1551
|
Gurok U, Loebbert RW, Meyer AH, Mueller R, Schoemaker H, Gross G, Behl B. Laser capture microdissection and microarray analysis of dividing neural progenitor cells from the adult rat hippocampus. Eur J Neurosci 2007; 26:1079-90. [PMID: 17767487 DOI: 10.1111/j.1460-9568.2007.05734.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neural progenitor cells reside in the hippocampus of adult rodents and humans and generate granule neurons throughout life. Knowledge about the molecular processes regulating these neurogenic cells is fragmentary. In order to identify genes with a role in the proliferation of adult neural progenitor cells, a protocol was elaborated to enable the staining and isolation of such cells under RNA-preserving conditions with a combination of immunohistochemistry and laser capture microdissection. We increased proliferation of neural progenitor cells by electroconvulsive treatment, one of the most effective antidepressant treatments, and isolated Ki-67-positive cells using this new protocol. RNA amplification via in vitro transcription and subsequent microarray analysis revealed over 100 genes that were differentially expressed in neural progenitor cells due to electroconvulsive treatment compared to untreated control animals. Some of these genes have already been implicated in the functioning of neural progenitor cells or have been induced by electroconvulsive treatment; these include brain-derived neurotrophic factor (Bdnf), PDZ-binding kinase (Pbk) and abnormal spindle-like microcephaly-associated (Aspm). In addition, genes were identified for which no role in the proliferation of neurogenic progenitors has been described so far, such as enhancer of zeste homolog 2 (Ezh2).
Collapse
Affiliation(s)
- Ulf Gurok
- Neuroscience Discovery Research, Abbott, Knollstrasse, 67061 Ludwigshafen, Germany.
| | | | | | | | | | | | | |
Collapse
|
1552
|
Mihara K, Takihara Y, Kimura A. Genetic and epigenetic alterations in myelodysplastic syndrome. Cytogenet Genome Res 2007; 118:297-303. [DOI: 10.1159/000108313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 11/09/2006] [Indexed: 12/31/2022] Open
|
1553
|
Epigenetics in embryonic stem cells: regulation of pluripotency and differentiation. Cell Tissue Res 2007; 331:23-9. [DOI: 10.1007/s00441-007-0536-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/17/2007] [Indexed: 12/12/2022]
|
1554
|
Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2007; 66:7939-47. [PMID: 16912168 DOI: 10.1158/0008-5472.can-06-1888] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a straightforward and comprehensive approach for DNA methylation analysis in mammalian genomes. The methylated-CpG island recovery assay (MIRA), which is based on the high affinity of the MBD2/MBD3L1 complex for methylated DNA, has been used to detect cell type-dependent differences in DNA methylation on a microarray platform. The procedure has been verified and applied to identify a series of novel candidate lung tumor suppressor genes and potential DNA methylation markers that contain methylated CpG islands. One gene of particular interest was DLEC1, located at a commonly deleted area on chromosome 3p22-p21.3, which was frequently methylated in primary lung cancers and melanomas. Among the identified methylated genes, homeodomain-containing genes were unusually frequent (11 of the top 50 hits) and were targeted on different chromosomes. These genes included LHX2, LHX4, PAX7, HOXB13, LBX1, SIX2, HOXD3, DLX1, HOXD1, ONECUT2, and PAX9. The data show that MIRA-assisted microarray analysis has a low false-positive rate and has the capacity to catalogue methylated CpG islands on a genome-wide basis. The results support the hypothesis that cancer-associated DNA methylation events do not occur randomly throughout the genome but at least some are targeted by specific mechanisms.
Collapse
Affiliation(s)
- Tibor Rauch
- Division of Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
1555
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|
1556
|
Abstract
Genetic and epigenetic mechanisms contribute to the development of human tumors. However, the conventional analysis of neoplasias has preferentially focused on only one of these processes. This approach has led to a biased, primarily genetic view, of human tumorigenesis. Epigenetic alterations, such as aberrant DNA methylation, are sufficient to induce tumor formation, and can modify the incidence, and determine the type of tumor which will arise in genetic models of cancer. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes and how these genes interact functionally to determine the diverse biological and clinical paths to tumor initiation and progression. These gaps in our knowledge are, in part, due to the lack of methods for full-scale integrated genetic and epigenetic analyses. The ultimate goal to fill these gaps would include sequencing relevant regions of the 3-billion nucleotide genome, and determining the methylation status of the 28-million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application and building a more widely applicable mechanism-based model of human tumorigenesis.
Collapse
Affiliation(s)
- Romulo M Brena
- Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | |
Collapse
|
1557
|
Glinsky GV. Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. ACTA ACUST UNITED AC 2007; 3:79-93. [PMID: 17873385 DOI: 10.1007/s12015-007-0011-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/01/2022]
Abstract
In clinical terms, all human cancers diagnosed in individuals can be divided in two major categories: malignant tumors that will be cured with the existing cancer therapies and tumors that have therapy-resistant phenotypes and will return after initial treatment as incurable metastatic disease. These tumors manifesting clinically lethal death-from-cancer phenotypes represent the most formidable challenge of experimental, translational, and clinical cancer research. Clinical genomics data demonstrate that gene expression signatures associated with the "stemness" state of a cell are informative as molecular predictors of cancer therapy outcome and can help to identify cancer patients with therapy-resistant tumors. Here, we present experimental and clinical evidence in support of the BMI1 pathway rule indicating a genetic link between the stemness state and therapy-resistant death-from-cancer phenotypes. Our analysis demonstrates that therapy-resistant and therapy-responsive cancer phenotypes manifest distinct patterns of association with stemness/differentiation pathways, suggesting that therapy-resistant and therapy-responsive tumors develop within genetically distinct stemness/differentiation programs. These differences can be exploited for development of prognostic and therapy selection genetic tests utilizing a microarray-based cancer therapy outcome predictor algorithm. One of the major regulatory pathways manifesting distinct patterns of association with therapy-resistant and therapy-responsive cancer phenotypes is the Polycomb group proteins chromatin silencing pathway.
Collapse
Affiliation(s)
- Gennadi V Glinsky
- Translational & Functional Genomics Laboratory, Ordway Cancer Center, Ordway Research Institute, Albany, NY 12208, USA.
| |
Collapse
|
1558
|
Engström PG, Ho Sui SJ, Drivenes O, Becker TS, Lenhard B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res 2007; 17:1898-908. [PMID: 17989259 DOI: 10.1101/gr.6669607] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insect genomes contain larger blocks of conserved gene order (microsynteny) than would be expected under a random breakage model of chromosome evolution. We present evidence that microsynteny has been retained to keep large arrays of highly conserved noncoding elements (HCNEs) intact. These arrays span key developmental regulatory genes, forming genomic regulatory blocks (GRBs). We recently described GRBs in vertebrates, where most HCNEs function as enhancers and HCNE arrays specify complex expression programs of their target genes. Here we present a comparison of five Drosophila genomes showing that HCNE density peaks centrally in large synteny blocks containing multiple genes. Besides developmental regulators that are likely targets of HCNE enhancers, HCNE arrays often span unrelated neighboring genes. We describe differences in core promoters between the target genes and the unrelated genes that offer an explanation for the differences in their responsiveness to enhancers. We show examples of a striking correspondence between boundaries of synteny blocks, HCNE arrays, and Polycomb binding regions, confirming that the synteny blocks correspond to regulatory domains. Although few noncoding elements are highly conserved between Drosophila and the malaria mosquito Anopheles gambiae, we find that A. gambiae regions orthologous to Drosophila GRBs contain an equivalent distribution of noncoding elements highly conserved in the yellow fever mosquito Aëdes aegypti and coincide with regions of ancient microsynteny between Drosophila and mosquitoes. The structural and functional equivalence between insect and vertebrate GRBs marks them as an ancient feature of metazoan genomes and as a key to future studies of development and gene regulation.
Collapse
Affiliation(s)
- Pär G Engström
- Computational Biology Unit, Bergen Center for Computational Science, University of Bergen, Bergen 5008, Norway
| | | | | | | | | |
Collapse
|
1559
|
Pannetier M, Feil R. Epigenetic stability of embryonic stem cells and developmental potential. Trends Biotechnol 2007; 25:556-62. [PMID: 17983676 DOI: 10.1016/j.tibtech.2007.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 11/25/2022]
Abstract
Recent studies highlight the tremendous potential of human embryonic stem (ES) cells and their derivatives as therapeutic tools for degenerative diseases. However, derivation and culture of ES cells can induce epigenetic alterations, which can have long lasting effects on gene expression and phenotype. Research on human and mouse stem cells indicates that developmental, cancer-related genes, and genes regulated by genomic imprinting are particularly susceptible to changes in DNA methylation. Together with the occurrence of genetic alterations, epigenetic instability needs to be monitored when considering human stem cells for therapeutic and technological purposes. Here, we discuss the maintenance of epigenetic information in cultured stem cells and embryos and how this influences their developmental potential.
Collapse
Affiliation(s)
- Maëlle Pannetier
- Institute of Molecular Genetics, CNRS, 1919, route de Mende, 34293 Montpellier, France
| | | |
Collapse
|
1560
|
Kohn KW, Aladjem MI, Weinstein JN, Pommier Y. Chromatin challenges during DNA replication: a systems representation. Mol Biol Cell 2007; 19:1-7. [PMID: 17959828 DOI: 10.1091/mbc.e07-06-0528] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In a recent review, A. Groth and coworkers presented a comprehensive account of nucleosome disassembly in front of a DNA replication fork, assembly behind the replication fork, and the copying of epigenetic information onto the replicated chromatin. Understanding those processes however would be enhanced by a comprehensive graphical depiction analogous to a circuit diagram. Accordingly, we have constructed a molecular interaction map (MIM) that preserves in essentially complete detail the processes described by Groth et al. The MIM organizes and elucidates the information presented by Groth et al. on the complexities of chromatin replication, thereby providing a tool for system-level comprehension of the effects of genetic mutations, altered gene expression, and pharmacologic intervention.
Collapse
Affiliation(s)
- Kurt W Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
1561
|
Differential control of Wnt target genes involves epigenetic mechanisms and selective promoter occupancy by T-cell factors. Mol Cell Biol 2007; 27:8164-77. [PMID: 17923689 DOI: 10.1128/mcb.00555-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canonical Wnt signaling and its nuclear effectors, beta-catenin and the family of T-cell factor (TCF) DNA-binding proteins, belong to the small number of regulatory systems which are repeatedly used for context-dependent control of distinct genetic programs. The apparent ability to elicit a large variety of transcriptional responses necessitates that beta-catenin and TCFs distinguish precisely between genes to be activated and genes to remain silent in a specific context. How this is achieved is unclear. Here, we examined patterns of Wnt target gene activation and promoter occupancy by TCFs in different mouse cell culture models. Remarkably, within a given cell type only Wnt-responsive promoters are bound by specific subsets of TCFs, whereas nonresponsive Wnt target promoters remain unoccupied. Wnt-responsive, TCF-bound states correlate with DNA hypomethylation, histone H3 hyperacetylation, and H3K4 trimethylation. Inactive, nonresponsive promoter chromatin shows DNA hypermethylation, is devoid of active histone marks, and additionally can show repressive H3K27 trimethylation. Furthermore, chromatin structural states appear to be independent of Wnt pathway activity. Apparently, cell-type-specific regulation of Wnt target genes comprises multilayered control systems. These involve epigenetic modifications of promoter chromatin and differential promoter occupancy by functionally distinct TCF proteins, which together determine susceptibility to Wnt signaling.
Collapse
|
1562
|
Rajasekhar VK, Begemann M. Concise Review: Roles of Polycomb Group Proteins in Development and Disease: A Stem Cell Perspective. Stem Cells 2007; 25:2498-510. [PMID: 17600113 DOI: 10.1634/stemcells.2006-0608] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The acquisition and maintenance of cell fate are essential for metazoan growth and development. A strict coordination between genetic and epigenetic programs regulates cell fate determination and maintenance. Polycomb group (PcG) genes are identified as essential in these epigenetic developmental processes. These genes encode components of multimeric transcriptional repressor complexes that are crucial in maintaining cell fate. PcG proteins have also been shown to play a central role in stem cell maintenance and lineage specification. PcG proteins, together with a battery of components including sequence-specific DNA binding/accessory factors, chromatin remodeling factors, signaling pathway intermediates, noncoding small RNAs, and RNA interference machinery, generally define a dynamic cellular identity through tight regulation of specific gene expression patterns. Epigenetic modification of chromatin structure that results in expression silencing of specific genes is now emerging as an important molecular mechanism in this process. In embryonic stem (ES) cells and adult stem cells, such specific genes represent those associated with differentiation and development, and silencing of these genes in a PcG protein-dependent manner confers stemness. ES cells also contain novel chromatin motifs enriched in epigenetic modifications associated with both activation and repression of genes, suggesting that certain genes are poised for activation or repression. Interestingly, these chromatin domains are highly coincident with the promoters of developmental regulators, which are also found to be occupied by PcG proteins. The epigenetic integrity is compromised, however, by mutations or other alterations that affect the function of PcG proteins in stem cells leading to aberrant cell proliferation and tissue transformation, a hallmark of cancer. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Vinagolu K Rajasekhar
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Rockefeller Research Laboratories, Room #945, New York, New York 10021, USA.
| | | |
Collapse
|
1563
|
Jiang D, Yang W, He Y, Amasino RM. Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. THE PLANT CELL 2007; 19:2975-87. [PMID: 17921315 PMCID: PMC2174716 DOI: 10.1105/tpc.107.052373] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/04/2007] [Accepted: 09/11/2007] [Indexed: 05/18/2023]
Abstract
The timing of the developmental transition to flowering is critical to reproductive success in plants. Here, we show that Arabidopsis thaliana homologs of human Lysine-Specific Demethylase1 (LSD1; a histone H3-Lys 4 demethylase) reduce the levels of histone H3-Lys 4 methylation in chromatin of the floral repressor FLOWERING LOCUS C (FLC) and the sporophytically silenced floral repressor FWA. Two of the homologs, LSD1-LIKE1 (LDL1) and LSD1-LIKE2 (LDL2), act in partial redundancy with FLOWERING LOCUS D (FLD; an additional homolog of LSD1) to repress FLC expression. However, LDL1 and LDL2 appear to act independently of FLD in the silencing of FWA, indicating that there is target gene specialization within this histone demethylase family. Loss of function of LDL1 and LDL2 affects DNA methylation on FWA, whereas FLC repression does not appear to involve DNA methylation; thus, members of the LDL family can participate in a range of silencing mechanisms.
Collapse
Affiliation(s)
- Danhua Jiang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | | | | | | |
Collapse
|
1564
|
Moskalyov EA, Eprintsev AT, Hoheisel JD. DNA methylation profiling in cancer: From single nucleotides towards the methylome. Mol Biol 2007. [DOI: 10.1134/s0026893307050068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
1565
|
Takebayashi SI, Tamura T, Matsuoka C, Okano M. Major and essential role for the DNA methylation mark in mouse embryogenesis and stable association of DNMT1 with newly replicated regions. Mol Cell Biol 2007; 27:8243-58. [PMID: 17893328 PMCID: PMC2169176 DOI: 10.1128/mcb.00899-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA methyltransferase 1 (DNMT1) plays an important role in the inheritance of genomic DNA methylation, which is coupled to the DNA replication process. Early embryonic lethality in DNMT1-null mutant (Dnmt1(c)) mice indicates that DNA methylation is essential for mammalian development. DNMT1, however, interacts with a number of transcriptional regulators and has a transcriptional repressor activity independent of its catalytic activity. To examine the roles of the catalytic activity of DNMT1 in vivo, we generated a Dnmt1(ps) allele that expresses a point-mutated protein that lacks catalytic activity (DNMT1-C1229S). Dnmt1(ps) mutant mice showed developmental arrest shortly after gastrulation, near-complete loss of DNA methylation, and an altered distribution of repressive chromatin markers in the nuclei; these phenotypes are quite similar to those of the Dnmt1(c) mutant. The mutant DNMT1 protein failed to associate with replication foci in Dnmt1(ps) cells. Reconstitution experiments and replication labeling in Dnmt1-/- Dnmt3a-/- Dnmt3b-/- (i.e., unmethylated) embryonic stem cells revealed that preexisting DNA methylation is a major determinant for the cell cycle-dependent localization of DNMT1. The C-terminal catalytic domain of DNMT1 inhibited its stable association with unmethylated chromatin. Our results reveal essential roles for the DNA methylation mark in mammalian development and in DNMT1 localization.
Collapse
Affiliation(s)
- Shin-ichiro Takebayashi
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, 2-2-3, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
1566
|
DNMT1 interacts with the developmental transcriptional repressor HESX1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:131-43. [PMID: 17931718 PMCID: PMC2233781 DOI: 10.1016/j.bbamcr.2007.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 01/18/2023]
Abstract
Hesx1 is a highly conserved homeobox gene present in vertebrates, but absent from invertebrates. Gene targeting experiments in mice have shown that this transcriptional repressor is required for normal forebrain and pituitary development. In humans, mutations in HESX1 impairing either its repressing activity or DNA binding properties lead to a comparable phenotype to that observed in Hesx1 deficient mice. In an attempt to gain insights into the molecular function of HESX1, we have performed a yeast two-hybrid screen and identified DNA methyltransferase 1 (DNMT1) as a HESX1 binding protein. We show that Dnmt1 is co-expressed with Hesx1 within the anterior forebrain and in the developing Rathke's pouch. Mapping of the interacting regions indicates that the entire HESX1 protein is required to establish binding to a portion of the N-terminus of DNMT1 and its catalytic domain in the C-terminus. The HESX1–DNMT1 complexes can be immunoprecipitated in cells and co-localise in the nucleus. These results establish a link between HESX1 and DNMT1 and suggest a novel mechanism for the repressing properties of HESX1.
Collapse
|
1567
|
Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med 2007; 13:363-72. [PMID: 17822958 DOI: 10.1016/j.molmed.2007.07.003] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 06/30/2007] [Accepted: 07/04/2007] [Indexed: 12/12/2022]
Abstract
Dynamic chromatin remodeling underlies many, if not all, DNA-templated biological processes, including gene transcription; DNA replication and repair; chromosome condensation; and segregation and apoptosis. Disruption of these processes has been linked to the development and progression of cancer. The mechanisms of dynamic chromatin remodeling include the use of covalent histone modifications, histone variants, ATP-dependent complexes and DNA methylation. Together, these mechanisms impart variation into the chromatin fiber, and this variation gives rise to an 'epigenetic landscape' that extends the biological output of DNA alone. Here, we review recent advances in chromatin remodeling, and pay particular attention to mechanisms that appear to be linked to human cancer. Where possible, we discuss the implications of these advances for disease-management strategies.
Collapse
Affiliation(s)
- Gang G Wang
- Laboratory of Chromatin Biology, The Rockefeller University, and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | |
Collapse
|
1568
|
Nuytten M, Beke L, Van Eynde A, Ceulemans H, Beullens M, Van Hummelen P, Fuks F, Bollen M. The transcriptional repressor NIPP1 is an essential player in EZH2-mediated gene silencing. Oncogene 2007; 27:1449-60. [PMID: 17724462 DOI: 10.1038/sj.onc.1210774] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
EZH2 is a Polycomb group (PcG) protein that promotes the late-stage development of cancer by silencing a specific set of genes, at least in part through trimethylation of associated histone H3 on Lys 27 (H3K27). Nuclear inhibitor of protein phosphatase-1 (NIPP1) is a ubiquitously expressed transcriptional repressor that has binding sites for the EZH2 interactor EED. Here, we examine the contribution of NIPP1 to EZH2-mediated gene silencing. Studies on NIPP1-deficient cells disclose a widespread and essential role of NIPP1 in the trimethylation of H3K27 by EZH2, not only in the onset of this trimethylation during embryonic development, but also in the maintenance of this repressive mark in proliferating cells. Consistent with this notion, EZH2 and NIPP1 silence a common set of genes, as revealed by gene-expression profiling, and NIPP1 is associated with established Polycomb target genes and with genomic regions that are enriched in Polycomb targets. Furthermore, most NIPP1 target genes are trimethylated on H3K27 and the knockdown of either NIPP1 or EZH2 is often associated with a loss of this modification. Our data reveal that NIPP1 is required for the global trimethylation of H3K27 and is implicated in gene silencing by EZH2.
Collapse
Affiliation(s)
- M Nuytten
- Laboratory of Biosignaling & Therapeutics, Department of Molecular Cell Biology, Faculty of Medicine, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
1569
|
Xi S, Zhu H, Xu H, Schmidtmann A, Geiman TM, Muegge K. Lsh controls Hox gene silencing during development. Proc Natl Acad Sci U S A 2007; 104:14366-71. [PMID: 17726103 PMCID: PMC1955459 DOI: 10.1073/pnas.0703669104] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Polycomb-mediated repression and DNA methylation are important epigenetic mechanisms of gene silencing. Recent evidence suggests a functional link between the polycomb repressive complex (PRC) and Dnmts in cancer cells. Here we provide evidence that Lsh, a regulator of DNA methylation, is also involved in normal control of PRC-mediated silencing during embryogenesis. We demonstrate that Lsh, a SNF2 homolog, can associate with some Hox genes and regulates Dnmt3b binding, DNA methylation, and silencing of Hox genes during development. Moreover, Lsh can associate with PRC1 components and influence PRC-mediated histone modifications. Thus Lsh is part of a physiological feedback loop that reinforces DNA methylation and silencing of PRC targets.
Collapse
Affiliation(s)
- Sichuan Xi
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
| | - Heming Zhu
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
| | - Hong Xu
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
| | - Anja Schmidtmann
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
| | - Theresa M. Geiman
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
| | - Kathrin Muegge
- Laboratory of Cancer Prevention, SAIC-Frederick, National Cancer Institute, Frederick, MD 21702-1201
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1570
|
Adcock IM, Tsaprouni L, Bhavsar P, Ito K. Epigenetic regulation of airway inflammation. Curr Opin Immunol 2007; 19:694-700. [PMID: 17720468 DOI: 10.1016/j.coi.2007.07.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/11/2007] [Accepted: 07/12/2007] [Indexed: 12/29/2022]
Abstract
Diverse cellular functions including the regulation of inflammatory gene expression, DNA repair and cell proliferation are regulated by epigenetic changes. Transcriptional co-activators possess intrinsic histone acetyltransferase (HAT) activity, and histone acetylation plays a major role in inflammatory gene expression. Other marks such as histone methylation are also associated with gene induction and gene repression. Recent evidence implicates histone acetylation and methylation as being crucial for the development of tolerance in macrophages and CpG methylation for T regulatory cell development and function. The expression of the enzymes that lay down or remove these epigenetic marks have not been well studied in human airways disease, but reduced HDAC2 expression and activity is reported in lung macrophages, biopsies and blood cells from patients with COPD, severe asthma and smoking asthma. In vitro, inhibitors of histone deacetylases (HDAC) often lead to a further induction of inflammatory gene expression. This is not always the case, however, as HATs and HDACs also target non-histone proteins particularly transcription factors to alter their activity. Furthermore, trichostatin A, an HDAC inhibitor, can reduce inflammation in a murine model of allergic asthma. This effect of HDAC inhibitors may be due to their effects on cell death acting through acetylation of non-histone proteins. The role of epigenetic modifications in inflammatory gene expression and in the control of cell function in the airways is becoming clearer. Targeting specific enzymes involved in this process may lead to new therapeutic agents, in particular, in situations where current anti-inflammatory therapies are currently suboptimal.
Collapse
Affiliation(s)
- Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | | | |
Collapse
|
1571
|
D'Alessio AC, Weaver ICG, Szyf M. Acetylation-induced transcription is required for active DNA demethylation in methylation-silenced genes. Mol Cell Biol 2007; 27:7462-74. [PMID: 17709385 PMCID: PMC2169050 DOI: 10.1128/mcb.01120-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A hallmark of vertebrate genes is that actively transcribed genes are hypomethylated in critical regulatory sequences. However, the mechanisms that link gene transcription and DNA hypomethylation are unclear. Using a trichostatin A (TSA)-induced replication-independent demethylation assay with HEK 293 cells, we show that RNA transcription is required for DNA demethylation. Histone acetylation precedes but is not sufficient to trigger DNA demethylation. Following histone acetylation, RNA polymerase II (RNAP II) interacts with the methylated promoter. Inhibition of RNAP II transcription with actinomycin D, alpha-amanitin, or CDK7-specific small interfering RNA inhibits DNA demethylation. H3 trimethyl lysine 4 methylation, a marker of actively transcribed genes, was associated with the cytomegalovirus promoter only after demethylation. TSA-induced demethylation of the endogenous cancer testis gene GAGE follows a similar sequence of events and is dependent on RNA transcription as well. These data suggest that DNA demethylation follows rather than precedes early transcription and point towards a novel function for DNA demethylation as a memory of actively transcribed genes.
Collapse
Affiliation(s)
- Ana C D'Alessio
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
1572
|
Aufsatz W, Stoiber T, Rakic B, Naumann K. Arabidopsis histone deacetylase 6: a green link to RNA silencing. Oncogene 2007; 26:5477-88. [PMID: 17694088 DOI: 10.1038/sj.onc.1210615] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epigenetic reprogramming is at the base of cancer initiation and progression. Generally, genome-wide reduction in cytosine methylation contrasts with the hypermethylation of control regions of functionally well-established tumor suppressor genes and many other genes whose role in cancer biology is not yet clear. While insight into mechanisms that induce aberrant cytosine methylation in cancer cells is just beginning to emerge, the initiating signals for analogous promoter methylation in plants are well documented. In Arabidopsis, the silencing of promoters requires components of the RNA interference machinery and promoter double-stranded RNA (dsRNA) to induce a repressive chromatin state that is characterized by cytosine methylation and histone deacetylation catalysed by the RPD3-type histone deacetylase AtHDA6. Similar mechanisms have been shown to occur in fission yeast and mammals. This review focuses on the connections between cytosine methylation, dsRNA and AtHDA6-controlled histone deacetylation during promoter silencing in Arabidopsis and discusses potential mechanistic similarities of these silencing events in cancer and plant cells.
Collapse
Affiliation(s)
- W Aufsatz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria.
| | | | | | | |
Collapse
|
1573
|
Hinz S, Kempkensteffen C, Christoph F, Hoffmann M, Krause H, Schrader M, Schostak M, Miller K, Weikert S. Expression of the polycomb group protein EZH2 and its relation to outcome in patients with urothelial carcinoma of the bladder. J Cancer Res Clin Oncol 2007; 134:331-6. [PMID: 17694325 DOI: 10.1007/s00432-007-0288-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 07/17/2007] [Indexed: 01/17/2023]
Abstract
PURPOSE The polycomb group protein Enhancer of Zeste Homolg 2 (EZH2), a repressor of gene transcription, has been linked to the progression of various malignancies. This study was done to examine a potential correlation of EZH2 mRNA expression with clinicopathological parameters and outcome in patients with urothelial carcinoma (UC) of the bladder. METHODS We determined the relative EZH2 gene expression by quantitative RT-PCR in tumor specimens from a cohort of 100 patients with UC (mean follow-up 44.2 months). EZH2 expression levels were correlated to pathological tumor features and outcome. RESULTS Enhancer of Zeste Homolg 2 was expressed in 90% of the tumor samples. Expression levels increased in parallel with tumor stage (P = 0.002). High grade UC displayed significantly elevated EZH2 levels compared to low grade disease (P < 0.0001). High EZH2 expression was related to an abbreviated time to recurrence in muscle invasive carcinomas (pT >/= 2) (P = 0.028). No such correlation was detected in the group of superficial tumors (pT </= 1) (P = 0.191). High EZH2 expression levels were associated with an increased risk of tumor related death in the univariate analysis (relative risk, 3.1; P = 0.029). This association became non-significant when the prognostic effect of tumor stage was considered in a multivariate model. CONCLUSIONS Enhancer of Zeste Homolg 2 expression is related to an aggressive tumor behavior but due to its strong association with pathological features, EZH2 levels do not provide independent prognostic information.
Collapse
Affiliation(s)
- Stefan Hinz
- Department of Urology, Universitätsmedizin Berlin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
1574
|
Abstract
The epigenome serves as an interface between the dynamic environment and the inherited static genome. The epigenome is comprised of chromatin and a covalent modification of DNA by methylation. The epigenome is sculpted during development to shape the diversity of gene expression programs in the different cell types of the organism by a highly organized process. Epigenetic aberrations have similar consequences to genetic polymorphisms resulting in variations in gene function. Recent data suggest that the epigenome is dynamic and is therefore responsive to environmental signals not only during the critical periods in development but also later in life as well. It is postulated here that not only chemicals but also exposure to social behavior, such as maternal care, could affect the epigenome. It is proposed that exposures to different environmental agents could lead to interindividual phenotypic diversity as well as differential susceptibility to disease and behavioral pathologies. Interindividual differences in the epigenetic state could also affect susceptibility to xenobiotics. Although our current understanding of how epigenetic mechanisms impact on the toxic action of xenobiotics is very limited, it is anticipated that in the future, epigenetics will be incorporated in the assessment of the safety of chemicals.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
1575
|
Lederman L. RNAi. Biotechniques 2007; 43:155, 157, 159. [PMID: 17824382 DOI: 10.2144/000112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
1576
|
Han J, Kim D, Morris KV. Promoter-associated RNA is required for RNA-directed transcriptional gene silencing in human cells. Proc Natl Acad Sci U S A 2007; 104:12422-7. [PMID: 17640892 PMCID: PMC1924466 DOI: 10.1073/pnas.0701635104] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
siRNAs targeted to gene promoters can direct epigenetic modifications that result in transcriptional gene silencing in human cells. It is not clear whether the antisense strand of the siRNAs bind directly to DNA or to a sense-stranded RNA transcript corresponding to the known promoter region. We present evidence that an RNA polymerase II expressed mRNA containing an extended 5' untranslated region that overlaps the gene promoter is required for RNA-directed epigenetic modifications and transcriptional silencing of the RNA-targeted promoter. These promoter-associated RNAs were detected by their hybridization to the antisense strand of the complementary promoter-directed siRNA. Antisense phosphorothioate oligodeoxynucleotides were used to degrade the promoter-associated RNA transcripts, the loss of which abrogated the effect of siRNA-mediated transcriptional gene silencing, as well as the complexing of the siRNA with the silent state histone methyl mark and the promoter-associated RNA. These data demonstrate that low-copy promoter-associated RNAs transcribed through RNAPII promoters are recognized by the antisense strand of the siRNA and function as a recognition motif to direct epigenetic silencing complexes to the corresponding targeted promoters to mediate transcriptional silencing in human cells.
Collapse
Affiliation(s)
- Jiang Han
- *Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
| | - Daniel Kim
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 East Duarte Road, Duarte, CA 91010
| | - Kevin V. Morris
- *Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1577
|
Li B, Zhou J, Liu P, Hu J, Jin H, Shimono Y, Takahashi M, Xu G. Polycomb protein Cbx4 promotes SUMO modification of de novo DNA methyltransferase Dnmt3a. Biochem J 2007; 405:369-78. [PMID: 17439403 PMCID: PMC1904525 DOI: 10.1042/bj20061873] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 'de novo methyltransferase' Dnmt3a (DNA methyltransferase 3a) has been shown to mediate transcriptional repression. Post-translational modification of Dnmt3a by SUMOylation affects its ability to transcriptionally repress. However, very little is known about how the SUMOylation process is regulated. In the present study, we identified a PcG (Polycomb group) protein, Cbx4 (chromobox 4), as a specific interaction partner of Dnmt3a. Co-expression of Cbx4 and SUMO-1 (small ubiquitin-related modifier-1) along with Dnmt3a in transfected cells results in enhanced modification of Dnmt3a with SUMO-1. Purified Cbx4 also promotes SUMOylation of Dnmt3a in vitro. The modification occurs in the N-terminal regulatory region, including the PWWP (Pro-Trp-Trp-Pro) domain. Our results suggest that Cbx4 functions as a SUMO E3 ligase for Dnmt3a and it might be involved in the functional regulation of DNA methyltransferases by promoting their SUMO modification.
Collapse
Affiliation(s)
- Bing Li
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- †Graduate School of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Jing Zhou
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- †Graduate School of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Peng Liu
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- †Graduate School of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Jialei Hu
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- †Graduate School of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Hong Jin
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- †Graduate School of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
| | - Yohei Shimono
- ‡Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- ‡Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Guoliang Xu
- *State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, People's Republic of China
- To whom correspondence should be addressed (email )
| |
Collapse
|
1578
|
Szyf M, Weaver I, Meaney M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol 2007; 24:9-19. [PMID: 17561370 DOI: 10.1016/j.reprotox.2007.05.001] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 04/26/2007] [Accepted: 05/02/2007] [Indexed: 01/24/2023]
Abstract
The genome is programmed by the epigenome, which is comprised of chromatin and a covalent modification of DNA by methylation. Epigenetic patterns are sculpted during development to shape the diversity of gene expression programs in the different cell types of the organism. The epigenome of the developing fetus is especially sensitive to maternal nutrition, and exposure to environmental toxins as well as psychological stress. It is postulated here that not only chemicals but also exposure of the young pup to social behavior, such as maternal care, could affect the epigenome. Since epigenetic programming defines the state of expression of genes, epigenetic differences could have the same consequences as genetic polymorphisms. We will propose here a mechanism linking maternal behavior and epigenetic programming and we will discuss the prospect that similar epigenetic variations generated during early life play a role in generating inter-individual differences in human behavior. We speculate that exposures to different environmental toxins, which affect the epigenetic machinery might alter long-established epigenetic programs in the brain.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montréal, Québec H3G 1Y6, Canada.
| | | | | |
Collapse
|
1579
|
Blumenberg M, Gao S, Dickman K, Grollman AP, Bottinger EP, Zavadil J. Chromatin Structure Regulation in Transforming Growth Factor-β-Directed Epithelial-Mesenchymal Transition. Cells Tissues Organs 2007; 185:162-74. [PMID: 17587822 DOI: 10.1159/000101317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) occur in organogenesis throughout embryonic development and are recapitulated during epithelial tissue injury and in carcinoma progression. EMTs are regulated by complex, precisely orchestrated cell signaling and gene expression networks, with the participation of key developmental pathways. Here we review context-dependent modules of gene regulation by hairy/enhancer-of-split-related (H/E(spl)) repressors downstream of transforming growth factor-beta (TGF-beta)/Smad and Notch signals in EMT and in other phenotype transitions such as differentiation and cancer. Based on multiple models of disease-related EMT, we propose that Polycomb group epigenetic silencers and histone-lysine methyl-transferases EZH1 and EZH2 are candidate targets of H/E(spl)-mediated transcriptional repression, in a process accompanied by replacement of modified core histone H3 with de novo synthesized histone variant H3.3B. Finally, we discuss the potential significance of this scenario for EMT in the light of recent findings on gene regulation by histone modifications and chromatin structure changes.
Collapse
Affiliation(s)
- Miroslav Blumenberg
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
1580
|
Eden E, Lipson D, Yogev S, Yakhini Z. Discovering motifs in ranked lists of DNA sequences. PLoS Comput Biol 2007; 3:e39. [PMID: 17381235 PMCID: PMC1829477 DOI: 10.1371/journal.pcbi.0030039] [Citation(s) in RCA: 512] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 01/05/2007] [Indexed: 01/25/2023] Open
Abstract
Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall, we demonstrate that the statistical framework embodied in the DRIM software tool is highly effective for identifying regulatory sequence elements in a variety of applications ranging from expression and ChIP–chip to CpG methylation data. DRIM is publicly available at http://bioinfo.cs.technion.ac.il/drim. A computational problem with many applications in molecular biology is to identify short DNA sequence patterns (motifs) that are significantly overrepresented in a target set of genomic sequences relative to a background set of genomic sequences. One example is a target set that contains DNA sequences to which a specific transcription factor protein was experimentally measured as bound while the background set contains sequences to which the same transcription factor was not bound. Overrepresented sequence motifs in the target set may represent a subsequence that is molecularly recognized by the transcription factor. An inherent limitation of the above formulation of the problem lies in the fact that in many cases data cannot be clearly partitioned into distinct target and background sets in a biologically justified manner. We describe a statistical framework for discovering motifs in a list of genomic sequences that are ranked according to a biological parameter or measurement (e.g., transcription factor to sequence binding measurements). Our approach circumvents the need to partition the data into target and background sets using arbitrarily set parameters. The framework is implemented in a software tool called DRIM. The application of DRIM led to the identification of novel putative transcription factor binding sites in yeast and to the discovery of previously unknown motifs in CpG methylation regions in human cancer cell lines.
Collapse
Affiliation(s)
- Eran Eden
- Computer Science Department, Technion, Haifa, Israel
- * To whom correspondence should be addressed. E-mail: or (EE), (ZY)
| | - Doron Lipson
- Computer Science Department, Technion, Haifa, Israel
| | - Sivan Yogev
- Computer Science Department, Technion, Haifa, Israel
- IBM Research Laboratories, Haifa, Israel
| | - Zohar Yakhini
- Computer Science Department, Technion, Haifa, Israel
- Agilent Laboratories, Santa Clara, California, United States of America
- * To whom correspondence should be addressed. E-mail: or (EE), (ZY)
| |
Collapse
|
1581
|
Hawkins RD, Bashiardes S, Powder KE, Sajan SA, Bhonagiri V, Alvarado DM, Speck J, Warchol ME, Lovett M. Large scale gene expression profiles of regenerating inner ear sensory epithelia. PLoS One 2007; 2:e525. [PMID: 17565378 PMCID: PMC1888727 DOI: 10.1371/journal.pone.0000525] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 05/23/2007] [Indexed: 12/29/2022] Open
Abstract
Loss of inner ear sensory hair cells (HC) is a leading cause of human hearing loss and balance disorders. Unlike mammals, many lower vertebrates can regenerate these cells. We used cross-species microarrays to examine this process in the avian inner ear. Specifically, changes in expression of over 1700 transcription factor (TF) genes were investigated in hair cells of auditory and vestibular organs following treatment with two different damaging agents and regeneration in vitro. Multiple components of seven distinct known signaling pathways were clearly identifiable: TGFbeta, PAX, NOTCH, WNT, NFKappaB, INSULIN/IGF1 and AP1. Numerous components of apoptotic and cell cycle control pathways were differentially expressed, including p27(KIP) and TFs that regulate its expression. A comparison of expression trends across tissues and treatments revealed identical patterns of expression that occurred at identical times during regenerative proliferation. Network analysis of the patterns of gene expression in this large dataset also revealed the additional presence of many components (and possible network interactions) of estrogen receptor signaling, circadian rhythm genes and parts of the polycomb complex (among others). Equal numbers of differentially expressed genes were identified that have not yet been placed into any known pathway. Specific time points and tissues also exhibited interesting differences: For example, 45 zinc finger genes were specifically up-regulated at later stages of cochlear regeneration. These results are the first of their kind and should provide the starting point for more detailed investigations of the role of these many pathways in HC recovery, and for a description of their possible interactions.
Collapse
Affiliation(s)
- R. David Hawkins
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stavros Bashiardes
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kara E. Powder
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Samin A. Sajan
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Veena Bhonagiri
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Alvarado
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Judith Speck
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark E. Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael Lovett
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1582
|
Fiskus W, Pranpat M, Balasis M, Herger B, Rao R, Chinnaiyan A, Atadja P, Bhalla K. Histone deacetylase inhibitors deplete enhancer of zeste 2 and associated polycomb repressive complex 2 proteins in human acute leukemia cells. Mol Cancer Ther 2007; 5:3096-104. [PMID: 17172412 DOI: 10.1158/1535-7163.mct-06-0418] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human enhancer of zeste 2 (EZH2) protein belongs to the multiprotein polycomb repressive complex 2, which also includes suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). The polycomb repressive complex 2 complex possesses histone methyltransferase activity mediated by the Su(var)3-9, enhancer of zeste, and trithorax domain of EZH2, which methylates histone H3 on lysine (K)-27 (H3K27). In the present studies, we determined that treatment with the hydroxamate histone deacetylase inhibitor LBH589 or LAQ824 depleted the protein levels of EZH2, SUZ12, and EED in the cultured (K562, U937, and HL-60) and primary human acute leukemia cells. This was associated with decreased levels of trimethylated and dimethylated H3K27, with concomitant depletion of the homeobox domain containing HOXA9 and of MEIS1 transcription factors. Knockdown of EZH2 by EZH2 small interfering RNA also depleted SUZ12 and EED, inhibited histone methyltransferase activity, and reduced trimethylated and dimethylated H3K27 levels, with a concomitant loss of clonogenic survival of the cultured acute myelogenous leukemia (AML) cells. EZH2 small interfering RNA sensitized the AML cells to LBH589-mediated depletion of EZH2, SUZ12, and EED; loss of clonogenic survival; and LBH589-induced differentiation of the AML cells. These findings support the rationale to test anti-EZH2 treatment combined with hydroxamate histone deacetylase inhibitors as an antileukemia epigenetic therapy, especially against AML with coexpression of EZH2, HOXA9, and MEIS1 genes.
Collapse
Affiliation(s)
- Warren Fiskus
- Medical College of Georgia Cancer Center, 1120 15th Street, CN2101A, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
1583
|
Sakamoto Y, Watanabe S, Ichimura T, Kawasuji M, Koseki H, Baba H, Nakao M. Overlapping Roles of the Methylated DNA-binding Protein MBD1 and Polycomb Group Proteins in Transcriptional Repression of HOXA Genes and Heterochromatin Foci Formation. J Biol Chem 2007; 282:16391-400. [PMID: 17428788 DOI: 10.1074/jbc.m700011200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Methylated DNA binding domain (MBD) proteins and Polycomb group (PcG) proteins maintain epigenetic silencing of transcriptional activity. We report that the DNA methylation-mediated repressor MBD1 interacts with Ring1b and hPc2, the major components of Polycomb repressive complex 1. The cysteine-rich CXXC domains of MBD1 bound to Ring1b and the chromodomain of hPc2. Chromatin immunoprecipitation analysis revealed that MBD1 and hPc2 were present in silenced Homeobox A (HOXA) genes which could be reactivated by knockdown of either MBD1 or hPc2, suggesting that MBD1 and hPc2 cooperate for transcriptional repression of HOXA genes. In the nuclei of HeLa cells, MBD1 existed in close association with these PcG proteins in some heterochromatin foci, whereas an MBD1 mutant lacking the CXXC domains or an hPc2 mutant lacking the chromodomain lost this colocalization in foci. Use of the DNA demethylating agent 5-azadeoxycytidine abolished the formation of MBD1 foci but not PcG foci. Knockdown of MBD1 by small interfering RNAs did not affect the foci containing hPc2 and Ring1b, whereas the MBD1 foci were not influenced by knockdown of hPc2. These indicate that the heterochromatin foci showing MBD1 and hPc2 colocalization arise through the interaction of MBD1 and hPc2 and that the foci of MBD1 are separable from those of the PcG proteins per se. Our present findings suggest that MBD1 and PcG proteins have overlapping roles in epigenetic gene silencing and heterochromatin foci formation through their interactions.
Collapse
Affiliation(s)
- Yasuo Sakamoto
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Graduate School of Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
1584
|
Hormaeche I, Licht JD. Chromatin modulation by oncogenic transcription factors: new complexity, new therapeutic targets. Cancer Cell 2007; 11:475-8. [PMID: 17560329 DOI: 10.1016/j.ccr.2007.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription factors such as PML-RARalpha, RUNX1-MTG8, and others work in large part by the recruitment of inhibitors of gene transcription to target promoters leading to aberrant repression of gene expression. PML-RARalpha, an archetypal chimeric oncoprotein, was previously shown to bring complexes of histone deacetylases (HDACs), histone methyltransferases (HMTases), and DNA methyl transferases (DNMTs) to target genes. In this issue of Cancer Cell, Villa et al. show that the full complement of chromatin machinery can be commandeered by these transcription factors with the polycomb group of proteins representing the newest identified recruit.
Collapse
Affiliation(s)
- Itsaso Hormaeche
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
1585
|
Hinz S, Kempkensteffen C, Weikert S, Schostak M, Schrader M, Miller K, Christoph F. EZH2 polycomb transcriptional repressor expression correlates with methylation of the APAF-1 gene in superficial transitional cell carcinoma of the bladder. Tumour Biol 2007; 28:151-7. [PMID: 17541304 DOI: 10.1159/000103380] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 10/19/2006] [Indexed: 01/31/2023] Open
Abstract
The EZH2 gene controls methylation of various EZH2 target promoters. The APAF-1, DAPK-1 und IGFBP-3 genes are frequently methylated in bladder cancer, and methylation of these genes is found in more aggressive tumor types. The aim of our study was to investigate a potential link between EZH2 mRNA expression and the extent of APAF-1, DAPK-1 and IGFBP-3 methylation in urothelial transitional cell carcinoma (TCC) and to correlate the data with histopathological parameters and follow-up data. EZH2 mRNA expression was measured by real-time reverse transcription polymerase chain reaction, and the methylation analysis was performed using methylation-specific real-time polymerase chain reaction. Tissue specimens were obtained from 35 patients with TCC. EZH2 mRNA expression was detected in all tumor specimens investigated. The EZH2 expression levels correlated well with the differentiation grade of the tumor specimens (p = 0.03), and the APAF-1 methylation correlated with tumor stage (p = 0.0001) and grade (p = 0.004). Matched pair analysis demonstrated a statistically significant correlation between elevated EZH2 mRNA expression and higher methylation levels of APAF-1 in superficial (p = 0.024) and well- differentiated (p = 0.04) TCC. In patients with recurrent TCC, APAF-1 and IGFBP-3 methylation levels were significantly higher (p = 0.03 and p = 0.01, respectively), which was not observed when EZH2 mRNA expression or DAPK-1 methylation levels were related to the clinical outcome. In conclusion, our data show that EZH2 expression and APAF-1 methylation are related to tumor progression and invasiveness. Moreover, these data present first evidence that APAF-1 methylation is related to transcriptional activity of EZH2 expression in early-stage tumor disease of the bladder.
Collapse
Affiliation(s)
- S Hinz
- Department of Urology, Charité - Universitatsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
1586
|
McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB. DNA Methylation and Complete Transcriptional Silencing of Cancer Genes Persist after Depletion of EZH2. Cancer Res 2007; 67:5097-102. [PMID: 17545586 DOI: 10.1158/0008-5472.can-06-2029] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent work suggests a link between the polycomb group protein EZH2 and mediation of gene silencing in association with maintenance of DNA methylation. However, we show that whereas basally expressed target cancer genes with minimal DNA methylation have increased transcription during EZH2 knockdown, densely DNA hypermethylated and silenced genes retain their methylation and remain transcriptionally silent. These results suggest that EZH2 can modulate transcription of basally expressed genes but not silent genes that are densely DNA methylated.
Collapse
Affiliation(s)
- Kelly M McGarvey
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | |
Collapse
|
1587
|
Ringrose L. Polycomb comes of age: genome-wide profiling of target sites. Curr Opin Cell Biol 2007; 19:290-7. [PMID: 17481880 DOI: 10.1016/j.ceb.2007.04.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
The Polycomb group proteins are best known for their role as epigenetic regulators of the fly homeotic (Hox) gene clusters, but it has long been clear that these well conserved proteins have many other targets. For example, they are vital for maintaining both the pluripotency of stem cells and the identity of differentiated cells. However, a comprehensive list of experimentally defined targets has been lacking. Six new studies use genome wide profiling techniques to map Polycomb targets in stem cells and differentiated cells in vertebrates and flies. The findings of these studies demand that we rethink some of our current assumptions about Polycomb function.
Collapse
Affiliation(s)
- Leonie Ringrose
- IMBA - Institute of Molecular Biotechnology GmbH, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
1588
|
Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Viré E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S, Fuks F, Helin K, Di Croce L. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell 2007; 11:513-25. [PMID: 17560333 DOI: 10.1016/j.ccr.2007.04.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/02/2006] [Accepted: 04/06/2007] [Indexed: 12/31/2022]
Abstract
Epigenetic changes are common alterations in cancer cells. Here, we have investigated the role of Polycomb group proteins in the establishment and maintenance of the aberrant silencing of tumor suppressor genes during transformation induced by the leukemia-associated PML-RARalpha fusion protein. We show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA demethylation of PML-RARalpha target genes. This results in promoter reactivation and granulocytic differentiation. Importantly, the epigenetic alterations caused by PML-RARalpha can be reverted by retinoic acid treatment of primary blasts from leukemic patients. Our results demonstrate that the direct targeting of Polycomb group proteins by an oncogene plays a key role during carcinogenesis.
Collapse
Affiliation(s)
- Raffaella Villa
- Centre de Regulacio Genomica, c/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1589
|
Important roles of multiple Sp1 binding sites and epigenetic modifications in the regulation of the methionine sulfoxide reductase B1 (MsrB1) promoter. BMC Mol Biol 2007; 8:39. [PMID: 17519015 PMCID: PMC1885803 DOI: 10.1186/1471-2199-8-39] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/22/2007] [Indexed: 02/05/2023] Open
Abstract
Background Methionine sulfoxide reductases (Msrs) are enzymes that catalyze the reduction of oxidized methionine residues. Most organisms that were genetically modified to lack the MsrA gene have shown shortening of their life span. Methionine sulfoxide reductases B (MsrB) proteins codified by three separate genes, named MsrB1, MsrB2, and MsrB3, are included in the Msrs system. To date, the mechanisms responsible for the transcriptional regulation of MsrB genes have not been reported. The aim of this study was to investigate the regulation of MsrB1 selenoprotein levels through transcriptional regulation of the MsrB1 gene in MDA-MB231 and MCF-7 breast carcinoma cell lines. Results A MsrB1 gene promoter is located 169 base pairs upstream from the transcription start site. It contains three Sp1 binding sites which are sufficient for maximal promoter activity in transient transfection experiments. High levels of MsrB1 transcript, protein and promoter activity were detected in low metastatic MCF7 human breast cancer cells. On the contrary, very low levels of both MsrB1 transcript and promoter activity were detected in the highly metastatic counterpart MDA-MB231 cells. A pivotal role for Sp1 in the constitutive expression of the MsrB1 gene was demonstrated through transient expression of mutant MsrB1 promoter-reporter gene constructs and chromatin immunoprecipitation experiments. Since Sp1 is ubiquitously expressed, these sites, while necessary, are not sufficient to explain the patterns of gene expression of MsrB1 in various human breast cancer cells. MDA-MB231 cells can be induced to express MsrB1 by treatment with 5-Aza-2'-deoxycytidine, a demethylating agent. Therefore, the MsrB1 promoter is controlled by epigenetic modifications. Conclusion The results of this study provide the first insights into the transcriptional regulation of the human MsrB1 gene, including the discovery that the Sp1 transcription factor may play a central role in its expression. We also demonstrated that the MsrB1 promoter activity appears to be controlled by epigenetic modifications such as methylation.
Collapse
|
1590
|
Abstract
Epigenetic gene silencing, and associated promoter CpG island DNA hypermethylation, is an alternative mechanism to mutations by which tumor suppressor genes may be inactivated within a cancer cell. These epigenetic changes are prevalent in all types of cancer, and their appearance may precede genetic changes in premalignant cells and foster the accumulation of additional genetic and epigenetic hits. These epigenetically modified genes constitute important categories of tumor suppressor genes including cell cycle regulators, pro-differentiation factors, and anti-apoptotic genes, and many of these genes are known to play a role in normal development. While the silencing of these genes may play an essential role in tumor initiation or progression, the mechanisms underlying the specific targeting of these genes for DNA hypermethylation remains to be determined. The large numbers of epigenetically silenced genes that may be present in any given tumor, and the clustering of silenced genes within single cell pathways, begs the question of whether gene silencing is a series of random events resulting in an enhanced survival of a premalignant clone, or whether silencing is the result of a directed, instructive program for silencing initiation reflective of the cells of origin for tumors. In this regard, the current review stresses the latter hypothesis and the important possibility that the program is linked, at least for silencing of some cancer genes, to the epigenetic control of stem/precursor cell gene expression patterns.
Collapse
Affiliation(s)
- Joyce E Ohm
- Cancer Biology Division, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University Medical Institutions, Baltimore, Maryland, USA
| | | |
Collapse
|
1591
|
Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res 2007; 618:163-74. [PMID: 17306846 PMCID: PMC1892579 DOI: 10.1016/j.mrfmmm.2006.05.038] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/25/2006] [Indexed: 04/15/2023]
Abstract
Alterations in epigenetic gene regulation are associated with human disease. Here, we discuss connections between DNA methylation and histone methylation, providing examples in which defects in these processes are linked with disease. Mutations in genes encoding DNA methyltransferases and proteins that bind methylated cytosine residues cause changes in gene expression and alterations in the patterns of DNA methylation. These changes are associated with cancer and congenital diseases due to defects in imprinting. Gene expression is also controlled through histone methylation. Altered levels of methyltransferases that modify lysine 27 of histone H3 (K27H3) and lysine 9 of histone H3 (K9H3) correlate with changes in Rb signaling and disruption of the cell cycle in cancer cells. The K27H3 mark recruits a Polycomb complex involved in regulating stem cell pluripotency, silencing of developmentally regulated genes, and controlling cancer progression. The K9H3 methyl mark recruits HP1, a structural protein that plays a role in heterochromatin formation, gene silencing, and viral latency. Cells exhibiting altered levels of HP1 are predicted to show a loss of silencing at genes regulating cancer progression. Gene silencing through K27H3 and K9H3 can involve histone deacetylation and DNA methylation, suggesting cross talk between epigenetic silencing systems through direct interactions among the various players. The reversible nature of these epigenetic modifications offers therapeutic possibilities for a wide spectrum of disease.
Collapse
Affiliation(s)
- Timothy J Moss
- Department of Biochemistry, 3136 MERF, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
1592
|
Abstract
Epigenetics is the study of the heritable changes in gene expression that occur without a change in the DNA sequence itself. These heritable epigenetic changes include chromatin folding and attachment to the nuclear matrix, packaging of DNA around nucleosomes, histone modifications, and DNA methylation. The epigenome is particularly susceptible to dysregulation during gestation, neonatal development, puberty, and old age. Nevertheless, it is most vulnerable to environmental factors during embryogenesis because the DNA synthetic rate is high, and the elaborate DNA methylation patterning and chromatin structure required for normal tissue development is established during early development. Metastable epialleles are alleles that are variably expressed in genetically identical individuals due to epigenetic modifications established during early development and are thought to be particularly vulnerable to environmental influences. The viable yellow agouti (A(vy)) allele, whose expression is correlated to DNA methylation, is a murine metastable epiallele, which has been used as an epigenetic biosensor for environmental factors affecting the fetal epigenome. In this review, we introduce epigenetic gene regulation, describe important epigenetic phenomenon in mammals, summarize literature linking the early environment to developmental plasticity of the fetal epigenome, and promote the necessity to identify epigenetically labile genes in the mouse and human genomes.
Collapse
Affiliation(s)
- Dana C Dolinoy
- Department of Radiation Oncology, University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
1593
|
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 2007; 5:e129. [PMID: 17439305 PMCID: PMC1852588 DOI: 10.1371/journal.pbio.0050129] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/07/2007] [Indexed: 11/19/2022] Open
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low-nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Oliver Clarenz
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Shawn Cokus
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yana V Bernatavichute
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
1594
|
Buck HM. The chemical and biochemical properties of methylphosphotriester DNA and RNA in comparison with their corresponding methylphosphonates. A dynamic model description. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:205-22. [PMID: 17365798 DOI: 10.1080/15257770601112812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methylphosphotriester DNA and RNA are of great interest to investigate their hybridization affinity with natural DNA and RNA with respect to their physical and biological properties. The results are compared with related modified oligonucleotides. Specific attention will be given to the development of recent antiretroviral nucleosides focused on their molecular conformation and the mechanistic aspects based on the physical properties of phosphorus in a trigonal bipyramidal configuration corresponding with in vitro and in vivo kinetics.
Collapse
Affiliation(s)
- Henk M Buck
- Kasteel Twikkelerf 94, Tilburg, 5037 TW, The Netherlands.
| |
Collapse
|
1595
|
Weber M, Schübeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 2007; 19:273-80. [PMID: 17466503 DOI: 10.1016/j.ceb.2007.04.011] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 04/16/2007] [Indexed: 01/22/2023]
Abstract
Methylation of cytosines can mediate epigenetic gene silencing and is the only known DNA modification in eukaryotes. Recent efforts to map DNA methylation across mammalian genomes revealed limited DNA methylation at regulatory regions but widespread methylation in intergenic regions and repeats. This is consistent with the idea that hypermethylation is the default epigenetic state and serves in maintaining genome integrity. DNA methylation patterns at regulatory regions are generally stable, but a minor subset of regulatory regions show variable DNA methylation between cell types, suggesting an additional dynamic component. Such promoter de novo methylation might be involved in the maintenance rather than the initiation of silencing of defined genes during development. How frequently such dynamic methylation occurs, its biological relevance and the pathways involved deserve investigation.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | |
Collapse
|
1596
|
Martin C, Zhang Y. Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 2007; 19:266-72. [PMID: 17466502 DOI: 10.1016/j.ceb.2007.04.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Accepted: 04/12/2007] [Indexed: 02/06/2023]
Abstract
The mechanisms by which stable gene expression patterns are inherited during cell division are not well understood. Chromatin is subject to a number of covalent modifications and it is generally believed that the transfer of these modifications between cell generations plays a critical role in inheritance, though how this occurs is a matter of debate. In one proposed model, replication of chromatin in a semi-conservative fashion would allow 'template reading' and 'writing' mechanisms to copy modifications from old histones to new histones. Conversely, if chromatin is replicated in a conservative fashion, then other mechanisms, such as the replacement and/or modification of histones during transcription, may mediate the replication of these modifications. Finally, several recent studies suggest that the faithful replication of DNA methylation patterns may be used to propagate histone modifications associated with gene silencing.
Collapse
Affiliation(s)
- Cyrus Martin
- Howard Hughes Medical Institute, Department of Biochemistry & Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
1597
|
Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RM, Tan PBO, Liu ET, Yu Q. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21:1050-63. [PMID: 17437993 PMCID: PMC1855231 DOI: 10.1101/gad.1524107] [Citation(s) in RCA: 729] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycomb-repressive complex 2 (PRC2)-mediated histone methylation plays an important role in aberrant cancer gene silencing and is a potential target for cancer therapy. Here we show that S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A (DZNep) induces efficient apoptotic cell death in cancer cells but not in normal cells. We found that DZNep effectively depleted cellular levels of PRC2 components EZH2, SUZ12, and EED and inhibited associated histone H3 Lys 27 methylation (but not H3 Lys 9 methylation). By integrating RNA interference (RNAi), genome-wide expression analysis, and chromatin immunoprecipitation (ChIP) studies, we have identified a prominent set of genes selectively repressed by PRC2 in breast cancer that can be reactivated by DZNep. We further demonstrate that the preferential reactivation of a set of these genes by DZNep, including a novel apoptosis affector, FBXO32, contributes to DZNep-induced apoptosis in breast cancer cells. Our results demonstrate the unique feature of DZNep as a novel chromatin remodeling compound and suggest that pharmacologic reversal of PRC2-mediated gene repression by DZNep may constitute a novel approach for cancer therapy.
Collapse
Affiliation(s)
- Jing Tan
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Xiaojing Yang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing 100094, China
| | - Li Zhuang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Xia Jiang
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - Wei Chen
- Duke-NUS Graduate Medical School, 169547, Singapore
| | - Puay Leng Lee
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
| | - R.K. Murthy Karuturi
- Information and Mathematic Sciences, Genome Institute of Singapore, 138672, Singapore
| | - Patrick Boon Ooi Tan
- Cell and Medical Biology, Genome Institute of Singapore, 138672, Singapore
- Duke-NUS Graduate Medical School, 169547, Singapore
| | - Edison T. Liu
- Cancer Biology, Genome Institute of Singapore, 138672, Singapore
| | - Qiang Yu
- Molecular Pharmacology, Genome Institute of Singapore, 138672, Singapore
- Corresponding author.E-MAIL ; FAX 65-6478-9003
| |
Collapse
|
1598
|
Abstract
Epigenetic gene inactivation in transformed cells involves many 'belts of silencing'. One of the best-known lesions of the malignant cell is the transcriptional repression of tumor-suppressor genes by promoter CpG island hypermethylation. We are in the process of completing the molecular dissection of the entire epigenetic machinery involved in methylation-associated silencing, such as DNA methyltransferases, methyl-CpG binding domain proteins, histone deacetylases, histone methyltransferases, histone demethylases and Polycomb proteins. The first indications are also starting to emerge about how the combination of cellular selection and targeted pathways leads to abnormal DNA methylation. One thing is certain already, promoter CpG island hypermethylation of tumor-suppressor genes is a common hallmark of all human cancers. It affects all cellular pathways with a tumor-type specific profile, and in addition to classical tumor-suppressor and DNA repair genes, it includes genes involved in premature aging and microRNAs with growth inhibitory functions. The importance of hypermethylation events is already in evidence at the bedside of cancer patients in the form of cancer detection markers and chemotherapy predictors, and in the approval of epigenetic drugs for the treatment of hematological malignancies. In the very near future, the synergy of candidate gene approaches and large-scale epigenomic technologies, such as methyl-DIP, will yield the complete DNA hypermethylome of cancer cells.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Laboratory, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
1599
|
Miremadi A, Oestergaard MZ, Pharoah PDP, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet 2007; 16 Spec No 1:R28-49. [PMID: 17613546 DOI: 10.1093/hmg/ddm021] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cancer epigenome is characterised by specific DNA methylation and chromatin modification patterns. The proteins that mediate these changes are encoded by the epigenetics genes here defined as: DNA methyltransferases (DNMT), methyl-CpG-binding domain (MBD) proteins, histone acetyltransferases (HAT), histone deacetylases (HDAC), histone methyltransferases (HMT) and histone demethylases. We review the evidence that these genes can be targeted by mutations and expression changes in human cancers.
Collapse
Affiliation(s)
- Ahmad Miremadi
- Cancer Genomics Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
1600
|
Jeltsch A, Jurkowska RZ, Jurkowski TP, Liebert K, Rathert P, Schlickenrieder M. Application of DNA methyltransferases in targeted DNA methylation. Appl Microbiol Biotechnol 2007; 75:1233-40. [PMID: 17431611 DOI: 10.1007/s00253-007-0966-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/21/2007] [Accepted: 03/21/2007] [Indexed: 12/31/2022]
Abstract
DNA methylation is an essential epigenetic modification. In bacteria, it is involved in gene regulation, DNA repair, and control of cell cycle. In eukaryotes, it acts in concert with other epigenetic modifications to regulate gene expression and chromatin structure. In addition to these biological roles, DNA methyltransferases have several interesting applications in biotechnology, which are the main focus of this review, namely, (1) in vivo footprinting: as several bacterial DNA methyltransferases cannot methylate DNA bound to histone proteins, the pattern of DNA methylation after expression of DNA methyltransferases in the cell allows determining nucleosome positioning; (2) mapping the binding specificity of DNA binding proteins: after fusion of a DNA methyltransferase to a DNA-binding protein and expression of the fusion protein in a cell, the DNA methylation pattern reflects the DNA-binding specificity of the DNA-binding protein; and (3) targeted gene silencing: after fusion of a DNA methyltransferase to a suitable DNA-binding domain, DNA methylation can be directed to promoter regions of target genes. Thereby, gene expression can be switched off specifically, efficiently, and stably, which has a number of potential medical applications.
Collapse
Affiliation(s)
- Albert Jeltsch
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|