101
|
Zhang Y, Li T, Miao J, Zhang Z, Yang M, Wang Z, Yang B, Zhang J, Li H, Su Q, Guo J. Gamma-glutamyl transferase 5 overexpression in cerebrovascular endothelial cells improves brain pathology, cognition, and behavior in APP/PS1 mice. Neural Regen Res 2025; 20:533-547. [PMID: 38819065 PMCID: PMC11317949 DOI: 10.4103/nrr.nrr-d-23-01525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aβ1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-β in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of β-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, Shanxi Province, China
| | - Tian Li
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhina Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Mingxuan Yang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhuoran Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Bo Yang
- Department of Hernia and Abdominal Wall Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jiawei Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Haiting Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Qiang Su
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Fenyang, Shanxi Province, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
102
|
Zha X, Zheng G, Skutella T, Kiening K, Unterberg A, Younsi A. Microglia: a promising therapeutic target in spinal cord injury. Neural Regen Res 2025; 20:454-463. [PMID: 38819048 PMCID: PMC11317945 DOI: 10.4103/nrr.nrr-d-23-02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Microglia are present throughout the central nervous system and are vital in neural repair, nutrition, phagocytosis, immunological regulation, and maintaining neuronal function. In a healthy spinal cord, microglia are accountable for immune surveillance, however, when a spinal cord injury occurs, the microenvironment drastically changes, leading to glial scars and failed axonal regeneration. In this context, microglia vary their gene and protein expression during activation, and proliferation in reaction to the injury, influencing injury responses both favorably and unfavorably. A dynamic and multifaceted injury response is mediated by microglia, which interact directly with neurons, astrocytes, oligodendrocytes, and neural stem/progenitor cells. Despite a clear understanding of their essential nature and origin, the mechanisms of action and new functions of microglia in spinal cord injury require extensive research. This review summarizes current studies on microglial genesis, physiological function, and pathological state, highlights their crucial roles in spinal cord injury, and proposes microglia as a therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Zha
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
103
|
Luo S, Wang Y, Hisatsune T. P2Y1 receptor in Alzheimer's disease. Neural Regen Res 2025; 20:440-453. [PMID: 38819047 PMCID: PMC11317937 DOI: 10.4103/nrr.nrr-d-23-02103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau. Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer's disease treatments in the last decades. However, existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic, necessitating the exploration of alternative therapeutic strategies. Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer's disease patients, with dysregulated astrocytic purinergic receptors, particularly the P2Y1 receptor, all of which constitute the pathophysiology of Alzheimer's disease. These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer's disease. This review delves into recent insights into the association between P2Y1 receptor and Alzheimer's disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer's disease by mitigating neuroinflammation, thus offering promising avenues for developing drugs for Alzheimer's disease and potentially contributing to the development of more effective treatments.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
104
|
Ren Z, Li T, Liu X, Zhang Z, Chen X, Chen W, Li K, Sheng J. Transforming growth factor-beta 1 enhances discharge activity of cortical neurons. Neural Regen Res 2025; 20:548-556. [PMID: 38819066 PMCID: PMC11317929 DOI: 10.4103/nrr.nrr-d-23-00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00031/figure1/v/2024-05-28T214302Z/r/image-tiff Transforming growth factor-beta 1 (TGF-β1) has been extensively studied for its pleiotropic effects on central nervous system diseases. The neuroprotective or neurotoxic effects of TGF-β1 in specific brain areas may depend on the pathological process and cell types involved. Voltage-gated sodium channels (VGSCs) are essential ion channels for the generation of action potentials in neurons, and are involved in various neuroexcitation-related diseases. However, the effects of TGF-β1 on the functional properties of VGSCs and firing properties in cortical neurons remain unclear. In this study, we investigated the effects of TGF-β1 on VGSC function and firing properties in primary cortical neurons from mice. We found that TGF-β1 increased VGSC current density in a dose- and time-dependent manner, which was attributable to the upregulation of Nav1.3 expression. Increased VGSC current density and Nav1.3 expression were significantly abolished by preincubation with inhibitors of mitogen-activated protein kinase kinase (PD98059), p38 mitogen-activated protein kinase (SB203580), and Jun NH2-terminal kinase 1/2 inhibitor (SP600125). Interestingly, TGF-β1 significantly increased the firing threshold of action potentials but did not change their firing rate in cortical neurons. These findings suggest that TGF-β1 can increase Nav1.3 expression through activation of the ERK1/2-JNK-MAPK pathway, which leads to a decrease in the firing threshold of action potentials in cortical neurons under pathological conditions. Thus, this contributes to the occurrence and progression of neuroexcitatory-related diseases of the central nervous system.
Collapse
Affiliation(s)
- Zhihui Ren
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
105
|
Feng S, Li J, Liu T, Huang S, Chen X, Liu S, Zhou J, Zhao H, Hong Y. Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke. Neural Regen Res 2025; 20:491-502. [PMID: 38819062 PMCID: PMC11317962 DOI: 10.4103/nrr.nrr-d-23-01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00027/figure1/v/2024-05-28T214302Z/r/image-tiff Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer's disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Shuai Feng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiqi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
106
|
Ji Y, Hu Y, Feng Y, Liu L, Chen Z, Shen H, Han Y, Xu H, Lao L. Mitochondrial 'Birth-Death' coordinator: An intelligent hydrogen nanogenerator to enhance intervertebral disc regeneration. Biomaterials 2025; 313:122764. [PMID: 39190941 DOI: 10.1016/j.biomaterials.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Currently, mitochondrial dysfunction caused by oxidative stress is a growing concern in degenerative diseases, notably intervertebral disc degeneration (IVDD). Dysregulation of the balance of mitochondrial quality control (MQC) has been considered the key contributor, while it's still challenging to effectively harmonize different MQC components in a simple and biologically safe way. Hydrogen gas (H2) is a promising mitochondrial therapeutic molecule due to its bio-reductivity and diffusibility across cellular membranes, yet its relationship with MQC regulation remains unknown. Herein, we propose a mitochondrial 'Birth-Death' coordinator achieved by an intelligent hydrogen nanogenerator (Fe@HP-OD), which can sustainably release H2 in response to the unique microenvironment in degenerated IVDs. Both in vitro and in vivo results prove alleviation of cellular oxidative stress and restoration of nucleus pulposus cells function, thereby facilitating successful IVD regeneration. Significantly, this study for the first time proposes the mitochondrial 'Birth-Death' coordination mechanism: 1) attenuation of overactivated mitochondrial 'Death' process (UPRmt and unselective mitophagy); and 2) activation of Adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway for mitochondrial 'Birth-Death' balance (mitochondrial biogenesis and controlled mitophagy). These pioneering findings can fill in the gaps in molecular mechanisms for H2 regulation on MQC homeostasis, and pave the way for future strategies towards restoring equilibrium of MQC system against degenerative diseases.
Collapse
Affiliation(s)
- Yucheng Ji
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Yuwei Hu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China
| | - Yubo Feng
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Lei Liu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China
| | - Zhanyi Chen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Hongxing Shen
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China
| | - Yingchao Han
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China.
| | - He Xu
- Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemical and Materials Sciences, Shanghai Normal University, No. 100 Guilin Road, Shanghai, 200234, PR China.
| | - Lifeng Lao
- Department of Spine Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Shanghai, 200127, PR China.
| |
Collapse
|
107
|
Walter DL, Bian Y, Hu H, Hamid FA, Rostamizadeh K, Vigliaturo JR, DeHority R, Ehrich M, Runyon S, Pravetoni M, Zhang C. The immunological and pharmacokinetic evaluation of Lipid-PLGA hybrid nanoparticle-based oxycodone vaccines. Biomaterials 2025; 313:122758. [PMID: 39182328 PMCID: PMC11402561 DOI: 10.1016/j.biomaterials.2024.122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The current opioid epidemic is one of the most profound public health crises facing the United States. Despite that it has been under the spotlight for years, available treatments for opioid use disorder (OUD) and overdose are limited to opioid receptor ligands such as the agonist methadone and the overdose reversing drugs such as naloxone. Vaccines are emerging as an alternative strategy to combat OUD and prevent relapse and overdose. Most vaccine candidates consist of a conjugate structure containing the target opioid attached to an immunogenic carrier protein. However, conjugate vaccines have demonstrated some intrinsic shortfalls, such as fast degradation and poor recognition by immune cells. To overcome these challenges, we proposed a lipid-PLGA hybrid nanoparticle (hNP)-based vaccine against oxycodone (OXY), which is one of the most frequently misused opioid analgesics. The hNP-based OXY vaccine exhibited superior immunogenicity and pharmacokinetic efficacy in comparison to its conjugate vaccine counterpart. Specifically, the hNP-based OXY vaccine formulated with subunit keyhole limpet hemocyanin (sKLH) as the carrier protein and aluminum hydroxide (Alum) as the adjuvant (OXY-sKLH-hNP(Alum)) elicited the most potent OXY-specific antibody response in mice. The induced antibodies efficiently bound with OXY molecules in blood and suppressed their entry into the brain. In a following dose-response study, OXY-sKLH-hNP(Alum) equivalent to 60 μg of sKLH was determined to be the most promising OXY vaccine candidate moving forward. This study provides evidence that hybrid nanoparticle-based vaccines may be superior vaccine candidates than conjugate vaccines and will be beneficial in treating those suffering from OUD.
Collapse
Affiliation(s)
- Debra L Walter
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Yuanzhi Bian
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - He Hu
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Fatima A Hamid
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Jennifer R Vigliaturo
- Departments of Pharmacology and Medicine, Medical School, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Riley DeHority
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Marion Ehrich
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Scott Runyon
- RTI International, Research Triangle Park, NC, 27709, USA.
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
| | - Chenming Zhang
- Department of Biological Systems Engineering, College of Engineering & College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
108
|
Schwedt TJ, Lipton RB, Goadsby PJ, Chiang CC, Klein BC, Hussar C, Liu C, Yu SY, Finnegan M, Trugman JM. Characterizing Prodrome (Premonitory Phase) in Migraine: Results From the PRODROME Trial Screening Period. Neurol Clin Pract 2025; 15:e200359. [PMID: 39399572 PMCID: PMC11464217 DOI: 10.1212/cpj.0000000000200359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 10/15/2024]
Abstract
Background and Objective Limited data are available describing the frequency, severity, and consistency of prodromal symptoms followed by headache. This analysis of the PRODROME trial screening period characterized prodromal symptoms in people with migraine, including the most common symptoms and their severity, and the frequency and consistency with which prodromal symptoms were followed by headache. Methods PRODROME was a multicenter, randomized, double-blind, placebo-controlled, crossover trial conducted in the United States that enrolled adults with 2-8 migraine attacks per month who stated they could identify prodromal symptoms that were reliably followed by a headache. The trial included a 60-day screening period designed to test the predictive validity of "qualifying prodrome events" before the onset of headache. Participants used an eDiary to report qualifying prodrome events, defined as prodromal symptoms whereby the participant was confident a headache would follow within 1-6 hours. This analysis evaluated common prodromal symptoms and their severity, time from prodrome onset to headache onset, and the percentage of participants who identified prodromal symptoms that were followed by a headache ≥75% of the time over the 60-day screening period. Results A total of 920 participants entered eDiary data, with a mean of 5.2 qualifying prodrome events during the 60-day screening period. A total of 4,802 qualifying prodrome events were recorded. The most common prodromal symptoms identified were sensitivity to light (57.2%; 2,748/4,802), fatigue (50.1%; 2,408/4,802), neck pain (41.9%; 2,013/4,802), sensitivity to sound (33.9%; 1,630/4,802), either difficulty thinking or concentrating (30.0%; 1,442/4,802), and dizziness (27.8%; 1,333/4,802). Of all qualifying prodrome events reported, 81.5% (3,913/4,802) were followed by headache of any intensity within 1-6 hours. For each participant, a mean of 84.4% of their qualifying prodrome events were followed by a headache within 1-6 hours, with 76.9% of participants identifying qualifying prodrome events that were followed by headache within 1-6 hours ≥75% of the time. Discussion Participants were able to identify migraine attacks in which prodromal symptoms were reliably followed by a headache within 1-6 hours. These findings suggest the potential for initiating treatment during the prodrome to prevent headache. Trial Registration Information ClinicalTrials.gov NCT04492020. Submitted: July 27, 2020; First patient enrolled: August 21, 2020. clinicaltrials.gov/study/NCT04492020.
Collapse
Affiliation(s)
- Todd J Schwedt
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Richard B Lipton
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Peter J Goadsby
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Chia-Chun Chiang
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Brad C Klein
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Cory Hussar
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Chengcheng Liu
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Sung Yun Yu
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Michelle Finnegan
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| | - Joel M Trugman
- Mayo Clinic (TJS), Phoenix, AZ; Albert Einstein College of Medicine (RBL), Bronx, NY; NIHR-King's Clinical Research Facility (PJG), King's College, London, United Kingdom; University of California (PJG), Los Angeles; Mayo Clinic (C-CC), Rochester, MN; Thomas Jefferson University (BCK), Philadelphia, PA; OPEN Health (CH), Parsippany, NJ; and AbbVie (CL, SYY, MF, JMT), North Chicago, IL
| |
Collapse
|
109
|
Piacentini R, Grassi C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1. Neural Regen Res 2025; 20:416-423. [PMID: 38819045 PMCID: PMC11317954 DOI: 10.4103/nrr.nrr-d-23-01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/01/2024] Open
Abstract
Several experimental evidence suggests a link between brain Herpes simplex virus type-1 infection and the occurrence of Alzheimer's disease. However, the molecular mechanisms underlying this association are not completely understood. Among the molecular mediators of synaptic and cognitive dysfunction occurring after Herpes simplex virus type-1 infection and reactivation in the brain neuroinflammatory cytokines seem to occupy a central role. Here, we specifically reviewed literature reports dealing with the impact of neuroinflammation on synaptic dysfunction observed after recurrent Herpes simplex virus type-1 reactivation in the brain, highlighting the role of interleukins and, in particular, interleukin 1β as a possible target against Herpes simplex virus type-1-induced neuronal dysfunctions.
Collapse
Affiliation(s)
- Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| |
Collapse
|
110
|
Olaya AMS, Almeida FM, Martinez AMB, Marques SA. Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans. Neural Regen Res 2025; 20:343-353. [PMID: 38819038 PMCID: PMC11317961 DOI: 10.4103/nrr.nrr-d-23-01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Spinal cord injury results in the loss of sensory, motor, and autonomic functions, which almost always produces permanent physical disability. Thus, in the search for more effective treatments than those already applied for years, which are not entirely efficient, researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach, seeking to promote neuronal recovery after spinal cord injury. Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and, consequently, boosting functional recovery. Although the majority of experimental research has been conducted in rodents, there is increasing recognition of the importance, and need, of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans. This article is a literature review from databases (PubMed, Science Direct, Elsevier, Scielo, Redalyc, Cochrane, and NCBI) from 10 years ago to date, using keywords (spinal cord injury, cell therapy, non-human primates, humans, and bioengineering in spinal cord injury). From 110 retrieved articles, after two selection rounds based on inclusion and exclusion criteria, 21 articles were analyzed. Thus, this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans, aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans.
Collapse
Affiliation(s)
- Ana Milena Silva Olaya
- PhD Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Ana Maria Blanco Martinez
- Graduate Program in Pathological Anatomy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Adriani Marques
- Graduate Program in Pathological Anatomy (PPGAP/UFRJ), Department of Neurobiology/Institute of Biology, Campus do Gragoatá, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
111
|
Abokyi S, Tse DYY. Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy. Neural Regen Res 2025; 20:366-377. [PMID: 38819040 PMCID: PMC11317960 DOI: 10.4103/nrr.nrr-d-23-02033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 06/01/2024] Open
Abstract
Retinal aging has been recognized as a significant risk factor for various retinal disorders, including diabetic retinopathy, age-related macular degeneration, and glaucoma, following a growing understanding of the molecular underpinnings of their development. This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches, focusing on the activation of transcription factor EB. Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies, such as exercise, calorie restriction, rapamycin, and metformin, in patients and animal models of these common retinal diseases. The review critically assesses the role of transcription factor EB in retinal biology during aging, its neuroprotective effects, and its therapeutic potential for retinal disorders. The impact of transcription factor EB on retinal aging is cell-specific, influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways. In vascular endothelial cells, transcription factor EB controls important processes, including endothelial cell proliferation, endothelial tube formation, and nitric oxide levels, thereby influencing the inner blood-retinal barrier, angiogenesis, and retinal microvasculature. Additionally, transcription factor EB affects vascular smooth muscle cells, inhibiting vascular calcification and atherogenesis. In retinal pigment epithelial cells, transcription factor EB modulates functions such as autophagy, lysosomal dynamics, and clearance of the aging pigment lipofuscin, thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization. These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis, neuronal synapse plasticity, energy metabolism, microvasculature, and inflammation, ultimately offering protection against retinal aging and diseases. The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases. Therefore, it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Dennis Yan-yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Research Center for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
- Center for Eye and Vision Research, Sha Tin, Hong Kong Special Administrative Region, China
| |
Collapse
|
112
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
113
|
Lenka A, Jankovic J. Corticobasal Syndrome: Are There Central or Peripheral Triggers? Neurol Clin Pract 2025; 15:e200365. [PMID: 39399563 PMCID: PMC11464233 DOI: 10.1212/cpj.0000000000200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/04/2024] [Indexed: 10/15/2024]
Abstract
Background and Objectives Corticobasal syndrome (CBS) is a complex of symptoms and signs comprising limb rigidity, bradykinesia, dystonia, myoclonus, apraxia, cortical sensory loss, and a variety of cognitive and language impairments. CBS is commonly seen in tauopathies. Striking asymmetry in clinical and imaging findings in CBS raises questions about potential triggers initiating neurodegeneration. The objective of this study was to investigate potential central or peripheral triggers preceding CBS symptoms. Methods In this retrospective observational study, we reviewed medical records of patients with CBS at our Parkinson's Disease Center and Movement Disorders Clinic, focusing on evidence of possible central or peripheral "trigger" occurring within a year before the onset of CBS. We also reviewed records of patients with Parkinson disease (PD) for comparison. Results Of the 72 patients with CBS, 15 (20.8%) reported potential focal triggers before the onset of CBS-related neurologic symptoms. By contrast, only 1 of 72 patients with PD (1.4%) had a documented trigger before the onset of PD-related symptoms (p < 0.001). Of potential triggers, 13 were peripheral (related to hand or shoulder surgeries or trauma) and 2 were central (stroke and head trauma). Patients with CBS with triggers were younger, had earlier symptom onset, comprised a higher proportion of men, and had a higher likelihood of limb onset of symptoms than those without. Discussion Our finding of relatively high frequency of focal triggers in CBS compared with PD suggests potential central or peripheral triggers initiating neurodegeneration, possibly explaining asymmetric clinical and imaging features in CBS. Further research is necessary to validate and explore this observation's implications for CBS pathogenesis.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX
| | - Joseph Jankovic
- Parkinson Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
114
|
Lines J. Astrocytes integrate time and space. Neural Regen Res 2025; 20:467-468. [PMID: 38819050 PMCID: PMC11317930 DOI: 10.4103/nrr.nrr-d-24-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Justin Lines
- Department of Biological Sciences, Columbia University, New York, NY, USA
| |
Collapse
|
115
|
Powell J, Steinschaden T, Horowitz R, Song Y. Calcium channels caught in peripheral glia's tug-of-war on axon regeneration in Drosophila. Neural Regen Res 2025; 20:475-476. [PMID: 38819054 PMCID: PMC11317943 DOI: 10.4103/nrr.nrr-d-23-02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Jackson Powell
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tobias Steinschaden
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rose Horowitz
- The Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
116
|
Ji Y, Yang C, Pang X, Yan Y, Wu Y, Geng Z, Hu W, Hu P, Wu X, Wang K. Repetitive transcranial magnetic stimulation in Alzheimer's disease: effects on neural and synaptic rehabilitation. Neural Regen Res 2025; 20:326-342. [PMID: 38819037 PMCID: PMC11317939 DOI: 10.4103/nrr.nrr-d-23-01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/23/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis. The Alzheimer's disease brain tends to be hyperexcitable and hypersynchronized, thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life, leaving patients incapacitated. Repetitive transcranial magnetic stimulation is a cost-effective, neuro-modulatory technique used for multiple neurological conditions. Over the past two decades, it has been widely used to predict cognitive decline; identify pathophysiological markers; promote neuroplasticity; and assess brain excitability, plasticity, and connectivity. It has also been applied to patients with dementia, because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult. However, its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies. This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment, evaluate its effects on synaptic plasticity, and identify the associated mechanisms. This review essentially focuses on changes in the pathology, amyloidogenesis, and clearance pathways, given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer's disease. Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription, which are closely related to the neural regeneration process, are also highlighted. Finally, we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation, with the aim to highlight future directions for better clinical translations.
Collapse
Affiliation(s)
- Yi Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Chaoyi Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xuerui Pang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui Province, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
117
|
Kerdiles O, Oye Mintsa Mi-mba MF, Coulombe K, Tremblay C, Émond V, Saint-Pierre M, Rouxel C, Berthiaume L, Julien P, Cicchetti F, Calon F. Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson's disease. Neural Regen Res 2025; 20:574-586. [PMID: 38819068 PMCID: PMC11317935 DOI: 10.4103/nrr.nrr-d-23-00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway. First, mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation. Four weeks after lesion, animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks. During this period, the animals had access to a running wheel, which they could use or not. Docosahexaenoic acid treatment, voluntary exercise, or the combination of both had no effect on (i) distance traveled in the open field test, (ii) the percentage of contraversive rotations in the apomorphine-induction test or (iii) the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta. However, the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum. Compared to docosahexaenoic acid treatment or exercise alone, the combination of docosahexaenoic acid and exercise (i) improved forelimb balance in the stepping test, (ii) decreased the striatal DOPAC/dopamine ratio and (iii) led to increased dopamine transporter levels in the lesioned striatum. The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Olivier Kerdiles
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Méryl-Farelle Oye Mintsa Mi-mba
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Katherine Coulombe
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Cyntia Tremblay
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Vincent Émond
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Martine Saint-Pierre
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Clémence Rouxel
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
| | - Line Berthiaume
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Quebec, QC, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| |
Collapse
|
118
|
Liu L, Liu W, Han Z, Shan Y, Xie Y, Wang J, Qi H, Xu Q. Extracellular Vesicles-in-Hydrogel (EViH) targeting pathophysiology for tissue repair. Bioact Mater 2025; 44:283-318. [PMID: 39507371 PMCID: PMC11539077 DOI: 10.1016/j.bioactmat.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Regenerative medicine endeavors to restore damaged tissues and organs utilizing biological approaches. Utilizing biomaterials to target and regulate the pathophysiological processes of injured tissues stands as a crucial method in propelling this field forward. The Extracellular Vesicles-in-Hydrogel (EViH) system amalgamates the advantages of extracellular vesicles (EVs) and hydrogels, rendering it a prominent biomaterial in regenerative medicine with substantial potential for clinical translation. This review elucidates the development and benefits of the EViH system in tissue regeneration, emphasizing the interaction and impact of EVs and hydrogels. Furthermore, it succinctly outlines the pathophysiological characteristics of various types of tissue injuries such as wounds, bone and cartilage injuries, cardiovascular diseases, nerve injuries, as well as liver and kidney injuries, underscoring how EViH systems target these processes to address related tissue damage. Lastly, it explores the challenges and prospects in further advancing EViH-based tissue regeneration, aiming to impart a comprehensive understanding of EViH. The objective is to furnish a thorough overview of EViH in enhancing regenerative medicine applications and to inspire researchers to devise innovative tissue engineering materials for regenerative medicine.
Collapse
Affiliation(s)
- Lubin Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266003, China
| | - Zeyu Han
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yansheng Shan
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yutong Xie
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jialu Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Hongzhao Qi
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Quanchen Xu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| |
Collapse
|
119
|
Yifan D, Jiaheng Z, Yili X, Junxia D, Chao T. CircRNA: A new target for ischemic stroke. Gene 2025; 933:148941. [PMID: 39270759 DOI: 10.1016/j.gene.2024.148941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Ischemic stroke, a clinical emergency and disease with a poor prognosis, has a negative impact on the survival index of patients. It is frequently precipitated by a multitude of risk factors, including trauma. Currently, there is a paucity of predictive indicators for early intervention. As stable and abundant RNA in the body, circRNAs play a regulatory role in miRNAs and proteins, which affect the occurrence and development of diseases. Moreover, circRNAs can serve as predictors of clinical diseases. Several studies have demonstrated that circRNAs play pivotal roles in numerous aspects of ischemic stroke. Consequently, circRNAs have emerged as key areas of investigation in the field of ischemic stroke.
Collapse
Affiliation(s)
- Dong Yifan
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhang Jiaheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiao Yili
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Duan Junxia
- The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China
| | - Tan Chao
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410208, China; The first affiliated hospital of hunan university of Chinese medicine, Changsha 410007, China.
| |
Collapse
|
120
|
Dai Y, Shao M, Li L, Li H, Lu T, Lyu F. Molecular characterization of PANoptosis-related genes as novel signatures for peripheral nerve injury based on time-series transcriptome sequencing. Gene 2025; 933:148995. [PMID: 39393431 DOI: 10.1016/j.gene.2024.148995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Programmed cell death (PCD) pathways play pivotal roles in the development and progression of peripheral nerve injury (PNI). PANoptosis, as a novel form of PCD pathway with key features of pyroptosis, apoptosis and necroptosis, is implicated in the pathogenesis of multiple neurologic diseases. This study aimed to identify PANoptosis-related biomarkers and characterize their molecular roles and immune landscape in PNI. PANoptosis-related genes (PRGs) were retrieved from Reactome pathway database and previous literatures. Differentially expressed PANoptosis-related genes (DEPRGs) were identified based on a time-series transcriptome sequencing dataset. DEPRGs were predicted to be enriched in inflammatory response, inflammatory complex, PCD and NOD-like receptor signaling pathway through GO, KEGG, Reactome and GSEA analysis. Hub genes, including Ripk3, Pycard and Il18, were then recognized through PPI network and multiple algorithms. The molecular regulatory mechanisms of hub genes were elucidated by transcription factor network and competing endogenous RNA network. Moreover, the immune cell landscape of hub genes was analyzed. Eventually, the expression levels of hub genes were verified through external dataset and animal model. Ripk3, Pycard and Il18 were remarkably upregulated in PNI samples, which were in consistent with the results of bioinformatic analysis. This study uncovered the molecular characterization of PANoptosis-related genes in PNI and illustrated the novel PANoptosis biomarkers for PNI.
Collapse
Affiliation(s)
- Yuan Dai
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Minghao Shao
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Linli Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hailong Li
- Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 210000, China.
| | - Feizhou Lyu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Orthopedics, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
121
|
Alcon E, Hidalgo FJ, Zamora R. Alkylresorcinols trap malondialdehyde in whole grain crackers. Food Chem 2025; 463:141128. [PMID: 39276546 DOI: 10.1016/j.foodchem.2024.141128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
To study the alkylresorcinols ability to trap lipid oxidation products in foods, crackers were prepared with either whole grain rye, wheat, spelt, or oat flour, and either sunflower or linseed oil, and were stored for up to 36 days at room temperature. During storage, polyunsaturated fatty acyl chains degraded, malondialdehyde was produced, and alkylresorcinol content decreased. At the end of the storage, alkylresorcinol content in crackers was reduced by 61-78 % and a part of disappeared alkyresorcinols (3-8 %) appeared as malondialdehyde/alkylresorcinol adducts. Formed adducts were unambiguously identified by using synthesized and characterized (NMR, MS) labelled and unlabelled standards, and determined by LC-MS/MS. This ability of alkylresorcinols to trap malondialdehyde, and most likely other lipid oxidation products, might be playing a role in both the reduction of hazardous reactive carbonyls in whole grain foodstuffs and the observed flavor differences between whole and refined grain food products.
Collapse
Affiliation(s)
- Esmeralda Alcon
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain
| | - Rosario Zamora
- Instituto de la Grasa, CSIC, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013 Seville, Spain.
| |
Collapse
|
122
|
Abdullah A, Kumar A, Beg AZ, Chawla A, Kar S, Ganguly S, Khan AU. Peripherally-restricted recurrent infection by engineered E. coli strain modulates hippocampal proteome promoting memory impairments in a rat model. Gene 2025; 933:148969. [PMID: 39341518 DOI: 10.1016/j.gene.2024.148969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Commensal bacteria that breach endothelial barrier has been reported to induce low grade chronic inflammation producing disease symptoms in major peripheral tissues. In this study, we investigated the role of genetically modified cellular invasive form of commensal E. coli K12 (SK3842) in cognitive impairment. Low-grade systemic infection model was developed using recurring peripheral inoculation of live bacteria in Wistar rats. To examine memory parameters, Novel object recognition test and Radial arm maze test were performed. Differential protein expression profiling of rat hippocampus was carried out using LC-MS/MS and subsequently quantified using SWATH. HBA1/2, NEFH, PFN1 and ATP5d were chosen for validation using quantitative RT-PCR. Results showed drastic decline in Recognition memory of the SK3842 infected rats. Reference and Working Memory of the infected group were also significantly reduced in comparison to control group. Proteome analysis using LC-MS/MS coupled with SWATH revealed differential expression of key proteins that are crucial for the maintenance of various neurological functions. Moreover, expression of NEFH and PFN1transcripts were found to be in line with the proteomics data. Protein interaction network of these validated proteins generated by STRING database converged to RhoA protein. Thus, the present study establishes an association between peripheral infection of a hippocampal protein network dysregulation and overall memory decline.
Collapse
Affiliation(s)
- Anam Abdullah
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Anuranjani Kumar
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Ayesha Zainab Beg
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Anupam Chawla
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Sudeshna Kar
- Oncology and Neuroscience Research Laboratory, Artemis Hospital, Sector 51, Gurgaon, Haryana 122001,India
| | - Surajit Ganguly
- Neurobiology and Drug Discovery Laboratory, Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India.
| | - Asad U Khan
- Antimicrobial Resistance Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
123
|
Gao S, Sun Y, Jia S, Meng C. Transcriptome analysis unveils PLSCR1 associated with microglial polarization in neuropathic pain. Gene 2025; 933:148961. [PMID: 39312982 DOI: 10.1016/j.gene.2024.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Neuropathic pain (NP) continues to be a significant problem that lacks effective treatment. Our study sought to explore a new promising gene target for the treatment of NP. Differential and enrichment analyses were performed on 24,197 genes and 12,088 genes from the NP microglial microarray and sequencing dataset. Candidate differentially expressed genes (DEGs), functions, and signaling pathways that are closely related to NP were identified by analyzing the bioinformatic results. For in vivo experiments, mice were divided into the sham and NP groups. The expressions of DEGs were validated to screen out the NP hub genes. For in vitro experiments, the hub genes in resting M0-BV2 and polarized M1-BV2 microglia were examined by immunofluorescence, flow cytometry, and qRT-PCR. DEGs in the NP microarray and sequencing data shared five candidate genes, CD244, MEGF9, PCGF2, PLSCR1, and NECAB2. The results of the in vivo experiment showed that the NP model group exhibited higher expression of PLSCR1 and MEGF9 compared to the sham group. The enrichment results of the DEGs revealed the biological processes of "response to lipopolysaccharide". PLSCR1 was highly expressed in the lipopolysaccharide-induced M1-BV2 microglia. PLSCR1 is a potential gene associated with microglial polarization in NP. These findings provide a new view on understanding the pathogenesis mechanism of NP.
Collapse
Affiliation(s)
- Sheng Gao
- Department of Spine, Affiliated Hospital of Jining Medical University, Jining 272029, China; Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuyan Sun
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Shu Jia
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining 272029, China
| | - Chunyang Meng
- Department of Spine, Affiliated Hospital of Jining Medical University, Jining 272029, China.
| |
Collapse
|
124
|
Ji J, Zhou X, Lu Y, Shen L, Li L, Chen Z, Shi Y, Liao W, Yu L. SCN1A intronic variants impact on Nav1.1 protein expression and sodium channel function, and associated with epilepsy phenotypic severity. Gene 2025; 932:148876. [PMID: 39173978 DOI: 10.1016/j.gene.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
High-throughput sequencing has identified numerous intronic variants in the SCN1A gene in epilepsy patients. Abnormal mRNA splicing caused by these variants can lead to significant phenotypic differences, but the mechanisms of epileptogenicity and phenotypic differences remain unknown. Two variants, c.4853-1 G>C and c.4853-25 T>A, were identified in intron 25 of SCN1A, which were associated with severe Dravet syndrome (DS) and mild focal epilepsy with febrile seizures plus (FEFS+), respectively. The impact of these variants on protein expression, electrophysiological properties of sodium channels and their correlation with epilepsy severity was investigated through plasmid construction and transfection based on the aberrant spliced mRNA. We found that the expression of truncated mutant proteins was significantly reduced on the cell membrane, and retained in the cytoplasmic endoplasmic reticulum. The mutants caused a decrease in current density, voltage sensitivity, and an increased vulnerability of channel, leading to a partial impairment of sodium channel function. Notably, the expression of DS-related mutant protein on the cell membrane was higher compared to that of FEFS+-related mutant, whereas the sodium channel function impairment caused by DS-related mutant was comparatively milder than that caused by FEFS+-related mutant. Our study suggests that differences in protein expression levels and altered electrophysiological properties of sodium channels play important roles in the manifestation of diverse epileptic phenotypes. The presence of intronic splice site variants may result in severe phenotypes due to the dominant-negative effects, whereas non-canonical splice site variants leading to haploinsufficiency could potentially cause milder phenotypes.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xijing Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China; Department of Neurology, The First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yanting Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Lang Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Lixia Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yiwu Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Weiping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Lu Yu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China.
| |
Collapse
|
125
|
Chrószcz M, Hajto J, Misiołek K, Szumiec Ł, Ziemiańska M, Radlicka-Borysewska A, Borczyk M, Zięba M, Gołda S, Siwiec M, Ziółkowska B, Piechota M, Korostyński M, Rodriguez Parkitna J. μ-Opioid receptor transcriptional variants in the murine forebrain and spinal cord. Gene 2025; 932:148890. [PMID: 39187136 DOI: 10.1016/j.gene.2024.148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Oprm1, the gene encoding the μ-opioid receptor, has multiple reported transcripts, with a variable 3' region and many alternative sequences encoding the C-terminus of the protein. The functional implications of this variability remain mostly unexplored, though a recurring notion is that it could be exploited by developing selective ligands with improved clinical profiles. Here, we comprehensively examined Oprm1 transcriptional variants in the murine central nervous system, using long-read RNAseq as well as spatial and single-cell transcriptomics. The results were validated with RNAscope in situ hybridization. We found a mismatch between transcripts annotated in the mouse genome (GRCm38/mm10) and the RNA-seq results. Sequencing data indicated that the primary Oprm1 transcript has a 3' terminus located on chr10:6,860,027, which is ∼ 9.5 kilobases downstream of the longest annotated exon 4 end. Long-read sequencing confirmed that the final Oprm1 exon included a 10.2 kilobase long 3' untranslated region, and the presence of the long variant was unambiguously confirmed using RNAscope in situ hybridization in the thalamus, striatum, cortex and spinal cord. Conversely, expression of the Oprm1 reference transcript or alternative transcripts of the Oprm1 gene was absent or close to the detection limit. Thus, the primary transcript of the Oprm1 mouse gene is a variant with a long 3' untranslated region, which is homologous to the human OPRM1 primary transcript and encodes the same conserved C-terminal amino acid sequence.
Collapse
Affiliation(s)
- Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Ziemiańska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Mateusz Zięba
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Sławomir Gołda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Barbara Ziółkowska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
126
|
Lejri I, Grimm A, Trempat P, Boujedaini N, Eckert A. Gelsemium low doses protect against serum deprivation-induced stress on mitochondria in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118714. [PMID: 39181289 DOI: 10.1016/j.jep.2024.118714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gelsemium dynamized dilutions (GDD) are known as a remedy for a wide range of behavioral and psychological symptoms of depression and anxiety at ultra-low doses, yet the underlying mechanisms of the mode of action of G. sempervirens itself are not well understood. AIM OF THE STUDY The present study was designed to examine the neuroprotective effects of Gelsemium preparations in counteracting stress-related mitochondrial dysfunctions in neuronal cells. MATERIALS AND METHODS We started by studying how serum deprivation affects the mitochondrial functions of human neuroblastoma (SH-SY5Y) cells. Next, we looked into the potential of various Gelsemium dilutions to improve cell survival and ATP levels. After identifying the most effective dilutions, 3C and 5C, we tested their ability to protect SH-SY5Y cells from stress-induced mitochondrial deficits. We measured total and mitochondrial superoxide anion radicals using fluorescent dyes dihydroethidium (DHE) and the red mitochondrial superoxide indicator (MitoSOX). Additionally, we assessed total nitric oxide levels with 4,5-diaminofluorescein diacetate (DAF-2DA), examined the redox state using pRA305 cells stably transfected with a plasmid encoding a redox-sensitive green fluorescent protein, and analyzed mitochondrial network morphology using an automated high-content analysis device, Cytation3. Furthermore, we investigated bioenergetics by measuring ATP production with a bioluminescence assay (ViaLighTM HT) and evaluated mitochondrial respiration (OCR) and glycolysis (ECAR) using the Seahorse Bioscience XF24 Analyzer. Finally, we determined cell survival using an MTT reduction assay. RESULTS Our research indicates that Gelsemium dilutions (3C and 5C) exhibited neuroprotective effects by: - Normalizing total and mitochondrial superoxide anion radicals and total nitric oxide levels. - Regulating the mitochondrial redox environment and mitochondrial networks morphology. - Increasing ATP generation as well as OCR and ECAR levels, thereby reducing the viability loss induced by serum withdrawal stress. CONCLUSIONS These findings highlight that dynamized Gelsemium preparations may have neuroprotective effects against stress-induced cellular changes in the brain by regulating mitochondrial functions, essential for the survival, plasticity, and function of neurons in depression.
Collapse
Affiliation(s)
- Imane Lejri
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | - Amandine Grimm
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| | | | | | - Anne Eckert
- Research Cluster Molecular & Cognitive Neuroscience, Neurobiology Laboratory for Brain Aging and Mental Health, University of Basel, Basel, Switzerland; Psychiatric University Clinics, Basel, Switzerland.
| |
Collapse
|
127
|
Courjaret RJ, Wagner LE, Ammouri RR, Yule DI, Machaca K. Ca2+ tunneling architecture and function are important for secretion. J Cell Biol 2025; 224:e202402107. [PMID: 39499286 DOI: 10.1083/jcb.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/29/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Ca2+ tunneling requires both store-operated Ca2+ entry (SOCE) and Ca2+ release from the endoplasmic reticulum (ER). Tunneling expands the SOCE microdomain through Ca2+ uptake by SERCA into the ER lumen where it diffuses and is released via IP3 receptors. In this study, using high-resolution imaging, we outline the spatial remodeling of the tunneling machinery (IP3R1; SERCA; PMCA; and Ano1 as an effector) relative to STIM1 in response to store depletion. We show that these modulators redistribute to distinct subdomains laterally at the plasma membrane (PM) and axially within the cortical ER. To functionally define the role of Ca2+ tunneling, we engineered a Ca2+ tunneling attenuator (CaTAr) that blocks tunneling without affecting Ca2+ release or SOCE. CaTAr inhibits Cl- secretion in sweat gland cells and reduces sweating in vivo in mice, showing that Ca2+ tunneling is important physiologically. Collectively our findings argue that Ca2+ tunneling is a fundamental Ca2+ signaling modality.
Collapse
Affiliation(s)
- Raphael J Courjaret
- Research Department, Ca2+ Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Rahaf R Ammouri
- Research Department, Ca2+ Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Khaled Machaca
- Research Department, Ca2+ Signaling Group, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
128
|
von Saucken VE, Windner SE, Armetta G, Baylies MK. Postsynaptic BMP signaling regulates myonuclear properties in Drosophila larval muscles. J Cell Biol 2025; 224:e202404052. [PMID: 39475469 PMCID: PMC11530350 DOI: 10.1083/jcb.202404052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/13/2024] [Accepted: 10/13/2024] [Indexed: 11/04/2024] Open
Abstract
The syncytial mammalian muscle fiber contains a heterogeneous population of (myo)nuclei. At the neuromuscular junction (NMJ), myonuclei have specialized positioning and gene expression. However, it remains unclear how myonuclei are recruited and what regulates myonuclear output at the NMJ. Here, we identify specific properties of myonuclei located near the Drosophila larval NMJ. These synaptic myonuclei have increased size in relation to their surrounding cytoplasmic domain (size scaling), increased DNA content (ploidy), and increased levels of transcription factor pMad, a readout for BMP signaling activity. Our genetic manipulations show that local BMP signaling affects muscle size, nuclear size, ploidy, and NMJ size and function. In support, RNA sequencing analysis reveals that pMad regulates genes involved in muscle growth, ploidy (i.e., E2f1), and neurotransmission. Our data suggest that muscle BMP signaling instructs synaptic myonuclear output that positively shapes the NMJ synapse. This study deepens our understanding of how myonuclear heterogeneity supports local signaling demands to fine tune cellular function and NMJ activity.
Collapse
Affiliation(s)
- Victoria E. von Saucken
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell-Rockefeller-Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Biochemistry, Cell and Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Stefanie E. Windner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giovanna Armetta
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mary K. Baylies
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
129
|
Han Y, Hacker D, Donders BC, Parperis C, Thuenauer R, Leterrier C, Grünewald K, Mikhaylova M. Unveiling the cell biology of hippocampal neurons with dendritic axon origin. J Cell Biol 2025; 224:e202403141. [PMID: 39495320 PMCID: PMC11536041 DOI: 10.1083/jcb.202403141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024] Open
Abstract
In mammalian axon-carrying-dendrite (AcD) neurons, the axon emanates from a basal dendrite, instead of the soma, to create a privileged route for action potential generation at the axon initial segment (AIS). However, it is unclear how such unusual morphology is established and whether the structure and function of the AIS in AcD neurons are preserved. By using dissociated hippocampal cultures as a model, we show that the development of AcD morphology can occur prior to synaptogenesis and independently of the in vivo environment. A single precursor neurite first gives rise to the axon and then to the AcD. The AIS possesses a similar cytoskeletal architecture as the soma-derived AIS and similarly functions as a trafficking barrier to retain axon-specific molecular composition. However, it does not undergo homeostatic plasticity, contains lesser cisternal organelles, and receives fewer inhibitory inputs. Our findings reveal insights into AcD neuron biology and underscore AIS structural differences based on axon onset.
Collapse
Affiliation(s)
- Yuhao Han
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- AG “Neuronal Protein Transport”, Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Structural Cell Biology of Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Daniela Hacker
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | | | | | - Roland Thuenauer
- Advanced Light and Fluorescence Microscopy (ALFM) Facility, Centre for Structural Systems Biology, Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | - Kay Grünewald
- Centre for Structural Systems Biology, Hamburg, Germany
- Structural Cell Biology of Viruses, Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
- AG “Neuronal Protein Transport”, Centre for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
130
|
Khosrozadeh A, Seeger R, Witz G, Radecke J, Sørensen JB, Zuber B. CryoVesNet: A dedicated framework for synaptic vesicle segmentation in cryo-electron tomograms. J Cell Biol 2025; 224:e202402169. [PMID: 39446113 PMCID: PMC11513246 DOI: 10.1083/jcb.202402169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/26/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
Cryo-electron tomography (cryo-ET) has the potential to reveal cell structure down to atomic resolution. Nevertheless, cellular cryo-ET data is highly complex, requiring image segmentation for visualization and quantification of subcellular structures. Due to noise and anisotropic resolution in cryo-ET data, automatic segmentation based on classical computer vision approaches usually does not perform satisfactorily. Communication between neurons relies on neurotransmitter-filled synaptic vesicle (SV) exocytosis. Cryo-ET study of the spatial organization of SVs and their interconnections allows a better understanding of the mechanisms of exocytosis regulation. Accurate SV segmentation is a prerequisite to obtaining a faithful connectivity representation. Hundreds of SVs are present in a synapse, and their manual segmentation is a bottleneck. We addressed this by designing a workflow consisting of a convolutional network followed by post-processing steps. Alongside, we provide an interactive tool for accurately segmenting spherical vesicles. Our pipeline can in principle segment spherical vesicles in any cell type as well as extracellular and in vitro spherical vesicles.
Collapse
Affiliation(s)
- Amin Khosrozadeh
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Raphaela Seeger
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | - Julika Radecke
- Institute of Anatomy, University of Bern, Bern, Switzerland
- Department of Neuroscience, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Diamond Light Source Ltd., Didcot, UK
| | - Jakob B. Sørensen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
131
|
Patel C, Patel R, Kesharwani A, Rao L, Jain NS. Central cholinergic transmission modulates endocannabinoid-induced marble-burying behavior in mice. Behav Brain Res 2025; 476:115252. [PMID: 39278464 DOI: 10.1016/j.bbr.2024.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Central cholinergic system and endocannabinoid, anandamide exhibits anti-compulsive-like behavior in mice. However, the role of the central cholinergic system in the anandamide-induced anti-compulsive-like behavior is still unexplored. Therefore, the present study assessed the role of central cholinergic transmission in the anandamide-induced anti-compulsive activity using a marble-burying behavior (MBB) model in mice. The modulation in the anandamide-induced effect on MBB was evaluated using mice with altered central cholinergic transmission achieved by pretreatment (i.c.v.) with various cholinergic agents like acetylcholine (ACh), acetylcholinesterase inhibitor (AChEI), neostigmine, nicotine, mAChR antagonist, atropine, and nAChR antagonist, mecamylamine. The influence of anandamide treatment on the brain AChE activity was also evaluated. The results revealed that i.c.v. injection of anandamide (10, 20 µg/mouse, i.c.v.) dose-dependently reduced MBB in mice. Moreover, anandamide in all the tested doses inhibited the brain AChE activity indicating the role of an enhanced central cholinergic transmission in its anti-compulsive-like effect . Furthermore, the anti-compulsive-like effect of anandamide (20 µg/mouse, i.c.v.) was found to be enhanced in mice centrally pre-treated with, ACh (0.1 µg/mouse, i.c.v.) or AChEI, neostigmine (0.3 µg/mouse, i.c.v.). In addition, the anandamide-induced anti-compulsive-like effect was significantly increased in mice pre-treated with a low dose of nicotine (0.1 µg/mouse, i.c.v.) while, it was attenuated by the higher dose of nicotine (2 µg/mouse, i.c.v.). On the other hand, the anandamide (20 µg/mouse, i.c.v.) induced anti-compulsive-like effect was found to be diminished in mice pre-treated with mAChR antagonist, atropine (0.1, 0.5 µg/mouse, i.c.v.) and pre-injection of nAChR antagonist, mecamylamine (0.1, 0.5 µg/mouse, i.c.v.) potentiated the anandamide induced anti-compulsive-like response in mice. Thus, the present investigation delineates the modulatory role of an enhanced central cholinergic transmission in the anandamide-induced anti-compulsive-like behavior in mice by inhibition of brain AChE or via muscarinic and nicotinic receptors mediated mechanism.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Anuradha Kesharwani
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Laxmi Rao
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
132
|
Althobaiti NA. Heavy metals exposure and Alzheimer's disease: Underlying mechanisms and advancing therapeutic approaches. Behav Brain Res 2025; 476:115212. [PMID: 39187176 DOI: 10.1016/j.bbr.2024.115212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Heavy metals such as lead, cadmium, mercury, and arsenic are prevalent in the environment due to both natural and anthropogenic sources, leading to significant public health concerns. These heavy metals are known to cause damage to the nervous system, potentially leading to a range of neurological conditions including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and attention-deficit hyperactivity disorder (ADHD). The present study examines the complex relationship between heavy metal exposure and AD, focusing on the underlying mechanisms of toxicity and potential therapeutic approaches. This review article highlights how these metals can impair brain function through mechanisms such as oxidative stress, inflammation, and neurotransmitter disruption, ultimately contributing to neurodegenerative diseases like AD. It also addresses the challenges in diagnosing heavy metal-induced cognitive impairments and emphasizes the need for further research to explore effective treatment strategies and preventive measures against heavy metal exposure.
Collapse
Affiliation(s)
- Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Saudi Arabia.
| |
Collapse
|
133
|
Shi L, Choi CY, Carrica LK, Liang NC, Gulley JM. The effects of moderate alcohol and THC co-use during male and female rat adolescence on AKT-GSK3ß signaling in adulthood. Behav Brain Res 2025; 476:115292. [PMID: 39406294 DOI: 10.1016/j.bbr.2024.115292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Alcohol and cannabis are often taken in combination, and extensive co-use has been linked to enduring changes in cognitive and metabolic functioning. The underlying mechanisms for these effects are unclear, but we recently demonstrated that co-administration of ethanol and delta-9-tetrahydrocannbinol (THC) to adolescent rats caused lasting adaptations in GABA and glycogen synthase kinase 3ß (GSK3ß) signaling in the medial prefrontal cortex (mPFC). As a ubiquitous protein kinase, GSK3ß is downstream to the protein kinase B (also known as AKT) pathway that is activated by insulin receptor signaling in a main control center for metabolism and energy homeostasis, the mediobasal hypothalamus (MBH). Our goal here was to investigate if volitional co-use of low to moderate levels of ethanol and THC would impact the total and phosphorylated levels (p) of AKT and GSK3ß in the mPFC and MBH. Peri-adolescent Long Evans rats [postnatal day (P) 30-47] consumed 10 % ethanol, cookies laced with THC (3-10 mg/kg/day), both drugs, or vehicle controls. On P114, we modeled re-exposure to a behaviorally relevant dose of THC by challenging rats (i.p.) with 5 mg/kg THC (or vehicle) and sacrificed them 30 min later. Western blot analysis revealed that THC challenge increased pAKT and pGSK3ß compared to control similarly across all treatment groups, sexes, and brain regions; no effects on total levels of AKT or GSK3ß were found. Previously reported behavioral results from these rats showed no differences in working memory assessed in adulthood. Although future studies will be necessary to determine the role of exposure dose on drug-induced adaptations in AKT and GSK3ß signaling, the current findings suggest that moderate volitional co-use of alcohol and THC may not produce long-term deficits that persist into adulthood.
Collapse
Affiliation(s)
- Linyuan Shi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Chan Young Choi
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Lauren K Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Nu-Chu Liang
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
134
|
Chen HY, Chiang HY, Lee TH, Chan PYS, Yang CY, Lee HM, Liang SHY. Effects of chronic social defeat stress on social behavior and cognitive flexibility for early and late adolescent. Behav Brain Res 2025; 476:115251. [PMID: 39271022 DOI: 10.1016/j.bbr.2024.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
This study investigated the risk to social behavior and cognitive flexibility induced by chronic social defeat stress (CSDS) during early and late adolescence (EA and LA). Utilizing the "resident-intruder" stress paradigm, adolescent male Sprague-Dawley rats were exposed to CSDS during either EA (postnatal days 29-38) or LA (postnatal days 39-48) to explore how social defeat at different stages of adolescence affects behavioral and cognitive symptoms commonly associated with psychiatric disorders. After stress exposure, the rats were assessed for anxiety-like behavior in the elevated plus maze, social interaction, and cognitive flexibility through set-shifting and reversal-learning tasks under immediate and delayed reward conditions. The results showed that CSDS during EA, but not LA, led to impaired cognitive flexibility in adulthood, as evidenced by increased perseverative and regressive errors in the set-shifting and reversal-learning tasks, particularly under the delayed reward condition. This suggests that the timing of stress exposure during development has a significant impact on the long-term consequences for behavioral and cognitive function. The findings highlight the vulnerability of the prefrontal cortex, which undergoes critical maturation during early adolescence, to the effects of social stress. Overall, this study demonstrates that the timing of social stressors during adolescence can differentially shape the developmental trajectory of cognitive flexibility, with important implications for understanding the link between childhood/adolescent adversity and the emergence of psychiatric disorders.
Collapse
Affiliation(s)
- Hsin-Yung Chen
- Department of Occupational Therapy & Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Section of Department of Child and Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, Taiwan; Department of Occupational Therapy, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pei-Ying Sarah Chan
- Department of Occupational Therapy & Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Yen Yang
- Department of Biomedical Engineering, Ming-Chuan University, Taoyuan, Taiwan; Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Hsin-Min Lee
- Department of Physical Therapy, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Sophie Hsin-Yi Liang
- Section of Department of Child and Adolescent Psychiatry, Department of Psychiatry, Chang Gung Memorial Hospital at Taoyuan and Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
135
|
Coelho GC, Crespo LGSC, Sampaio MDFDS, Silva RCB, Samuels RI, Carey RJ, Carrera MP. Opioid-environment interaction: Contrasting effects of morphine administered in a novel versus familiar environment on acute and repeated morphine induced behavioral effects and on acute morphine ERK activation in reward associated brain areas. Behav Brain Res 2025; 476:115221. [PMID: 39209119 DOI: 10.1016/j.bbr.2024.115221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
We report that environmental context can have a major impact on morphine locomotor behavior and ERK effects. We manipulated environmental context in terms of an environmental novelty/ familiarity dimension and measured morphine behavioral effects in both acute and chronic morphine treatment protocols. Wistar rats (n=7 per group) were injected with morphine 10 mg/kg or vehicle (s.c.), and immediately placed into an arena for 5 min, and locomotor activity was measured after one or 5 days. The morphine treatments were initiated either when the environment was novel or began after the rats had been familiarized with the arena by being given 5 daily nondrug tests in the arena. The results showed that acute and chronic morphine effects were strongly modified by whether the environment was novel or familiar. Acute morphine administered in a novel environment increased ERK activity more substantially in several brain areas, particularly in reward-associated areas such as the VTA in comparison to when morphine was given in a familiar environment. Repeated morphine treatments initiated in a novel environment induced a strong locomotor sensitization, whereas repeated morphine treatments initiated in a familiar environment did not induce a locomotor stimulant effect but rather a drug discriminative stimulus dis-habituation effect. The marked differential effects of environmental novelty/familiarity and ongoing dopamine activity on acute and chronic morphine treatments may be of potential clinical relevance for opioid drug addiction.
Collapse
Affiliation(s)
- Gabriela Corrêa Coelho
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Luiz Gustavo Soares Carvalho Crespo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Maria de Fátima Dos Santos Sampaio
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Regina Claudia Barbosa Silva
- Laboratory of Psychobiology of Schizophrenia, Department of Biosciences, Federal University of Sao Paulo (UNIFESP), Silva Jardim Street 136, Santos, SP 11015-020, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Robert J Carey
- Department of Psychiatry, SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes, RJ 28013-602, Brazil.
| |
Collapse
|
136
|
Rezaei S, Khanmohammadi R. Comparison of short- and long-term effects of neurofeedback and transcranial electrical stimulation on the motor learning in healthy adults. Behav Brain Res 2025; 476:115263. [PMID: 39307285 DOI: 10.1016/j.bbr.2024.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Researchers are exploring non-invasive neuromodulation techniques like transcranial direct current stimulation (tDCS) and neurofeedback (NFB) for enhancing motor learning. While tDCS modulates brain excitability using exogenous electric fields, NFB is an endogenous brain stimulation technique that enables individuals to regulate brain excitability in a closed-loop system. Despite their differing mechanisms, a direct comparison of their effects on motor learning is lacking. This study aimed to compare tDCS and NFB on online learning, short-term offline learning, and long-term offline learning in healthy participants, seeking to identify the most effective method for motor learning enhancement. In this parallel, randomized, single-blinded, controlled trial, 100 healthy participants were randomly assigned to one of five groups: real tDCS, sham tDCS, real NFB, sham NFB, and passive control. Primary outcomes included normalized reaction time (NRT), normalized response accuracy (NRA), and normalized skill index (NSI), measured through a serial reaction time task. Secondary outcomes involved physical and mental fatigue, assessed using a visual analog scale. The study involved 14 blocks of 80 trials each. Online learning was assessed by changes in NRT, NRA, and NSI between Block 3 and Block 9. Short-term and long-term offline learning were evaluated by changes in these measures between Block 9 and Block 11, and between Block 9 and Block 13, respectively. RESULTS: showed a significant decrease in NRA in the sham tDCS and passive control groups from block 3-9, with no changes in other groups. NRT significantly decreased in all intervention groups from block 9-11, with no change in the control group. The NSI significantly increased across all intervention groups between blocks 9 and 11, with large to very large effect sizes, while the passive control group saw a medium effect size increase. Furthermore, NRA significantly increased in the real NFB and real tDCS groups from block 9 to block 13. NRT also significantly decreased in all intervention groups when comparing block 13 to block 9, while the passive control group showed no significant changes. Notably, the reduction in NRT from block 9 to block 13 was significantly greater in the real tDCS group than in the control group, with a mean difference of 0.087 (95 % CI: 0.004-0.169, p = 0.031). Additionally, NSI significantly increased in all intervention groups except the control group from block 9 to block 13. In conclusion, neither NFB nor tDCS had a significant positive impact on online learning. However, both real and sham versions of tDCS and NFB resulted in notable improvements in short-term offline learning. The difference in improvement between NFB and tDCS, as well as between real and sham interventions, was not statistically significant, suggesting that the placebo effect may play a significant role in enhancing short-term offline learning. For long-term offline learning, both brain stimulation methods, particularly tDCS, showed positive effects, although the placebo effect also appeared to contribute.
Collapse
Affiliation(s)
- Sara Rezaei
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Khanmohammadi
- Physical Therapy Department, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
137
|
Ensandoust T, Khakpour-Taleghani B, Jafari A, Rostampour M, Rohampour K, Ch MH. Effect of simultaneous application of adenosine A1 receptor agonist and A2A receptor antagonist on memory, inflammatory factors, and PSD-95 in lipopolysaccharide-induced memory impairment. Behav Brain Res 2025; 476:115210. [PMID: 39159786 DOI: 10.1016/j.bbr.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The potential role of adenosine, a natural neuroprotective agent, and its receptors in the pathogenesis of Alzheimer's disease has been proposed. The present study aims to examine the effect of administering both an A1 receptor agonist and an A2A adenosine receptor antagonist simultaneously on memory, inflammatory factors, and PSD-95 in an LPS-induced Alzheimer's disease model in rats. Fifty-six male Wistar rats were randomly divided into seven groups: Saline, LPS, Saline + Vehicle, LPS + Vehicle, LPS + SCH58261 (A2A receptor antagonist), LPS + CPA (A1 receptor agonist), LPS + SCH58261+CPA. LPS (3 mg/kg/ip) was used to cause memory impairment. Treatment was performed by intraventricular injection of CPA at a dose of 700 μg and SCH-58261 at 40 μg for ten days. Passive avoidance and Y-maze tests were performed to examine animals' memories. IL-10, TNF-α, and PSD-95 levels were measured in the brain using ELISA and western blot, respectively. Compared to the groups receiving each medication separately, the simultaneous administration of CPA and SCH58261 improved memory (P<0.05). Additionally, compared to the single medication groups, there was a significant increase in IL-10, PSD-95, and a significant decrease in TNF-α in the brain tissue (P<0.05). These findings suggest that the activation of A1 receptors along with A2A receptor inhibition could be a potential therapeutic strategy for Alzheimer's disease. These findings suggest that A1 receptor activation combined with A2A receptor inhibition may be a promising therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Tahereh Ensandoust
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | | | - Adele Jafari
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran.
| | - Mohammad Rostampour
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran; Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Kambiz Rohampour
- Department of Physiology, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
138
|
Huang FL, Zou GJ, Wang LF, He X, Zhang BC, Yang ZH. Open-field exploration immediately before the retention test impairs retrieval and spaced fear extinction of contextual fear memory. Behav Brain Res 2025; 476:115260. [PMID: 39303990 DOI: 10.1016/j.bbr.2024.115260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
According to the behavioral tagging theory, various stages of fear memory, such as contextual fear conditioning, memory retrieval, and fear extinction, can be facilitated by the exploration of a novel open field (OF). A critical time window of efficacy exists for this process. Novel exploration closely adjacent to weak learning may interfere with the setting of the learning tag, leading to a negative effect. In this mouse study, we consistently showed that exposure to a novel or familiar OF immediately prior to the retention test impaired the retrieval of long-term contextual fear memory. However, OF exposure had no effect on the retrieval of recent or remote cued fear memory or short-term contextual fear memory or the reconsolidation of contextual fear memory. In addition, OF exposure impaired spaced but not massed extinction of contextual fear memory. These results suggest that interfering stimulus may result in the transient forgetting of fear memory; however, temporary loss of fear may lead to retention failure of fear extinction. The results of this study are an important complement to the behavioral tagging theory and may provide new guidance for the treatment of post-traumatic stress disorder.
Collapse
Affiliation(s)
- Fu-Lian Huang
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan 413000, China.
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Lai-Fa Wang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, Hunan 410219, China
| | - Xu He
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan 413000, China
| | - Bi-Chao Zhang
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan 413000, China
| | - Ze-Hua Yang
- School of Basic Medicine, Yiyang Medical College, Yiyang, Hunan 413000, China.
| |
Collapse
|
139
|
Hernández-Frausto M, Galván EJ, López-Rubalcava C. Dopamine D1 receptors activation rescues hippocampal synaptic plasticity and cognitive impairments in the MK-801 neonatal schizophrenia model. Behav Brain Res 2025; 476:115250. [PMID: 39277140 DOI: 10.1016/j.bbr.2024.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
140
|
Sarahian N, Khodagholi F, Valian N, Ahmadiani A. Interplay of MeCP2/REST/Synaptophysin-BDNF and intranasal oxytocin influence on Aβ-induced memory and cognitive impairments. Behav Brain Res 2025; 476:115235. [PMID: 39236931 DOI: 10.1016/j.bbr.2024.115235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is linked to the accumulation of Aβ, increased tau hyperphosphorylation, persistent neuroinflammation, and a decline in neurotrophic factors, neurogenesis, and synaptic plasticity. Oxytocin (OT) has a significant impact on memory and learning. We examined the influence of intranasal (IN) OT on synaptic plasticity, neurogenesis, histone acetylation, and spatial and cognitive memories in rats. METHODS Aβ25-35 (5 µg/2.5 µl) was administered bilaterally in the CA1 of male Wistar rats for four consecutive days. After seven days of recovery, OT (2 µg/µl, 10 µl in each nostril) was administered IN for seven consecutive days. Working, spatial, and cognitive memories, and gene expression of neurogenesis- and synaptic plasticity-involved factors were measured in the hippocampus. Histone acetylation (H3K9 and H4K8) was also measured using western blotting. RESULTS IN administration of OT significantly improved working and spatial memory impairment induced by Aβ and increased the factors involved in synaptic plasticity (MeCP2, REST, synaptophysin, and BDNF) and neurogenesis (Ki67 and DCX). We also found an enhancement in the levels of H3K9ac and H4K8ac following OT administration. CONCLUSION These findings indicated that IN OT could improve hippocampus-related behaviors by increasing synaptic plasticity, stimulating neurogenesis, and chromatin plasticity.
Collapse
Affiliation(s)
- Nahid Sarahian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
141
|
Parsaei M, Barahman G, Roumiani PH, Ranjbar E, Ansari S, Najafi A, Karimi H, Aarabi MH, Moghaddam HS. White matter correlates of cognition: A diffusion magnetic resonance imaging study. Behav Brain Res 2025; 476:115222. [PMID: 39216828 DOI: 10.1016/j.bbr.2024.115222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Our comprehension of the interplay of cognition and the brain remains constrained. While functional imaging studies have identified cognitive brain regions, structural correlates of cognitive functions remain underexplored. Advanced methods like Diffusion Magnetic Resonance Imaging (DMRI) facilitate the exploration of brain connectivity and White Matter (WM) tract microstructure. Therefore, we conducted connectometry method on DMRI data, to reveal WM tracts associated with cognition. METHODS 125 healthy participants from the National Institute of Mental Health Intramural Healthy Volunteer Dataset were recruited. Multiple regression analyses were conducted between DMRI-derived Quantitative Anisotropy (QA) values within WM tracts and scores of participants in Flanker Inhibitory Control and Attention Test (attention), Dimensional Change Card Sort (executive function), Picture Sequence Memory Test (episodic memory), and List Sorting Working Memory Test (working memory) tasks from National Institute of Health toolbox. The significance level was set at False Discovery Rate (FDR)<0.05. RESULTS We identified significant positive correlations between the QA of WM tracts within the left cerebellum and bilateral fornix with attention, executive functioning, and episodic memory (FDR=0.018, 0.0002, and 0.0002, respectively), and a negative correlation between QA of WM tracts within bilateral cerebellum with attention (FDR=0.028). Working memory demonstrated positive correlations with QA of left inferior longitudinal and left inferior fronto-occipital fasciculi (FDR=0.0009), while it showed a negative correlation with QA of right cerebellar tracts (FDR=0.0005). CONCLUSION Our results underscore the intricate link between cognitive performance and WM integrity in frontal, temporal, and cerebellar regions, offering insights into early detection and targeted interventions for cognitive disorders.
Collapse
Affiliation(s)
- Mohammadamin Parsaei
- Maternal, Fetal & Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gelayol Barahman
- School of Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | | | - Ehsan Ranjbar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ansari
- Psychosomatic Medicine Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Najafi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanie Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
142
|
Castro-Zaballa S, González J, Cavelli M, Mateos D, Pascovich C, Tort A, Hunt MJ, Torterolo P. Cortical high-frequency oscillations (≈ 110 Hz) in cats are state-dependent and enhanced by a subanesthetic dose of ketamine. Behav Brain Res 2025; 476:115231. [PMID: 39218075 DOI: 10.1016/j.bbr.2024.115231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Ketamine is an NMDA receptor antagonist that has antidepressant and anesthetic properties. At subanesthetic doses, ketamine induces transient psychosis in humans, and is used to model psychosis in experimental animals. In rodents, subanesthetic doses of ketamine increase the power of high-frequency oscillations (HFO, > 100 Hz) in the electroencephalogram (EEG), a frequency band linked to cognitive functions. However, to date, the effects of ketamine in carnivores and primates have been poorly investigated. Here, we examined in the cat, cortical HFO during wakefulness, sleep, and after administering a sub-anesthetic dose of ketamine. Four cats were prepared with cortical electrodes for chronic polysomnographic recordings in head-restrained conditions. The cortical HFO power, connectivity, direction of the information flow using Granger Causality (GC) analysis, their relationships with respiratory activity, and the effect of auditory stimulation were analyzed. During wakefulness, but not during sleep, we found that HFO were coupled with the inspiratory phase of the respiration. After ketamine administration, HFO power was enhanced and remained associated with the inspiratory phase. GC analysis suggests that ketamine-enhanced HFO originate from the olfactory bulb (OB) and stream towards the prefrontal cortex (Pf). Accordingly, occluding the nostrils significantly reduced the power of the ketamine-enhanced HFO in both the OB and Pf. Finally, auditory stimulation did not affect HFO. In conclusion, the HFO are associated with respiration during wakefulness, but not during sleep. The enhancement of this rhythm by ketamine may disrupt cortical information processing, which could contribute to some of the neuropsychiatric effects associated with ketamine.
Collapse
Affiliation(s)
- Santiago Castro-Zaballa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Joaquín González
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matías Cavelli
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Department of Psychiatry, University of Wisconsin, Madison, United States
| | - Diego Mateos
- Consejo Nacional Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad Autónoma de Entre Ríos (FCyT-UADER), Entre Ríos, Argentina; Instituto de Matemática Aplicada del Litoral (IMAL-CONICET-UNL), Santa Fe, Argentina; Achucarro Basque Centre for Neuroscience, Spain
| | - Claudia Pascovich
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, United Kingdom
| | - Adriano Tort
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
143
|
Yu J, Leong Bin Abdullah MFI, Mansor NS. The inhibitory control deficit of internet gaming disorder: An Event-Related Potentials(ERPs) study. Behav Brain Res 2025; 476:115253. [PMID: 39313075 DOI: 10.1016/j.bbr.2024.115253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION The primary difficulty and challenge encountered by individuals with Internet Gaming Disorder (IGD) is inhibitory control deficit. Given that different types of inhibitory control have different effects on IGD patients, it is critical to investigate the neurological cognitive processes underlying various inhibitory control problems. METHODS The IGD-20 questionnaire was used to identify Internet game disorder and healthy control group, and finally Internet game disorder in (n=25) and healthy control group (n=28) in Flanker task, Internet game disorder (n=29) and health control group (n=24) in GO/NOGO task. The Flanker task was employed to investigate distractor interference inhibition control in those with IGD, while the Go/NoGo task was used to measure their prepotent response inhibitory control. Event-related potentials (ERPs) were used to evaluate the brain mechanisms difference of both IGD and healthy participants during these different inhibitory control tasks. RESULTS Findings indicate that compared to healthy control subjects, individuals with Internet Gaming Disorder (IGD) have deficits in inhibitory control tasks during both distraction inhibition and prepotent response inhibition tasks, and distraction inhibition occurs earlier than prepotent response inhibition. In distraction inhibition tasks, the IGD group's N2 amplitude is significantly lower than the healthy control groups. In prepotent response inhibition, the N2 amplitude provoked in the IGD group is not only significantly lower than in the healthy control group, but the P3 amplitude is also significantly larger in the IGD group. The main brain activity areas of interference inhibitory control are the frontal lobe and prefrontal lobe, while the main brain activity areas of prepotent response inhibitory control are the frontal lobe and occipital lobe. CONCLUSION The present study concentrates on the differential neurophysiological characteristics observed in individuals with Internet gaming problems, notably the ability to avoid distractions and prepotent reactions. The current research provides foundations for the assessment and development of tailored therapy and treatment methods to address the wide variety of cognitive problems reported in individuals with Internet Gaming Disorder (IGD).
Collapse
Affiliation(s)
- Junjian Yu
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| | | | - Nor Shuhada Mansor
- Department of Community Health, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
144
|
Gao Y, Ao L, Wang H, Liu J, Zhang Y, Cheng X, Liu Y. Render help or stand by? The effect of group size on third-party punishment and its neural mechanisms. Behav Brain Res 2025; 476:115256. [PMID: 39313074 DOI: 10.1016/j.bbr.2024.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Third-party punishment (TPP) is the punishment that an individual executes on a violator as a third party or observer to maintain social norms. Many studies have provided insights into the neural mechanisms of third-party punishment in group environments. Still, only some studies have focused on the neural mechanisms of third-party punishment in different group sizes. This study used EEG analysis to explore the effects of group size on third-party punishment and its neural activity characteristics from the context of gain and loss. The results show that the punishment rate and amount of the third party in the small group size and loss context were significantly higher than that in the large group size and gain context. EEG results showed that third-party punishment in small groups induced greater P2 than in large groups. In the loss context, the third-party punishment in the large group size induced more negative LNP and activated more theta band activation than in the small group. The results showed that the motivation of the third party to seek a positive reputation in the small size exceeds the balance of its economic interests and tends to punish the violator for maintaining fair norms. The loss context plays a promoting role in this process. However, in the large size, the third-party consideration of its interests was stronger than the willingness to maintain social norms. This study provided neuroscientific evidence for third-party punishment to maintain fair norms in a group environment and further explanations from neuroscience for understanding Indirect Reciprocity Theory.
Collapse
Affiliation(s)
- Yuan Gao
- School of Psychology, Guizhou Normal University, Intersection of Siya Road and Dongqing Road, Huaxi District, Guiyang, Guizhou, China.
| | - Lihong Ao
- School of Psychology, South China Normal University, 55 West Zhongshan Avenue, Tianhe District, Guangzhou, Guangdong, China.
| | - He Wang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei, China.
| | - Jingyue Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei, China.
| | - Ye Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei, China.
| | - Xuemei Cheng
- Department of Mechanical and Electrical Engineering, Beijing Polytechnic, 9 Liangshui River Street, Daxing District, Beijing, China.
| | - Yingjie Liu
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai avenue, Caofeidian district, Tangshan, Hebei, China.
| |
Collapse
|
145
|
Fort TD, Azuma MC, Laux DA, Cain ME. Environmental enrichment and sex, but not n-acetylcysteine, alter extended-access amphetamine self-administration and cue-seeking. Behav Brain Res 2025; 476:115261. [PMID: 39313073 PMCID: PMC11513240 DOI: 10.1016/j.bbr.2024.115261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
There are no approved therapeutics for psychostimulant use and recurrence of psychostimulant use. However, in preclinical rodent models environmental enrichment can decrease psychostimulant self-administration of low unit doses and cue-induced amphetamine seeking. We have previously demonstrated that glutamate-dependent therapeutics are able to alter amphetamine seeking to amphetamine-associated cues only in enriched rats. In the current experiment, we will determine if enrichment can attenuate responding and cue-induced amphetamine seeking during extended access to a high dose of intravenous amphetamine. We will also determine if N-acetylcysteine (NAC), a glutamate dependent therapeutic, can attenuate amphetamine seeking in differentially reared rats. Female and male Sprague-Dawley rats were reared in enriched, isolated, or standard conditions from postnatal day 21-51. Rats were trained to self-administer intravenous amphetamine (0.1 mg/kg/infusion) during twelve 6-hour sessions. During the abstinence period, NAC (100 mg/kg) or saline was administered daily. Following a cue-induced amphetamine-seeking test, astrocyte densities within regions of the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb) were quantified using immunohistochemistry. Environmental enrichment decreased responding for amphetamine and during the cue-induced amphetamine-seeking test. NAC did not attenuate cue-induced amphetamine seeking or alter astrocyte density. Across all groups, female rats self-administered less amphetamine but responded more during cue-induced amphetamine seeking than male rats. While amphetamine increased astrocyte densities within the ACb and mPFC, it did not alter mPFC astrocyte densities in female rats. The results suggest that enrichment can attenuate responding during extended access to a high dose of amphetamine and the associated cues. Sex alters amphetamine-induced changes to astrocyte densities in a regionally specific matter.
Collapse
Affiliation(s)
- Troy D Fort
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Miki C Azuma
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Dylan A Laux
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, 492 Bluemont Hall, 1114 Mid-Campus Drive North, Manhattan, KS 66506-5302, USA.
| |
Collapse
|
146
|
Tzakis N, Ethier-Gagnon M, Epp T, Holahan MR. Assessment of cFos labeling in the hippocampus and anterior cingulate cortex following recent and remote re-exposure to an unreinforced open field in preadolescent and postadolescent rats. Behav Brain Res 2025; 476:115284. [PMID: 39393683 DOI: 10.1016/j.bbr.2024.115284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Spatial tasks are often goal-directed or reward-facilitated confounding the assessment of "pure" recent and remote spatial memories. The current work re-exposed preadolescent and postadolescent male rats to a non-reinforced, free exploration task to investigate cFos patterns within the hippocampus and anterior cingulate cortex (ACC) associated with recent and remote periods. Male rats were exposed to an open field task for one, 30 min session on postnatal day (P) 20, 25, or 50 and re-exposed for 30 min at either a recent (24 hours) or remote (3 weeks) timepoint. Distance traveled in the open field was measured as well as cFos labeling. In the P20 age group, there was elevated exploration at the 24-hour and 3-week tests compared to training and compared to the other age groups. In the hippocampus CA1, cFos levels were higher after the remote test than the recent test in the P20 group but higher after the recent test than remote test in the P25 and P50 groups. cFos labeling in the ACC was higher in all remote-tested groups compared to the recent-tested groups across all ages. In the P20, the 24-hour test was associated with less CA1 activity than the other age groups supporting the hypothesis that the hippocampus is not fully developed at this time point. In the P20 group, the remote representation of this task did not seem to be complete as there continued to be CA1 activity along with ACC activity following the remote test associated with elevated exploration. These results indicate the utility of unreinforced spatial navigation tasks for exploring systems consolidation processes over the lifespan and show that a fully developed hippocampus is required for optimal systems consolidation.
Collapse
Affiliation(s)
- Nikolaos Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Tanisse Epp
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Matthew R Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
147
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
148
|
Lee J, Aubry A, Hanif S, Grunfeld IS, Likhtik E, Burghardt NS. Chronic social defeat stress gives rise to social avoidance through fear learning. Behav Brain Res 2025; 476:115245. [PMID: 39241834 PMCID: PMC11513230 DOI: 10.1016/j.bbr.2024.115245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic social defeat stress (CSDS), a widely used rodent model of stress, reliably leads to decreased social interaction in stress susceptible animals. Here, we investigate a role for fear learning in this response using male 129 Sv/Ev mice, a strain that is more vulnerable to CSDS than the commonly used C57BL/6 strain. We first demonstrate that defeated 129 Sv/Ev mice avoid a CD-1 mouse, but not a conspecific, indicating that motivation to socialize is intact in this strain. CD-1 avoidance is characterized by approach behavior that results in running in the opposite direction, activity that is consistent with a threat response. We next test whether CD-1 avoidance is subject to the same behavioral changes found in traditional models of Pavlovian fear conditioning. We find that associative learning occurs across 10 days CSDS, with defeated mice learning to associate the color of the CD-1 coat with threat. This leads to the gradual acquisition of avoidance behavior, a conditioned response that can be extinguished with 7 days of repeated social interaction testing (5 tests/day). Pairing a CD-1 with a tone leads to second-order conditioning, resulting in avoidance of an enclosure without a social target. Finally, we show that social interaction with a conspecific is a highly variable response in defeated mice that may reflect individual differences in generalization of fear to other social targets. Our data indicate that fear conditioning to a social target is a key component of CSDS, implicating the involvement of fear circuits in social avoidance.
Collapse
Affiliation(s)
- Jinah Lee
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA; Psychology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Antonio Aubry
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA; Psychology Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sadiyah Hanif
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
| | - Itamar S Grunfeld
- Psychology Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Biology, Hunter College, City University of New York, New York, NY, USA; Fralin Biomedical Research Institute at Virginia Tech, Roanoke, VA, USA
| | - Ekaterina Likhtik
- Department of Biology, Hunter College, City University of New York, New York, NY, USA; Biology Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA; Psychology Program, The Graduate Center, City University of New York, New York, NY, USA.
| |
Collapse
|
149
|
Wu Z, Zhou L, Fu H, Xie Y, Sun L, Li Y, Xiao L, Zhang L, Su Y, Wang G. Maternal separation during lactation affects recognition memory, emotional behaviors, hippocampus and gut microbiota composition in C57BL6J adolescent female mice. Behav Brain Res 2025; 476:115249. [PMID: 39260583 DOI: 10.1016/j.bbr.2024.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Maternal separation (MS) in rodents is a paradigm of early life events that affects neurological development in depression. Adolescence is a time of dramatic increases in psychological vulnerability, and being female is a depression risk factor. However, data on whether different MS scenarios affect behavioral deficits and the potential mechanisms in adolescent female mice are limited. METHODS C57BL/6 J female pups were exposed to different MS (no MS, NMS; MS for 15 min/day, MS15; or 180 min/day, MS180) from postnatal day (PND)1 to PND21 and subjected for behavioral tests during adolescence. Behavioural tests, specifically the open field test (OFT), novel object recognition test (NOR) test and tail suspension test (TST), were performed. The expression of proinflammatory cytokines, hippocampal neurogenesis, neuroinflammation, and gut microbiota were also assessed. RESULTS The results showed that MS180 induced emotional behavioral deficits and object recognition memory impairment; however, MS15 promoted object recognition memory in adolescent females. MS180 decreased hippocampal neurogenesis of adolescent females, induced an increase in microgliosis, and increased certain inflammatory factors in the hippocampus, including TNF-α, IL-1β, and IL-6. Furthermore, different MS altered gut microbiota diversity, and alpha diversity in the Shannon index was negatively correlated with the peripheral inflammatory factors TNF-α, IL-1β, and IL-6. Species difference analysis showed that the gut microbiota composition of the phyla Desulfobacterota and Proteobacteria was affected by the MS. LIMITATIONS The sex differences in adolescent animal and causality of hippocampal neurogenesis and gut microbiota under different MS need to be further analyzed in depression. CONCLUSION This study indicates different MS affect recognition memory and emotional behaviors in adolescent females, and gut microbiota-neuroinflammation and hippocampal neurogenesis may be a potential site of early neurodevelopmental impairment in depression.
Collapse
Affiliation(s)
- Zuotian Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lin Zhou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Huikang Fu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yumeng Xie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Limin Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Yixin Li
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Ling Xiao
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Gaohua Wang
- Institute of Neuropsychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan 430060, China.
| |
Collapse
|
150
|
Molins F, Ben Hassen N, Serrano MÁ. Late acute stress effects on decision-making: The magnified attraction to immediate gains in the iowa gambling task. Behav Brain Res 2025; 476:115279. [PMID: 39366556 DOI: 10.1016/j.bbr.2024.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Previous literature indicates that the later phases of the acute stress response may promote poor decision-making, characterized by riskier choices and a likely inclination towards immediate reward-seeking. However, all studies addressing the effect of this phase have treated decisional capacity as a singular dimension, without analyzing the underlying processes under decision-making. Employing the Value-Plus-Perseveration (VPP) RL model, based on Bayesian logic, this study aims to gain specific insights into how late phase of acute stress impacts the cognitive processes underpinning decision-making in the Iowa Gambling Task (IGT), deciphering whether, as expected, gains are processed in a magnified manner. Seventy-three participants were randomly assigned to two groups, stress (N = 35) and control (N = 38). A virtual version of The Trier Social Stress Test (TSST-VR) was employed as a laboratory stressor. Decision-making was evaluated 35 minutes after the stressor onset, by means of the IGT. Results showed that stressed participants, in comparison to control group, displayed more perseverant and consistent decision-making, enhanced memory, and reinforcement learning capabilities, yet were guided by a greater attraction to decks offering immediate high gains. These results are analyzed with the understanding that in the IGT, short-term decisions focused on instant rewards are seen as counterproductive. This suggests that stress could limit the ability to switch to strategies that are more cautious and offer greater long-term benefits.
Collapse
|