenmann
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Angélique Besson-Bard
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Sylvain Jeandroz
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Josep Valls
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Aymé Spor
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Logapragasan Subramaniam
- Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology, 82467, Garmisch-Partenkirchen, Germany
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR 1366 OENO - Axe Molécules À Intérêt Biologique, ISVV, 33140, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - David Wendehenne
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| | - Laurent Philippot
- Université de Bourgogne, INRAE, Institut Agro Dijon, Agroécologie, 21000, Dijon, France
| |
Collapse
|
149
|
Zhang J, Sun T, Zhang W, Chen L. Identification of acidic stress-responsive genes and acid tolerance engineering in Synechococcus elongatus PCC 7942. Appl Microbiol Biotechnol 2024; 108:115. [PMID: 38204133 PMCID: PMC10781874 DOI: 10.1007/s00253-023-12984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Cyanobacteria are excellent autotrophic photosynthetic chassis employed in synthetic biology, and previous studies have suggested that they have alkaline tolerance but low acid tolerance, significantly limiting their productivity as photosynthetic chassis and necessitating investigations into the acid stress resistance mechanism. In this study, differentially expressed genes were obtained by RNA sequencing-based comparative transcriptomic analysis under long-term acidic stress conditions and acidic shock treatment, in the model cyanobacterium Synechococcus elongatus PCC 7942. A pathway enrichment analysis revealed the upregulated and downregulated pathways during long-term acidic and shock stress treatment. The subsequent single gene knockout and phenotype analysis showed that under acidic stress conditions, the strains with chlL, chlN, pex, synpcc7942_2038, synpcc7942_1890, or synpcc7942_2547 knocked out grew worse than the wild type, suggesting their involvement in acid tolerance. This finding was further confirmed by introducing the corresponding genes back into the knockout mutant individually. Moreover, individual overexpression of the chlL and chlN genes in the wild type successfully improved the tolerance of S. elongatus PCC 7942 to acidic stress. This work successfully identified six genes involved in acidic stress responses, and overexpressing chIL or chIN individually successfully improved acid tolerance in S. elongatus PCC 7942, providing valuable information to better understand the acid resistance mechanism in S. elongatus PCC 7942 and novel insights into the robustness and tolerance engineering of cyanobacterial chassis. KEY POINTS: • DEGs were identified by RNA-seq based transcriptomics analysis in response to acidic stress in S. elongatus PCC 7942. • Six genes were identified to be involved in acid tolerance in S. elongatus PCC 7942. • Overexpression of chIL or chIN individually successfully improved the acid tolerance of S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, People's Republic of China
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
150
|
Liu S, Yang X, Li R, Wang S, Han Z, Yang M, Zhang Y. IS6 family insertion sequences promote optrA dissemination between plasmids varying in transfer abilities. Appl Microbiol Biotechnol 2024; 108:132. [PMID: 38229329 DOI: 10.1007/s00253-023-12858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/18/2024]
Abstract
Plasmids are the primary vectors for intercellular transfer of the oxazolidinone and phenicol cross-resistance gene optrA, while insertion sequences (ISs) are mobile genetic elements that can mobilize plasmid-borne optrA intracellularly. However, little is known about how the IS-mediated intracellular mobility facilitates the dissemination of the optrA gene between plasmid categories that vary in transfer abilities, including non-mobilizable, mobilizable, and conjugative plasmids. Here, we performed a holistic genomic study of 52 optrA-carrying plasmids obtained from searches guided by the Comprehensive Antibiotic Resistance Database. Among the 132 ISs identified within 10 kbp from the optrA gene in the plasmids, IS6 family genes were the most prevalent (86/132). Homologous gene arrays containing IS6 family genes were shared between different plasmids, especially between mobilizable and conjugative plasmids. All these indicated the central role of IS6 family genes in disseminating plasmid-borne optrA. Thirty-three of the 52 plasmids were harbored by Enterococcus faecalis found mainly in humans and animals. By Nanopore sequencing and inverse PCR, the potential of the enterococcal optrA to be transmitted from a mobilizable plasmid to a conjugative plasmid mediated by IS6 family genes was further confirmed in Enterococcus faecalis strains recovered from the effluents of anaerobic digestion systems for treating chicken manure. Our findings highlight the increased intercellular transfer abilities and dissemination risk of plasmid-borne optrA gene caused by IS-mediated intracellular mobility, and underscore the importance of routinely monitoring the dynamic genetic contexts of clinically important antibiotic resistance genes to effectively control this critical public health threat. KEY POINTS: • IS6 was prevalent in optrA-plasmids varying in intercellular transfer abilities. • Enterococcal optrA-plasmids were widespread among human, animal, and the environment. • IS6 elevated the dissemination risk of enterococcal optrA-plasmids.
Collapse
Affiliation(s)
- Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|