1601
|
Kimura T, Kato Y, Ozawa Y, Kodama K, Ito J, Ichikawa K, Yamada K, Hori Y, Tabata K, Takase K, Matsui J, Funahashi Y, Nomoto K. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci 2018; 109:3993-4002. [PMID: 30447042 PMCID: PMC6272102 DOI: 10.1111/cas.13806] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis inhibitors such as lenvatinib and sorafenib, and an immune checkpoint inhibitor (ICI), nivolumab, are used for anticancer therapies against advanced hepatocellular carcinoma (HCC). Combination treatments comprising angiogenesis inhibitors plus ICIs are promising options for improving clinical benefits in HCC patients, and clinical trials are ongoing. Here, we investigated the antitumor and immunomodulatory activities of lenvatinib (a multiple receptor tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor 1‐3, fibroblast growth factor receptor 1‐4, platelet‐derived growth factor receptor α, KIT and RET) and the combined antitumor activity of lenvatinib plus anti‐programmed cell death 1 (PD‐1) antibody in the Hepa1‐6 mouse HCC syngeneic model. We found that the antitumor activities of lenvatinib and sorafenib were not different in immunodeficient mice, but lenvatinib showed more potent antitumor activity than sorafenib in immunocompetent mice. The antitumor activity of lenvatinib was greater in immunocompetent mice than in immunodeficient mice and was attenuated by CD8+ T cell depletion. Treatment with lenvatinib plus anti‐PD‐1 antibody resulted in more tumor regression and a higher response rate compared with either treatment alone in immunocompetent mice. Single‐cell RNA sequencing analysis demonstrated that treatment with lenvatinib with or without anti‐PD‐1 antibody decreased the proportion of monocytes and macrophages population and increased that of CD8+ T cell populations. These data suggest that lenvatinib has immunomodulatory activity that contributes to the antitumor activity of lenvatinib and enhances the antitumor activity in combination treatment with anti‐PD‐1 antibody. Combination treatment of lenvatinib plus anti‐PD‐1 antibody therefore warrants further investigation against advanced HCC.
Collapse
Affiliation(s)
- Takayuki Kimura
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Yu Kato
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Yoichi Ozawa
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Kotaro Kodama
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Junichi Ito
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Kenji Ichikawa
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Kazuhiko Yamada
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Yusaku Hori
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Kimiyo Tabata
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Kazuma Takase
- Tsukuba Research Laboratories, Eisai, Tsukuba, Ibaraki, Japan
| | - Junji Matsui
- Oncology Business Group, Eisai, Woodcliff Lake, New Jersey
| | | | - Kenichi Nomoto
- Oncology Business Group, Eisai, Woodcliff Lake, New Jersey
| |
Collapse
|
1602
|
|
1603
|
Wang XB, Chen J, Xiang BD, Wu FX, Li LQ. High CONUT score predicts poor survival and postoperative HBV reactivation in HBV-related hepatocellular carcinoma patients with low HBV-DNA levels. Eur J Surg Oncol 2018; 45:782-787. [PMID: 30503048 DOI: 10.1016/j.ejso.2018.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Postoperative hepatitis B virus (HBV) reactivation (PHR) is associated with resection-induced immunosuppression in patients with HBV-related hepatocellular carcinoma (HCC). Controlling Nutritional Status (CONUT) score is an effective index for evaluating immune-nutrition function. However, the value of COUNT in predicting PHR in HBV-HCC patients remains unknown. METHODS Totally, 209 HCC patients were enrolled. RESULTS Preoperative immune function (CD3+CD4+, CD3+CD8+, IgG and IgM) in patients with high CONUT score was significantly worse than that in patients with low CONUT score (P<0.05). Blood test results on postoperative day 7 showed the same trend. In addition, patients with high CONUT score experienced a significantly larger decrease in the proportions of CD3+CD4+ and CD3+CD8+ than those with low CONUT score (P < 0.05). In patients with high CONUT score, the incidence of overall complications was also significantly higher (P = 0.029) and hospital-stay was significantly longer (P = 0.020). Besides, overall survival and recurrence free survival in patients with high CONUT score were significantly worse than those in patients with low CONUT score (48.32 vs. 38.12 months, P<0.001; 36.08 vs. 27.03 months, P = 0.001). The incidence of PHR was significantly higher in patients with high COUNT score (P<0.001), and CONUT score was strongly associated with PHR (P<0.001). Additionally, the fellow subgroup results also demonstrated that COUNT score was more effective in predicting PHR in patients with HBV-DNA level <500 copies/ml than patients with HBV-DNA 500-1000 copies/ml. CONCLUSION CONUT score is an effective indicator predicting survival and PHR in HBV-HCC patients, especially in those with HBV-DNA levels <500 copies/ml.
Collapse
Affiliation(s)
- Xiao-Bo Wang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Fei-Xiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
1604
|
Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H, Kang T. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 2018; 442:252-261. [PMID: 30423408 DOI: 10.1016/j.canlet.2018.11.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 01/11/2023]
Abstract
N6-methyladenosin (m6A) is one of the most pervasive modification of mRNA in eukaryotes and the m6A methyltransferases and demethylases play critical roles in many types of cancer. However the role of m6A-binding proteins in cancer remains elusive. Here we report that the down-regulation of YTHDF2 was specifically induced by hypoxia in hepatocellular carcinoma (HCC) cells, and that overexpression of YTHDF2 suppressed cell proliferation, tumor growth and activation of MEK and ERK in HCC cells. Mechanistically, YTHDF2 directly bound the m6A modification site of EGFR 3'-UTR to promote the degradation of EGFR mRNA in HCC cells. This is the first report showing that YTHDF2 may act as a tumor suppressor to repress cell proliferation and growth via destabilizing the EGFR mRNA in HCC.
Collapse
Affiliation(s)
- Li Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Meifang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cuiling Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinchun Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Haiqing Ma
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
1605
|
Lu S, Cuzzucoli F, Jiang J, Liang LG, Wang Y, Kong M, Zhao X, Cui W, Li J, Wang S. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. LAB ON A CHIP 2018; 18:3379-3392. [PMID: 30298144 DOI: 10.1039/c8lc00852c] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cancer poses a great health threat to both developed and developing countries, and anti-cancer drugs are of important interest for improved clinical outcomes. Although tumor-on-a-chip technologies offer a feasible approach to screening drug toxicity, their capability to mimic the native tumor microenvironment (TME) is still limited. For better mimicry of the TME, we developed a biomimetic three-dimensional (3D) liver tumor-on-a-chip with the integration of essential components derived from decellularized liver matrix (DLM) with gelatin methacryloyl (GelMA) in a microfluidics-based 3D dynamic cell culture system. The biomimetic liver tumor-on-a-chip based on the integration of DLM components with GelMA, as opposed to GelMA only, had an increased capability to maintain cell viability and to enhance hepatocyte functions under flow conditions. The improved performance of the DLM-GelMA-based tumor-on-a-chip may be attributed to the provision of biochemical factors (e.g., growth factors), the preservation of scaffold proteins, and the reestablishment of biophysical cues (e.g., stiffness and shear stress) for better recapitulation of the 3D liver TME. Furthermore, this DLM-GelMA-based tumor-on-a-chip exhibited linear dose-dependent drug responses to the toxicity of acetaminophen and sorafenib. Taken together, our study demonstrates that the DLM-GelMA-based biomimetic liver tumor-on-a-chip better mimics the in vivo TME and holds great promise for a breadth of pathological and pharmacological studies.
Collapse
Affiliation(s)
- Siming Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1606
|
Li N, Gao W, Zhang YF, Ho M. Glypicans as Cancer Therapeutic Targets. Trends Cancer 2018; 4:741-754. [PMID: 30352677 PMCID: PMC6209326 DOI: 10.1016/j.trecan.2018.09.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022]
Abstract
Glypicans are a group of cell-surface glycoproteins in which heparan sulfate (HS) glycosaminoglycan chains are covalently linked to a protein core. The glypican gene family is broadly conserved across animal species and plays important roles in biological processes. Glypicans can function as coreceptors for multiple signaling molecules known for regulating cell growth, motility, and differentiation. Some members of the glypican family, including glypican 2 (GPC2) and glypican 3 (GPC3), are expressed in childhood cancers and liver cancers, respectively. Antibody-based therapies targeting glypicans are being investigated in preclinical and clinical studies, with the goal of treating solid tumors that do not respond to standard therapies. These studies may establish glypicans as a new class of therapeutic targets for treating cancer.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Gao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Fan Zhang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
1607
|
Phospho-ERK is a biomarker of response to a synthetic lethal drug combination of sorafenib and MEK inhibition in liver cancer. J Hepatol 2018; 69:1057-1065. [PMID: 30030148 DOI: 10.1016/j.jhep.2018.07.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/01/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Treatment of liver cancer remains challenging because of a paucity of drugs that target critical dependencies. Sorafenib is a multikinase inhibitor that is approved as the standard therapy for patients with advanced hepatocellular carcinoma, but it only provides limited survival benefit. In this study we aimed to identify potential combination therapies to improve the clinical response to sorafenib. METHODS To investigate the cause of the limited therapeutic effect of sorafenib, we performed a CRISPR-Cas9 based synthetic lethality screen to search for kinases whose knockout synergizes with sorafenib. Synergistic effects of sorafenib and selumetinib on cell apoptosis and phospho-ERK (p-ERK) were analyzed by caspase-3/7 apoptosis assay and western blot, respectively. p-ERK was measured by immunochemical analysis using a tissue microarray containing 78 liver cancer specimens. The in vivo effects of the combination were also measured in two xenograft models. RESULT We found that suppression of ERK2 (MAPK1) sensitizes several liver cancer cell lines to sorafenib. Drugs inhibiting the MEK (MEK1/2 [MAP2K1/2]) or ERK (ERK1/2 [MAPK1/3]) kinases reverse unresponsiveness to sorafenib in vitro and in vivo in a subset of liver cancer cell lines characterized by high levels of active p-ERK, through synergistic inhibition of ERK kinase activity. CONCLUSION Our data provide a combination strategy for treating liver cancer and suggest that tumors with high basal p-ERK levels, which are seen in approximately 30% of liver cancers, are most likely to benefit from such combinatorial treatment. LAY SUMMARY Sorafenib is approved as the standard therapy for patients with advanced hepatocellular carcinoma, but only provides limited survival benefit. Herein, we found that inhibition of the kinase ERK2 increases the response to sorafenib in liver cancer. Our data indicate that a combination of sorafenib and a MEK inhibitor is most likely to be effective in tumors with high basal phospho-ERK levels.
Collapse
|
1608
|
Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol 2018; 21:702-712. [PMID: 30387047 DOI: 10.1007/s12094-018-1975-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary neoplasia of the liver. There have been tremendous efforts in the development of therapeutic strategies in the last decades. As opposed to other cancer entities immunotherapy has just recently gained popularity in HCC. Among various immunotherapy approaches, programmed cell death protein-1 (PD-1), and its ligand programmed death receptor ligand-1 (PD-L1) axis became one of the most promising pathway of the decade. The scientific interest in PD-1/PD-L1 axis is definitely justified due to: ability to detect PD-L1 expression in patients that underwent resection for HCC with prognostic values; the role of serum PD-L1 as a tool to identify early recurrences and to monitor treatment outcome; PD-1/PDL1 is a highly targetable pathway, with possible predictive markers, and with high clinical applicability that might help us in selecting a subgroup of HCC patients who are most likely to benefit from PD-1/PD-L1 inhibitors. In this review we will first discuss the prognostic role of PD-1/PD-L1 as a bio-marker in various clinical scenarios. Afterwards we will critically analyse the recently published trials with PD-1/PD-L1 inhibitors in HCC either alone or in combination with other treatment modalities. The higher focus will be on clinical rather than preclinical studies. Nevertheless, the strengths and limits of PD-1/PD-L1 axis in both prognosis and therapy of HCC will be highlighted.
Collapse
|
1609
|
Désert R, Nieto N, Musso O. Dimensions of hepatocellular carcinoma phenotypic diversity. World J Gastroenterol 2018; 24:4536-4547. [PMID: 30386103 PMCID: PMC6209578 DOI: 10.3748/wjg.v24.i40.4536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 3rd leading cause of cancer-related death worldwide. More than 80% of HCCs arise within chronic liver disease resulting from viral hepatitis, alcohol, hemochromatosis, obesity and metabolic syndrome or genotoxins. Projections based on Western lifestyle and its metabolic consequences anticipate a further increase in incidence, despite recent breakthroughs in the management of viral hepatitis. HCCs display high heterogeneity of molecular phenotypes, which challenges clinical management. However, emerging molecular classifications of HCCs have not yet formed a unified corpus translatable to the clinical practice. Thus, patient management is currently based upon tumor number, size, vascular invasion, performance status and functional liver reserve. Nonetheless, an impressive body of molecular evidence emerged within the last 20 years and is becoming increasingly available to medical practitioners and researchers in the form of repositories. Therefore, the aim this work is to review molecular data underlying HCC classifications and to organize this corpus into the major dimensions explaining HCC phenotypic diversity. Major efforts have been recently made worldwide toward a unifying “clinically-friendly” molecular landscape. As a result, a consensus emerges on three major dimensions explaining the HCC heterogeneity. In the first dimension, tumor cell proliferation and differentiation enabled allocation of HCCs to two major classes presenting profoundly different clinical aggressiveness. In the second dimension, HCC microenvironment and tumor immunity underlie recent therapeutic breakthroughs prolonging patients’ survival. In the third dimension, metabolic reprogramming, with the recent emergence of subclass-specific metabolic profiles, may lead to adaptive and combined therapeutic approaches. Therefore, here we review recent molecular evidence, their impact on tumor histopathological features and clinical behavior and highlight the remaining challenges to translate our cognitive corpus into patient diagnosis and allocation to therapeutic options.
Collapse
Affiliation(s)
- Romain Désert
- Institut NuMeCan, Université de Rennes 1, Institut national de la recherche agronomique (INRA), Institut national de la santé et de la recherche médicale (INSERM), Rennes F-35000, France
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, IL 60612, United States
| | - Natalia Nieto
- Department of Pathology, Department of Medicine (Gastroenterology and Hepatology), University of Illinois at Chicago, IL 60612, United States
| | - Orlando Musso
- Institut NuMeCan, Université de Rennes 1, Institut national de la recherche agronomique (INRA), Institut national de la santé et de la recherche médicale (INSERM), Rennes F-35000, France
| |
Collapse
|
1610
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
1611
|
Brar G, Greten TF, Brown ZJ. Current frontline approaches in the management of hepatocellular carcinoma: the evolving role of immunotherapy. Therap Adv Gastroenterol 2018; 11:1756284818808086. [PMID: 30377451 PMCID: PMC6202741 DOI: 10.1177/1756284818808086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 02/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-associated mortality worldwide and is expected to rise. Patients with early-stage disease may have a good prognosis with a 5-year survival rate of greater than 70%. However, the majority of patients are diagnosed with late-stage disease with a dismal overall survival rate of less than 16%. Therefore, there is a great need for advances in the treatment of advanced HCC, which for approximately the past decade, has been sorafenib. Immunotherapy is an evolving cancer treatment and has shown promise in treating patients with advanced HCC. In this review, we discuss the current standard of care for advanced HCC and then discuss the evolving role of immunotherapies.
Collapse
Affiliation(s)
- Gagandeep Brar
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F. Greten
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Institutes of Health, Building 10, Room 3B43, Bethesda, MD 20892, USA
| | - Zachary J. Brown
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
1612
|
Korhan P, Yılmaz Y, Bağırsakçı E, Güneş A, Topel H, Carr BI, Atabey N. Pleiotropic Effects of Heparins: From Clinical Applications to Molecular Mechanisms in Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2018; 2018:7568742. [PMID: 30425976 PMCID: PMC6217885 DOI: 10.1155/2018/7568742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health problem worldwide and most cases are incurable because of late presentation. It is the most common primary neoplasm of the liver and often arises in the context of a chronic liver disease that impairs coagulation. Portal vein thrombosis (PVT) is a common complication of HCC that is associated with a poor prognosis. Heparin derivatives are widely used in the management of venous thromboembolism (VTE). Among them low molecular weight heparin (LMWH) favorably influences the survival in patients with advanced cancer, including HCC. Due to their pleiotropic function, heparins affect tumorigenesis in many ways and may promote or hamper tumorigenic transformation depending on the cancer type and cancer stage along with their structural properties and concentration. Thus, their application as an antithrombotic along with the conventional therapy regime should be carefully planned to develop the best management strategies. In this review, we first will briefly review clinical applications of heparin derivatives in the management of cancer with a particular focus on HCC. We then summarize the state of knowledge whereby heparin can crosstalk with molecules playing a role in hepatocarcinogenesis. Lastly, we highlight new experimental and clinical research conducted with the aim of moving towards personalized therapy in cancer patients at risk of thromboembolism.
Collapse
Affiliation(s)
- Peyda Korhan
- Izmir Biomedicine and Genome Center, 35340, Turkey
| | - Yeliz Yılmaz
- Izmir Biomedicine and Genome Center, 35340, Turkey
- Medical Biology and Genetics, Heath Sciences Institute, Dokuz Eylul University, 35340, Turkey
| | - Ezgi Bağırsakçı
- Izmir Biomedicine and Genome Center, 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Turkey
| | - Ayşim Güneş
- Izmir Biomedicine and Genome Center, 35340, Turkey
| | - Hande Topel
- Izmir Biomedicine and Genome Center, 35340, Turkey
- Medical Biology and Genetics, Heath Sciences Institute, Dokuz Eylul University, 35340, Turkey
| | | | - Neşe Atabey
- Izmir Biomedicine and Genome Center, 35340, Turkey
| |
Collapse
|
1613
|
O’Rourke JM, Sagar VM, Shah T, Shetty S. Carcinogenesis on the background of liver fibrosis: Implications for the management of hepatocellular cancer. World J Gastroenterol 2018; 24:4436-4447. [PMID: 30357021 PMCID: PMC6196335 DOI: 10.3748/wjg.v24.i39.4436] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is now the second leading cause of cancer-related deaths globally and many patients have incurable disease. HCC predominantly occurs in the setting of liver cirrhosis and is a paradigm for inflammation-induced cancer. The causes of chronic liver disease promote the development of transformed or premalignant hepatocytes and predisposes to the development of HCC. For HCC to grow and progress it is now clear that it requires an immunosuppressive niche within the fibrogenic microenvironment of cirrhosis. The rationale for targeting this immunosuppression is supported by responses seen in recent trials with checkpoint inhibitors. With the impact of immunotherapy, HCC progression may be delayed and long term durable responses may be seen. This makes the management of the underlying liver cirrhosis in HCC even more crucial as studies demonstrate that measures of liver function are a major prognostic factor in HCC. In this review, we discuss the development of cancer in the setting of liver inflammation and fibrosis, reviewing the microenvironment that leads to this tumourigenic climate and the implications this has for patient management.
Collapse
Affiliation(s)
- Joanne Marie O’Rourke
- Centre for Liver Research, Institute of Biomedical Research, Birmingham B15 2TT, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| | - Vandana Mridhu Sagar
- Centre for Liver Research, Institute of Biomedical Research, Birmingham B15 2TT, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| | - Tahir Shah
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| | - Shishir Shetty
- Centre for Liver Research, Institute of Biomedical Research, Birmingham B15 2TT, United Kingdom
- NIHR Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| |
Collapse
|
1614
|
He B, Dai L, Zhang X, Chen D, Wu J, Feng X, Zhang Y, Xie H, Zhou L, Wu J, Zheng S. The HDAC Inhibitor Quisinostat (JNJ-26481585) Supresses Hepatocellular Carcinoma alone and Synergistically in Combination with Sorafenib by G0/G1 phase arrest and Apoptosis induction. Int J Biol Sci 2018; 14:1845-1858. [PMID: 30443188 PMCID: PMC6231215 DOI: 10.7150/ijbs.27661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The high activity of Histone deacetylases (HDACs) in hepatocellular carcinoma (HCC) usually positively correlates with poor prognosis of patients. Accordingly histone deacetylases inhibitors (HDACis) are considered to be potential agents treating patients with HCC. In our study, we evaluated effect of quisinostat alone and in combination with sorafenib in HCC cells via inducing G0/G1 phase arrest through PI3K/AKT/p21 pathway and apoptosis by JNK/c-Jun/caspase3 pathway in vitro and in vivo. The proliferation assay and flow cytometry were used to measure the viability, cell cycle and apoptosis. And Western blot assay was carried out to determine expression alternations of related proteins. Moreover HCCLM3 xenograft was further performed to detect antitumor effect of quisinostat in vivo. Here, we found that quisinostat impeded cell proliferation, and remarkably induced G0/G1 phase arrest and apoptosis in HCC cells in a dose-dependent manner. G0/G1 phase arrest was observed by alterations in PI3K/AKT/p21 proteins. Meanwhile the JNK, c-jun and caspase-3 were activated by quisinostat in a dose-dependent manner. Correspondingly quisinostat facilitated G0/G1 cycle arrest and apoptosis in HCC cells through PI3K/AKT/p21 pathways and JNK/c- jun/caspase3 pathways. Moreover, the potent tumor-suppressive effects facilitated by quisinostat, was significantly potentiated by combination with sorafenib in vitro and vivo. The combination treatment of quisinostat and sorafenib markedly suppressed cell proliferation and induced apoptosis in a synergistic manner. Moreover the therapy of quisinostat combined with sorafenib could apparently decrease tumor volume of a HCCLM3 xenograft model. Our study indicated that quisinostat, as a novel chemotherapy for HCC, exhibited excellent antitumor activity in vitro and vivo, which was even enhanced by the addition of sorafenib, implying combination of quisinostat with sorafenib a promising and alternative therapy for patients with advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Bin He
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longfei Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jingbang Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaode Feng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yanpeng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University.,NHFPC Key Laboratory of Combined Multi-organ Transplantation.,Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS.,Key Laboratory of Organ Transplantation, Zhejiang Province.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
1615
|
The CCR2 + Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers. Cell Mol Gastroenterol Hepatol 2018; 7:371-390. [PMID: 30704985 PMCID: PMC6357791 DOI: 10.1016/j.jcmgh.2018.10.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) typically arises in fibrotic or cirrhotic livers, which are characterized by pathogenic angiogenesis. Myeloid immune cells, specifically tumor-associated macrophages (TAMs), may represent potential novel therapeutic targets in HCC, complementing current ablative or immune therapies. However, the detailed functions of TAM subsets in hepatocarcinogenesis have remained obscure. METHODS TAM subsets were analyzed in-depth in human HCC samples and a combined fibrosis-HCC mouse model, established by i.p. injection with diethylnitrosamine after birth and repetitive carbon tetrachloride (CCl4) treatment for 16 weeks. Based on comprehensively phenotyping TAM subsets (fluorescence-activated cell sorter, transcriptomics) in mice, the function of CCR2+ TAM was assessed by a pharmacologic chemokine inhibitor. Angiogenesis was evaluated by contrast-enhanced micro-computed tomography and histology. RESULTS We show that human CCR2+ TAM accumulate at the highly vascularized HCC border and express the inflammatory marker S100A9, whereas CD163+ immune-suppressive TAM accrue in the HCC center. In the fibrosis-cancer mouse model, we identified 3 major hepatic myeloid cell populations with distinct messenger RNA profiles, of which CCR2+ TAM particularly showed activated inflammatory and angiogenic pathways. Inhibiting CCR2+ TAM infiltration using a pharmacologic chemokine CCL2 antagonist in the fibrosis-HCC model significantly reduced pathogenic vascularization and hepatic blood volume, alongside attenuated tumor volume. CONCLUSIONS The HCC microenvironment in human patients and mice is characterized by functionally distinct macrophage populations, of which the CCR2+ inflammatory TAM subset has pro-angiogenic properties. Understanding the functional differentiation of myeloid cell subsets in chronically inflamed liver may provide novel opportunities for modulating hepatic macrophages to inhibit tumor-promoting pathogenic angiogenesis.
Collapse
|
1616
|
Dow M, Pyke RM, Tsui BY, Alexandrov LB, Nakagawa H, Taniguchi K, Seki E, Harismendy O, Shalapour S, Karin M, Carter H, Font-Burgada J. Integrative genomic analysis of mouse and human hepatocellular carcinoma. Proc Natl Acad Sci U S A 2018; 115:E9879-E9888. [PMID: 30287485 PMCID: PMC6196518 DOI: 10.1073/pnas.1811029115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer genomics has enabled the exhaustive molecular characterization of tumors and exposed hepatocellular carcinoma (HCC) as among the most complex cancers. This complexity is paralleled by dozens of mouse models that generate histologically similar tumors but have not been systematically validated at the molecular level. Accurate models of the molecular pathogenesis of HCC are essential for biomedical progress; therefore we compared genomic and transcriptomic profiles of four separate mouse models [MUP transgenic, TAK1-knockout, carcinogen-driven diethylnitrosamine (DEN), and Stelic Animal Model (STAM)] with those of 987 HCC patients with distinct etiologies. These four models differed substantially in their mutational load, mutational signatures, affected genes and pathways, and transcriptomes. STAM tumors were most molecularly similar to human HCC, with frequent mutations in Ctnnb1, similar pathway alterations, and high transcriptomic similarity to high-grade, proliferative human tumors with poor prognosis. In contrast, TAK1 tumors better reflected the mutational signature of human HCC and were transcriptionally similar to low-grade human tumors. DEN tumors were least similar to human disease and almost universally carried the Braf V637E mutation, which is rarely found in human HCC. Immune analysis revealed that strain-specific MHC-I genotype can influence the molecular makeup of murine tumors. Thus, different mouse models of HCC recapitulate distinct aspects of HCC biology, and their use should be adapted to specific questions based on the molecular features provided here.
Collapse
Affiliation(s)
- Michelle Dow
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Rachel M Pyke
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Brian Y Tsui
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 113-8655 Tokyo, Japan
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Olivier Harismendy
- Health Science, Department of Biomedical Informatics, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla, CA 92093;
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093;
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
- Cancer Cell Map Initiative, University of California, San Diego, La Jolla, CA 92093
| | - Joan Font-Burgada
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
1617
|
Ferrara-Romeo I, Martínez P, Blasco MA. Mice lacking RAP1 show early onset and higher rates of DEN-induced hepatocellular carcinomas in female mice. PLoS One 2018; 13:e0204909. [PMID: 30307978 PMCID: PMC6187989 DOI: 10.1371/journal.pone.0204909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023] Open
Abstract
RAP1, a component of the telomere-protective shelterin complex, has been shown to have both telomeric and non-telomeric roles. In the liver, RAP1 is involved in the regulation of metabolic transcriptional programs. RAP1-deficient mice develop obesity and hepatic steatosis, these phenotypes being more severe in females than in males. As hepatic steatosis and obesity have been related to increased liver cancer in mice and humans, we set out to address whether RAP1 deficiency resulted in increased liver cancer upon chemical liver carcinogenesis. We found that Rap1-/- females were more susceptible to DEN-induced liver damage and hepatocellular carcinoma (HCC). DEN-treated Rap1-/- female livers showed an earlier onset of both premalignant and malignant liver lesions, which were characterized by increased abundance of γH2AX-positive cells, increased proliferation and shorter telomeres. These findings highlight an important role for RAP1 in protection from liver damage and liver cancer.
Collapse
Affiliation(s)
- Iole Ferrara-Romeo
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
1618
|
Muenzner JK, Kunze P, Lindner P, Polaschek S, Menke K, Eckstein M, Geppert CI, Chanvorachote P, Baeuerle T, Hartmann A, Schneider-Stock R. Generation and characterization of hepatocellular carcinoma cell lines with enhanced cancer stem cell potential. J Cell Mol Med 2018; 22:6238-6248. [PMID: 30280520 PMCID: PMC6237557 DOI: 10.1111/jcmm.13911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes for cancer-related death worldwide with rapidly increasing incidence and mortality rates. As for other types of cancers, also in HCC cancer stem cells (CSCs) are thought to be responsible for tumour initiation, progression and therapy failure. However, as rare subpopulations of tumour tissue, CSCs are difficult to isolate, thus making the development of suitable and reliable model systems necessary. In our study, we generated HepG2 subclones with enriched CSC potential by application of the spheroid formation method and subsequent single-cell cloning. Analyses in several 2D and 3D cell culture systems as well as a panel of functional assays both in vitro and in vivo revealed that the generated subclones displayed characteristic and sustained features of tumour initiating cells as well as highly aggressive properties related to tumour progression and metastasis. These characteristics could clearly be correlated with the expression of CSC markers that might have prognostic value in the clinical HCC setting. Therefore, we conclude that our CSC enriched HepG2 clones certainly represent suitable model systems to study the role of CSCs during HCC initiation, progression and drug resistance.
Collapse
Affiliation(s)
- Julienne K Muenzner
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Kunze
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pablo Lindner
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Sandra Polaschek
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kira Menke
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Tobias Baeuerle
- Preclinical Imaging Platform Erlangen (PIPE), Institute of Radiology, University Hospital Erlangen-Nuremberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
1619
|
Llovet JM, Montal R, Sia D, Finn RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol 2018; 15:599-616. [PMID: 30061739 DOI: 10.1038/s41571-018-0073-4] [Citation(s) in RCA: 1308] [Impact Index Per Article: 186.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global burden of hepatocellular carcinoma (HCC) is increasing and might soon surpass an annual incidence of 1 million cases. Genomic studies have established the landscape of molecular alterations in HCC; however, the most common mutations are not actionable, and only ~25% of tumours harbour potentially targetable drivers. Despite the fact that surveillance programmes lead to early diagnosis in 40-50% of patients, at a point when potentially curative treatments are applicable, almost half of all patients with HCC ultimately receive systemic therapies. Sorafenib was the first systemic therapy approved for patients with advanced-stage HCC, after a landmark study revealed an improvement in median overall survival from 8 to 11 months. New drugs - lenvatinib in the frontline and regorafenib, cabozantinib, and ramucirumab in the second line - have also been demonstrated to improve clinical outcomes, although the median overall survival remains ~1 year; thus, therapeutic breakthroughs are still needed. Immune-checkpoint inhibitors are now being incorporated into the HCC treatment armamentarium and combinations of molecularly targeted therapies with immunotherapies are emerging as tools to boost the immune response. Research on biomarkers of a response or primary resistance to immunotherapies is also advancing. Herein, we summarize the molecular targets and therapies for the management of HCC and discuss the advancements expected in the near future, including biomarker-driven treatments and immunotherapies.
Collapse
Affiliation(s)
- Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Liver Cancer Translational Lab, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | - Robert Montal
- Liver Cancer Translational Lab, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard S Finn
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
1620
|
Connor F, Rayner TF, Aitken SJ, Feig C, Lukk M, Santoyo-Lopez J, Odom DT. Mutational landscape of a chemically-induced mouse model of liver cancer. J Hepatol 2018; 69:840-850. [PMID: 29958939 PMCID: PMC6142872 DOI: 10.1016/j.jhep.2018.06.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Carcinogen-induced mouse models of liver cancer are used extensively to study the pathogenesis of the disease and are critical for validating candidate therapeutics. These models can recapitulate molecular and histological features of human disease. However, it is not known if the genomic alterations driving these mouse tumour genomes are comparable to those found in human tumours. Herein, we provide a detailed genomic characterisation of tumours from a commonly used mouse model of hepatocellular carcinoma (HCC). METHODS We analysed whole exome sequences of liver tumours arising in mice exposed to diethylnitrosamine (DEN). Mutational signatures were compared between liver tumours from DEN-treated and untreated mice, and human HCCs. RESULTS DEN-initiated tumours had a high, uniform number of somatic single nucleotide variants (SNVs), with few insertions, deletions or copy number alterations, consistent with the known genotoxic action of DEN. Exposure of hepatocytes to DEN left a reproducible mutational imprint in resulting tumour exomes which we could computationally reconstruct using six known COSMIC mutational signatures. The tumours carried a high diversity of low-incidence, non-synonymous point mutations in many oncogenes and tumour suppressors, reflecting the stochastic introduction of SNVs into the hepatocyte genome by the carcinogen. We identified four recurrently mutated genes that were putative oncogenic drivers of HCC in this model. Every neoplasm carried activating hotspot mutations either in codon 61 of Hras, in codon 584 of Braf or in codon 254 of Egfr. Truncating mutations of Apc occurred in 21% of neoplasms, which were exclusively carcinomas supporting a role for deregulation of Wnt/β-catenin signalling in cancer progression. CONCLUSIONS Our study provides detailed insight into the mutational landscape of tumours arising in a commonly used carcinogen model of HCC, facilitating the future use of this model to better understand the human disease. LAY SUMMARY Mouse models are widely used to study the biology of cancer and to test potential therapies. Herein, we have described the mutational landscape of tumours arising in a carcinogen-induced mouse model of liver cancer. Since cancer is a disease caused by genomic alterations, information about the patterns and types of mutations in the tumours in this mouse model should facilitate its use to study human liver cancer.
Collapse
Affiliation(s)
- Frances Connor
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Tim F Rayner
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah J Aitken
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK; Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Christine Feig
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Margus Lukk
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Javier Santoyo-Lopez
- Edinburgh Genomics (Clinical), The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK.
| |
Collapse
|
1621
|
Takahashi S, Tanaka N, Fukami T, Xie C, Yagai T, Kim D, Velenosi TJ, Yan T, Krausz KW, Levi M, Gonzalez FJ. Role of Farnesoid X Receptor and Bile Acids in Hepatic Tumor Development. Hepatol Commun 2018; 2:1567-1582. [PMID: 30556042 PMCID: PMC6287584 DOI: 10.1002/hep4.1263] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/09/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths worldwide, and an association between altered bile acid (BA) metabolism, down‐regulation of farnesoid X receptor (FXR), which is a master regulator of BA metabolism, and hepatocarcinogenesis has been documented. While global FXR deficiency in mice results in spontaneous HCC with aging, the contribution of tissue‐specific FXR deficiency to hepatocarcinogenesis remains unclear. In this study, the prevalence of hepatic tumors, expression of genes related to tumorigenesis, and serum/liver BA levels were compared among male whole‐body Fxr‐null, hepatocyte‐specific Fxr‐null (Fxr∆Hep), and enterocyte‐specific Fxr‐null (Fxr∆IE) mice at the age of 3, 14, and 20 months. More than 90% of 20‐month‐old whole‐body Fxr‐null mice had hepatic tumors with enhanced hepatic expression of myelocytomatosis oncogene (Myc) and cyclin‐dependent kinase 4 (Cdk4) messenger RNAs (mRNAs) and elevated serum taurocholate (TCA) and tauromuricholate (TMCA) and their respective unconjugated derivatives. The incidence of hepatic tumors was significantly lower in Fxr∆Hep and Fxr∆IE mice (20% and 5%, respectively), and the increases in Myc and Cdk4 mRNA or serum BA concentrations were not detected in these mice compared to Fxrfloxed [fl]/fl mice; a similar tendency was observed in 14‐month‐old mice. However, increased hepatic c‐Myc protein expression was found only in Fxr‐null mice at the age of 3, 14, and 20 months. Treatment with TCA induced Myc expression in Fxr‐null cultured primary mouse hepatocytes but not in wild‐type (WT) mouse hepatocytes, demonstrating that the combination of hepatocyte FXR disruption with elevated TCA is required for Myc induction and ensuing age‐dependent hepatocarcinogenesis in Fxr‐null mice. Conclusion: There is a relatively low risk of hepatic tumors by inhibition of FXR in enterocytes, likely due to the lack of increased TCA and Myc induction.
Collapse
Affiliation(s)
- Shogo Takahashi
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD.,Department of Biochemistry and Molecular and Cellular Biology Georgetown University Washington DC
| | - Naoki Tanaka
- Department of Metabolic Regulation Shinshu University School of Medicine Matsumoto Japan.,International Research Center for Agricultural Food Industry Shinshu University Matsumoto Japan
| | - Tatsuki Fukami
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD.,Present address: Department of Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences Kanazawa University Kanazawa Japan
| | - Cen Xie
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Tomoki Yagai
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Donghwan Kim
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Thomas J Velenosi
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Tingting Yan
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Kristopher W Krausz
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology Georgetown University Washington DC
| | - Frank J Gonzalez
- Laboratory of Metabolism National Cancer Institute, National Institutes of Health Bethesda MD
| |
Collapse
|
1622
|
Zhang X, Liu S, Dong Q, Xin Y, Xuan S. The Genetics of Clinical Liver Diseases: Insight into the TM6SF2 E167K Variant. J Clin Transl Hepatol 2018; 6:326-331. [PMID: 30271746 PMCID: PMC6160302 DOI: 10.14218/jcth.2018.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
The transmembrane 6 superfamily member 2 (TM6SF2) gene E167K variant (rs58542926) was identified by exome-wide association study as a nonsynonymous single nucleotide polymorphism associated with nonalcoholic fatty liver disease. The TM6SF2 E167K variant features a C-to-T substitution at nucleotide 499, encoding a glutamate with lysine change at codon 167 (E167K). TM6SF2 is markedly expressed in the liver, small intestine and kidney, and has been proposed as an important risk factor for diseases associated with lipid metabolism. Subsequently, multifunctional studies of the TM6SF2 E167K variant have been carried out in a spectrum of liver diseases, such as nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, fibrosis, cirrhosis, and viral hepatitis. This review summarizes the research status of the TM6SF2 E167K variant in different liver diseases and specific populations, and discusses the potential mechanisms of the TM6SF2 E167K variant's role in the progression of various liver diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
| | - Shousheng Liu
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Quanjiang Dong
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, China
| | - Yongning Xin
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Infectious Disease, Qingdao Municipal Hospital, Qingdao, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shiying Xuan
- Department of Gastroenterology, Taishan Medical University, Taian, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- *Correspondence to: Shiying Xuan, Department of Gastroenterology, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-88905508, Fax: +86-532-88905293, E-mail: ; Yongning Xin, Department of Infectious Disease, Qingdao Municipal Hospital, 1 Jiaozhou Road, Qingdao, Shandong 266011, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
1623
|
Sun W, Cabrera R. Systemic Treatment of Patients with Advanced, Unresectable Hepatocellular Carcinoma: Emergence of Therapies. J Gastrointest Cancer 2018; 49:107-115. [PMID: 29453759 PMCID: PMC5948236 DOI: 10.1007/s12029-018-0065-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To date, sorafenib, a multiple tyrosine kinase inhibitor, is the only systemic agent approved by the FDA in the first-line treatment of patients with unresectable hepatocellular carcinoma (HCC). Several other tyrosine kinase-inhibiting agents have been investigated in the first-line setting, either alone (sunitinib, brivanib, linifanib, and lenvatinib) or in combination with sorafenib (erlotinib and doxorubicin) in phase 3 trials. However, none of these studies demonstrated an improvement in survival over sorafenib. Many agents have also been tested in patients with HCC whose disease has progressed on sorafenib, but regorafenib is the only one to have demonstrated efficacy in this setting in a randomized, phase 3 trial. There were no clear survival benefits shown with everolimus, brivanib, or ramucirumab as second-line therapy. Nivolumab has also shown promising efficacy in patients with HCC who progressed on sorafenib, which was recently granted approval by the FDA, although larger confirmative trials may be considered. The treatment landscape for patients with advanced unresectable hepatocellular tumors has remained fairly static for the past 10 years, with multiple failed trials yield little change in the way these patients might be treated. However, recent findings for regorafenib, lenvatinib, and nivolumab have led to the most significant changes in the treatment paradigm in years.
Collapse
Affiliation(s)
- Weijing Sun
- University of Kansas School of Medicine, Kansas City, KS, USA. .,Univesity of Kansas Cancer Center, 2330 Shawnee Mission Pkwy, Suite 210, Westwood, KS, 66205, USA.
| | - Roniel Cabrera
- Division of Gastroenterology and Hepatology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
1624
|
Li C, Dai L, Zhang J, Zhang Y, Lin Y, Cheng L, Tian H, Zhang X, Wang Q, Yang Q, Wang Y, Shi G, Cheng F, Su X, Yang Y, Zhang S, Yu D, Wei Y, Deng H. Follistatin-like protein 5 inhibits hepatocellular carcinoma progression by inducing caspase-dependent apoptosis and regulating Bcl-2 family proteins. J Cell Mol Med 2018; 22:6190-6201. [PMID: 30255547 PMCID: PMC6237577 DOI: 10.1111/jcmm.13906] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 08/18/2018] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors in the world, especially in China. Follistatin‐like protein 5 (FSTL5) is a member of the FSTL family, which is involved in cell proliferation, migration, differentiation, and embryo development. We aimed to investigate the function and underlying mechanism of FSTL5 in HCC. FSTL5 expression was determined by immunohistochemistry staining in a liver cancer tissue microarray (TMA) and the correlation between FSTL5 and the prognosis of HCC patients was analysed. Further proliferation assay, colony formation assay, flow cytometry, and xenograft tumor model were performed to investigate the bioeffects of FSTL5 in HCC in vitro and in vivo. We found that FSTL5 expression was downregulated in HCC tissues and positively correlated with the prognosis of patients with HCC at tumor node metastasis stage I/II. Overexpression of FSTL5 efficiently impaired HCC growth both in vivo and in vitro with an exogenous manner. Mechanistic investigation demonstrated that FSTL5 promoted HCC cell apoptosis in a caspase‐dependent manner and regulated Bcl‐2 family proteins. These results indicate that FSTL5 may be a potential novel target for HCC treatment, and a biomarker for tumor prognosis.
Collapse
Affiliation(s)
- Chunlei Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Biochemistry, Faculty of Basic Medicine, Chongqing Three Gorges Medical College, Wanzhou, Chongqing, China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongwei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
1625
|
Qiao W, Wang H, Zhang X, Luo K. Proline-rich protein 11 silencing inhibits hepatocellular carcinoma growth and epithelial-mesenchymal transition through β-catenin signaling. Gene 2018; 681:7-14. [PMID: 30248355 DOI: 10.1016/j.gene.2018.09.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/30/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
Proline-rich protein 11 (PRR11) has been shown to play an critical roles in the development of cancer. However, the clinical significance and the biological role of PRR11 in hepatocellular carcinoma (HCC) remains unknown. The present study aimed to investigate the expression pattern, prognostic value and the biological role of PRR11 in HCC. PRR11 expression in 80 HCC surgical specimens was examined, and its clinical significance was analyzed. The role of PRR11 in cell proliferation, colony formation, migration and invasion were also determined. The results showed that PRR11 mRNA was significantly up-regulated in 56.25% (45/80) HCC from that in matched adjacent non-tumor tissues. High PRR11 was correlated with tumor size (P = 0.01) and TNM stage (P = 0.006). Patients with higher PRR11 expression had poor overall survival time (P < 0.001). Furthermore, PRR11 silencing obviously inhibited cell proliferation, colony formation, as well as cell migration and invasion of HCC cell lines in vitro. Mechanistically, knockdown of PRR11 significantly decreased the expression of β-catenin, cyclinD1, c-myc and N-cadherin in HCC cell lines. Additionally, the inhibitory effects of PRR11 silencing on cell migration was significantly enhanced by β-catenin inhibition. PRRl1 mRNA expression was found positively correlated with β-catenin (R = 0.5472, P ˂ 0.0001), c-myc (R = 0.5527, P ˂ 0.0001) and cyclinD1 (R = 0.3948, P = 0.0003) in HCC tissues. Collectively, our data demonstrate that PRR11 plays an oncogenic role in HCC progression, through activating the Wnt/β-catenin signaling pathway, and may represent a valuable prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Wei Qiao
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China.
| | - Hengyang Wang
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| | - Xiaozhao Zhang
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| | - Kongliang Luo
- Department of General Surgery, The Ninth Hospital of Xi'an, No 151 South Erhuan Dongduan, Xi'an City, Shaanxi Province 710054, China
| |
Collapse
|
1626
|
Rastogi A. Changing role of histopathology in the diagnosis and management of hepatocellular carcinoma. World J Gastroenterol 2018; 24:4000-4013. [PMID: 30254404 PMCID: PMC6148422 DOI: 10.3748/wjg.v24.i35.4000] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and fatal cancer in the world. HCC frequently presents with advanced disease, has a high recurrence rate and limited treatment options, which leads to very poor prognosis. This warrants urgent improvement in the diagnosis and treatment. Liver biopsy plays very important role in the diagnosis and prognosis of HCC, but with technical advancements and progression in the field of imaging, clinical guidelines have restricted the role of biopsy to very limited situations. Biopsy also has its own problems of needle tract seeding of tumor, small risk of complications, technical and sampling errors along with interpretative errors. Despite this, tissue analysis is often required because imaging is not always specific, limited expertise and lack of advanced imaging in many centers and limitations of imaging in the diagnosis of small, mixed and other variant forms of HCC. In addition, biopsy confirmation is often required for clinical trials of new drugs and targeted therapies. Tissue biomarkers along with certain morphological features, phenotypes and immune-phenotypes that serve as important prognostic and outcome predictors and as decisive factors for therapy decisions, add to the continuing role of histopathology. Advancements in cancer biology and development of molecular classification of HCC with clinic pathological correlation, lead to discovery of HCC phenotypic surrogates of prognostic and therapeutically significant molecular signatures. Thus tissue characteristics and morphology based correlates of molecular subtypes provide invaluable information for management and prognosis. This review thus focuses on the importance of histopathology and resurgence of role of biopsy in the diagnosis, management and prognostication of HCC.
Collapse
Affiliation(s)
- Archana Rastogi
- Department of Pathology, Institute of Liver & Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
1627
|
Mato JM, Elortza F, Lu SC, Brun V, Paradela A, Corrales FJ. Liver cancer-associated changes to the proteome: what deserves clinical focus? Expert Rev Proteomics 2018; 15:749-756. [PMID: 30204005 DOI: 10.1080/14789450.2018.1521277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is recognized as the fifth most common neoplasm and currently represents the second leading form of cancer-related death worldwide. Despite great progress has been done in the understanding of its pathogenesis, HCC represents a heavy societal and economic burden as most patients are still diagnosed at advanced stages and the 5-year survival rate remain below 20%. Early detection and revolutionary therapies that rely on the discovery of new molecular biomarkers and therapeutic targets are therefore urgently needed to develop precision medicine strategies for a more efficient management of patients. Areas covered: This review intends to comprehensively analyse the proteomics-based research conducted in the last few years to address some of the principal still open riddles in HCC biology, based on the identification of molecular drivers of tumor progression and metastasis. Expert commentary: The technical advances in mass spectrometry experienced in the last decade have significantly improved the analytical capacity of proteome wide studies. Large-scale protein and protein variant (post-translational modifications) identification and quantification have allowed detailed dissections of molecular mechanisms underlying HCC progression and are already paving the way for the identification of clinically relevant proteins and the development of their use on patient care.
Collapse
Affiliation(s)
- José M Mato
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Félix Elortza
- a CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park , Derio , Spain.,b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain
| | - Shelly C Lu
- c Division of Digestive and Liver Diseases , Cedars-Sinai Medical Center , LA , CA , USA
| | - Virginie Brun
- d Université Grenoble-Alpes, CEA, BIG, Biologie à Grande Echelle, Inserm , Grenoble , France
| | - Alberto Paradela
- e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| | - Fernando J Corrales
- b National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health , Madrid , Spain.,e Functional Proteomics Laboratory , Centro Nacional de Biotecnología-CSIC, Proteored-ISCIII, CIBERehd , Madrid , Spain
| |
Collapse
|
1628
|
Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis 2018; 9:935. [PMID: 30224718 PMCID: PMC6141589 DOI: 10.1038/s41419-018-0960-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Idelalisib, a selective PI3Kδ inhibitor, has been approved by the FDA for chronic lymphocytic leukemia/small lymphocytic lymphoma treatment and for follicular lymphoma treatment when combined with rituximab. However, the mechanisms of effective action of idelalisib in hepatocellular carcinoma (HCC) remain unclear. In the current study, we aimed to investigate how idelalisib inhibits the growth of HCC cells and enhances the effects of other chemotherapeutic drugs. Our results show that idelalisib treatment promotes Bim induction in HCC via the FoxO3a pathway following PI3K/AKT inactivation. Moreover, our results show that Bim is required for idelalisib-mediated apoptosis in HCC. Idelalisib also synergizes with sorafenib or doxorubicin to induce significant apoptosis in HCC, and Bim is also necessary for the induction of apoptosis by cotreatment. Furthermore, a xenograft experiment reveals that the Bim deficiency abolishes apoptosis and antitumor effects of idelalisib in vivo. In summary, our results indicate a key role of Bim in mediating the antitumor effects of idelalisib in HCC. Our results also support the clinical significance of the drug.
Collapse
Affiliation(s)
- Dan Yue
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Xun Sun
- Department of Immunology, China Medical University, Shenyang, China
| |
Collapse
|
1629
|
Zhang J, Fang C, Qu M, Wu H, Wang X, Zhang H, Ma H, Zhang Z, Huang Y, Shi L, Liang S, Gao Z, Song W, Wang X. CD13 Inhibition Enhances Cytotoxic Effect of Chemotherapy Agents. Front Pharmacol 2018; 9:1042. [PMID: 30258365 PMCID: PMC6144529 DOI: 10.3389/fphar.2018.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022] Open
Abstract
Multidrug resistance (MDR) of hepatocellular carcinoma is a serious problem. Although CD13 is a biomarker in human liver cancer stem cells, the relationship between CD13 and MDR remains uncertain. This study uses liver cancer cell model to understand the role of CD13 in enhancing the cytotoxic effect of chemotherapy agents. Cytotoxic agents can induce CD13 expression. CD13 inhibitor, bestatin, enhances the antitumor effect of cytotoxic agents. Meanwhile, CD13-targeting siRNA and neutralizing antibody can enhance the cytotoxic effect of 5-fluorouracil (5FU). CD13 overexpression increases cell survival upon cytotoxic agents treatment, while the knockdown of CD13 causes hypersensitivity of cells to cytotoxic agents treatment. Mechanistically, the inhibition of CD13 leads to the increase of cellular reactive oxygen species (ROS). BC-02 is a novel mutual prodrug (hybrid drug) of bestatin and 5FU. Notably, BC-02 can inhibit cellular activity in both parental and drug-resistant cells, accompanied with significantly increased ROS level. Moreover, the survival time of Kunming mice bearing H22 cells under BC-02 treatment is comparable to the capecitabine treatment at maximum dosage. These data implicate a therapeutic method to reverse MDR by targeting CD13, and indicate that BC-02 is a potent antitumor compound.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Chunyan Fang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Meihua Qu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Huina Wu
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejuan Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongan Zhang
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Hui Ma
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Zhaolin Zhang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Yongxue Huang
- Weifang Bochuang International Biological Medicinal Institute, Weifang, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Shujuan Liang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Zhiqin Gao
- School of Bioscience and Technology, Weifang Medical University, Weifang, China
| | - Weiguo Song
- School of Pharmacy, Weifang Medical University, Weifang, China
| | - Xuejian Wang
- School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
1630
|
Danos D, Leonardi C, Gilliland A, Shankar S, Srivastava RK, Simonsen N, Ferguson T, Yu Q, Wu XC, Scribner R. Increased Risk of Hepatocellular Carcinoma Associated With Neighborhood Concentrated Disadvantage. Front Oncol 2018; 8:375. [PMID: 30254987 PMCID: PMC6141716 DOI: 10.3389/fonc.2018.00375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022] Open
Abstract
Purpose: Over the past three decades, Hepatocellular Carcinoma (HCC) is one of few cancers for which incidence has increased in the United States (US). It is likely social determinants at the population level are driving this increase. We designed a population-based study to explore whether social determinants at the neighborhood level are geographically associated with HCC incidence in Louisiana by examining the association of HCC incidence with neighborhood concentrated disadvantage. Methods: Primary HCC cases diagnosed from 2008 to 2012 identified from the Louisiana Tumor Registry were geocoded to census tract of residence at the time of diagnosis. Neighborhood concentrated disadvantage index (CDI) for each census tract was calculated according to the PhenX Toolkit data protocol based on population and socioeconomic measures from the US Census. The incidence of HCC was modeled using multilevel binomial regression with individuals nested within neighborhoods. Results: The study included 1,418 HCC cases. Incidence of HCC was greater among males than females and among black than white. In multilevel models controlling for age, race, and sex, neighborhood CDI was positively associated with the incidence of HCC. A one standard deviation increase in CDI was associated with a 22% increase in HCC risk [Risk Ratio (RR) = 1.22; 95% CI (1.15, 1.31)]. Adjusting for contextual effects of an individual's neighborhood reduced the disparity in HCC incidence. Conclusion: Neighborhood concentrated disadvantage, a robust measure of an adverse social environment, was found to be a geographically associated with HCC incidence. Differential exposure to neighborhoods characterized by concentrated disadvantage partially explained the racial disparity in HCC for Louisiana. Our results suggest that increasing rates of HCC, and existing racial disparities for the disease, are partially explained by measures of an adverse social environment.
Collapse
Affiliation(s)
- Denise Danos
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Claudia Leonardi
- Behavioral and Community Health Sciences Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Aubrey Gilliland
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Sharmila Shankar
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Rakesh K. Srivastava
- Department of Genetics, Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Neal Simonsen
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
| | - Tekeda Ferguson
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Qingzhao Yu
- Biostatistics Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Xiao-Cheng Wu
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| | - Richard Scribner
- Louisiana State University Health Sciences Center School of Medicine, Stanley S. Scott Cancer Center, New Orleans, LA, United States
- Epidemiology Department, Louisiana State University Health Sciences Center School of Public Health, New Orleans, LA, United States
| |
Collapse
|
1631
|
Mishra M, Jayal P, Karande AA, Chandra N. Identification of a co-target for enhancing efficacy of sorafenib in HCC through a quantitative modeling approach. FEBS J 2018; 285:3977-3992. [PMID: 30136368 DOI: 10.1111/febs.14641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/07/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022]
Abstract
Sorafenib (SFB), a multi-kinase inhibitor, is the only approved drug for treating hepatocellular carcinoma (HCC). However, SFB shows low efficacy in many cases. HCC related mortality therefore remains to be high worldwide. SFB, a multi-kinase inhibitor is also known to modulate the redox homeostasis in cancer cells. To understand the effect of SFB on the redox status, a quantitative understanding of the system is necessary. Kinetic modeling of the relevant pathways is a useful approach for obtaining a quantitative understanding of the pathway dynamics and to rank the individual factors based on the extent of influence they wield on the pathway. Here, we report a comprehensive model of the glutathione reaction network (GSHnet ), consisting of four modules and includes SFB-induced redox stress. We compared GSHnet simulations for HCC of six different etiologies with healthy liver, and correctly identified the expected variations in cancer. Next, we studied alterations induced in the system upon SFB treatment and observed differential H2 O2 dynamics in all the conditions. Using metabolic control analysis, we identified glutathione S-transferase (GST) as the enzyme with the highest selective control coefficient, making it an attractive co-target for potentiating the action of SFB across all six etiologies. As a proof-of-concept, we selected ethacrynic acid (EA), a known inhibitor of GST, and verified ex vivo that EA synergistically potentiates the cytotoxic effect of SFB. Being an FDA approved drug, EA is a promising candidate for repurposing as a combination therapy with SFB for HCC treatment.
Collapse
Affiliation(s)
- Madhulika Mishra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Priyanka Jayal
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
1632
|
Roca Suarez AA, Baumert TF, Lupberger J. Beyond viral dependence: The pathological consequences of HCV-induced EGF signaling. J Hepatol 2018; 69:564-566. [PMID: 29937068 PMCID: PMC7613413 DOI: 10.1016/j.jhep.2018.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| |
Collapse
|
1633
|
Kudo M. Proposal of Primary Endpoints for TACE Combination Trials with Systemic Therapy: Lessons Learned from 5 Negative Trials and the Positive TACTICS Trial. Liver Cancer 2018; 7:225-234. [PMID: 30319982 PMCID: PMC6167729 DOI: 10.1159/000492535] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masatoshi Kudo
- *Masatoshi Kudo, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama 589-8511 (Japan), E-Mail
| |
Collapse
|
1634
|
Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular carcinoma: an overview and highlights for immunotherapy research. Nat Rev Gastroenterol Hepatol 2018; 15:536-554. [PMID: 29904153 DOI: 10.1038/s41575-018-0033-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mouse models are the basis of preclinical and translational research in hepatocellular carcinoma (HCC). Multiple methods exist to induce tumour formation in mice, including genetically engineered mouse models, chemotoxic agents, intrahepatic or intrasplenic injection of tumour cells and xenograft approaches. Additionally, as HCC generally develops in the context of diseased liver, methods exist to induce liver disease in mice to mimic viral hepatitis, fatty liver disease, fibrosis, alcohol-induced liver disease and cholestasis. Similar to HCC in humans, response to therapy in mouse models is monitored with imaging modalities such as CT or MRI, as well as additional techniques involving bioluminescence. As immunotherapy is increasingly applied to HCC, mouse models for these approaches are required for preclinical data. In studying cancer immunotherapy, it is important to consider aspects of antitumour immune responses and to produce a model that mimics the complexity of the immune system. This Review provides an overview of the different mouse models of HCC, presenting techniques to prepare an HCC mouse model and discussing different approaches to help researchers choose an appropriate model for a specific hypothesis. Specific aspects of immunotherapy research in HCC and the applied mouse models in this field are also highlighted.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
1635
|
He Q, He X, Deng B, Shi C, Lin L, Liu P, Yang Z, Yang S, Xu Z. Sorafenib and indocyanine green co-loaded in photothermally sensitive liposomes for diagnosis and treatment of advanced hepatocellular carcinoma. J Mater Chem B 2018; 6:5823-5834. [PMID: 32254989 DOI: 10.1039/c8tb01641k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sorafenib (SF), as an irreplaceable first-line drug to help advanced hepatocellular carcinoma (HCC) patients to prolong their lives, has already been used in clinical practice for several years. However, this treatment causes several side effects, and few alternatives to SF treatment exist. Herein, we designed NIR fluorescence imaging-guided photothermally sensitive nanoliposomes based on co-encapsulation of SF and the clinical photothermal and photodynamic therapy agent Indocyanine Green (ICG) to solve the problems of SF-based treatment in advanced HCC. As expected, in vitro and in vivo drug release studies on SF-ICG liposomes (SILs) demonstrated SF release from SILs compared with free SF at the same concentration. In addition, in vivo NIR fluorescence imaging and anti-tumor treatment using SILs have been demonstrated by using Hep3B tumor-bearing xenograft nude mice. All detailed experimental evidence suggested that biocompatibility, biotoxicity, and anti-tumor effects were improved by using SILs instead of free SF. In conclusion, our designed SILs could present a novel and suitable SF-based treatment strategy for advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Qianyuan He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for The Green Preparation and Application of Functional Material, Hubei University, Wuhan, Hubei 430062, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
1636
|
Thompson SM, Garg I, Ehman EC, Sheedy SP, Bookwalter CA, Carter RE, Roberts LR, Venkatesh SK. Non-alcoholic fatty liver disease-associated hepatocellular carcinoma: effect of hepatic steatosis on major hepatocellular carcinoma features at MRI. Br J Radiol 2018; 91:20180345. [PMID: 30074820 DOI: 10.1259/bjr.20180345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE: To evaluate the effect of hepatic steatosis on LI-RADS® major features at MRI in patients with non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC). METHODS: HCC and liver parenchyma features at MRI from 48 consecutive patients with NAFLD and histology proven HCC (mean ± SD; 4.5 ± 3.4 cm) were independently reviewed by three radiologists. Inter-rater agreement was determined by prevalence/bias-adjusted kappa. Hepatic fat signal fraction (FS%) was independently calculated. HCC features were compared by FS% at MRI using logistic regression analysis and histologic steatosis grade using Cochran-Armitage test for trend, stratified by cirrhotic liver morphology or histologic fibrosis stage. Receiver operating characteristic curves were generated to determine the sensitivity and specificity for major HCC features by FS%. RESULTS: Major HCC features included arterial phase hyperenhancement (APHE) in 45 (93%), portal venous phase washout (PVWO) in 30 (63%), delayed phase washout (DPWO) in 38 (79%) and enhancing "capsule" in 34 (71%). Cirrhotic morphology was present in 22 (46%). Inter-rater agreement was 0.75 for APHE, 0.42-0.58 for PVWO, 0.58-0.71 for DPWO and 0.38-0.67 for enhancing "capsule". There was an 18%, 14% and 22% increase in the odds of absent PVWO, DPWO and capsule appearance for every 1% increase in hepatic FS% in patients with non-cirrhotic liver morphology (p = 0.011, 0.040 and 0.029, respectively). Hepatic FS% ≥ 14.8% had a sensitivity and specificity of 64 and 100% for absent PVWO and 71 and 90% for absent DPWO in patients with non-cirrhotic liver morphology. CONCLUSION: Absent washout and capsule appearance are associated with increasing hepatic steatosis in patients with non-cirrhotic, NAFLD-associated HCC. ADVANCES IN KNOWLEDGE: In patients with non-cirrhotic, non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC), absent HCC washout and capsule appearance are associated with increasing hepatic steatosis, thereby potentially impacting the noninvasive imaging diagnosis of HCC in these patients. Lack of washout or capsule appearance in steatotic livers at MRI may require alternative criteria for the diagnosis of HCC in patients with non-cirrhotic NAFLD.
Collapse
Affiliation(s)
- Scott M Thompson
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Ishan Garg
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Eric C Ehman
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Shannon P Sheedy
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Candice A Bookwalter
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Rickey E Carter
- 2 Division of Biomedical Statistics and Informatics, Mayo Clinic School of Medicine, Mayo Clinic , Jacksonville, FL , USA
| | - Lewis R Roberts
- 3 Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| | - Sudhakar K Venkatesh
- 1 Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
1637
|
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets. J Leukoc Biol 2018; 104:987-1002. [DOI: 10.1002/jlb.ma1217-499rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
|
1638
|
Huck I, Beggs K, Apte U. Paradoxical Protective Effect of Perfluorooctanesulfonic Acid Against High-Fat Diet-Induced Hepatic Steatosis in Mice. Int J Toxicol 2018; 37:383-392. [PMID: 30134762 PMCID: PMC6150807 DOI: 10.1177/1091581818790934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a persistent organic pollutant with worldwide bioaccumulation due to a very long half-life. Perfluorooctanesulfonic acid exposure results in significant hepatic effects including steatosis, proliferation, hepatomegaly, and in rodents, carcinogenesis. The objective of this study was to determine whether PFOS exposure exacerbates nonalcoholic fatty liver disease and nonalcoholic steatohepatitis pathogenesis. Eight-week-old male C57BL/6 J mice (n = 5 per group) were fed ad libitum normal chow diet (ND) alone, 60% high-fat diet (HFD) alone, ND + PFOS, and HFD + PFOS (0.0001% w/w (1 mg/kg) of PFOS) for 6 weeks. Both HFD alone and the ND + PFOS treatment induced significant adiposity and hepatomegaly, but the HFD + PFOS treatment showed a marked protection. Oil Red O staining and quantitative analysis of hepatic lipid content revealed increased hepatic steatosis in ND + PFOS and in HFD alone fed mice, which was prevented in HFD + PFOS treatment. Further studies revealed that ND + PFOS treatment significantly affected expression of lipid trafficking genes to favor steatosis, but these changes were absent in HFD + PFOS group. Specifically, expression of CD36, the major lipid importer in the cells, and peroxisome proliferator-activated receptor gamma (PPARγ), its major regulator, were induced in HFD + no treatment (NT) and ND + PFOS-fed mice but remained unchanged in HFD + PFOS mice. In conclusion, these data indicate that coadministration of PFOS with HFD mitigates steatosis and hepatomegaly induced by HFD and that by PFOS fed in ND diet via regulation of cellular lipid import machinery. These findings suggest dietary lipid content be considered when performing risk management of PFOS in humans and the elucidation of PFOS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ian Huck
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kevin Beggs
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- 1 Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
1639
|
Hill MA, Alexander WB, Guo B, Kato Y, Patra K, O'Dell MR, McCall MN, Whitney-Miller CL, Bardeesy N, Hezel AF. Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. Cancer Res 2018; 78:4445-4451. [PMID: 29871934 PMCID: PMC6097629 DOI: 10.1158/0008-5472.can-17-1123] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a primary liver cancer epidemiologically linked with liver injury, which has poorly understood incipient stages and lacks early diagnostics and effective therapies. While iCCA is conventionally thought to arise from the biliary tract, studies have suggested that both hepatocytes and biliary cells (cholangiocytes) may give rise to iCCA. Consistent with the plasticity of these cell lineages, primary liver carcinomas exhibit a phenotypic range from hepatocellular carcinoma (HCC) to iCCA, with intermediates along this spectrum. Here, we generated mouse models to examine the consequence of targeting mutant Kras and Tp53, common alterations in human iCCA, to different adult liver cell types. Selective induction of these mutations in the SOX9+ population, predominantly consisting of mature cholangiocytes, resulted in iCCA emerging from premalignant biliary intraepithelial neoplasia (BilIN). In contrast, adult hepatocytes were relatively refractory to these mutations and formed rare HCC. In this context, injury accelerated hepatocyte-derived tumorigenesis and promoted a phenotypic switch to iCCA. BilIN precursor lesions were absent in the hepatocyte-derived iCCA models, pointing toward distinct and direct emergence of a malignant cholangiocytic phenotype from injured, oncogenically primed hepatocytes. Tp53 loss enhanced the reprogramming of hepatocytes to cholangiocytes, which may represent a mechanism facilitating formation of hepatocyte-derived iCCA. Overall, our work shows iCCA driven by Kras and Tp53 may originate from both mature cholangiocytes and hepatocytes, and factors such as chronic liver injury and underlying genetic mutations determine the path of progression and resulting cancer phenotype.Significance: The histopathogenesis of biliary tract cancer, driven by Tp53 and Kras mutations, can be differentially impacted by the cell of origin within the mature liver as well by major epidemiologic risk factors. Cancer Res; 78(16); 4445-51. ©2018 AACR.
Collapse
Affiliation(s)
- Margaret A Hill
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - William B Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Yasutaka Kato
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Krushna Patra
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Michael R O'Dell
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Matthew N McCall
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine University of Rochester Medical Center, Rochester, New York
| | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York.
- Department of Medicine, Hematology/Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
1640
|
Wu MY, Yiang GT, Cheng PW, Chu PY, Li CJ. Molecular Targets in Hepatocarcinogenesis and Implications for Therapy. J Clin Med 2018; 7:jcm7080213. [PMID: 30104473 PMCID: PMC6112027 DOI: 10.3390/jcm7080213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis comprises of multiple, complex steps that occur after liver injury and usually involve several pathways, including telomere dysfunction, cell cycle, WNT/β-catenin signaling, oxidative stress and mitochondria dysfunction, autophagy, apoptosis, and AKT/mTOR signaling. Following liver injury, gene mutations, accumulation of oxidative stress, and local inflammation lead to cell proliferation, differentiation, apoptosis, and necrosis. The persistence of this vicious cycle in turn leads to further gene mutation and dysregulation of pro- and anti-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-10, IL-12, IL-13, IL-18, and transforming growth factor (TGF)-β, resulting in immune escape by means of the NF-κB and inflammasome signaling pathways. In this review, we summarize studies focusing on the roles of hepatocarcinogenesis and the immune system in liver cancer. In addition, we furnish an overview of recent basic and clinical studies to provide a strong foundation to develop novel anti-carcinogenesis targets for further treatment interventions.
Collapse
Affiliation(s)
- Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Giuo-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Pei-Wen Cheng
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung 807, Taiwan.
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 231, Taiwan.
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 704, Taiwan.
| | - Chia-Jung Li
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| |
Collapse
|
1641
|
Huang CY, Hsieh FS, Wang CY, Chen LJ, Chang SS, Tsai MH, Hung MH, Kuo CW, Shih CT, Chao TI, Chen KF. Palbociclib enhances radiosensitivity of hepatocellular carcinoma and cholangiocarcinoma via inhibiting ataxia telangiectasia-mutated kinase-mediated DNA damage response. Eur J Cancer 2018; 102:10-22. [PMID: 30103095 DOI: 10.1016/j.ejca.2018.07.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
AIM Palbociclib is an oral cyclin-dependent kinase 4/6 inhibitor, which is efficacious in treating breast cancer. Currently, there are numerous active clinical trials testing palbociclib alone or in combination with other medications for treating various types of malignancies. Here, we evaluated the anti-cancer effect of palbociclib in combination with radiation therapy (RT) for treating human hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) and addressed the molecular mechanism behind the combination therapy. METHODS Immunofluorescence staining of γH2AX or 53BP1 was used to determine the effect of palbociclib on double-strand break (DSB) repair. Clonogenic assays, sphere formation and cell death ELISA were performed to study the sensitising effect of palbociclib on radiation-induced cytotoxicity. Signal alteration in DSB repair pathways was examined by Western blot analysis. Finally, we evaluated the in vivo anti-cancer activity and the associated molecular events of the combination therapy in a preclinical HCC xenograft model. RESULTS Palbociclib affected the kinetics of DNA repair and enhanced the radiation sensitivity of HCC and CCA cells. Importantly, we found that palbociclib inhibits ataxia telangiectasia-mutated (ATM) kinase, the key upstream kinase responding to RT-induced DSBs. Furthermore, we showed that the inhibitory effect of palbociclib on RT-induced ATM kinase activation is mediated by protein phosphatase 5 (PP5). Both in vitro and in vivo investigations revealed that the inhibition of the PP5-ATM axis by palbociclib after DNA damage is responsible for the synergism between palbociclib and RT. CONCLUSION Our findings provide a novel combination strategy against liver cancer cells. Clinical trials using palbociclib as an adjuvant in RT are warranted.
Collapse
Affiliation(s)
- Chao-Yuan Huang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Feng-Shu Hsieh
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Li-Ju Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Shin Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Hsien Tsai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chiung-Wen Kuo
- Department of Medical Imaging and Radiological Technology, Yuanpei University, Hsinchu, Taiwan
| | - Chi-Ting Shih
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
1642
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2018; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
1643
|
Prognostic Role of Platelet-to-Lymphocyte Ratio in Hepatocellular Carcinoma with Different BCLC Stages: A Systematic Review and Meta-Analysis. Gastroenterol Res Pract 2018; 2018:5670949. [PMID: 30158964 PMCID: PMC6109515 DOI: 10.1155/2018/5670949] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
The role of platelet-to-lymphocyte ratio (PLR) in the prognosis of hepatocellular carcinoma (HCC) patients with different Barcelona Clinic Liver Cancer (BCLC) stages remains controversial. This systematic review and meta-analysis aimed to determine the efficacy of PLR on HCC prognosis. Five electronic databases were searched for clinical trials focusing on the role of PLR in the prognosis of HCC. A total of 297 potential studies were initially identified, and 9 studies comprising 2449 patients were finally enrolled to evaluate the association between the pretreatment PLR and clinical outcomes of overall survival (OS), disease-free survival (DFS), and event occurrence in patients with HCC in different BCLC stages. An elevated pretreatment PLR indicated unfavorable worse OS (HR = 1.73; 95% CI: (1.46, 2.04); P < 0.00001) and DFS (HR = 1.30; 95% CI: (1.06, 1.60); P = 0.01). Subgroup analysis indicated that high PLR indicated poor OS among BCLC-B/C patients without heterogeneity, while PLR in BCLC-A patients indicated high statistical heterogeneity with I2 value of 78%. As for the correlation between PLR and event occurrence, high PLR was related to poor clinical event occurrence only among BCLC-C patients, though obvious heterogeneity was observed in all different BCLC stages. In conclusion, PLR may be a significant biomarker in the prognosis of HCC in different BCLC stages.
Collapse
|
1644
|
Wang S, Long S, Wu W. Application of Traditional Chinese Medicines as Personalized Therapy in Human Cancers. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:953-970. [DOI: 10.1142/s0192415x18500507] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although lots of great achievements have been gained in the battle against cancer during the past decades, cancer is still the leading cause of death in the world including in developing countries such as China. Traditional Chinese medicine (TCM) is popular in Chinese and East Asian societies as well as some other Western countries and plays an active role in the modern healthcare system including patients with cancer, which may act as a potential effective strategy in treating human cancers. In this review, we aimed to introduce the mechanisms of TCM compound, as an option of individualized therapy, in treating cancer patients from the perspective of both Chinese and Western medicine. In the view of traditional Chinese medicine theory, individualized treatment for human cancers based on syndrome type benefits the cancer patients with personalized conditions. Balancing Qi, Xue, Yin and Yang, eliminating phlegm and removing dampness is how TCM compound functions on cancer patients. While in the view of Western medicine, inhibiting cancer cell growth and metastasis as well as improving immune status is how herbal compounds act on cancer patients. We also summarized the applications of TCM compound in human cancers, which will shed light on the clinical application of TCM compound on patients with cancer. TCM compound could be used as a complementary and alternative medicine (CAM) in human cancers. It could be applied in cancer patients with cancer-related fatigue (CRF). In addition, it is a good method for alleviating the side effects of both radiotherapy and chemotherapy. Therefore, TCM compound plays a critical role in treating patients with cancer, which has a promising strategy in the field of cancer management.
Collapse
Affiliation(s)
- Sumei Wang
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- The Postdoctoral Research Station, Guangzhou University of Chinese Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Shunqin Long
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| | - Wanyin Wu
- Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese, Medicine Guangzhou, Guangdong 510120, P. R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120, P. R. China
| |
Collapse
|
1645
|
Wang M, Yu F, Li P. Circular RNAs: Characteristics, Function and Clinical Significance in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10080258. [PMID: 30072625 PMCID: PMC6116001 DOI: 10.3390/cancers10080258] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Moreover, the five-year survival rate of HCC patients remains poor due to high frequency of tumor metastasis and recurrence. These challenges give rise to the emergent need to discover promising biomarkers for HCC diagnosis and identify novel targets for HCC therapy. Circular RNAs (circRNAs), a class of long-overlook non-coding RNA, have been revealed as multi-functional RNAs in recent years. Growing evidence indicates that circRNA expression alterations have a broad impact in biological characteristics of HCC. Most of these circRNAs regulate HCC progression by acting as miRNA sponges, suggesting that circRNAs may function as promising diagnostic biomarkers and ideal therapeutic targets for HCC. In this review, we summarize the current progress in studying the functional role of circRNAs in HCC pathogenesis and present their potential values as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of circRNAs in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China.
| |
Collapse
|
1646
|
Thompson SM, Wells ML, Andrews JC, Ehman EC, Menias CO, Hallemeier CL, Roberts LR, Venkatesh SK. Venous invasion by hepatic tumors: imaging appearance and implications for management. Abdom Radiol (NY) 2018; 43:1947-1967. [PMID: 28929197 DOI: 10.1007/s00261-017-1298-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Venous invasion by hepatic tumors most commonly occurs with hepatocellular carcinoma and is associated with worse patient prognosis. Imaging plays an important role in the diagnosis of tumor thrombus in the liver. Moreover, differentiating between bland and tumor thrombus in the liver has important diagnostic, staging, therapeutic, and prognostic implications and may require a multimodal imaging approach including ultrasound, computed tomography, and/or magnetic resonance imaging. Treatment of hepatic malignancies with associated tumor thrombus is dependent on tumor type, disease extent within the liver, liver hemodynamics, and underlying liver function. Treatment of such tumors may involve surgical, locoregional and/or systemic therapies. The current review will focus on the imaging characteristics of venous invasion by hepatic tumors. The imaging findings most useful for differentiating hepatic venous tumor thrombus and bland thrombus will be highlighted and demonstrated with imaging examples. Imaging findings with implications for subsequent patient management will be described.
Collapse
Affiliation(s)
- Scott M Thompson
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Michael L Wells
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - James C Andrews
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Eric C Ehman
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Christine O Menias
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Christopher L Hallemeier
- Department of Radiation Oncology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Sudhakar K Venkatesh
- Department of Radiology, Mayo Clinic School of Medicine, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
1647
|
Chen DP, Ning WR, Li XF, Wei Y, Lao XM, Wang JC, Wu Y, Zheng L. Peritumoral monocytes induce cancer cell autophagy to facilitate the progression of human hepatocellular carcinoma. Autophagy 2018; 14:1335-1346. [PMID: 29940792 DOI: 10.1080/15548627.2018.1474994] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macroautophagy/autophagy is an important catabolic process mediating cellular homeostasis and plays critical roles in cancer development. Whereas autophagy has been widely studied in various pathological models, little is known about the distribution, clinical significance and regulatory mechanism of this process in human hepatocellular carcinoma (HCC). In the present study, we found that tumor tissues exhibited significantly increased levels of autophagy compared with non-tumor tissues, and cancer cells with higher levels of autophagy were predominantly enriched in the invading edge regions of human HCC. Increased MAP1LC3B/LC3B expression in the invading edge regions was significantly correlated with a higher density of closely located monocytes, and TNF and IL1B derived from tumor-activated monocytes synergistically induced cancer cell autophagy in the invading edge regions of HCC. Monocyte-elicited autophagy induced the epithelial-mesenchymal transition (EMT) of cancer cells and promoted tumor metastasis by activating the NFKB-SNAI1 signaling pathway. Moreover, the increase of LC3B+ cancer cells in the invading edge areas was associated with high mortality and reduced survival of patients with HCC. These findings indicated that cancer cell autophagy is regulated by a collaborative interaction between tumor and immune cell components in distinct HCC microenvironments, thus allowing the inflammatory monocytes to be rerouted in a tumor-promoting direction.
Collapse
Affiliation(s)
- Dong-Ping Chen
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Wan-Ru Ning
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Xue-Feng Li
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Yuan Wei
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Xiang-Ming Lao
- b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| | - Jun-Cheng Wang
- b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| | - Yan Wu
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China
| | - Limin Zheng
- a MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou , P. R. China.,b State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou , China
| |
Collapse
|
1648
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
1649
|
Wang J, Sun P, Chen Y, Yao H, Wang S. Novel 2-phenyloxypyrimidine derivative induces apoptosis and autophagy via inhibiting PI3K pathway and activating MAPK/ERK signaling in hepatocellular carcinoma cells. Sci Rep 2018; 8:10923. [PMID: 30026540 PMCID: PMC6053381 DOI: 10.1038/s41598-018-29199-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/04/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality globally. Because most patients are diagnosed at advanced stages of the disease, multi-targeted tyrosine kinase inhibitor sorafenib is the only available drug to show limited effectiveness. Novel and effective therapies are unmet medical need for advanced HCC patients. Given that the aberrant expression and activity of platelet-derived growth factor receptor α (PDGFRα) are closely associated with the pathogenesis of HCC, here we present the discovery and identification of a novel PDGFRα inhibitor, N-(3-((4-(benzofuran-2-yl)pyrimidin-2-yl)oxy)-4-methylphenyl)-4-((4-methylpiperazin-1-yl)methyl)benzamide (E5) after comparison of different derivatives. We found that E5 inhibited proliferation and induced apoptosis in HCC cells. Since the pan-caspase inhibitor Z-VAD-FMK partially rescued HCC cells from E5-reduced cell viability, autophagic cell death triggered by E5 was subsequently investigated. E5 could induce the conversion of LC3-I to LC3-II, increase the expression of Atg5 and restore the autophagy flux blocked by chloroquine. Meanwhile, E5 was able to downregulate the PDGFRα/PI3K/AKT/mTOR pathway and to activate MAPK/ERK signaling pathway. Taken together, in addition to the possibility of E5 as a valuable drug candidate, the present study further supports the notion that targeted inhibition of PDGFRα is a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Sun
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Artemisinine Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Laboratory of Chemical Biology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
1650
|
Jovel J, Lin Z, O'keefe S, Willows S, Wang W, Zhang G, Patterson J, Moctezuma-Velázquez C, Kelvin DJ, Ka-Shu Wong G, Mason AL. A Survey of Molecular Heterogeneity in Hepatocellular Carcinoma. Hepatol Commun 2018; 2:941-955. [PMID: 30094405 PMCID: PMC6078210 DOI: 10.1002/hep4.1197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Understanding the heterogeneity of dysregulated pathways associated with the development of hepatocellular carcinoma (HCC) may provide prognostic and therapeutic avenues for disease management. As HCC involves a complex process of genetic and epigenetic modifications, we evaluated expression of both polyadenylated transcripts and microRNAs from HCC and liver samples derived from two cohorts of patients undergoing either partial hepatic resection or liver transplantation. Copy number variants were inferred from whole genome low‐pass sequencing data, and a set of 56 cancer‐related genes were screened using an oncology panel assay. HCC was associated with marked transcriptional deregulation of hundreds of protein‐coding genes. In the partially resected livers, diminished transcriptional activity was observed in genes associated with drug catabolism and increased expression in genes related to inflammatory responses and cell proliferation. Moreover, several long noncoding RNAs and microRNAs not previously linked with HCC were found to be deregulated. In liver transplant recipients, down‐regulation of genes involved in energy production and up‐regulation of genes associated with glycolysis were detected. Numerous copy number variants events were observed, with hotspots on chromosomes 1 and 17. Amplifications were more common than deletions and spanned regions containing genes potentially involved in tumorigenesis. Colony stimulating factor 1 receptor (CSF1R), fibroblast growth factor receptor 3 (FGFR3), fms‐like tyrosine kinase 3 (FLT3), nucleolar phosphoprotein B23 (NPM1), platelet‐derived growth factor receptor alpha polypeptide (PDGFRA), phosphatase and tensin homolog (PTEN), G‐protein‐coupled receptors‐like receptor Smoothened (SMO), and tumor protein P53 (TP53) were mutated in all tumors; another 26 cancer‐related genes were mutated with variable penetrance. Conclusion: Our results underscore the marked molecular heterogeneity between HCC tumors and reinforce the notion that precision medicine approaches are needed for management of individual HCC. These data will serve as a resource to generate hypotheses for further research to improve our understanding of HCC biology. (Hepatology Communications 2018; 00:000‐000)
Collapse
Affiliation(s)
- Juan Jovel
- Department of Medicine University of Alberta Edmonton Canada
| | - Zhen Lin
- Department of Medicine University of Alberta Edmonton Canada
| | - Sandra O'keefe
- Department of Medicine University of Alberta Edmonton Canada
| | - Steven Willows
- Department of Medicine University of Alberta Edmonton Canada
| | - Weiwei Wang
- Department of Medicine University of Alberta Edmonton Canada
| | - Guangzhi Zhang
- Department of Medicine University of Alberta Edmonton Canada
| | | | | | - David J Kelvin
- Division of Experimental Therapeutics University Health Network Toronto Canada
| | - Gane Ka-Shu Wong
- Department of Medicine University of Alberta Edmonton Canada.,Department of Biological Sciences University of Alberta Edmonton Canada.,BGI-Shenzhen Shenzhen China
| | - Andrew L Mason
- Department of Medicine University of Alberta Edmonton Canada
| |
Collapse
|