1601
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
1602
|
Gorbea C, Kaufmann AG, Pratt G, Rechsteiner M, Rogers SW. Multiple Forms of the 26S Proteasome-Associated Protein Ecm29 in the Mouse Brain. Isr J Chem 2006. [DOI: 10.1560/742p-et1j-8rlc-2jyv] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
1603
|
Jin J, Arias EE, Chen J, Harper JW, Walter JC. A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1. Mol Cell 2006; 23:709-21. [PMID: 16949367 DOI: 10.1016/j.molcel.2006.08.010] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/15/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Cul4 E3 ubiquitin ligases contain the cullin 4 scaffold and the triple beta propeller Ddb1 adaptor protein, but few substrate receptors have been identified. Here, we identify 18 Ddb1- and Cul4-associated factors (DCAFs), including 14 containing WD40 repeats. DCAFs interact with multiple surfaces on Ddb1, and the interaction of WD40-containing DCAFs with Ddb1 requires a conserved "WDXR" motif. DCAF2/Cdt2, which is related to S. pombe Cdt2, functions in Xenopus egg extracts and human cells to destroy the replication licensing protein Cdt1 in S phase and after DNA damage. Depletion of human Cdt2 causes rereplication and checkpoint activation. In Xenopus, Cdt2 is recruited to replication forks via Cdt1 and PCNA, where Cdt1 ubiquitylation occurs. These studies uncover diverse substrate receptors for Cul4 and identify Cdt2 as a conserved component of the Cul4-Ddb1 E3 that is essential to destroy Cdt1 and ensure proper cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Jianping Jin
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
1604
|
Dürr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, Westermann B. Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol Biol Cell 2006; 17:3745-55. [PMID: 16790496 PMCID: PMC1593156 DOI: 10.1091/mbc.e06-01-0053] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 01/24/2023] Open
Abstract
Mitochondria constantly fuse and divide to adapt organellar morphology to the cell's ever-changing physiological conditions. Little is known about the molecular mechanisms regulating mitochondrial dynamics. F-box proteins are subunits of both Skp1-Cullin-F-box (SCF) ubiquitin ligases and non-SCF complexes that regulate a large number of cellular processes. Here, we analyzed the roles of two yeast F-box proteins, Mfb1 and Mdm30, in mitochondrial dynamics. Mfb1 is a novel mitochondria-associated F-box protein. Mitochondria in mutants lacking Mfb1 are fusion competent, but they form aberrant aggregates of interconnected tubules. In contrast, mitochondria in mutants lacking Mdm30 are highly fragmented due to a defect in mitochondrial fusion. Fragmented mitochondria are docked but nonfused in Deltamdm30 cells. Mitochondrial fusion is also blocked during sporulation of homozygous diploid mutants lacking Mdm30, leading to a mitochondrial inheritance defect in ascospores. Mfb1 and Mdm30 exert nonredundant functions and likely have different target proteins. Because defects in F-box protein mutants could not be mimicked by depletion of SCF complex and proteasome core subunits, additional yet unknown factors are likely involved in regulating mitochondrial dynamics. We propose that mitochondria-associated F-box proteins Mfb1 and Mdm30 are key components of a complex machinery that regulates mitochondrial dynamics throughout yeast's entire life cycle.
Collapse
Affiliation(s)
| | | | | | - Stefan Geimer
- *Institut für Zellbiologie
- Abteilung für Elektronenmikroskopie, and
| | - Thomas Langer
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany
| | - Benedikt Westermann
- *Institut für Zellbiologie
- Abteilung für Elektronenmikroskopie, and
- Bayreuther Zentrum für Molekulare Biowissenschaften, Universität Bayreuth, 95440 Bayreuth, Germany; and
| |
Collapse
|
1605
|
Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, Zhou J, Kwon YT, Varshavsky A. Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms. J Biol Chem 2006; 281:32559-73. [PMID: 16943202 DOI: 10.1074/jbc.m604355200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates of the N-end rule pathway include proteins with destabilizing N-terminal residues. Three of them, Asp, Glu, and (oxidized) Cys, function through their conjugation to Arg, one of destabilizing N-terminal residues that are recognized directly by the pathway's ubiquitin ligases. The conjugation of Arg is mediated by arginyltransferase, encoded by ATE1. Through its regulated degradation of specific proteins, the arginylation branch of the N-end rule pathway mediates, in particular, the cardiovascular development, the fidelity of chromosome segregation, and the control of signaling by nitric oxide. We show that mouse ATE1 specifies at least six mRNA isoforms, which are produced through alternative splicing, encode enzymatically active arginyltransferases, and are expressed at varying levels in mouse tissues. We also show that the ATE1 promoter is bidirectional, mediating the expression of both ATE1 and an oppositely oriented, previously uncharacterized gene. In addition, we identified GRP78 (glucose-regulated protein 78) and protein-disulfide isomerase as putative physiological substrates of arginyltransferase. Purified isoforms of arginyltransferase that contain the alternative first exons differentially arginylate these proteins in extract from ATE1(-/-) embryos, suggesting that specific isoforms may have distinct functions. Although the N-end rule pathway is apparently confined to the cytosol and the nucleus, and although GRP78 and protein-disulfide isomerase are located largely in the endoplasmic reticulum, recent evidence suggests that these proteins are also present in the cytosol and other compartments in vivo, where they may become N-end rule substrates.
Collapse
Affiliation(s)
- Rong-Gui Hu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
1606
|
Shumway SD, Xiong Y. Twice primed: cyclin E is phosphorylated and isomerized before being ubiquitinated. Mol Cell 2006; 23:149-50. [PMID: 16857579 DOI: 10.1016/j.molcel.2006.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Targeting proteins for irreversible degradation must be under tight control and is often regulated at the level of substrate-receptor binding. But does a protein really need to be marked twice with two different modifications, first phosphorylation and then isomerization, to bind its receptor, as van Drogen et al. (2006) show for cyclin E?
Collapse
Affiliation(s)
- Stuart D Shumway
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
1607
|
Abstract
Regulated protein turnover via the ubiquitin-proteasome system (UPS) underlies a wide variety of signalling pathways, from cell-cycle control and transcription to development. Recent evidence that pharmacological inhibition of the proteasome can be efficacious in the treatment of human cancers has set the stage for attempts to selectively inhibit the activities of disease-specific components of the UPS. Here, we review recent advances linking UPS components with specific human diseases, most prominently cancer and neurodegenerative disorders, and emphasize potential sites of therapeutic intervention along the regulated protein-degradation pathway.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
1608
|
Peters JM. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7:644-56. [PMID: 16896351 DOI: 10.1038/nrm1988] [Citation(s) in RCA: 994] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a ubiquitin ligase that has essential functions in and outside the eukaryotic cell cycle. It is the most complex molecular machine that is known to catalyse ubiquitylation reactions, and it contains more than a dozen subunits that assemble into a large 1.5-MDa complex. Recent discoveries have revealed an unexpected multitude of mechanisms that control APC/C activity, and have provided a first insight into how this unusual ubiquitin ligase recognizes its substrates.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
1609
|
Kaiser P, Su NY, Yen JL, Ouni I, Flick K. The yeast ubiquitin ligase SCFMet30: connecting environmental and intracellular conditions to cell division. Cell Div 2006; 1:16. [PMID: 16895602 PMCID: PMC1579207 DOI: 10.1186/1747-1028-1-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022] Open
Abstract
Ubiquitination regulates a host of cellular processes and is well known for its role in progression through the cell division cycle. In budding yeast, cadmium and arsenic stress, the availability of sulfur containing amino acids, and the intracellular concentration of S-adenosylmethionine are linked to cell cycle regulation through the ubiquitin ligase SCFMet30. Regulation is achieved by ubiquitination of the transcription factor Met4. Met4 activity is controlled by a regulatory K48-linked ubiquitin chain that is synthesized by Cdc34/SCFMet30. A ubiquitin-interacting-motif (UIM) present in Met4 prevents degradation of ubiquitinated Met4 allowing the ubiquitin chain to function as a reversible switch of Met4 activity. Here we discuss mechanisms of Met4 and SCFMet30 regulation in response to intracellular and environmental conditions, and describe the integration of these signals with cell cycle control.
Collapse
Affiliation(s)
- Peter Kaiser
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Ning-Yuan Su
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - James L Yen
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Ikram Ouni
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| | - Karin Flick
- University of California Irvine, Department of Biological Chemistry, School of Medicine 240D Med Sci I Irvine, CA 92697-1700, USA
| |
Collapse
|
1610
|
McMahon M, Thomas N, Itoh K, Yamamoto M, Hayes JD. Dimerization of Substrate Adaptors Can Facilitate Cullin-mediated Ubiquitylation of Proteins by a “Tethering” Mechanism. J Biol Chem 2006; 281:24756-68. [PMID: 16790436 DOI: 10.1074/jbc.m601119200] [Citation(s) in RCA: 393] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prevalence and mechanistic significance of self-association among substrate adaptors for the Cul-Rbx family of ubiquitin ligases remain unclear. We now report that it is as a homodimer that the substrate adaptor Keap1 interacts with Cul3. The resulting complex facilitates ubiquitylation of the Nrf2 transcription factor but only when this substrate possesses within its Neh2 domain a second cryptic Keap1-binding site, the DLG motif, in addition to its previously described ETGE site. Both motifs recognize overlapping surfaces on Keap1, and the seven lysine residues of Nrf2 that act as ubiquitin acceptors lie between them. Based on these data, we propose a "fixed-ends" model for Nrf2 ubiquitylation in which each binding site becomes tethered to a separate subunit of the Keap1 homodimer. This two-site interaction between Keap1 and Nrf2 constrains the mobility of the target lysine residues in the Neh2 domain, increasing their average concentration in the vicinity of the Rbx-bound ubiquitin-conjugating enzyme, and thus the rate at which the transcription factor is ubiquitylated. We show that self-association is a general feature of Cul3 substrate adaptors and propose that the fixed-ends mechanism is commonly utilized to recruit, orientate, and ubiquitylate substrates upon this family of ubiquitin ligases.
Collapse
Affiliation(s)
- Michael McMahon
- Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
1611
|
Sugasawa K. UV-induced ubiquitylation of XPC complex, the UV-DDB-ubiquitin ligase complex, and DNA repair. J Mol Histol 2006; 37:189-202. [PMID: 16858626 DOI: 10.1007/s10735-006-9044-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 12/31/2022]
Abstract
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Genome Damage Response Research Unit, Discovery Research Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
1612
|
Bornstein G, Ganoth D, Hershko A. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc Natl Acad Sci U S A 2006; 103:11515-20. [PMID: 16861300 PMCID: PMC1544201 DOI: 10.1073/pnas.0603921103] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activity of cullin-containing ubiquitin protein ligase complexes is stimulated by linkage to cullin of the ubiquitin-like protein Nedd8 ("neddylation"). Neddylation is inhibited by the tight binding of cullins to CAND1 (cullin-associated and neddylation-dissociated 1) protein, and Nedd8 is removed from cullins by specific isopeptidase activity of the COP9/signalosome (CSN) complex. The mechanisms that regulate neddylation and deneddylation of cullins were unknown. We examined this problem for the case of SCF(Skp2), a cullin1 (Cul1)-containing ubiquitin ligase complex that contains the S phase-associated protein Skp2 as the substrate-binding F-box protein subunit. SCF(Skp2) targets for degradation the cyclin-dependent kinase (cdk) inhibitor p27 in the G(1)-to-S phase transition, a process that requires its phosphorylation and binding to cdk2-cyclin E. Because levels of Skp2, cyclin E, and the accessory protein Cks1 (cyclin kinase subunit 1) all rise at the end of G(1) phase, it seemed possible that the neddylation of Cul1 in SCF(Skp2) is regulated by the availability of the F-box protein and/or the substrate. We found that the supplementation of Skp2-Skp1 and substrate (along with further components necessary for substrate presentation to the ubiquitin ligase) to extracts of HeLa cells synergistically increased levels of neddylated Cul1. Skp2-Skp1 abrogates the inhibitory influence of CAND1 on the neddylation of Cul1 by promoting the dissociation of the cullin-CAND1 complex, whereas substrate, together with substrate-presenting components, prevents the action of CSN to deneddylate cullin. We propose a sequence of events in which the increased availability of Skp2 and substrate in the transition of cells to S phase promotes the neddylation and assembly of the SCF(Skp2) ubiquitin ligase complex.
Collapse
Affiliation(s)
- Gil Bornstein
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Dvora Ganoth
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Avram Hershko
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1613
|
Downes BP, Saracco SA, Lee SS, Crowell DN, Vierstra RD. MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation. J Biol Chem 2006; 281:27145-57. [PMID: 16831869 DOI: 10.1074/jbc.m602283200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin (Ub)-fold proteins are rapidly emerging as an important class of eukaryotic modifiers, which often exert their influence by post-translational addition to other intracellular proteins. Despite assuming a common beta-grasp three-dimensional structure, their functions are highly diverse because of distinct surface features and targets and include tagging proteins for selective breakdown, nuclear import, autophagic recycling, vesicular trafficking, polarized morphogenesis, and the stress response. Here we describe a novel family of Membrane-anchored Ub-fold (MUB) proteins that are present in animals, filamentous fungi, and plants. Extending from the C terminus of the Ub-fold is typically a cysteine-containing CAAX (where A indicates aliphatic amino acid) sequence that can direct the attachment of either a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety in vitro. Modified forms of several MUBs were detected in transgenic Arabidopsis thaliana, suggesting that these MUBs are prenylated in vivo. Both cell fractionation and confocal microscopic analyses of Arabidopsis plants expressing GFP-MUB fusions showed that the modified forms are membrane-anchored with a significant enrichment on the plasma membrane. This plasma membrane location was blocked in vivo in prenyltransferase mutants and by mevinolin, which inhibits the synthesis of prenyl groups. In addition to the five MUBs with CAAX boxes, Arabidopsis has one MUB variant with a cysteine-rich C terminus distinct from the CAAX box that is also membrane-anchored, possibly through the attachment of a long chain acyl group. Although the physiological role(s) of MUBs remain unknown, the discovery of these prenylated forms further expands the diversity and potential functions of Ub-fold proteins in eukaryotic biology.
Collapse
Affiliation(s)
- Brian P Downes
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706-1574, USA
| | | | | | | | | |
Collapse
|
1614
|
Abstract
Cullin 4 (Cul4), a member of the evolutionally conserved cullin protein family, serves as a scaffold to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-containing protein ROC1 through its C-terminal cullin domain and with substrate recruiting subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase ubiquitylates key regulators in cell cycle control and mediates their degradation through the proteasomal pathway, thus contributing to genome stability. Recent studies from several groups have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly, ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates chromatin function and maintains genomic integrity. We outline these studies and suggest that histone ubiquitylation might play important roles in Cul4-regulated chromatin function including the cellular response to DNA damage and heterochromatin gene silencing.
Collapse
Affiliation(s)
- Qian Dai
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building Room 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| | - Hengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Kaul Human Genetics Building Room 402A, 720 South 20th Street, Birmingham, AL 35294, USA
| |
Collapse
|
1615
|
Labbé JC, Pacquelet A, Marty T, Gotta M. A genomewide screen for suppressors of par-2 uncovers potential regulators of PAR protein-dependent cell polarity in Caenorhabditis elegans. Genetics 2006; 174:285-95. [PMID: 16816419 PMCID: PMC1569778 DOI: 10.1534/genetics.106.060517] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The PAR proteins play an essential role in establishing and maintaining cell polarity. While their function is conserved across species, little is known about their regulators and effectors. Here we report the identification of 13 potential components of the C. elegans PAR polarity pathway, identified in an RNAi-based, systematic screen to find suppressors of par-2(it5ts) lethality. Most of these genes are conserved in other species. Phenotypic analysis of double-mutant animals revealed that some of the suppressors can suppress lethality associated with the strong loss-of-function allele par-2(lw32), indicating that they might impinge on the PAR pathway independently of the PAR-2 protein. One of these is the gene nos-3, which encodes a homolog of Drosophila Nanos. We find that nos-3 suppresses most of the phenotypes associated with loss of par-2 function, including early cell division defects and maternal-effect sterility. Strikingly, while PAR-1 activity was essential in nos-3; par-2 double mutants, its asymmetric localization at the posterior cortex was not restored, suggesting that the function of PAR-1 is independent of its cortical localization. Taken together, our results identify conserved components that regulate PAR protein function and also suggest a role for NOS-3 in PAR protein-dependent cell polarity.
Collapse
|
1616
|
Groisman R, Kuraoka I, Chevallier O, Gaye N, Magnaldo T, Tanaka K, Kisselev AF, Harel-Bellan A, Nakatani Y. CSA-dependent degradation of CSB by the ubiquitin-proteasome pathway establishes a link between complementation factors of the Cockayne syndrome. Genes Dev 2006; 20:1429-34. [PMID: 16751180 PMCID: PMC1475755 DOI: 10.1101/gad.378206] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the CSA or CSB complementation genes cause the Cockayne syndrome, a severe genetic disorder that results in patients' death in early adulthood. CSA and CSB act in a transcription-coupled repair (TCR) pathway, but their functional relationship is not understood. We have previously shown that CSA is a subunit of an E3 ubiquitin ligase complex. Here we demonstrate that CSB is a substrate of this ligase: Following UV irradiation, CSB is degraded at a late stage of the repair process in a proteasome- and CSA-dependent manner. Moreover, we demonstrate the importance of CSB degradation for post-TCR recovery of transcription and for the Cockayne syndrome. Our results unravel for the first time the functional relationship between CSA and CSB.
Collapse
Affiliation(s)
- Regina Groisman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
1617
|
Mehle A, Thomas ER, Rajendran KS, Gabuzda D. A zinc-binding region in Vif binds Cul5 and determines cullin selection. J Biol Chem 2006; 281:17259-17265. [PMID: 16636053 DOI: 10.1074/jbc.m602413200] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) Vif overcomes the anti-viral activity of APOBEC3G by targeting it for ubiquitination via a Cullin 5-ElonginB-ElonginC (Cul5-EloBC) E3 ligase. Vif associates with Cul5-EloBC through a BC-box motif that binds EloC, but the mechanism by which Vif selectively recruits Cul5 is poorly understood. Here we report that a region of Vif (residues 100-142) upstream of the BC-box binds selectively to Cul5 in the absence of EloC. This region contains a zinc coordination site HX5CX17-18CX3-5H (HCCH), with His/Cys residues at positions 108, 114, 133, and 139 coordinating one zinc ion. The HCCH zinc coordination site, which is conserved among primate lentivirus Vif proteins, does not correspond to any known class of zinc-binding motif. Mutations of His/Cys residues in the HCCH motif impair zinc coordination, Cul5 binding, and APOBEC3G degradation. Mutations of conserved hydrophobic residues (Ile-120, Ala-123, and Leu-124) located between the two Cys residues in the HCCH motif disrupt binding of the zinc-coordinating region to Cul5 and inhibit APOBEC3G degradation. The Vif binding site maps to the first cullin repeat in the N terminus of Cul5. These data suggest that the zinc-binding region in Vif is a novel cullin interaction domain that mediates selective binding to Cul5. We propose that the HCCH zinc-binding motif facilitates Vif-Cul5 binding by playing a structural role in positioning hydrophobic residues for direct contact with Cul5.
Collapse
Affiliation(s)
- Andrew Mehle
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Elaine R Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Kottampatty S Rajendran
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Pathology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, Massachusetts 02115; Departments of Neurology, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
1618
|
Afonso CL, Tulman ER, Delhon G, Lu Z, Viljoen GJ, Wallace DB, Kutish GF, Rock DL. Genome of crocodilepox virus. J Virol 2006; 80:4978-91. [PMID: 16641289 PMCID: PMC1472061 DOI: 10.1128/jvi.80.10.4978-4991.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present the genome sequence, with analysis, of a poxvirus infecting Nile crocodiles (Crocodylus niloticus) (crocodilepox virus; CRV). The genome is 190,054 bp (62% G+C) and predicted to contain 173 genes encoding proteins of 53 to 1,941 amino acids. The central genomic region contains genes conserved and generally colinear with those of other chordopoxviruses (ChPVs). CRV is distinct, as the terminal 33-kbp (left) and 13-kbp (right) genomic regions are largely CRV specific, containing 48 unique genes which lack similarity to other poxvirus genes. Notably, CRV also contains 14 unique genes which disrupt ChPV gene colinearity within the central genomic region, including 7 genes encoding GyrB-like ATPase domains similar to those in cellular type IIA DNA topoisomerases, suggestive of novel ATP-dependent functions. The presence of 10 CRV proteins with similarity to components of cellular multisubunit E3 ubiquitin-protein ligase complexes, including 9 proteins containing F-box motifs and F-box-associated regions and a homologue of cellular anaphase-promoting complex subunit 11 (Apc11), suggests that modification of host ubiquitination pathways may be significant for CRV-host cell interaction. CRV encodes a novel complement of proteins potentially involved in DNA replication, including a NAD(+)-dependent DNA ligase and a protein with similarity to both vaccinia virus F16L and prokaryotic serine site-specific resolvase-invertases. CRV lacks genes encoding proteins for nucleotide metabolism. CRV shares notable genomic similarities with molluscum contagiosum virus, including genes found only in these two viruses. Phylogenetic analysis indicates that CRV is quite distinct from other ChPVs, representing a new genus within the subfamily Chordopoxvirinae, and it lacks recognizable homologues of most ChPV genes involved in virulence and host range, including those involving interferon response, intracellular signaling, and host immune response modulation. These data reveal the unique nature of CRV and suggest mechanisms of virus-reptile host interaction.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, United States Department of Agriculture, Greenport, New York, NY 11944, USA.
| | | | | | | | | | | | | | | |
Collapse
|
1619
|
Wu JT, Chan YR, Chien CT. Protection of cullin-RING E3 ligases by CSN-UBP12. Trends Cell Biol 2006; 16:362-9. [PMID: 16762551 DOI: 10.1016/j.tcb.2006.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/11/2006] [Accepted: 05/22/2006] [Indexed: 11/29/2022]
Abstract
Neddylation, a process that conjugates the ubiquitin-like polypeptide NEDD8 to cullin proteins, activates cullin-RING ubiquitin ligases (CRLs). Deneddylation, in which the COP9 signalosome (CSN) removes NEDD8 from cullins, inactivates CRLs. However, genetic studies of CSN function conclude that deneddylation also promotes CRL activity. It has been proposed that a cyclic transition through neddylation and deneddylation is required for the regulation of CRL activity in vivo. Recent discoveries suggest that an additional level of complexity exists, whereby CRL components are targets for degradation, mediated either by autocatalytic ubiquitination or by unknown mechanisms. Deneddylation by CSN and deubiquitylation by CSN-associated ubiquitin-specific protease 12 protect CRL components from cellular depletion, thus maintaining the physiological CRL activities.
Collapse
Affiliation(s)
- June-Tai Wu
- Institute of Molecular Biology, Academia Sinica, 115 Taipei, Taiwan
| | | | | |
Collapse
|
1620
|
Escobar-Henriques M, Westermann B, Langer T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J Cell Biol 2006; 173:645-50. [PMID: 16735578 PMCID: PMC2063881 DOI: 10.1083/jcb.200512079] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 04/28/2006] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1-Cdc53-F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in alpha-factor-arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute of Genetics and Center for Molecular Medicine, University of Cologne, D-50923 Cologne, Germany
| | | | | |
Collapse
|
1621
|
Huang J, Zhao L, Yang Q, Xue Y. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:780-93. [PMID: 16709194 DOI: 10.1111/j.1365-313x.2006.02735.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant.
Collapse
Affiliation(s)
- Jian Huang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100080, China
| | | | | | | |
Collapse
|
1622
|
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17:1807-19. [PMID: 16738015 DOI: 10.1681/asn.2006010083] [Citation(s) in RCA: 876] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Stewart H Lecker
- Nephrology Division, Beth Isreal Deaconess, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
1623
|
Butler DK, All O, Goffena J, Loveless T, Wilson T, Toenjes KA. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet Biol 2006; 43:573-82. [PMID: 16730201 DOI: 10.1016/j.fgb.2006.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2006] [Revised: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 11/17/2022]
Abstract
The opportunistic fungal pathogen Candida albicans can grow as yeast, pseudohyphae or true hyphae. C. albicans can switch between these morphologies in response to various environmental stimuli and this ability to switch is thought to be an important virulence trait. In Saccharomyces cerevisiae, the Grr1 protein is the substrate recognition component of an SCF ubiquitin ligase that regulates cell cycle progression, cell polarity and nutrient signaling. In this study, we have characterized the GRR1 gene of C. albicans. Deletion of GRR1 from the C. albicans genome results in a highly filamentous, pseudohyphal morphology under conditions that normally promote the yeast form of growth. Under hypha-inducing conditions, most cells lacking GRR1 retain a pseudohyphal morphology, but some cells appear to switch to hyphal-like growth and express the hypha-specific genes HWP1 and ECE1. The C. albicans GRR1 gene also complements the elongated cell morphology phenotype of an S. cerevisiae grr1Delta mutant, indicating that C. albicans GRR1 encodes a true orthologue of S. cerevisaie Grr1. These results support the hypothesis that the Grr1 protein of C. albicans, presumably as the F-box subunit of an SCF ubiquitin ligase, has an essential role in preventing the switch from the yeast cell morphology to a pseudohyphal morphology.
Collapse
Affiliation(s)
- David K Butler
- Department of Biological and Physical Sciences, Montana State University-Billings, 59101, USA.
| | | | | | | | | | | |
Collapse
|
1624
|
Abstract
The organization of eukaryotic genomes requires a harmony between efficient compaction and accessibility. This is achieved through its packaging into chromatin. Chromatin can be subdivided into two general structural and functional compartments: euchromatin and heterochromatin. Euchromatin comprises most of the expressed genome, while heterochromatin participates intimately in the production of structures such as centromeres and telomeres essential for chromosome function. Studies in the fission yeast Schizosaccharomyces pombe have begun to highlight the genetic pathways critical for the assembly and epigenetic maintenance of heterochromatin, including key roles played by the RNAi machinery, H3 lysine 9 methylation and heterochromatin protein 1 (HP1). Recent studies have also identified a novel E3 ubiquitin ligase universally required for H3 K9 methylation. Here we outline these studies and propose several models for the role of this E3 ligase in heterochromatin assembly.
Collapse
Affiliation(s)
- Peter J Horn
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation St., Biotech 2, Suite 210, Worcester, 01605, USA
| | | |
Collapse
|
1625
|
Thornton BR, Ng TM, Matyskiela ME, Carroll CW, Morgan DO, Toczyski DP. An architectural map of the anaphase-promoting complex. Genes Dev 2006; 20:449-60. [PMID: 16481473 PMCID: PMC1369047 DOI: 10.1101/gad.1396906] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC) is an unusually complicated ubiquitin ligase, composed of 13 core subunits and either of two loosely associated regulatory subunits, Cdc20 and Cdh1. We analyzed the architecture of the APC using a recently constructed budding yeast strain that is viable in the absence of normally essential APC subunits. We found that the largest subunit, Apc1, serves as a scaffold that associates independently with two separable subcomplexes, one that contains Apc2 (Cullin), Apc11 (RING), and Doc1/Apc10, and another that contains the three TPR subunits (Cdc27, Cdc16, and Cdc23). We found that the three TPR subunits display a sequential binding dependency, with Cdc27 the most peripheral, Cdc23 the most internal, and Cdc16 between. Apc4, Apc5, Cdc23, and Apc1 associate interdependently, such that loss of any one subunit greatly reduces binding between the remaining three. Intriguingly, the cullin and TPR subunits both contribute to the binding of Cdh1 to the APC. Enzymatic assays performed with APC purified from strains lacking each of the essential subunits revealed that only cdc27Delta complexes retain detectable activity in the presence of Cdh1. This residual activity depends on the C-box domain of Cdh1, but not on the C-terminal IR domain, suggesting that the C-box mediates a productive interaction with an APC subunit other than Cdc27. We have also found that the IR domain of Cdc20 is dispensable for viability, suggesting that Cdc20 can activate the APC through another domain. We have provided an updated model for the subunit architecture of the APC.
Collapse
Affiliation(s)
- Brian R Thornton
- Cancer Research Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94115, USA
| | | | | | | | | | | |
Collapse
|
1626
|
Abstract
Various destabilizing factors of the ubiquitin system contribute to the synchrony and unidirectionality of the cell cycle clock by finely tuning the activity of various CDKs. The recent findings of hierarchical and connected waves of cyclin stabilizers highlight the complexity of this network.
Collapse
Affiliation(s)
- Daniele Guardavaccaro
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
1627
|
Abstract
Cullin RING ubiquitin ligases (CRULs) are found in all eukaryotes and play an essential role in targeting proteins for ubiquitin-mediated destruction, thus regulating a plethora of cellular processes. Viruses manipulate CRULs by redirecting this destruction machinery to eliminate unwanted host cell proteins, thus allowing viruses to slip past host immune barriers. Depending on the host organism, virus-modified CRULs can perform an amazing range of tasks, including the elimination of crucial signal transduction molecules in the human interferon pathway and suppression of virus-induced gene silencing in plants. This Perspective summarizes recent advances in our understanding of how viral proteins manipulate the function of CRULs.
Collapse
Affiliation(s)
- Michele Barry
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
1628
|
Escobar-Henriques M, Langer T. Mitochondrial shaping cuts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:422-9. [PMID: 16725216 DOI: 10.1016/j.bbamcr.2006.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.
Collapse
Affiliation(s)
- Mafalda Escobar-Henriques
- Institute of Genetics and Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.
| | | |
Collapse
|
1629
|
Matos P, Jordan P. Rac1, but Not Rac1B, Stimulates RelB-mediated Gene Transcription in Colorectal Cancer Cells. J Biol Chem 2006; 281:13724-13732. [PMID: 16551621 DOI: 10.1074/jbc.m513243200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased NF-kappaB-mediated transcription has been extensively linked to tumorigenesis and can be stimulated by deregulated Rac1 signaling. For example, the overexpression of Rac1b, a highly activated splicing variant of Rac1 with increased expression in colorectal tumors, stimulates NF-kappaB-mediated G1/S progression and cell survival, and was shown to promote cell transformation and epithelial-mesenchymal transition. Here we show evidence of further complexity between Rac1b and Rac1 signaling toward NF-kappaB in colorectal cells. Consistent with data from other cell types we demonstrate that both Rac1 and Rac1b stimulate transcriptional activation from reporter genes driven by NF-kappaB motifs or the cyclin D1 promoter in an IkappaBalpha- and reactive oxygen species-dependent manner. However, we found that in colorectal cells Rac1, but not Rac1b, induces nuclear translocation of RelB and p52, activates transcription from a RelB-specific reporter, and can be isolated in a complex with endogenous RelB and its inhibitor NF-kappaB2/p100. In addition, Rac1 colocalizes at the plasma membrane with RelB, p100, and cullin-1, a core subunit of the E3 ubiquitin ligase that marks p100 for proteolytic processing to p52. Interestingly, this Rac1-specific pathway is not mediated via the production of reactive oxygen species. These data provide evidence that both Rac1 and Rac1b activate the canonical RelA-IkappaBalpha pathway, whereas Rac1 further stimulates NF-kappaB by inducing the RelB-NF-kappaB2/p100 pathway. The RelB pathway was reported to down-regulate canonical NF-kappaB activation during the inflammatory response, suggesting that increased levels of Rac1b in colorectal tumors may promote tumorigenesis by stimulating canonical NF-kappaB signaling while circumventing a negative feedback from the RelB pathway.
Collapse
Affiliation(s)
- Paulo Matos
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Peter Jordan
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, 1649-016 Lisboa, Portugal.
| |
Collapse
|
1630
|
Qian SB, McDonough H, Boellmann F, Cyr DM, Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 2006; 440:551-5. [PMID: 16554822 PMCID: PMC4112096 DOI: 10.1038/nature04600] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 01/25/2006] [Indexed: 02/08/2023]
Abstract
Exposure of cells to various stresses often leads to the induction of a group of proteins called heat shock proteins (HSPs, molecular chaperones). Hsp70 is one of the most highly inducible molecular chaperones, but its expression must be maintained at low levels under physiological conditions to permit constitutive cellular activities to proceed. Heat shock transcription factor 1 (HSF1) is the transcriptional regulator of HSP gene expression, but it remains poorly understood how newly synthesized HSPs return to basal levels when HSF1 activity is attenuated. CHIP (carboxy terminus of Hsp70-binding protein), a dual-function co-chaperone/ubiquitin ligase, targets a broad range of chaperone substrates for proteasomal degradation. Here we show that CHIP not only enhances Hsp70 induction during acute stress but also mediates its turnover during the stress recovery process. Central to this dual-phase regulation is its substrate dependence: CHIP preferentially ubiquitinates chaperone-bound substrates, whereas degradation of Hsp70 by CHIP-dependent targeting to the ubiquitin-proteasome system occurs when misfolded substrates have been depleted. The sequential catalysis of the CHIP-associated chaperone adaptor and its bound substrate provides an elegant mechanism for maintaining homeostasis by tuning chaperone levels appropriately to reflect the status of protein folding within the cytoplasm.
Collapse
Affiliation(s)
- Shu-Bing Qian
- Carolina Cardiovascular Biology Center, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
1631
|
Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 2006; 21:873-80. [PMID: 16543155 DOI: 10.1016/j.molcel.2006.02.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/04/2005] [Accepted: 02/03/2006] [Indexed: 11/16/2022]
Abstract
Protein ubiquitination is a powerful regulatory modification that influences nearly every aspect of eukaryotic cell biology. The general pathway for ubiquitin (Ub) modification requires the sequential activities of a Ub-activating enzyme (E1), a Ub transfer enzyme (E2), and a Ub ligase (E3). The E2 must recognize both the E1 and a cognate E3 in addition to carrying activated Ub. These central functions are performed by a topologically conserved alpha/beta-fold core domain of approximately 150 residues shared by all E2s. However, as presented herein, the UbcH5 family of E2s can also bind Ub noncovalently on a surface well removed from the E2 active site. We present the solution structure of the UbcH5c/Ub noncovalent complex and demonstrate that this noncovalent interaction permits self-assembly of activated UbcH5c approximately Ub molecules. Self-assembly has profound consequences for the processive formation of polyubiquitin (poly-Ub) chains in ubiquitination reactions directed by the breast and ovarian cancer tumor susceptibility protein BRCA1.
Collapse
Affiliation(s)
- Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | |
Collapse
|
1632
|
Wang M, Cheng D, Peng J, Pickart CM. Molecular determinants of polyubiquitin linkage selection by an HECT ubiquitin ligase. EMBO J 2006; 25:1710-9. [PMID: 16601690 PMCID: PMC1440828 DOI: 10.1038/sj.emboj.7601061] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 03/03/2006] [Indexed: 01/19/2023] Open
Abstract
Ubiquitin (Ub)-protein ligases (E3s) frequently modify their substrates with multiple Ub molecules in the form of a polyubiquitin (poly-Ub) chain. Although structurally distinct poly-Ub chains (linked through different Ub lysine (Lys) residues) can confer different fates on target proteins, little is known about how E3s select the Lys residue to be used in chain synthesis. Here, we used a combination of mutagenesis, biochemistry, and mass spectrometry to map determinants of linkage choice in chain assembly catalyzed by KIAA10, an HECT (Homologous to E6AP C-Terminus) domain E3 that synthesizes K29- and K48-linked chains. Focusing on the Ub molecule that contributes the Lys residue for chain formation, we found that specific surface residues adjacent to K48 and K29 are critical for the usage of the respective Lys residues in chain synthesis. This direct mechanism of linkage choice bears similarities to the mechanism of substrate site selection in sumoylation catalyzed by Ubc9, but is distinct from the mechanism of chain linkage selection used by the Mms2/Ubc13 (Ub E2 variant (UEV)/E2) complex.
Collapse
Affiliation(s)
- Min Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | - Cecile M Pickart
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
1633
|
Lo SC, Hannink M. CAND1-mediated substrate adaptor recycling is required for efficient repression of Nrf2 by Keap1. Mol Cell Biol 2006; 26:1235-44. [PMID: 16449638 PMCID: PMC1367193 DOI: 10.1128/mcb.26.4.1235-1244.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The bZIP transcription factor Nrf2 controls a genetic program that protects cells from oxidative damage and maintains cellular redox homeostasis. Keap1, a BTB-Kelch protein, is the major upstream regulator of Nrf2. Keap1 functions as a substrate adaptor protein for a Cul3-dependent E3 ubiquitin ligase complex to repress steady-state levels of Nrf2 and Nrf2-dependent transcription. Cullin-dependent ubiquitin ligase complexes have been proposed to undergo dynamic cycles of assembly and disassembly that enable substrate adaptor exchange or recycling. In this report, we have characterized the importance of substrate adaptor recycling for regulation of Keap1-mediated repression of Nrf2. Association of Keap1 with Cul3 was decreased by ectopic expression of CAND1 and was increased by small interfering RNA (siRNA)-mediated knockdown of CAND1. However, both ectopic overexpression and siRNA-mediated knockdown of CAND1 decreased the ability of Keap1 to target Nrf2 for ubiquitin-dependent degradation, resulting in stabilization of Nrf2 and activation of Nrf2-dependent gene expression. Neddylation of Cul3 on Lys 712 is required for Keap1-dependent ubiquitination of Nrf2 in vivo. However, the K712R mutant Cul3 molecule, which is not neddylated, can still assemble with Keap1 into a functional ubiquitin ligase complex in vitro. These results provide support for a model in which substrate adaptor recycling is required for efficient substrate ubiquitination by cullin-dependent E3 ubiquitin ligase complexes.
Collapse
Affiliation(s)
- Shih-Ching Lo
- Department of Biochemistry, Life Science Center, M121 Medical Sciences Building, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | |
Collapse
|
1634
|
Tagwerker C, Flick K, Cui M, Guerrero C, Dou Y, Auer B, Baldi P, Huang L, Kaiser P. A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions. Mol Cell Proteomics 2006; 5:737-48. [PMID: 16432255 DOI: 10.1074/mcp.m500368-mcp200] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tandem affinity strategies reach exceptional protein purification grades and have considerably improved the outcome of mass spectrometry-based proteomic experiments. However, current tandem affinity tags are incompatible with two-step purification under fully denaturing conditions. Such stringent purification conditions are desirable for mass spectrometric analyses of protein modifications as they result in maximal preservation of posttranslational modifications. Here we describe the histidine-biotin (HB) tag, a new tandem affinity tag for two-step purification under denaturing conditions. The HB tag consists of a hexahistidine tag and a bacterially derived in vivo biotinylation signal peptide that induces efficient biotin attachment to the HB tag in yeast and mammalian cells. HB-tagged proteins can be sequentially purified under fully denaturing conditions, such as 8 m urea, by Ni(2+) chelate chromatography and binding to streptavidin resins. The stringent separation conditions compatible with the HB tag prevent loss of protein modifications, and the high purification grade achieved by the tandem affinity strategy facilitates mass spectrometric analysis of posttranslational modifications. Ubiquitination is a particularly sensitive protein modification that is rapidly lost during purification under native conditions due to ubiquitin hydrolase activity. The HB tag is ideal to study ubiquitination because the denaturing conditions inhibit hydrolase activity, and the tandem affinity strategy greatly reduces nonspecific background. We tested the HB tag in proteome-wide ubiquitin profiling experiments in yeast and identified a number of known ubiquitinated proteins as well as so far unidentified candidate ubiquitination targets. In addition, the stringent purification conditions compatible with the HB tag allow effective mass spectrometric identification of in vivo cross-linked protein complexes, thereby expanding proteomic analyses to the description of weakly or transiently associated protein complexes.
Collapse
Affiliation(s)
- Christian Tagwerker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, California 92697-1700, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
1635
|
Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 2006; 26:2887-900. [PMID: 16581765 PMCID: PMC1446969 DOI: 10.1128/mcb.26.8.2887-2900.2006] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 06/04/2005] [Accepted: 01/21/2006] [Indexed: 12/30/2022] Open
Abstract
The expression of the phase 2 detoxification enzymes and antioxidant proteins is induced at the transcriptional level by Nrf2 and negatively regulated at the posttranslational level by Keap1 through protein-protein interactions with and subsequent proteolysis of Nrf2. We found that the Neh2 domain of Nrf2 is an intrinsically disordered but biologically active regulatory domain containing a 33-residue central alpha-helix followed by a mini antiparallel beta-sheet. Isothermal calorimetry analysis indicated that one Neh2 molecule interacts with two molecules of Keap1 via two binding sites, the stronger binding ETGE motif and the weaker binding DLG motif. Nuclear magnetic resonance titration study showed that these two motifs of the Neh2 domain bind to an overlapping site on the bottom surface of the beta-propeller structure of Keap1. In contrast, the central alpha-helix of the Neh2 domain does not have any observable affinity to Keap1, suggesting that this region may serve as a bridge connecting the two motifs for the association with the two beta-propeller structures of a dimer of Keap1. Based on these observations, we propose that Keap1 recruits Nrf2 by the ETGE motif and that the DLG motif of the Neh2 domain locks its lysine-rich central alpha-helix in a correct position to benefit ubiquitin signaling.
Collapse
Affiliation(s)
- Kit I Tong
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
1636
|
Kobayashi A, Kang MI, Watai Y, Tong KI, Shibata T, Uchida K, Yamamoto M. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 2006; 26:221-9. [PMID: 16354693 PMCID: PMC1317630 DOI: 10.1128/mcb.26.1.221-229.2006] [Citation(s) in RCA: 701] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.
Collapse
Affiliation(s)
- Akira Kobayashi
- Center for Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
1637
|
Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, Moon RT. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 2006; 8:348-57. [PMID: 16547521 DOI: 10.1038/ncb1381] [Citation(s) in RCA: 304] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 02/23/2006] [Indexed: 12/31/2022]
Abstract
Dishevelled is a conserved protein that interprets signals received by Frizzled receptors. Using a tandem-affinity purification strategy and mass spectrometry we have identified proteins associated with Dishevelled, including a Cullin-3 ubiquitin ligase complex containing the Broad Complex, Tramtrack and Bric à Brac (BTB) protein Kelch-like 12 (KLHL12). This E3 ubiquitin ligase complex is recruited to Dishevelled in a Wnt-dependent manner that promotes its poly-ubiquitination and degradation. Functional analyses demonstrate that regulation of Dishevelled by this ubiquitin ligase antagonizes the Wnt-beta-catenin pathway in cultured cells, as well as in Xenopus and zebrafish embryos. Considered with evidence that the distinct Cullin-1 based SCF(beta-TrCP)complex regulates beta-catenin stability, our data on the stability of Dishevelled demonstrates that two distinct ubiquitin ligase complexes regulate the Wnt-beta-catenin pathway.
Collapse
Affiliation(s)
- Stephane Angers
- Howard Hughes Medical Institute, University of Washington School of Medicine, Box 357370, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
1638
|
Xiao Z, Ehrlich E, Yu Y, Luo K, Wang T, Tian C, Yu XF. Assembly of HIV-1 Vif-Cul5 E3 ubiquitin ligase through a novel zinc-binding domain-stabilized hydrophobic interface in Vif. Virology 2006; 349:290-9. [PMID: 16530799 DOI: 10.1016/j.virol.2006.02.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 01/02/2006] [Accepted: 02/02/2006] [Indexed: 02/08/2023]
Abstract
APOBEC3G (A3G) and related cytidine deaminases are potent inhibitors of retroviruses. HIV-1 Vif hijacks the cellular Cul5-E3 ubiquitin ligase to degrade APOBEC3 proteins and render them ineffective against these viruses. Here, we report that HIV-1 Vif is a novel zinc-binding protein containing an H-x(5)-C-x(17-18)-C-x(3-5)-H motif that is distinct from other recognized classes of zinc fingers. Zinc-binding stabilized a conserved hydrophobic interface within the HCCH motif that is critical for Vif-Cul5 E3 assembly and Vif function. An N-terminal region in the first Cullin repeat of Cul5, which is dispensable for adaptor ElonginC binding, was required for interaction with Vif. This region is the most divergent sequence between Cul2 and Cul5, a factor that may contribute to the selection of Cul5 and not Cul2 by Vif. This is the first example of a zinc-binding substrate receptor responsible for the assembly of a Cullin-RING ligase, representing a new target for antiviral development.
Collapse
Affiliation(s)
- Zuoxiang Xiao
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
1639
|
Li T, Chen X, Garbutt KC, Zhou P, Zheng N. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 2006; 124:105-17. [PMID: 16413485 DOI: 10.1016/j.cell.2005.10.033] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/16/2005] [Accepted: 10/11/2005] [Indexed: 01/28/2023]
Abstract
The DDB1-Cul4A ubiquitin ligase complex promotes protein ubiquitination in diverse cellular functions and is reprogrammed by the V proteins of paramyxoviruses to degrade STATs and block interferon signaling. Here we report the crystal structures of DDB1 alone and in complex with the simian virus 5 V protein. The DDB1 structure reveals an intertwined three-propeller cluster, which contains two tightly coupled beta propellers with a large pocket in between and a third beta propeller flexibly attached on the side. The rigid double-propeller fold of DDB1 is targeted by the viral V protein, which inserts an entire helix into the double-propeller pocket, whereas the third propeller domain docks DDB1 to the N terminus of the Cul4A scaffold. Together, these results not only provide structural insights into how the virus hijacks the DDB1-Cul4A ubiquitin ligase but also establish a structural framework for understanding the multiple functions of DDB1 in the uniquely assembled cullin-RING E3 machinery.
Collapse
Affiliation(s)
- Ti Li
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
1640
|
Ju D, Xie Y. A synthetic defect in protein degradation caused by loss of Ufd4 and Rad23. Biochem Biophys Res Commun 2006; 341:648-52. [PMID: 16430867 DOI: 10.1016/j.bbrc.2006.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 11/23/2022]
Abstract
The UFD (ubiquitin fusion degradation) pathway is responsible for multiubiquitination of the fusion proteins that bear a "non-removable" N-terminal ubiquitin moiety. Previous reports have shown that the UFD pathway is conserved from yeast to human. The essential elements of the UFD pathway have also been identified in Saccharomyces cerevisiae. These studies, however, are limited to use of engineered UFD substrates. The biological significance of the UFD pathway remains unknown. Here we demonstrate that Ufd4, the E3 component of the UFD pathway, is involved in controlling the degradation of Rad4, a nucleotide excision repair protein. Moreover, simultaneous loss of Ufd4 and Rad23 exhibits a synthetic inhibitory effect on Rad4 degradation, presenting the first example that a UBA/UBL-domain protein functionally overlaps with a ubiquitin ligase in determining the turnover rate of a protein substrate. The current work also provides a direction for further investigation of the physiological functions of the UFD pathway.
Collapse
Affiliation(s)
- Donghong Ju
- Barbara Ann Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, 110 Warren Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
1641
|
Dube P, Herzog F, Gieffers C, Sander B, Riedel D, Müller SA, Engel A, Peters JM, Stark H. Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Mol Cell 2006; 20:867-79. [PMID: 16364912 DOI: 10.1016/j.molcel.2005.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/21/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a ubiquitin ligase with essential functions in mitosis, meiosis, and G1 phase of the cell cycle. APC/C recognizes substrates via coactivator proteins such as Cdh1, and bound substrates are ubiquitinated by E2 enzymes that interact with a hetero-dimer of the RING subunit Apc11 and the cullin Apc2. We have obtained three-dimensional (3D) models of human and Xenopus APC/C by angular reconstitution and random conical tilt (RCT) analyses of negatively stained cryo-electron microscopy (cryo-EM) preparations, have determined the masses of these particles by scanning transmission electron microscopy (STEM), and have mapped the locations of Cdh1 and Apc2. These proteins are located on the same side of the asymmetric APC/C, implying that this is where substrates are ubiquitinated. We have further identified a large flexible domain in APC/C that adopts a different orientation upon Cdh1 binding. Cdh1 may thus activate APC/C both by recruiting substrates and by inducing conformational changes.
Collapse
Affiliation(s)
- Prakash Dube
- Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
1642
|
Graciet E, Hu RG, Piatkov K, Rhee JH, Schwarz EM, Varshavsky A. Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc Natl Acad Sci U S A 2006; 103:3078-83. [PMID: 16492767 PMCID: PMC1413915 DOI: 10.1073/pnas.0511224103] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Primary destabilizing N-terminal residues (Nd(p)) are recognized directly by the targeting machinery. The recognition of secondary destabilizing N-terminal residues (Nd(s)) is preceded by conjugation of an Nd(p) residue to Nd(s) of a polypeptide substrate. In eukaryotes, ATE1-encoded arginyl-transferases (R(D,E,C*)-transferases) conjugate Arg (R), an Nd(p) residue, to Nd(s) residues Asp (D), Glu (E), or oxidized Cys residue (C*). Ubiquitin ligases recognize the N-terminal Arg of a substrate and target the (ubiquitylated) substrate to the proteasome. In prokaryotes such as Escherichia coli, Nd(p) residues Leu (L) or Phe (F) are conjugated, by the aat-encoded Leu/Phe-transferase (L/F(K,R)-transferase), to N-terminal Arg or Lys, which are Nd(s) in prokaryotes but Nd(p) in eukaryotes. In prokaryotes, substrates bearing the Nd(p) residues Leu, Phe, Trp, or Tyr are degraded by the proteasome-like ClpAP protease. Despite enzymological similarities between eukaryotic R(D,E,C*)-transferases and prokaryotic L/F(K,R)-transferases, there is no significant sequelogy (sequence similarity) between them. We identified an aminoacyl-transferase, termed Bpt, in the human pathogen Vibrio vulnificus. Although it is a sequelog of eukaryotic R(D,E,C*)-transferases, this prokaryotic transferase exhibits a "hybrid" specificity, conjugating Nd(p) Leu to Nd(s) Asp or Glu. Another aminoacyl-transferase, termed ATEL1, of the eukaryotic pathogen Plasmodium falciparum, is a sequelog of prokaryotic L/F(K,R)-transferases (Aat), but has the specificity of eukaryotic R(D,E,C*)-transferases (ATE1). Phylogenetic analysis suggests that the substrate specificity of R-transferases arose by two distinct routes during the evolution of eukaryotes.
Collapse
Affiliation(s)
- Emmanuelle Graciet
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
| | - Rong-Gui Hu
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
| | - Konstantin Piatkov
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
| | - Joon Haeng Rhee
- National Research Laboratory of Molecular Microbial Pathogenesis and Genome Research Center for Enteropathogenic Bacteria, Chonnam National University Medical School, Gwangju 501-746, Korea
| | - Erich M. Schwarz
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
| | - Alexander Varshavsky
- Division of Biology, California Institute of Technology, Pasadena, CA 91125; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1643
|
Ju D, Xie Y. Identification of the preferential ubiquitination site and ubiquitin-dependent degradation signal of Rpn4. J Biol Chem 2006; 281:10657-62. [PMID: 16492666 DOI: 10.1074/jbc.m513790200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysine selection is a long-standing problem in protein ubiquitination catalyzed by the RING ubiquitin ligases. It is well known that many substrates carry multiple lysines that can be ubiquitinated. However, it has seldom been addressed whether one lysine is preferred for ubiquitin conjugation when all other lysines exist. Here we studied the mechanism underlying ubiquitin-dependent degradation of Rpn4, a transcription activator of the Saccharomyces cerevisiae proteasome genes. We found that the ubiquitin-dependent degradation of Rpn4 can be mediated by six different lysines. Interestingly, we showed through in vivo and in vitro assays that lysine 187 is selected for ubiquitination when all other lysines are available. To the best of our knowledge, this is the first demonstration of a preferential ubiquitination site chosen from a group of lysines susceptible for ubiquitination. We further demonstrated that lysine 187 and a proximal acidic domain constitute a portable degradation signal. The implications of our data are discussed.
Collapse
Affiliation(s)
- Donghong Ju
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
1644
|
Parry G, Estelle M. Auxin receptors: a new role for F-box proteins. Curr Opin Cell Biol 2006; 18:152-6. [PMID: 16488128 DOI: 10.1016/j.ceb.2006.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 02/06/2006] [Indexed: 12/21/2022]
Abstract
The plant hormone auxin regulates transcription by promoting the degradation of a family of transcriptional repressors called Aux/IAA proteins. Genetic and biochemical studies have shown that this degradation is dependent on a ubiquitin protein ligase called SCF(TIR1). In the presence of auxin, the F-box protein TIR1 binds to the Aux/IAA proteins, resulting in their ubiquitination and degradation. Recent attention has focused on the nature of the auxin receptor and upstream signaling events involved in this process. Now, two recent papers demonstrate that auxin binds directly to TIR1 and promotes the interaction with the Aux/IAA proteins. Furthermore, TIR1 functions together with at least three other related F-box protein/receptors to mediate the auxin response throughout plant growth and development.
Collapse
Affiliation(s)
- Geraint Parry
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
1645
|
Sowa ME, Harper JW. From loops to chains: unraveling the mysteries of polyubiquitin chain specificity and processivity. ACS Chem Biol 2006; 1:20-4. [PMID: 17163635 DOI: 10.1021/cb0600020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulated protein degradation via polyubiquitination controls almost every aspect of eukaryotic cellular biology; however, the precise mechanism by which specifically linked polyubiquitin chains are formed on target proteins as well as how the processivity of chain elongation is achieved remains a mystery. Recent work using the yeast ubiquitin ligase SCF(Cdc4) and the ubiquitin conjugating enzyme, Cdc34, has helped to answer these questions by identifying the determinants of lysine-48 specific ubiquitin chain polymerization.
Collapse
Affiliation(s)
- Mathew E Sowa
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
1646
|
Petroski MD, Deshaies RJ. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34. Cell 2006; 123:1107-20. [PMID: 16360039 DOI: 10.1016/j.cell.2005.09.033] [Citation(s) in RCA: 221] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 09/20/2005] [Indexed: 11/30/2022]
Abstract
Ubiquitin chains linked via lysine 48 (K48) of ubiquitin mediate recognition of ubiquitinated proteins by the proteasome. However, the mechanisms underlying polymerization of this targeting signal on a substrate are unknown. Here we dissect this process using the cyclin-dependent kinase inhibitor Sic1 and its ubiquitination by the cullin-RING ubiquitin ligase SCF(Cdc4) and the ubiquitin-conjugating enzyme Cdc34. We show that Sic1 ubiquitination can be separated into two steps: attachment of the first ubiquitin, which is rate limiting, followed by rapid elongation of a K48-linked ubiquitin chain. Mutation of an acidic loop conserved among Cdc34 orthologs has no effect on attachment of the first ubiquitin onto Sic1 but compromises the processivity and linkage specificity of ubiquitin-chain synthesis. We propose that the acidic loop favorably positions K48 of a substrate-linked ubiquitin to attack SCF bound Cdc34 approximately ubiquitin thioester and thereby enables processive synthesis of K48-linked ubiquitin chains by SCF-Cdc34.
Collapse
Affiliation(s)
- Matthew D Petroski
- Howard Hughes Medical Institute, Division of Biology, 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| | | |
Collapse
|
1647
|
G. Kapetanaki M, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapić-Otrin V, Levine AS. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci U S A 2006; 103:2588-93. [PMID: 16473935 PMCID: PMC1413840 DOI: 10.1073/pnas.0511160103] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Xeroderma pigmentosum (XP) is a heritable human disorder characterized by defects in nucleotide excision repair (NER) and the development of skin cancer. Cells from XP group E (XP-E) patients have a defect in the UV-damaged DNA-binding protein complex (UV-DDB), involved in the damage recognition step of NER. UV-DDB comprises two subunits, products of the DDB1 and DDB2 genes, respectively. Mutations in the DDB2 gene account for the underlying defect in XP-E. The UV-DDB complex is a component of the newly identified cullin 4A-based ubiquitin E3 ligase, DDB1-CUL4A(DDB2). The E3 ubiquitin ligases recognize specific substrates and mediate their ubiquitination to regulate protein activity or target proteins for degradation by the proteasomal pathway. In this study, we have addressed the role of the UV-DDB-based E3 in NER and sought a physiological substrate. We demonstrate that monoubiquitinated histone H2A in native chromatin coimmunoprecipitates with the endogenous DDB1-CUL4A(DDB2) complex in response to UV irradiation. Further, mutations in DDB2 alter the formation and binding activity of the DDB1-CUL4A(DDB2) ligase, accompanied by impaired monoubiquitination of H2A after UV treatment of XP-E cells, compared with repair-proficient cells. This finding indicates that DDB2, as the substrate receptor of the DDB1-CUL4A-based ligase, specifically targets histone H2A for monoubiquitination in a photolesion-binding-dependent manner. Given that the loss of monoubiquitinated histone H2A at the sites of UV-damaged DNA is associated with decreased global genome repair in XP-E cells, this study suggests that histone modification, mediated by the XPE factor, facilitates the initiation of NER.
Collapse
Affiliation(s)
- Maria G. Kapetanaki
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Jennifer Guerrero-Santoro
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Dawn C. Bisi
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Ching L. Hsieh
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| | - Vesna Rapić-Otrin
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
- To whom correspondence should be addressed. E-mail:
| | - Arthur S. Levine
- Department of Molecular Genetics and Biochemistry, School of Medicine, and Cancer Institute, University of Pittsburgh, Hillman Cancer Center, Research Pavilion, Suite 2.6, 5117 Centre Avenue, Pittsburgh, PA 15213
| |
Collapse
|
1648
|
Pazhouhandeh M, Dieterle M, Marrocco K, Lechner E, Berry B, Brault V, Hemmer O, Kretsch T, Richards KE, Genschik P, Ziegler-Graff V. F-box-like domain in the polerovirus protein P0 is required for silencing suppressor function. Proc Natl Acad Sci U S A 2006; 103:1994-9. [PMID: 16446454 PMCID: PMC1413668 DOI: 10.1073/pnas.0510784103] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Indexed: 12/31/2022] Open
Abstract
Plants employ small RNA-mediated posttranscriptional gene silencing as a virus defense mechanism. In response, plant viruses encode proteins that can suppress RNA silencing, but the mode of action of most such proteins is poorly understood. Here, we show that the silencing suppressor protein P0 of two Arabidopsis-infecting poleroviruses interacts by means of a conserved minimal F-box motif with Arabidopsis thaliana orthologs of S-phase kinase-related protein 1 (SKP1), a component of the SCF family of ubiquitin E3 ligases. Point mutations in the F-box-like motif abolished the P0-SKP1 ortholog interaction, diminished virus pathogenicity, and inhibited the silencing suppressor activity of P0. Knockdown of expression of a SKP1 ortholog in Nicotiana benthamiana rendered the plants resistant to polerovirus infection. Together, the results support a model in which P0 acts as an F-box protein that targets an essential component of the host posttranscriptional gene silencing machinery.
Collapse
Affiliation(s)
- Maghsoud Pazhouhandeh
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Monika Dieterle
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Katia Marrocco
- Institut für Biologie 2/Botanik, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany; and
| | - Esther Lechner
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Bassam Berry
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Véronique Brault
- Institut National de la Recherche Agronomique, 28 Rue de Herrlisheim, 68021 Colmar, France
| | - Odile Hemmer
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Thomas Kretsch
- Institut für Biologie 2/Botanik, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany; and
| | - Kenneth E. Richards
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Pascal Genschik
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Véronique Ziegler-Graff
- *Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
1649
|
Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood 2006; 107:4291-9. [PMID: 16467204 PMCID: PMC1895787 DOI: 10.1182/blood-2005-08-3349] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As erythroid progenitors differentiate into precursors and finally mature red blood cells, lineage-specific genes are induced, and proliferation declines until cell cycle exit. Cul4A encodes a core subunit of a ubiquitin ligase that targets proteins for ubiquitin-mediated degradation, and Cul4A-haploinsufficient mice display hematopoietic dysregulation with fewer multipotential and erythroid-committed progenitors. In this study, stress induced by 5-fluorouracil or phenylhydrazine revealed a delay in the recovery of erythroid progenitors, early precursors, and normal hematocrits in Cul4A(+/-) mice. Conversely, overexpression of Cul4A in a growth factor-dependent, proerythroblast cell line increased proliferation and the proportion of cells in S phase. When these proerythroblasts were induced to terminally differentiate, endogenous Cul4A protein expression declined 3.6-fold. Its enforced expression interfered with erythrocyte maturation and cell cycle exit and, instead, promoted proliferation. Furthermore, p27 normally accumulates during erythroid terminal differentiation, but Cul4A-enforced expression destabilized p27 and attenuated its accumulation. Cul4A and p27 proteins coimmunoprecipitate, indicating that a Cul4A ubiquitin ligase targets p27 for degradation. These findings indicate that a Cul4A ubiquitin ligase positively regulates proliferation by targeting p27 for degradation and that Cul4A down-regulation during terminal erythroid differentiation allows p27 to accumulate and signal cell cycle exit.
Collapse
Affiliation(s)
- Binghui Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
1650
|
Qiu X, Fay DS. ARI-1, an RBR family ubiquitin-ligase, functions with UBC-18 to regulate pharyngeal development in C. elegans. Dev Biol 2006; 291:239-52. [PMID: 16457801 DOI: 10.1016/j.ydbio.2005.11.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/25/2005] [Accepted: 11/29/2005] [Indexed: 02/08/2023]
Abstract
The LIN-35 retinoblastoma protein homolog and the ubiquitin-conjugating enzyme UBC-18 function redundantly to control an early step of pharyngeal morphogenesis in C. elegans. In order to identify ubiquitin-ligases acting downstream of UBC-18, we carried out a two-hybrid screen using UBC-18 as the bait molecule. Our screen identified three putative ubiquitin-ligases, one of which, ARI-1, showed genetic interactions leading to defective pharyngeal development that were identical to that previously observed for UBC-18. ARI-1 is a member of the RBR family of ubiquitin-ligases and contains a C-terminal motif that places it within the highly conserved Ariadne subfamily of RBR ligases. Our analyses indicate that ARI-1 is the principal Ariadne family member in C. elegans that is involved in the control of pharyngeal development with UBC-18. Using GFP reporters, we find that ARI-1 is expressed dynamically in a wide range of tissues including muscles and neurons during embryonic and postembryonic development. We also provide evidence that dsRNA species containing 14 or fewer base pairs of contiguous identity with closely related mRNAs are sufficient to mediate off-target silencing in C. elegans.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Molecular Biology, University of Wyoming, P.O. Box 3944, Laramie, WY 82071-3944, USA
| | | |
Collapse
|