1751
|
Long Z, Zhang X, Sun Q, Liu Y, Liao N, Wu H, Wang X, Hai C. Evolution of metabolic disorder in rats fed high sucrose or high fat diet: Focus on redox state and mitochondrial function. Gen Comp Endocrinol 2017; 242:92-100. [PMID: 26497252 DOI: 10.1016/j.ygcen.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
Abstract
Glucotoxicity and lipotoxicity are major hallmarks of metabolic disorder. High consumption of fat or carbohydrate rich food is a major risk of metabolic disorder. However, the evolution of high fat or high carbohydrate diet-induced metabolic disorder is not clear. In the study, we tried to find distinguished and common ways involved in the pathogenesis of insulin resistance induced by high fat (HF) and high sucrose (HS) diet. We found that HS diet induced mild glucose intolerance (2month), followed by a "temporary non-symptom phase" (3month), and then induced significant metabolic abnormality (4month). HF diet induced an early "responsive enhancement phase" (2month), and then gradually caused severe metabolic dysfunction (3-4month). After a mild induction of mitochondrial ROS generation (2month), HS diet resulted in a "temporary non-symptom phase" (3month), and then induced a more significant mitochondrial ROS production (4month). The impairment of mitochondrial function induced by HS diet was progressive (2-4month). HF diet induced gradual mitochondrial ROS generation and hyperpolarization. HF diet induced an early "responsive enhancement" of mitochondrial function (2month), and then gradually resulted in severe decrease of mitochondrial function (3-4month). Despite the patterns of HS and HF diet-induced insulin resistance were differential, final mitochondrial ROS generation combined with mitochondrial dysfunction may be the common pathway. These findings demonstrate a novel understanding of the mechanism of insulin resistance and highlight the pivotal role of mitochondrial ROS generation and mitochondrial dysfunction in the pathogenesis of metabolic disorder.
Collapse
Affiliation(s)
- Zi Long
- The First Brigade of Student, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Xuesi Zhang
- Department of Research, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Quangui Sun
- The First Brigade of Student, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ying Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Nai Liao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Chunxu Hai
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
1752
|
Meikle PJ, Summers SA. Sphingolipids and phospholipids in insulin resistance and related metabolic disorders. Nat Rev Endocrinol 2017; 13:79-91. [PMID: 27767036 DOI: 10.1038/nrendo.2016.169] [Citation(s) in RCA: 326] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease form a metabolic disease continuum that has seen a dramatic increase in prevalence in developed and developing countries over the past two decades. Dyslipidaemia resulting from hypercaloric diets is a major contributor to the pathogenesis of metabolic disease, and lipid-lowering therapies are the main therapeutic option for this group of disorders. However, the fact that dysfunctional lipid metabolism extends far beyond cholesterol and triglycerides is becoming increasingly clear. Lipidomic studies and mouse models are helping to explain the complex interactions between diet, lipid metabolism and metabolic disease. These studies are not only improving our understanding of this complex biology, but are also identifying potential therapeutic avenues to combat this growing epidemic. This Review examines what is currently known about phospholipid and sphingolipid metabolism in the setting of obesity and how metabolic pathways are being modulated for therapeutic effect.
Collapse
Affiliation(s)
- Peter J Meikle
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, 3004, Australia
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, 201 Presidents Circle, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
1753
|
Tian R, Ding Y, Peng YY, Lu N. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid. Biochem Biophys Res Commun 2017; 484:572-578. [PMID: 28131839 DOI: 10.1016/j.bbrc.2017.01.132] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H2O2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H2O2-MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases.
Collapse
Affiliation(s)
- Rong Tian
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yun Ding
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Yi-Yuan Peng
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Green Chemistry, Jiangxi Province and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
1754
|
Mudrovcic N, Arefin S, Van Craenenbroeck AH, Kublickiene K. Endothelial maintenance in health and disease: Importance of sex differences. Pharmacol Res 2017; 119:48-60. [PMID: 28108363 DOI: 10.1016/j.phrs.2017.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The vascular endothelium has emerged as more than just an inert monolayer of cells lining the vascular bed. It represents the interface between the blood stream and vessel wall, and has a strategic role in regulating vascular homeostasis by the release of vasoactive substances. Endothelial dysfunction contributes to the development and progression of cardiovascular disease. Recognition of sex-specific factors implicated in endothelial cell biology is important for the identification of clinically relevant preventive and/or therapeutic strategies. This review aims to give an overview of the recent advances in understanding the importance of sex specific observations in endothelial maintenance, both in healthy and diseased conditions. The female endothelium is highlighted in the context of polycystic ovary syndrome and pre-eclampsia. Furthermore, sex differences are explored in chronic kidney disease, which is currently appreciated as one of public health priorities. Overall, this review endorses integration of sex analysis in experimental and patient-oriented research in the exciting field of vascular biology.
Collapse
Affiliation(s)
- Neja Mudrovcic
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Samsul Arefin
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Kublickiene
- Department of Clinical Science, Intervention & Technology, Division of Obstetrics & Gynecology, Karolinska Institutet, Stockholm, Sweden; Department of Clinical Science, Intervention & Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Gender Medicine, Department of Medicine-Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
1755
|
Seto SW, Chang D, Ko WM, Zhou X, Kiat H, Bensoussan A, Lee SMY, Hoi MPM, Steiner GZ, Liu J. Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells. Int J Mol Sci 2017; 18:E95. [PMID: 28067784 PMCID: PMC5297729 DOI: 10.3390/ijms18010095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.
Collapse
Affiliation(s)
- Sai Wang Seto
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Dennis Chang
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Wai Man Ko
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Xian Zhou
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Hosen Kiat
- Faculty of Medicine, University of New South Wales, NSW 2052, Australia.
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
- Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia.
| | - Alan Bensoussan
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Simon M Y Lee
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Maggie P M Hoi
- State Key Laboratory Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Genevieve Z Steiner
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
| | - Jianxun Liu
- National Institute of Complementary Medicine (NICM), Western Sydney University, Penrith, NSW 2571, Australia.
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
1756
|
Negative Impact of Testosterone Deficiency and 5α-Reductase Inhibitors Therapy on Metabolic and Sexual Function in Men. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:473-526. [DOI: 10.1007/978-3-319-70178-3_22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
1757
|
Eslami SM, Moradi MM, Ghasemi M, Dehpour AR. Anticonvulsive Effects of Licofelone on Status Epilepticus Induced by Lithium-pilocarpine in Wistar Rats: a Role for Inducible Nitric Oxide Synthase. J Epilepsy Res 2016; 6:51-58. [PMID: 28101475 PMCID: PMC5206100 DOI: 10.14581/jer.16011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/15/2016] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Status epilepticus (SE) is a neurological disorder with high prevalence and mortality rates, requiring immediate intervention. Licofelone is a cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibitor, which its effectiveness to treat osteoarthritis has been approved. Increasing evidence suggests an involvement of COX and LOX enzymes in epileptic disorders. Thus, in the present study we investigate possible effects of licofelone on prevention and termination of SE. We also evaluated whether the nitrergic system could participate in this effect of licofelone. Methods We have utilized lithium-pilocarpine model of SE in adult Wistar rats to assess the potential effect of licofelone on seizure susceptibility. Licofelone was administered 1 h before pilocarpine. To evaluate probable role of nitric oxide (NO) system, L-arginine (60 mg/kg, i.p.), as a NO precursor; L-NAME (15 mg/kg, i.p.), as a non-selective nitric oxide synthase (NOS) inhibitor; aminoguanidine (100 mg/kg, i.p.), as an inducible NOS (iNOS) inhibitor and 7-nitroindazole (60 mg/kg, i.p.), as a neuronal NOS inhibitor were injected 15 min before licofelone. Also, licofelone and diazepam 10 mg/kg were administered 30 minutes after onset of SE. Results Pre-treatment with licofelone at the dosage of 10 mg/kg, significantly prevented the onset of SE in all subjects (p < 0.001). L-arginine significantly inverted this anticonvulsant effect (p < 0.05). However, L-NAME and aminoguanidine, potentiated the anticonvulsant effect of licofelone (p < 0.05, p < 0.01). Licofelone could not terminate seizures after onset which was terminated by diazepam. Conclusions Our findings showed that anticonvulsive effects of licofelone on SE could be mediated by iNOS. Also, we suggest that COX/5-LOX activation is possibly required in the initial stage of onset but SE recruits extra excitatory pathways with prolongation.
Collapse
Affiliation(s)
- Seyyed Majid Eslami
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical Center, Worcester, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
1758
|
Werler MM, Parker SE, Hedman K, Gissler M, Ritvanen A, Surcel HM. Maternal Antibodies to Herpes Virus Antigens and Risk of Gastroschisis in Offspring. Am J Epidemiol 2016; 184:902-912. [PMID: 27856447 DOI: 10.1093/aje/kww114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/08/2016] [Indexed: 12/16/2022] Open
Abstract
Gastroschisis risk is highest in offspring of young women and is increasing in prevalence, suggesting that exposures that are increasingly common among younger females may be causal. Some infections by viruses in the herpes family are more common in the earlier childbearing years and have been increasing in prevalence over time. Data from the Finnish Maternity Cohort were linked to Finnish malformation and birth registers (1987-2012) for this study, a nested case-control study of mothers of offspring with gastroschisis and age-matched controls. Maternal antibody responses in early pregnancy (mean gestational age = 11.1 weeks) to Epstein Barr virus (EBV), herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), and cytomegalovirus were measured. Conditional logistic regression models were used to estimate odds ratios (and 95% confidence intervals) for high immunoglobulin reactivity. Odds ratios for high immunoglobulin M (IgM) reactivity to EBV-viral capsid antigen and HSV-1 or HSV-2 (as indicators of recent infection) were 2.16 (95% confidence interval (CI): 0.97, 4.79) and 1.94 (95% CI: 0.74, 5.12), respectively. For higher immunoglobulin G (IgG) reactivity to EBV-viral capsid antigen and HSV-2 IgG, odds ratios were 2.16 (95% CI: 0.82, 5.70) and 2.48 (95% CI: 1.50, 4.10), respectively. Reactivities to HSV-1 IgG, cytomegalovirus IgM, or cytomegalovirus IgG did not appear to increase gastroschisis risk. Primary EBV infection was not associated with gastroschisis, but observed associations with both IgM and IgG reactivities to EBV and HSV suggest that reactivations may be risk factors for it.
Collapse
|
1759
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
1760
|
Escribano-Lopez I, Diaz-Morales N, Rovira-Llopis S, de Marañon AM, Orden S, Alvarez A, Bañuls C, Rocha M, Murphy MP, Hernandez-Mijares A, Victor VM. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol 2016; 10:200-205. [PMID: 27810734 PMCID: PMC5094376 DOI: 10.1016/j.redox.2016.10.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
It is not known if the mitochondria-targeted antioxidants such as mitoquinone (MitoQ) can modulate oxidative stress and leukocyte-endothelium interactions in T2D patients. We aimed to evaluate the beneficial effect of MitoQ on oxidative stress parameters and leukocyte-endothelium interactions in leukocytes of T2D patients. The study population consisted of 98 T2D patients and 71 control subjects. We assessed metabolic and anthropometric parameters, mitochondrial reactive oxygen species (ROS) production, glutathione peroxidase 1 (GPX-1), NFκB-p65, TNFα and leukocyte-endothelium interactions. Diabetic patients exhibited higher weight, BMI, waist circumference, SBP, DBP, glucose, insulin, HOMA-IR, HbA1c, triglycerides, hs-CRP and lower HDL-c with respect to controls. Mitochondrial ROS production was enhanced in T2D patients and decreased by MitoQ. The antioxidant also increased GPX-1 levels and PMN rolling velocity and decreased PMN rolling flux and PMN adhesion in T2D patients. NFκB-p65 and TNFα were augmented in T2D and were both reduced by MitoQ treatment. Our findings support that the antioxidant MitoQ has an anti-inflammatory and antioxidant action in the leukocytes of T2D patients by decreasing ROS production, leukocyte-endothelium interactions and TNFα through the action of NFκB. These data suggest that mitochondria-targeted antioxidants such as MitoQ should be investigated as a novel means of preventing cardiovascular events in T2D patients.
Collapse
Affiliation(s)
- Irene Escribano-Lopez
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Arantxa Martinez de Marañon
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Samuel Orden
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - Angeles Alvarez
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | | | - Antonio Hernandez-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Victor M Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
1761
|
Ostojic SM. Mitochondria-targeted nutraceuticals in sports medicine: a new perspective. Res Sports Med 2016; 25:91-100. [DOI: 10.1080/15438627.2016.1258646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sergej M. Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- University of Belgrade School of Medicine, Belgrade, Serbia
| |
Collapse
|
1762
|
β-Lactoglobulin Influences Human Immunity and Promotes Cell Proliferation. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7123587. [PMID: 27957499 PMCID: PMC5124466 DOI: 10.1155/2016/7123587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022]
Abstract
β-Lactoglobulin (LG) is suspected to enhance or modulate human immune responses. Moreover, LG is also hypothesized to increase human cell proliferation. However, these potential functions of LG have not been directly or thoroughly addressed. In this study, we demonstrated that LG is a potent stimulator of cell proliferation using a hybridoma cell (a splenocyte fused with a myeloma cell) model. LG's ability to promote cell proliferation was lost when the protein is denatured. To further investigate the influence of LG's conformation on cell proliferation, we chemically modified LG by either carboxymethylation (CM) or acetylation and observed significantly reduced cell proliferation when the protein structure was altered. Furthermore, we proved that LG enhances cell proliferation via receptor-mediated membrane IgM receptor. These data indicated that nondenatured LG is the major component in milk that modulates cell proliferation. Collectively, our study showed that LG plays a key role in enhancing immune responses by promoting cell proliferation through IgM receptor.
Collapse
|
1763
|
Fedson DS. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:421. [PMID: 27942512 DOI: 10.21037/atm.2016.11.03] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is an ongoing threat of epidemic or pandemic diseases that could be caused by influenza, Ebola or other emerging viruses. It will be difficult and costly to develop new drugs that target each of these viruses. Statins and angiotensin receptor blockers (ARBs) have been effective in treating patients with sepsis, pneumonia and influenza, and a statin/ARB combination appeared to dramatically reduce mortality during the recent Ebola outbreak. These drugs target (among other things) the endothelial dysfunction found in all of these diseases. Most scientists work on new drugs that target viruses, and few accept the idea of treating the host response with generic drugs. A great deal of research will be needed to show conclusively that these drugs work, and this will require the support of public agencies and foundations. Investigators in developing countries should take an active role in this research. If the next Public Health Emergency of International Concern is caused by an emerging virus, a "top down" approach to developing specific new drug treatments is unlikely to be effective. However, a "bottom up" approach to treatment that targets the host response to these viruses by using widely available and inexpensive generic drugs could reduce mortality in any country with a basic health care system. In doing so, it would make an immeasurable contribution to global equity and global security.
Collapse
Affiliation(s)
- David S Fedson
- Formerly, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
1764
|
Cai G, Ma X, Chen B, Huang Y, Liu S, Yang H, Zou W. MicroRNA-145 Negatively Regulates Cell Proliferation Through Targeting IRS1 in Isolated Ovarian Granulosa Cells From Patients With Polycystic Ovary Syndrome. Reprod Sci 2016; 24:902-910. [PMID: 27799458 DOI: 10.1177/1933719116673197] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex, heterogeneous endocrine and metabolic disorder affecting 5% to 10% of reproductive-age women. A high rate of granulosa cell (GC) proliferation contributes to the abnormal folliculogenesis in patients with PCOS. Evidence has proved that dysregulation of microRNAs is involved in the pathogenesis of PCOS. In this study, we investigated the effect of miR-145 on cell proliferation and the underlying mechanism of miR-145 in isolated human GCs from the aspirated follicular fluid in women with PCOS. Our findings showed that miR-145 is downregulated in human GCs from PCOS. The miR-145 mimics suppress cell proliferation and promoted cell apoptosis in human GCs from PCOS. However, miR-145 inhibitor promotes cell proliferation and inhibited cell apoptosis. Moreover, using a dual-luciferase reporter assay, we confirmed that the insulin receptor substrate 1 (IRS1) gene is a direct target of miR-145. The miR-145 mimics inhibited messenger RNA and protein IRS1 expression levels, and silencing of IRS1 by small interfering RNA inhibits human GC proliferation, but IRS1 overexpression abrogates the suppressive effect of miR-145 mimics. Furthermore, miR-145 mimics can inhibit the activation of p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK). The IRS1 overexpression abrogates the suppressive effect of miR-145 mimics on MAPK/ERK signaling pathways. Together, miR-145 mimics suppress cell proliferation by targeting and inhibiting IRS1 expression to inhibit MAPK/ERK signaling pathways. Our study further found that high concentrations of insulin decreases the miR-145 expression, upregulates IRS1, and promotes cell proliferation. These observations showed that miR-145 is a novel and promising molecular target for improving the dysfunction of GCs in PCOS.
Collapse
Affiliation(s)
- Guoqing Cai
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xiangdong Ma
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Biliang Chen
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yanhong Huang
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Shujuan Liu
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hong Yang
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Wei Zou
- 1 Department of Obstetrics and Gynecology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
1765
|
Gao L, Gu Y, Yin X. High Serum Tumor Necrosis Factor-Alpha Levels in Women with Polycystic Ovary Syndrome: A Meta-Analysis. PLoS One 2016; 11:e0164021. [PMID: 27764100 PMCID: PMC5072730 DOI: 10.1371/journal.pone.0164021] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/19/2016] [Indexed: 01/11/2023] Open
Abstract
The objective of the study is to assess the TNF-α levels in PCOS patients and healthy controls. A comprehensive electronic search in Medline, Embase, and the Cochrane Library database was conducted up to July 2016. Random-effects model was used to estimate the standardized mean differences (SMDs) with 95% confidence intervals (CIs). Twenty-nine studies with a total of 1960 participants (1046 PCOS patients and 914 controls) were included in this meta-analysis. The TNF-α levels in PCOS patients were significantly higher than those in controls (random-effects, SMD = 0.60, 95% CI = 0.28-0.92, P<0.001). With regard to the subgroup analyses stratified by ethnicity, study quality, methods, and BMI, significantly high TNF-α levels were found in patients with PCOS in almost all of these subgroups. In the subgroup stratified by HOMA-IR ratio and T ratio, significant differences were only observed in the subgroups with HOMA-IR ratio of >1.72(SMD = 0.967, 95% CI = 0.103-1.831, P = 0.028, I2 = 93.5%) and T ratio>2.10 (SMD = 1.420, 95% CI = 0.429-2.411, P = 0.005, I2 = 96.1%). By meta-regression it was suggested that ethnicity might contribute little to the heterogeneity between the included studies. Through cumulative meta-analysis and sensitivity analysis it was supposed that the higher TNF-α levels of PCOS patients compared to healthy controls was stable and reliable. This meta-analysis suggests that the circulating TNF-α levels in women with PCOS are significantly higher than those in healthy controls. It may be involved in promoting insulin resistance and androgen excess of PCOS.
Collapse
Affiliation(s)
- Lingling Gao
- Department of Obstetrics and Gynecology, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, Jiangsu, China
| | - Yang Gu
- Department of Obstetrics and Gynecology, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, Jiangsu, China
| | - Xianghua Yin
- Department of Obstetrics and Gynecology, Clinical Medical College of Yangzhou University (Subei People's Hospital of Jiangsu Province), Yangzhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
1766
|
Bañuls C, Rovira-Llopis S, López-Doménech S, Veses S, Víctor VM, Rocha M, Hernández-Mijares A. Effect of consumption of a carob pod inositol-enriched beverage on insulin sensitivity and inflammation in middle-aged prediabetic subjects. Food Funct 2016; 7:4379-4387. [PMID: 27713964 DOI: 10.1039/c6fo01021k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study assessed the effects of an inositol-enriched beverage (IEB) on blood glucose levels and inflammation status in subjects with an impaired fasting glucose (IFG) state according to body mass index (BMI). This was a 12 week, double-blind, randomized, controlled trial employing forty-four IFG subjects (fasting glucose levels 100-125 mg dl-1) that were divided into two intervention groups: one receiving a IEB (n = 24) containing mainly pinitol (2.0 g twice a day), and the other a sweetened beverage based on sucrose (SB; n = 20). Anthropometric and biochemical measurements, postprandial and fasting nocturnal glycaemia (continuous glucose monitoring system), and inflammatory parameters (IL-6 and TNF-α) were analyzed at baseline and after intervention according to BMI (non-obese: BMI < 30 kg m-2 or obese: BMI ≥ 30 kg m-2). Non-obese subjects who consumed IEB exhibited a significant decrease in insulin (-14.4%), HOMA-IR index (-15.1%) and percentage of glucose change after postprandial and fasting nocturnal periods (-10.0% and -10.3%, respectively) compared with the SB group (-2.35% and 10.2%, respectively) although they did not show any change in inflammatory cytokine levels. By contrast, obese subjects who consumed IEB showed a smaller variation in glucose levels after nocturnal fasting (-4.34%) and a marked decrease in IL-6 and TNF-α (p < 0.05). These findings support that consumption of IEB in prediabetic subjects produces a response that is dependent on BMI, with a clear improvement of insulin resistance and postprandial and nocturnal glycemia in non-obese subjects and a marked anti-inflammatory response in obese subjects.
Collapse
Affiliation(s)
- Celia Bañuls
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain. and Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain. and Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Sandra López-Doménech
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain.
| | - Silvia Veses
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain.
| | - Víctor M Víctor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain. and Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain and CIBER CB06/04/0071 research group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain and Department of Physiology, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain. and Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain and CIBER CB06/04/0071 research group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017, Valencia, Spain. and Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain and Department of Medicine, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| |
Collapse
|
1767
|
Lee DH, Han DH, Nam KT, Park JS, Kim SH, Lee M, Kim G, Min BS, Cha BS, Lee YS, Sung SH, Jeong H, Ji HW, Lee MJ, Lee JS, Lee HY, Chun Y, Kim J, Komatsu M, Lee YH, Bae SH. Ezetimibe, an NPC1L1 inhibitor, is a potent Nrf2 activator that protects mice from diet-induced nonalcoholic steatohepatitis. Free Radic Biol Med 2016; 99:520-532. [PMID: 27634173 DOI: 10.1016/j.freeradbiomed.2016.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 12/13/2022]
Abstract
Oxidative stress is important for the pathogenesis of nonalcoholic fatty liver disease (NAFLD), a chronic disease that ranges from hepatic steatosis to nonalcoholic steatohepatitis (NASH). The nuclear factor erythroid 2-related factor 2-Kelch-like ECH associated protein 1 (Nrf2-Keap1) pathway is essential for cytoprotection against oxidative stress. In this study, we found that oxidative stress or inflammatory biomarkers and TUNEL positive cells were markedly increased in NASH patients compared to normal or simple steatosis. In addition, we identified that the hepatic mRNA levels of Nrf2 target genes such as Nqo-1 and GSTA-1 were significantly increased in NASH patients. Ezetimibe, a drug approved by the Food and Drug Administration for the treatment of hypercholesterolemia, improves NAFLD and alleviates oxidative stress. However, the precise mechanism of its antioxidant function remains largely unknown. We now demonstrate that ezetimibe activates Nrf2-Keap1 pathway which was dependent of autophagy adaptor protein p62, without causing cytotoxicity. Ezetimibe activates AMP-activated protein kinase (AMPK), which in turn phosphorylates p62 (p-S351) via their direct interaction. Correspondingly, Ezetimibe protected liver cells from saturated fatty acid-induced apoptotic cell death through p62-dependent Nrf2 activation. Furthermore, its role as an Nrf2 activator was supported by methione- and choline- deficient (MCD) diet-induced NASH mouse model, showing that ezetimibe decreased the susceptibility of the liver to oxidative injury. These data demonstrate that the molecular mechanisms underlying ezetimibe's antioxidant role in the pathogenesis of NASH.
Collapse
Affiliation(s)
- Da Hyun Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Su Park
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Soo Hyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Milim Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bong-Soo Cha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yu Seol Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Su Haeng Sung
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Haengdueng Jeong
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Won Ji
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon Joo Lee
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae Sung Lee
- Department of Molecular Medicine and Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Hui-Young Lee
- Department of Molecular Medicine and Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Yoomi Chun
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joungmok Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| | - Soo Han Bae
- Severance Biomedical Science Institute, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
1768
|
|
1769
|
Piwocka K. When polychromatic flow cytometry meets mitochondrial reactive oxygen species. Cytometry A 2016; 89:1052-1053. [PMID: 27632791 DOI: 10.1002/cyto.a.22980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
1770
|
Aristizabal Henao JJ, Metherel AH, Smith RW, Stark KD. Tailored Extraction Procedure Is Required To Ensure Recovery of the Main Lipid Classes in Whole Blood When Profiling the Lipidome of Dried Blood Spots. Anal Chem 2016; 88:9391-9396. [PMID: 27575696 DOI: 10.1021/acs.analchem.6b03030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The use of dried blood spots has increased in research and clinical settings recently, particularly in field studies and screening, but comprehensive acyl-specific lipidomic profiling of dried blood spots has yet to be examined. An untargeted ultrahigh-performance liquid chromatography-tandem mass spectrometry method was adapted for the analysis of lipid extracts from human whole blood samples and dried blood spots collected on chromatography paper. Lipid recoveries were examined after different durations of exposure to extraction solvents (chloroform/methanol), physical disruption (homogenization or sonication) of the paper containing the dried blood spots, and acidification of extraction solvents. We demonstrated that comprehensive untargeted profiles can be obtained from dried blood spot samples that are comparable with whole blood for several species of lipids including phosphatidylcholine, lyso-phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, triacylglycerol, and cholesteryl ester. However, homogenization of the dried blood spots, followed by a 24 h exposure to solvents, and extraction with an acidic buffer (0.2 M NaHPO4 + 0.1 M hydrochloric acid) was required. Dried blood spots can be used for comprehensive, untargeted lipidomics of the most abundant lipid species in whole blood, but additional sample processing steps are required.
Collapse
Affiliation(s)
- Juan J Aristizabal Henao
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Adam H Metherel
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Richard W Smith
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ken D Stark
- Department of Kinesiology and ‡University of Waterloo Mass Spectrometry Facility, Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
1771
|
Supriya R, Tam BT, Pei XM, Lai CW, Chan LW, Yung BY, Siu PM. Doxorubicin Induces Inflammatory Modulation and Metabolic Dysregulation in Diabetic Skeletal Muscle. Front Physiol 2016; 7:323. [PMID: 27512375 PMCID: PMC4961708 DOI: 10.3389/fphys.2016.00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Anti-cancer agent doxorubicin (DOX) has been demonstrated to worsen insulin signaling, engender muscle atrophy, trigger pro-inflammation, and induce a shift to anaerobic glycolytic metabolism in skeletal muscle. The myotoxicity of DOX in diabetic skeletal muscle remains largely unclear. This study examined the effects of DOX on insulin signaling, muscle atrophy, pro-/anti-inflammatory microenvironment, and glycolysis metabolic regulation in skeletal muscle of db/db diabetic and db/+ non-diabetic mice. Non-diabetic db/+ mice and diabetic db/db mice were randomly assigned to the following groups: db/+CON, db/+DOX, db/dbCON, and db/dbDOX. Mice in db/+DOX and db/dbDOX groups were intraperitoneally injected with DOX at a dose of 15 mg per kg body weight whereas mice in db/+CON and db/dbCON groups were injected with the same volume of saline instead of DOX. Gastrocnemius was immediately harvested, weighed, washed with cold phosphate buffered saline, frozen in liquid nitrogen, and stored at -80°C for later analysis. The effects of DOX on diabetic muscle were neither seen in insulin signaling markers (Glut4, pIRS1Ser(636∕639), and pAktSer(473)) nor muscle atrophy markers (muscle mass, MuRF1 and MAFbx). However, DOX exposure resulted in enhancement of pro-inflammatory favoring microenvironment (as indicated by TNF-α, HIFα and pNFκBp65) accompanied by diminution of anti-inflammatory favoring microenvironment (as indicated by IL15, PGC1α and pAMPKβ1Ser108). Metabolism of diabetic muscle was shifted to anaerobic glycolysis after DOX exposure as demonstrated by our analyses of PDK4, LDH and pACCSer(79). Our results demonstrated that there might be a link between inflammatory modulation and the dysregulation of aerobic glycolytic metabolism in DOX-injured diabetic skeletal muscle. These findings help to understand the pathogenesis of DOX-induced myotoxicity in diabetic muscle.
Collapse
Affiliation(s)
- Rashmi Supriya
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Xiao M Pei
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Christopher W Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Lawrence W Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Benjamin Y Yung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| | - Parco M Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University Hong Kong, China
| |
Collapse
|
1772
|
Bułdak Ł, Machnik G, Bułdak RJ, Łabuzek K, Bołdys A, Okopień B. Exenatide and metformin express their anti-inflammatory effects on human monocytes/macrophages by the attenuation of MAPKs and NFκB signaling. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1103-15. [PMID: 27424158 DOI: 10.1007/s00210-016-1277-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/10/2016] [Indexed: 12/13/2022]
Abstract
Metformin and exenatide are effective antidiabetic drugs, and they seem to have pleiotropic properties improving cardiovascular outcomes. Macrophages' phenotype is essential in the development of atherosclerosis, and it can be modified during antidiabetic therapy, resulting in attenuated atherogenesis. The mechanism orchestrating this phenomenon is not fully clear. We examined the impact of exenatide and metformin on the level of TNF alpha, MCP-1, reactive oxygen species (ROS), and the activation of mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NFκB), and CCAAT/enhancer-binding protein beta (C/EBP beta) in human monocytes/macrophages. We found that both drugs reduced levels of TNF alpha, ROS, and NFκB binding activity to a similar extent. Compared to metformin, exenatide was more effective in reducing MCP-1 levels. We noted that Compound C (AMPK inhibitor) reduced the impact of exenatide on cytokines, ROS, and NFκB in cultures. Both drugs elevated the C/EBP beta phosphorylation level. Experiments on MAPKs showed effective inhibitory potential of exenatide toward p38, JNK, and ERK, whereas metformin inhibited JNK and ERK only. Exenatide was more effective in the inhibition of JNK than metformin. Interestingly, an in vitro setting additive effect of drugs was absent. In conclusion, here, we report that metformin and exenatide inhibit the proinflammatory phenotype of human monocytes/macrophages via influence on MAPK, C/EBP beta, and NFκB. Exenatide was more effective than metformin in reducing MCP-1 expression and JNK activity. We also showed that some effects of exenatide relied on AMPK activation. This shed light on the possible mechanisms responsible for pleiotropic effects of metformin and exenatide.
Collapse
Affiliation(s)
- Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland.
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Rafał Jakub Bułdak
- Department of Physiology, School of Medicine in Zabrze, Medical University of Silesia, Jordana 19, 41-808, Zabrze, Poland
| | - Krzysztof Łabuzek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Medykow 18, 40-752, Katowice, Poland
| |
Collapse
|
1773
|
Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS Sources in Physiological and Pathological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1245049. [PMID: 27478531 PMCID: PMC4960346 DOI: 10.1155/2016/1245049] [Citation(s) in RCA: 861] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
There is significant evidence that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. Mitochondria have been thought to both play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including stimulation of opening of permeability transition pores. Until recently, the functional significance of ROS sources different from mitochondria has received lesser attention. However, the most recent data, besides confirming the mitochondrial role in tissue oxidative stress and protection, show interplay between mitochondria and other ROS cellular sources, so that activation of one can lead to activation of other sources. Thus, it is currently accepted that in various conditions all cellular sources of ROS provide significant contribution to processes that oxidatively damage tissues and assure their survival, through mechanisms such as autophagy and apoptosis.
Collapse
Affiliation(s)
- Sergio Di Meo
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, KY 40475, USA
| | - Paola Venditti
- Dipartimento di Biologia, Università di Napoli “Federico II”, 80126 Napoli, Italy
| | - Victor Manuel Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46010 Valencia, Spain
| |
Collapse
|
1774
|
Diaz-Morales N, Rovira-Llopis S, Bañuls C, Escribano-Lopez I, de Marañon AM, Lopez-Domenech S, Orden S, Roldan-Torres I, Alvarez A, Veses S, Jover A, Rocha M, Hernandez-Mijares A, Victor VM. Are Mitochondrial Fusion and Fission Impaired in Leukocytes of Type 2 Diabetic Patients? Antioxid Redox Signal 2016; 25:108-115. [PMID: 27043041 DOI: 10.1089/ars.2016.6707] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mitochondrial fusion/fission alterations have been evaluated in different tissues of type 2 diabetic (T2D) patients. However, it is not known whether mitochondrial dynamics is disturbed in the leukocytes of T2D patients and whether glycemic control affects its regulation. Anthropometric and metabolic parameters in 91 T2D patients (48 with glycated hemoglobin [HbA1c] <6.5% and 43 with HbA1c >6.5%) were characteristic of the disease when compared with 78 control subjects. We observed increased reactive oxygen species production in leukocytes from diabetic patients, together with a reduced mitochondrial oxygen consumption rate, especially in poorly controlled patients. Mitochondrial fusion was reduced and fission was increased in diabetic patients, and both features were accentuated in patients with poor glycemic control. Furthermore, leukocyte rolling flux rose in parallel to HbA1c levels. The induction of leukocyte-endothelial interactions in diabetic patients was related to reduced mitochondrial fusion and higher mitochondrial fission. Our findings suggest that mitochondrial dynamics could be influenced by glycemic control in leukocytes of diabetic patients, in which there is decreased mitochondrial fusion and elevated fission related to enhanced leukocyte-endothelial interactions. These findings lead to the hypothesis that poor glycemic control during T2D may alter mitochondrial dynamics and could eventually promote leukocyte-endothelial interactions and the onset of cardiovascular diseases. Antioxid. Redox Signal. 25, 108-115.
Collapse
Affiliation(s)
- Noelia Diaz-Morales
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Susana Rovira-Llopis
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
| | - Irene Escribano-Lopez
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Arantxa Martinez de Marañon
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Sandra Lopez-Domenech
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Samuel Orden
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Ildefonso Roldan-Torres
- 4 Service of Cardiology, University Hospital Doctor Peset , Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Angeles Alvarez
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Silvia Veses
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Ana Jover
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Antonio Hernandez-Mijares
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
- 5 Department of Medicine, University of Valencia , Valencia, Spain
| | - Victor M Victor
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
- 6 Department of Physiology, University of Valencia, Valencia, Spain
| |
Collapse
|
1775
|
Cortelazzo A, De Felice C, Guerranti R, Signorini C, Leoncini S, Zollo G, Leoncini R, Timperio AM, Zolla L, Ciccoli L, Hayek J. Expression and oxidative modifications of plasma proteins in autism spectrum disorders: Interplay between inflammatory response and lipid peroxidation. Proteomics Clin Appl 2016; 10:1103-1112. [PMID: 27246309 DOI: 10.1002/prca.201500076] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 05/04/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE A role for inflammation and oxidative stress is reported in autism spectrum disorders (ASDs). Here, we tested possible changes in expression and/or oxidative status for plasma proteins in subjects with ASDs. EXPERIMENTAL DESIGN To evaluate protein expression and protein adducts of lipid peroxidation-derived aldehyde, analysis of plasma proteins was performed in 30 subjects with ASDs and compared with 30 healthy controls with typical development, using a proteomic approach. RESULTS Significant changes were evidenced for a total of 12 proteins. Of these, ten were identified as proteins involved in the acute inflammatory response including alpha-2-macroglobulin, alpha-1-antitrypsin, haptoglobin, fibrinogen, serum transferrin, prealbumin, apolipoprotein A-I apolipoprotein A-IV, apolipoprotein J, and serum albumin. In addition, significant changes occurred for two immunoglobulins alpha and gamma chains. CONCLUSIONS AND CLINICAL RELEVANCE Our present data indicate that an inflammatory response, coupled with increased lipid peroxidation, is present in subjects with ASDs. This information can provide new insight into the identification of potential plasma protein biomarkers in autism.
Collapse
Affiliation(s)
- Alessio Cortelazzo
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, AOUS, Siena, Italy
| | - Roberto Guerranti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Gloria Zollo
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy.,Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Roberto Leoncini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Maria Timperio
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lucia Ciccoli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| |
Collapse
|
1776
|
Bañuls C, Rovira-Llopis S, Falcón R, Veses S, Monzó N, Víctor VM, Rocha M, Hernández-Mijares A. Chronic consumption of an inositol-enriched carob extract improves postprandial glycaemia and insulin sensitivity in healthy subjects: A randomized controlled trial. Clin Nutr 2016; 35:600-607. [PMID: 26051494 DOI: 10.1016/j.clnu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND & AIMS Inositols are thought to be mediators of the insulin signalling pathway. We assessed the effects of inositols on glycaemic control in fasting and postprandial states and evaluated lipoprotein profile and LDL particle size in healthy population. METHODS A 12-week double-blind clinical trial was performed with forty healthy subjects administered either an inositol-enriched beverage (IEB) -containing 2.23 g of inositols in 250 ml- or a sucrose-sweetened beverage (SB) twice a day. Anthropometric measurements, fasting glucose levels, insulin and HOMA-IR index, lipoprotein profile and postprandial glucose concentrations (measured using the continuous glucose monitoring system (CGMS)) were recorded throughout the intervention period. RESULTS Following the 12-week trial subjects receiving the IEB exhibited a significant decrease in insulin, HOMA-IR and Apo B and an increase in LDL particle size, whereas the SB group showed increases in BMI and fasting glucose concentration. Analysis of postprandial glucose levels at breakfast, lunch and dinner revealed a mean reduction of glucose of ≈14% and a significant reduction in the area under the curve at 24 h after consumption of the IEB. CONCLUSIONS Our results show that chronic IEB supplementation induces a significant improvement in carbohydrated metabolism parameters in healthy subjects.
Collapse
Affiliation(s)
- Celia Bañuls
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain
| | - Rosa Falcón
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Silvia Veses
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain
| | - Nuria Monzó
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Department of Medicine, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Víctor M Víctor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain; Department of Physiology, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avda. Gaspar Aguilar 90, 46017 Valencia, Spain; Institute of Health Research INCLIVA, Av Blasco Ibáñez 17, 46010 Valencia, Spain; Department of Medicine, Faculty of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain.
| |
Collapse
|
1777
|
Chen S, Jiang M, Ding T, Wang J, Long P. Calprotectin is a potential prognostic marker for polycystic ovary syndrome. Ann Clin Biochem 2016; 54:253-257. [PMID: 27217417 DOI: 10.1177/0004563216653762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Calprotectin is an antimicrobial, calcium and zinc-binding heterocomplex protein and has been proposed as a marker to rule out inflammatory conditions. The aim of this study was to evaluate the role of calprotectin in the diagnosis of polycystic ovary syndrome and to investigate the association between calprotectin and insulin resistance. Methods A total of 41 females with polycystic ovary syndrome and 54 age-matched without polycystic ovary syndrome were eligible for the study. Serum concentration of calprotectin was determined using enzyme-linked immunosorbent assay. Clinical characteristics, hormone and metabolic parameters were evaluated in each subject. The predictive value of serum calprotectin was assessed using receiver operating characteristic curves. Correlations between the serum calprotectin concentrations and insulin resistance were examined using Spearman's correlation. Results We found that the serum calprotectin concentrations were significantly higher in polycystic ovary syndrome compared with the non-polycystic ovary syndrome group ( P < 0.001). The area under the receiver operating characteristic curve assay yielded a satisfactory result of 0.88 (95% confidence interval 0.81-0.95; P < 0.001). The optimum cut-off was 2.4 µg/mL with a 85.2% specificity and 75.6% sensitivity for polycystic ovary syndrome diagnosis. A significant positive correlation was found between the serum calprotectin and insulin resistance. Conclusions These results suggest that calprotectin might be a useful adjunct in the diagnosis of polycystic ovary syndrome, especially those with insulin resistance.
Collapse
Affiliation(s)
- Shouzhen Chen
- 1 Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Mei Jiang
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Tao Ding
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Junmei Wang
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| | - Ping Long
- 2 Jingmen No.2 People's Hospital of Hubei Province, Jingmen, China
| |
Collapse
|
1778
|
Liu J, Wu J, Sun A, Sun Y, Yu X, Liu N, Dong S, Yang F, Zhang L, Zhong X, Xu C, Lu F, Zhang W. Hydrogen sulfide decreases high glucose/palmitate-induced autophagy in endothelial cells by the Nrf2-ROS-AMPK signaling pathway. Cell Biosci 2016; 6:33. [PMID: 27222705 PMCID: PMC4877995 DOI: 10.1186/s13578-016-0099-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background Excessive autophagy induced by extravagant oxidative stress is the main reason for diabetes-induced vascular endothelial cells dysfunction. Hydrogen sulfide (H2S) has anti-oxidative effects but its regulation on excessive autophagy of vascular endothelial cells is unclear. Methods In this study, aorta of db/db mice (28 weeks old) and rat aortic endothelial cells (RAECs) treated with 40 mM glucose and 500 μM palmitate acted as type II diabetic animal and cellular models, respectively, and 100 μMNaHS was used as an exogenous H2S donor. The apoptosis level was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling (TUNEL) staining and Hoechst 33342/PI staining. The activities of SOD, CAT and respiratory complexes were also measured. The mRNA levels of SOD and CAT were detected by real-time PCR. AMPK-siRNA was used to detect the effect of AMPK on autophagy. Western blotting was used to detected the protein level. Results H2S production was decreased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS treatment rescued this impairment (p < 0.05, p < 0.01). The expression of adhesive proteins was increased (p < 0.05, p < 0.01) both in vitro and in vivo; NaHS attenuated (p < 0.05, p < 0.01) these alterations. NaHS could protect endothelial cells against apoptosis induced by type II diabetes (p < 0.05, p < 0.01). Furthermore, the expressions and activities of SOD and CAT were impaired (p < 0.05, p < 0.01) in endothelial cells of diabetes II; NaHS treatment attenuated (p < 0.05) this impairment. NaHS also increased ATP production (p < 0.05) and activities of respiratory complexes (p < 0.05), and the ratio of p-AMPK to AMPK was also decreased by NaHS (p < 0.01). The level of autophagy in endothelial cells was also decreased (p < 0.05, p < 0.01) by NaHS treatment and AMPK-siRNA treatment. The expression of Nrf2 in the nuclei was increased (p < 0.05) by NaHS treatment. Conclusion Exogenous H2S might protect arterial endothelial cells by suppressing excessive autophagy induced by oxidative stress through the Nrf2-ROS-AMPK signaling pathway. Electronic supplementary material The online version of this article (doi:10.1186/s13578-016-0099-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Jichao Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Aili Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Yu Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Xiangjing Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Ning Liu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Fan Yang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Linxue Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Xin Zhong
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Fanghao Lu
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| | - Weihua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin, 150086 China
| |
Collapse
|
1779
|
Di Rosa M, Malaguarnera L. Chitinase 3 Like-1: An Emerging Molecule Involved in Diabetes and Diabetic Complications. Pathobiology 2016; 83:228-242. [PMID: 27189062 DOI: 10.1159/000444855] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 01/05/2025] Open
Abstract
Chitinase 3 like-1 (CHI3L1) is a chitinase-like protein member of family 18 chitinases, expressed in innate immune cells and involved in endothelial dysfunction and tissue remodelling. Since CHI3L1 is highly expressed in a variety of inflammatory diseases of infectious and non-infectious aetiology, it is recognised as a non-invasive prognostic biomarker for inflammation. A variety of studies revealing the increase in CHI3L1 levels in obesity, insulin resistance and in pathological conditions, such as atherosclerosis, coronary artery disease, acute ischaemic stroke, nephropathy, diabetic retinopathy and osteolytic processes, have suggested that CHI3L1 may also play a critical role in the evolution and complication of diabetes mellitus (DM). In this review we highlight the impact of CHI3L1 expression in DM and its contribution to the complication of this disease.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | | |
Collapse
|
1780
|
Iskandar K, Rezlan M, Yadav SK, Foo CHJ, Sethi G, Qiang Y, Bellot GL, Pervaiz S. Synthetic Lethality of a Novel Small Molecule Against Mutant KRAS-Expressing Cancer Cells Involves AKT-Dependent ROS Production. Antioxid Redox Signal 2016; 24:781-94. [PMID: 26714745 DOI: 10.1089/ars.2015.6362] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AIMS We recently reported the death-inducing activity of a small-molecule compound, C1, which triggered reactive oxygen species (ROS)-dependent autophagy-associated apoptosis in a variety of human cancer cell lines. In this study, we examine the ability of the compound to specifically target cancer cells harboring mutant KRAS with minimal activity against wild-type (WT) RAS-expressing cells. RESULTS HCT116 cells expressing mutated KRAS are susceptible, while the WT-expressing HT29 cells are resistant. Interestingly, C1 triggers activation of mutant RAS, which results in the downstream phosphorylation and activation of AKT/PKB. Gene knockdown of KRAS or AKT or their pharmacological inhibition resulted in the abrogation of C1-induced ROS production and rescued tumor colony-forming ability. We also made use of HCT116 mutant KRAS knockout (KO) cells, which express only a single WT KRAS allele. Exposure of KO cells to C1 failed to increase mitochondrial ROS and cell death, unlike the parental cells harboring mutant KRAS. Similarly, mutant KRAS-transformed prostate epithelial cells (RWPE-1-RAS) were more sensitive to the ROS-producing and death-inducing effects of C1 than the vector only expressing RWPE-1 cells. An in vivo model of xenograft tumors generated with HCT116 KRAS(WT/MUT) or KRAS(WT/-) cells showed the efficacy of C1 treatment and its ability to affect the relative mitotic index in tumors harboring KRAS mutant. INNOVATION AND CONCLUSION These data indicate a synthetic lethal effect against cells carrying mutant KRAS, which could have therapeutic implications given the paucity of KRAS-specific chemotherapeutic strategies. Antioxid. Redox Signal. 24, 781-794.
Collapse
Affiliation(s)
- Kartini Iskandar
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Majidah Rezlan
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Sanjiv Kumar Yadav
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Chuan Han Jonathan Foo
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Gautam Sethi
- 2 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Yu Qiang
- 3 Genome Institute of Singapore , A*STAR, Singapore, Singapore
| | - Gregory L Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore .,7 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
1781
|
Elzinga S, Wood P, Adams AA. Plasma Lipidomic and Inflammatory Cytokine Profiles of Horses With Equine Metabolic Syndrome. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
1782
|
Metformin treatment status and abdominal aortic aneurysm disease progression. J Vasc Surg 2016; 64:46-54.e8. [PMID: 27106243 DOI: 10.1016/j.jvs.2016.02.020] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE In population-based studies performed on multiple continents during the past two decades, diabetes mellitus has been negatively associated with the prevalence and progression of abdominal aortic aneurysm (AAA) disease. We investigated the possibility that metformin, the primary oral hypoglycemic agent in use worldwide, may influence the progression of AAA disease. METHODS Preoperative AAA patients with diabetes were identified from an institutional database. After tabulation of individual cardiovascular and demographic risk factors and prescription drug regimens, odds ratios for categorical influences on annual AAA enlargement were calculated through nominal logistical regression. Experimental AAA modeling experiments were subsequently performed in normoglycemic mice to validate the database-derived observations as well as to suggest potential mechanisms of metformin-mediated aneurysm suppression. RESULTS Fifty-eight patients met criteria for study inclusion. Of 11 distinct classes of medication considered, only metformin use was negatively associated with AAA enlargement. This association remained significant after controlling for gender, age, cigarette smoking status, and obesity. The median enlargement rate in AAA patients not taking oral diabetic medication was 1.5 mm/y; by nominal logistic regression, metformin, hyperlipidemia, and age ≥70 years were associated with below-median enlargement, whereas sulfonylurea therapy, initial aortic diameter ≥40 mm, and statin use were associated with above-median enlargement. In experimental modeling, metformin dramatically suppressed the formation and progression, with medial elastin and smooth muscle preservation and reduced aortic mural macrophage, CD8 T cell, and neovessel density. CONCLUSIONS Epidemiologic evidence of AAA suppression in diabetes may be attributable to concurrent therapy with the oral hypoglycemic agent metformin.
Collapse
|
1783
|
Karnewar S, Vasamsetti SB, Gopoju R, Kanugula AK, Ganji SK, Prabhakar S, Rangaraj N, Tupperwar N, Kumar JM, Kotamraju S. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis. Sci Rep 2016; 6:24108. [PMID: 27063143 PMCID: PMC4827087 DOI: 10.1038/srep24108] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.
Collapse
Affiliation(s)
- Santosh Karnewar
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, Chennai, India
| | - Sathish Babu Vasamsetti
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, Chennai, India
| | - Raja Gopoju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, Chennai, India
| | | | - Sai Krishna Ganji
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sripadi Prabhakar
- National Centre for Mass Spectrometry, Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nandini Rangaraj
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Nitin Tupperwar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Jerald Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Srigiridhar Kotamraju
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Training and Development Complex, Chennai, India
| |
Collapse
|
1784
|
Xu Y, Zhou Q, Xin W, Li Z, Chen L, Wan Q. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro. PeerJ 2016; 4:e1888. [PMID: 27077005 PMCID: PMC4830256 DOI: 10.7717/peerj.1888] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/13/2016] [Indexed: 12/30/2022] Open
Abstract
It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN). Here we used shRNA transfection to knockdown the insulin receptor (IR) gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN.
Collapse
Affiliation(s)
- Ying Xu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Qi Zhou
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Xin
- Central Lab, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Zhaoping Li
- School of Public Health, Shandong University, Jinan, Shandong, China
| | - Liyong Chen
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong Hospital, Jinan, Shandong, China
| | - Qiang Wan
- Department of Nephrology, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
1785
|
Hexadecenoic Fatty Acid Isomers in Human Blood Lipids and Their Relevance for the Interpretation of Lipidomic Profiles. PLoS One 2016; 11:e0152378. [PMID: 27045677 PMCID: PMC4821613 DOI: 10.1371/journal.pone.0152378] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/14/2016] [Indexed: 12/12/2022] Open
Abstract
Monounsaturated fatty acids (MUFA) are emerging health biomarkers, and in particular the ratio between palmitoleic acid (9cis-16:1) and palmitic acid (16:0) affords the delta-9 desaturase index that is increased in obesity. Recently, other positional and geometrical MUFA isomers belonging to the hexadecenoic family (C16 MUFA) were found in circulating lipids, such as sapienic acid (6cis-16:1), palmitelaidic acid (9trans-16:1) and 6trans-16:1. In this work we report: i) the identification of sapienic acid as component of human erythrocyte membrane phospholipids with significant increase in morbidly obese patients (n = 50) compared with age-matched lean controls (n = 50); and ii) the first comparison of erythrocyte membrane phospholipids (PL) and plasma cholesteryl esters (CE) in morbidly obese patients highlighting that some of their fatty acid levels have opposite trends: increases of both palmitic and sapienic acids with the decrease of linoleic acid (9cis,12cis-18:2, omega-6) in red blood cell (RBC) membrane PL were reversed in plasma CE, whereas the increase of palmitoleic acid was similar in both lipid species. Consequentially, desaturase enzymatic indexes gave different results, depending on the lipid class used for the fatty acid content. The fatty acid profile of morbidly obese subjects also showed significant increases of stearic acid (C18:0) and C20 omega-6, as well as decreases of oleic acid (9cis-18:1) and docosahexaenoic acid (C22:6 omega-3) as compared with lean healthy controls. Trans monounsaturated and polyunsaturated fatty acids were also measured and found significantly increased in both lipid classes of morbidly obese subjects. These results highlight the C16 MUFA isomers as emerging metabolic marker provided that the assignment of the double bond position and geometry is correctly performed, thus identifying the corresponding lipidomic pathway. Since RBC membrane PL and plasma CE have different fatty acid trends, caution must also be used in the choice of lipid species for the interpretation of lipidomic profiles.
Collapse
|
1786
|
Liu Z, Bone N, Jiang S, Park DW, Tadie JM, Deshane J, Rodriguez CA, Pittet JF, Abraham E, Zmijewski JW. AMP-Activated Protein Kinase and Glycogen Synthase Kinase 3β Modulate the Severity of Sepsis-Induced Lung Injury. Mol Med 2016; 21:937-950. [PMID: 26650187 PMCID: PMC4818252 DOI: 10.2119/molmed.2015.00198] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/27/2015] [Indexed: 12/29/2022] Open
Abstract
Alterations in metabolic and bioenergetic homeostasis contribute to sepsis-mediated organ injury. However, how AMP-activated protein kinase (AMPK), a major sensor and regulator of energy expenditure and production, affects development of organ injury and loss of innate capacity during polymicrobial sepsis remains unclear. In the present experiments, we found that cross-talk between the AMPK and GSK3β signaling pathways controls chemotaxis and the ability of neutrophils and macrophages to kill bacteria ex vivo. In mice with polymicrobial abdominal sepsis or more severe sepsis induced by the combination of hemorrhage and intraabdominal infection, administration of the AMPK activator metformin or the GSK3β inhibitor SB216763 reduced the severity of acute lung injury (ALI). Improved survival in metformin-treated septic mice was correlated with preservation of mitochondrial complex V (ATP synthase) function and increased amounts of ETC complex III and IV. Although immunosuppression is a consequence of sepsis, metformin effectively increased innate immune capacity to eradicate P. aeruginosa in the lungs of septic mice. We also found that AMPK activation diminished accumulation of the immunosuppressive transcriptional factor HIF-1α as well as the development of endotoxin tolerance in LPS-treated macrophages. Furthermore, AMPK-dependent preservation of mitochondrial membrane potential also prevented LPS-mediated dysfunction of neutrophil chemotaxis. These results indicate that AMPK activation reduces the severity of polymicrobial sepsis-induced lung injury and prevents the development of sepsis-associated immunosuppression.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Nathaniel Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shaoning Jiang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dae Won Park
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Marc Tadie
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jessy Deshane
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Cilina Ann Rodriguez
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jean-Francois Pittet
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Edward Abraham
- Office of the Dean, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaroslaw W Zmijewski
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
1787
|
Hernandez-Mijares A, Bañuls C, Rovira-Llopis S, Diaz-Morales N, Escribano-Lopez I, de Pablo C, Alvarez A, Veses S, Rocha M, Victor VM. Effects of simvastatin, ezetimibe and simvastatin/ezetimibe on mitochondrial function and leukocyte/endothelial cell interactions in patients with hypercholesterolemia. Atherosclerosis 2016; 247:40-47. [PMID: 26868507 DOI: 10.1016/j.atherosclerosis.2016.01.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cholesterol-lowering therapy has been related with several beneficial effects; however, its influence on oxidative stress and endothelial function is not fully elucidated. AIMS To investigate the effect of simvastatin and ezetimibe on mitochondrial function and leukocyte-endothelium interactions in polymorphonuclear cells of hyperlipidemic patients. METHODS Thirty-nine hyperlipidemic patients were randomly assigned to one of two groups: one received simvastatin (40 mg/day) and the other received ezetimibe (10 mg/day) for 4 weeks, after which both groups were administered combined therapy for an additional 4-week period. Lipid profile, mitochondrial parameters (oxygen consumption, reactive oxygen species (ROS) and membrane potential), glutathione levels, superoxide dismutase activity, catalase activity and leukocyte/endothelial cell interactions and adhesion molecules -VCAM-1, ICAM-1, E-selectin, were evaluated. RESULTS An improvement in lipid profile was observed after administration of simvastatin or ezetimibe alone (LDLc: -40.2 vs -19.6%, respectively), though this effect was stronger with the former (p < 0.001), and a further reduction was registered when the two were combined (LDLc: -50.7% vs -56.8%, respectively). In addition to this, simvastatin, ezetimibe and simvastatin + ezetimibe significantly increased oxygen consumption, membrane potential and glutathione content, and decreased levels of ROS, thereby improving mitochondrial function. Furthermore, simvastatin + ezetimibe increased catalase activity. In addition, simvastatin and simvastatin/ezetimibe improved leukocyte/endothelium interactions by decreasing leukocyte rolling and adhesion and increasing leukocyte rolling velocity. Finally, simvastatin, ezetimibe and simvastatin + ezetimibe reduced levels of the adhesion molecule ICAM-1, and ezetimibe + simvastatin significantly decreased levels of E-selectin. CONCLUSION Co-administration of simvastatin and ezetimibe has an additive cholesterol-lowering effect and beneficial consequences for mitochondrial function and leukocyte/endothelium interactions in leukocytes of hypercholesterolemic patients.
Collapse
Affiliation(s)
- Antonio Hernandez-Mijares
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| | - Celia Bañuls
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Irene Escribano-Lopez
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Carmen de Pablo
- Department of Pharmacology and CIBERehd, Faculty of Medicine, University of Valencia, Spain
| | - Angeles Alvarez
- Department of Pharmacology and CIBERehd, Faculty of Medicine, University of Valencia, Spain; Fundación General de Universidad de Valencia, Valencia, Spain
| | - Silvia Veses
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain.
| | - Victor M Victor
- Service of Endocrinology, University Hospital Dr. Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain; Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
1788
|
Regulatory effects of anesthetics on nitric oxide. Life Sci 2016; 151:76-85. [DOI: 10.1016/j.lfs.2016.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 12/26/2022]
|
1789
|
Victor VM, Rovira-Llopis S, Bañuls C, Diaz-Morales N, Martinez de Marañon A, Rios-Navarro C, Alvarez A, Gomez M, Rocha M, Hernández-Mijares A. Insulin Resistance in PCOS Patients Enhances Oxidative Stress and Leukocyte Adhesion: Role of Myeloperoxidase. PLoS One 2016; 11:e0151960. [PMID: 27007571 PMCID: PMC4805297 DOI: 10.1371/journal.pone.0151960] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases and oxidative stress are related to polycystic ovary syndrome (PCOS) and insulin resistance (IR). We have evaluated the relationship between myeloperoxidase (MPO) and leukocyte activation in PCOS patients according to homeostatic model assessment of IR (HOMA-IR), and have explored a possible correlation between these factors and endocrine and inflammatory parameters. This was a prospective controlled study conducted in an academic medical center. The study population consisted of 101 PCOS subjects and 105 control subjects. We divided PCOS subjects into PCOS non-IR (HOMA-IR<2.5) and PCOS IR (HOMA-IR>2.5). Metabolic and anthropometric parameters, total and mitochondrial reactive oxygen species (ROS) production, MPO levels, interactions between human umbilical vein endothelial cells and leukocytes, adhesion molecules (E-selectin, ICAM-1 and VCAM-1) and proinflammatory cytokines (IL-6 and TNF-α) were evaluated. Oxidative stress was observed in PCOS patients, in whom there was an increase in total and mitochondrial ROS production and MPO levels. Enhanced rolling flux and adhesion, and a decrease in polymorphonuclear cell rolling velocity were also detected in PCOS subjects. Increases in IL-6 and TNF-α and adhesion molecules (E-selectin, ICAM-1 and VCAM-1) were also observed, particularly in the PCOS IR group, providing evidence that inflammation and oxidative stress are related in PCOS patients. HOMA-IR was positively correlated with hsCRP (p<0.001, r = 0.304), ROS production (p<0.01, r = 0.593), leukocyte rolling flux (p<0.05, r = 0.446), E-selectin (p<0.01, r = 0.436) and IL-6 (p<0.001, r = 0.443). The results show an increase in the rate of ROS and MPO levels in PCOS patients in general, and particularly in those with IR. Inflammation in PCOS induces leukocyte-endothelium interactions and a simultaneous increase in IL-6, TNF-α, E-selectin, ICAM-1 and VCAM-1. These conditions are aggravated by the presence of IR.
Collapse
Affiliation(s)
- Victor M. Victor
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Arantxa Martinez de Marañon
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Cesar Rios-Navarro
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - Angeles Alvarez
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
- General Foundation of the University of Valencia, Valencia, Spain
| | - Marcelino Gomez
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
- CIBERehd - Department of Pharmacology and Physiology, University of Valencia, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
1790
|
Zeeshan HMA, Lee GH, Kim HR, Chae HJ. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci 2016; 17:327. [PMID: 26950115 PMCID: PMC4813189 DOI: 10.3390/ijms17030327] [Citation(s) in RCA: 652] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a fascinating network of tubules through which secretory and transmembrane proteins enter unfolded and exit as either folded or misfolded proteins, after which they are directed either toward other organelles or to degradation, respectively. The ER redox environment dictates the fate of entering proteins, and the level of redox signaling mediators modulates the level of reactive oxygen species (ROS). Accumulating evidence suggests the interrelation of ER stress and ROS with redox signaling mediators such as protein disulfide isomerase (PDI)-endoplasmic reticulum oxidoreductin (ERO)-1, glutathione (GSH)/glutathione disuphide (GSSG), NADPH oxidase 4 (Nox4), NADPH-P450 reductase (NPR), and calcium. Here, we reviewed persistent ER stress and protein misfolding-initiated ROS cascades and their significant roles in the pathogenesis of multiple human disorders, including neurodegenerative diseases, diabetes mellitus, atherosclerosis, inflammation, ischemia, and kidney and liver diseases.
Collapse
Affiliation(s)
- Hafiz Maher Ali Zeeshan
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Geum Hwa Lee
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology and Wonkwang Biomaterial Implant Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk 570-749, Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, School of Medicine, Chonbuk National University, Jeonju, Chonbuk 561-180, Korea.
| |
Collapse
|
1791
|
Zhang M, Wang C, Hu J, Lin J, Zhao Z, Shen M, Gao H, Li N, Liu M, Zheng P, Qiu C, Gao E, Wang H, Sun D. Notch3/Akt signaling contributes to OSM-induced protection against cardiac ischemia/reperfusion injury. Apoptosis 2016; 20:1150-63. [PMID: 26093524 DOI: 10.1007/s10495-015-1148-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oncostatin M (OSM) exhibits many unique biological activities by activating the Oβ receptor. However, its role in myocardial ischemia/reperfusion injury (I/R injury) in mice remains unknown. We investigated whether Notch3/Akt signaling is involved in the regulation of OSM-induced protection against cardiac I/R injury. The effects of OSM were assessed in mice that underwent myocardial I/R injury by OSM treatment or by genetic deficiency of the OSM receptor Oβ. We investigated its effects on cardiomyocyte apoptosis and mitochondrial biogenesis and whether Notch3/Akt signaling was involved in the regulation of OSM-induced protection against cardiac I/R injury. The mice underwent 30 min of ischemia followed by 3 h of reperfusion and were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) 72 h before coronary artery ligation. Myocardial infarct size, cardiac function, cardiomyocyte apoptosis and mitochondria morphology in mice that underwent cardiac I/R injury were compared between groups. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through promotion of Notch3 production, thus activating the PI3K/Akt pathway. OSM enhanced mitochondrial biogenesis and mitochondrial function in mice subjected to cardiac I/R injury. In contrast, OSM receptor Oβ knock out exacerbated cardiac I/R injury, decreased Notch3 production, enhanced cardiomyocyte apoptosis, and impaired mitochondrial biogenesis in cardiac I/R injured mice. The mechanism of OSM on cardiac I/R injury is partly mediated by the Notch3/Akt pathway. These results suggest a novel role of Notch3/Akt signaling that contributes to OSM-induced protection against cardiac I/R injury.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1792
|
Vial G, Le Guen M, Lamarche F, Detaille D, Cottet-Rousselle C, Demaison L, Hininger-Favier I, Theurey P, Crouzier D, Debouzy JC, Dubouchaud H, Fontaine É. Liver mitochondrial function in ZDF rats during the early stages of diabetes disease. Physiol Rep 2016; 4:4/3/e12686. [PMID: 26847727 PMCID: PMC4758924 DOI: 10.14814/phy2.12686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to characterize the early alterations of the liver mitochondrial function in ZDF (fa/fa) rats that develop diabetes compared to that of their lean counterparts ZDF (fa/+). Liver mitochondrial function was examined in 11‐ and 14‐week‐old ZDF (fa/fa) and ZDF lean (fa/+) rats. Oxygen consumption, H2O2 release, calcium retention capacity (CRC), membrane potential, membrane fluidity, and fatty acid composition were analyzed. State 3 oxygen consumption with palmitoyl‐carnitine increases between 11 and 14 weeks of age in lean but not in diabetic animals. This response was not seen with other substrates, suggesting that the use of fatty acids is impaired in diabetic rats. H2O2 release was lower in 14‐week‐old ZDF (fa/fa) rats as compared to ZDF lean (fa/+). These changes were not associated with differences in enzymatic activities of the respiratory complexes, suggesting regulatory mechanisms independent of their expression levels. Membrane fluidity and composition analyses show only slight effects linked to diabetes progression. The most salient feature was a reduction in CRC in the presence of CsA, an effect reflecting PTP dysregulation. Our data suggest few changes of mitochondrial function in ZDF fa/fa rats. At the age of 11 weeks, liver mitochondria have mainly a reduced effect of CsA on CRC.
Collapse
Affiliation(s)
- Guillaume Vial
- Facultés de médecine Charles Mérieux Lyon-Sud et Rockfeller, INSERM U-1060 Laboratoire CarMeN Université Lyon 1, INRA 1235, INSA de Lyon, Lyon, France European Center For Nutrition and Health, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Marie Le Guen
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Joseph Fourier University, Grenoble, France
| | - Frédéric Lamarche
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Joseph Fourier University, Grenoble, France Grenoble University Hospital, Grenoble, France
| | - Dominique Detaille
- Centre de Recherche Cardio-Thoracique de Bordeaux - CRCTB - LIRYC Université de Bordeaux 2, Bordeaux, INSERM U-1045 Hôpital Xavier Arnozan, Bordeaux, Bordeaux, France
| | - Cécile Cottet-Rousselle
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France
| | - Luc Demaison
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Unité de Nutrition Humaine, INRA, UMR 1019 Clermont Université Université d'Auvergne, Clermont-Ferrand, France
| | - Isabelle Hininger-Favier
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Joseph Fourier University, Grenoble, France
| | - Pierre Theurey
- Facultés de médecine Charles Mérieux Lyon-Sud et Rockfeller, INSERM U-1060 Laboratoire CarMeN Université Lyon 1, INRA 1235, INSA de Lyon, Lyon, France
| | - David Crouzier
- Institut de Recherche Biomédicale des Armées-Unité des Risques Technologiques Emergents, Brétigny sur Orge, France
| | - Jean-Claude Debouzy
- Institut de Recherche Biomédicale des Armées-Unité des Risques Technologiques Emergents, Brétigny sur Orge, France
| | - Hervé Dubouchaud
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Joseph Fourier University, Grenoble, France
| | - Éric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA) et SFR Biologie Environnementale et Systémique (BEeSy), INSERM U-1055, Grenoble, France Joseph Fourier University, Grenoble, France Grenoble University Hospital, Grenoble, France
| |
Collapse
|
1793
|
Abstract
Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.
Collapse
|
1794
|
Sun L, Dutta RK, Xie P, Kanwar YS. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. J Biol Chem 2016; 291:5688-5707. [PMID: 26792859 DOI: 10.1074/jbc.m115.669952] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/23/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by perturbations in metabolic/cellular signaling pathways with generation of reactive oxygen species (ROS). The ROS are regarded as a common denominator of various pathways, and they inflict injury on renal glomerular cells. Recent studies indicate that tubular pathobiology also plays a role in the progression of DN. However, the mechanism(s) for how high (25 mm) glucose (HG) ambience induces tubular damage remains enigmatic. myo-Inositol oxygenase (MIOX) is a tubular enzyme that catabolizes myo-inositol to d-glucuronate via the glucuronate-xylulose (G-X) pathway. In this study, we demonstrated that G-X pathway enzymes are expressed in the kidney, and MIOX expression/bioactivity was up-regulated under HG ambience in LLC-PK1 cells, a tubular cell line. We further investigated whether MIOX overexpression leads to accentuation of tubulo-interstitial injury, as gauged by some of the parameters relevant to the progression of DN. Under HG ambience, MIOX overexpression accentuated redox imbalance, perturbed NAD(+)/NADH ratios, increased ROS generation, depleted reduced glutathione, reduced GSH/GSSG ratio, and enhanced adaptive changes in the profile of the antioxidant defense system. These changes were also accompanied by mitochondrial dysfunctions, DNA damage and induction of apoptosis, accentuated activity of profibrogenic cytokine, and expression of fibronectin, the latter two being the major hallmarks of DN. These perturbations were largely blocked by various ROS inhibitors (Mito Q, diphenyleneiodonium chloride, and N-acetylcysteine) and MIOX/NOX4 siRNA. In conclusion, this study highlights a novel mechanism where MIOX under HG ambience exacerbates renal injury during the progression of diabetic nephropathy following the generation of excessive ROS via an unexplored G-X pathway.
Collapse
Affiliation(s)
- Lin Sun
- From the Department of Nephrology and Renal Institute, 2nd Xiangya Hospital, Central South University, Changsha, Hunan 410011, China and
| | - Rajesh K Dutta
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ping Xie
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yashpal S Kanwar
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
1795
|
Headley CA, DiSilvestro D, Bryant KE, Hemann C, Chen CA, Das A, Ziouzenkova O, Durand G, Villamena FA. Nitrones reverse hyperglycemia-induced endothelial dysfunction in bovine aortic endothelial cells. Biochem Pharmacol 2016; 104:108-17. [PMID: 26774452 DOI: 10.1016/j.bcp.2016.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/07/2016] [Indexed: 12/31/2022]
Abstract
Hyperglycemia has been implicated in the development of endothelial dysfunction through heightened ROS production. Since nitrones reverse endothelial nitric oxide synthase (eNOS) dysfunction, increase antioxidant enzyme activity, and suppress pro-apoptotic signaling pathway and mitochondrial dysfunction from ROS-induced toxicity, the objective of this study was to determine whether nitrone spin traps DMPO, PBN and PBN-LA were effective at duplicating these effects and improving glucose uptake in an in vitro model of hyperglycemia-induced dysfunction using bovine aortic endothelial cells (BAEC). BAEC were cultured in DMEM medium with low (5.5mM glucose, LG) or high glucose (50mM, HG) for 14 days to model in vivo hyperglycemia as experienced in humans with metabolic disease. Improvements in cell viability, intracellular oxidative stress, NO and tetrahydrobiopterin (BH4) levels, mitochondrial membrane potential, glucose transport, and activity of antioxidant enzymes were measured from single treatment of BAEC with nitrones for 24h after hyperglycemia. Chronic hyperglycemia significantly increased intracellular ROS by 50%, decreased cell viability by 25%, reduced NO bioavailability by 50%, and decreased (BH4) levels by 15% thereby decreasing NO production. Intracellular glucose transport and superoxide dismutase (SOD) activity were also decreased by 50% and 25% respectively. Nitrone (PBN and DMPO, 50 μM) treatment of BAEC grown in hyperglycemic conditions resulted in the normalization of outcome measures except for SOD and catalase activities. Our findings demonstrate that the nitrones reverse the deleterious effects of hyperglycemia in BAEC. We believe that in vivo testing of these nitrone compounds in models of cardiometabolic disease is warranted.
Collapse
Affiliation(s)
- Colwyn A Headley
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - David DiSilvestro
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Kelsey E Bryant
- Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chun-An Chen
- Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA; The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amlan Das
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Ouliana Ziouzenkova
- Department of Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS-Université Montpellier-ENSCM & Avignon Université, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 33 rue Louis Pasteur, 84000 Avignon, France
| | - Frederick A Villamena
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA; Department of Emergency Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
1796
|
Ghali O, Al Rassy N, Hardouin P, Chauveau C. Increased Bone Marrow Adiposity in a Context of Energy Deficit: The Tip of the Iceberg? Front Endocrinol (Lausanne) 2016; 7:125. [PMID: 27695438 PMCID: PMC5025430 DOI: 10.3389/fendo.2016.00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Elevated bone marrow adiposity (BMA) is defined as an increase in the proportion of the bone marrow (BM) cavity volume occupied by adipocytes. This can be caused by an increase in the size and/or number of adipocytes. BMA increases with age in a bone-site-specific manner. This increase may be linked to certain pathophysiological situations. Osteoporosis or compromised bone quality is frequently associated with high BMA. The involvement of BM adipocytes in bone loss may be due to commitment of mesenchymal stem cells to the adipogenic pathway rather than the osteogenic pathway. However, adipocytes may also act on their microenvironment by secreting factors with harmful effects for the bone health. Here, we review evidence that in a context of energy deficit (such as anorexia nervosa (AN) and restriction rodent models) bone alterations can occur in the absence of an increase in BMA. In severe cases, bone alterations are even associated with gelatinous BM transformation. The relationship between BMA and energy deficit and the potential regulators of this adiposity in this context are also discussed. On the basis of clinical studies and preliminary results on animal model, we propose that competition between differentiation into osteoblasts and differentiation into adipocytes might trigger bone loss at least in moderate-to-severe AN and in some calorie restriction models. Finally, some of the main questions resulting from this hypothesis are discussed.
Collapse
Affiliation(s)
- Olfa Ghali
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Nathalie Al Rassy
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Pierre Hardouin
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
| | - Christophe Chauveau
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université de Lille, Boulogne-sur-Mer, France
- Laboratoire de Physiopathologie des Maladies Osseuses Inflammatoires, Université du Littoral Côte d’Opale, Boulogne-sur-Mer, France
- *Correspondence: Christophe Chauveau,
| |
Collapse
|
1797
|
Son SW, Lee JS, Kim HG, Kim DW, Ahn YC, Son CG. Testosterone depletion increases the susceptibility of brain tissue to oxidative damage in a restraint stress mouse model. J Neurochem 2016; 136:106-117. [PMID: 26385432 DOI: 10.1111/jnc.13371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
Among sex hormones, estrogen is particularly well known to act as neuroprotective agent. Unlike estrogen, testosterone has not been well investigated in regard to its effects on the brain, especially under psychological stress. To investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. BALB/c mice were subjected to either an orchiectomy or sham operation. After allowing 15 days for recovery, mice were re-divided into four groups according to exposure of restraint stress: sham, sham plus stress, orchiectomy, and orchiectomy plus stress. Serum testosterone was undetectable in orchiectomized groups and restraint-induced stress significantly reduced testosterone levels in sham plus stress group. The serum levels of corticosterone and adrenaline were notably elevated by restraint stress, and these elevated hormones were markedly augmented by orchiectomy. Two oxidative stressors and biomarkers for lipid and protein peroxidation were significantly increased in the cerebral cortex and hippocampus by restraint stress, while the reverse pattern was observed in antioxidant enzymes. These results were supported by histopathological findings, with 4-hydroxynonenal staining for oxidative injury and Fluoro-Jade B staining showing the degenerating neurons. The aforementioned patterns of oxidative injury were accelerated by orchiectomy. These findings strongly suggest the conclusion that testosterone exerts a protective effect against oxidative brain damage, especially under stressed conditions. Unlike estrogen, the effects of testosterone on the brain have not been thoroughly investigated. In order to investigate the role of testosterone in oxidative brain injuries under psychological stress, we adapted an orchiectomy and restraint stress model. Orchiectomy markedly augmented the restraint stress-induced elevation of serum corticosterone and adrenaline levels as well as oxidative alterations in brain tissues, especially in the hippocampus. These findings are the first evidence that testosterone depletion makes the brain prone to oxidative injury.
Collapse
Affiliation(s)
- Seung-Wan Son
- Department of Biomedical Engineering, College of Health Science, Korea University, Seongbuk-Gu, Seoul, Korea
| | - Jin-Seok Lee
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, South Korea
| | - Hyeong-Geug Kim
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, South Korea
| | - Dong-Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Yo-Chan Ahn
- Department of Health Service Management, Daejeon University, Dong-gu, Daejeon, Korea
| | - Chang-Gue Son
- Department of Biomedical Engineering, College of Health Science, Korea University, Seongbuk-Gu, Seoul, Korea
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Oriental Medical Collage of Daejeon University, Jung-gu, Daejeon, South Korea
| |
Collapse
|
1798
|
Tostes RC, Carneiro FS, Carvalho MHC, Reckelhoff JF. Reactive oxygen species: players in the cardiovascular effects of testosterone. Am J Physiol Regul Integr Comp Physiol 2015; 310:R1-14. [PMID: 26538238 DOI: 10.1152/ajpregu.00392.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/23/2015] [Indexed: 01/12/2023]
Abstract
Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.
Collapse
Affiliation(s)
- Rita C Tostes
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil;
| | - Fernando S Carneiro
- University of São Paulo, Ribeirao Preto Medical School, Ribeirao Preto, São Paulo, Brazil
| | | | - Jane F Reckelhoff
- University of Mississippi Medical Center, Women's Health Research Center, Jackson, Mississippi
| |
Collapse
|
1799
|
Rovira-Llopis S, Díaz-Morales N, Bañuls C, Blas-García A, Polo M, López-Domenech S, Jover A, Rocha M, Hernández-Mijares A, Víctor VM. Is Autophagy Altered in the Leukocytes of Type 2 Diabetic Patients? Antioxid Redox Signal 2015; 23:1050-1056. [PMID: 26218267 DOI: 10.1089/ars.2015.6447] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It is unknown whether autophagy is altered in the leukocytes of type 2 diabetes (T2D) patients and whether oxidative and endoplasmic reticulum (ER) stresses regulate this mechanism. We studied anthropometric and metabolic parameters and evaluated oxidative stress, chromatin condensation, ER stress, and autophagy parameters in leukocytes of 103 T2D patients versus 109 sex- and age-matched controls. Patients showed increases in glucose, insulin, homeostasis model assessment of insulin resistance, and glycated hemoglobin (HbA1c) compared with controls (p < 0.001). Leukocytes displayed enhanced total and mitochondrial reactive oxygen species (ROS), reduced mitochondrial mass, and increased chromatin condensation (p < 0.05). ER stress was also activated in diabetic patients, who displayed augmented glucose-regulated protein 78 kDa (GRP78), phosphorylated eukaryotic translation initiation factor 2, subunit 1 alpha (P-eIF2α), and activating transcription factor 6 (ATF6) levels (p < 0.05). We also observed an increase in the autophagy markers, microtubule-associated protein light chain 3 (LC3)-II and Beclin 1 (p < 0.05), and significant positive correlations between Beclin 1 and total ROS (r = 0.667), GRP78 (r = 0.925) and P-eIF2α (r = 0.644), and between LC3-II and P-eIF2α (r = 0.636) and ATF6 (r = 0.601). Our results lead to the hypothesis that autophagy is activated in the leukocytes of T2D patients and that both oxidative and ER stress signaling pathways may be implicated in the induction of autophagy.
Collapse
Affiliation(s)
- Susana Rovira-Llopis
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
| | - Noelia Díaz-Morales
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Celia Bañuls
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
| | - Ana Blas-García
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Miriam Polo
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Sandra López-Domenech
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Ana Jover
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
| | - Milagros Rocha
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
| | - Antonio Hernández-Mijares
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 4 Department of Medicine, University of Valencia , Valencia, Spain
| | - Víctor M Víctor
- 1 Service of Endocrinology, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), University Hospital Doctor Peset , Valencia, Spain
- 2 Institute of Health Research INCLIVA, University of Valencia , Valencia, Spain
- 3 CIBERehd-Department of Pharmacology and Physiology, University of Valencia , Valencia, Spain
- 5 Department of Physiology, University of Valencia , Valencia, Spain
| |
Collapse
|
1800
|
Victor VM, Rovira-Llopis S, Bañuls C, Diaz-Morales N, Castelló R, Falcón R, Gómez M, Rocha M, Hernández-Mijares A. Effects of metformin on mitochondrial function of leukocytes from polycystic ovary syndrome patients with insulin resistance. Eur J Endocrinol 2015; 173:683-691. [PMID: 26320144 DOI: 10.1530/eje-15-0572] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/27/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Oxidative stress and mitochondrial dysfunction are implicated in polycystic ovary syndrome (PCOS). The present study assesses the effect of metformin treatment on mitochondrial function in polymorphonuclear cells from PCOS subjects. Additionally, we evaluate endocrine parameters and levels of interleukin 6 (IL6) and tumour necrosis factor alpha (TNFα). DESIGN AND METHODS Our study population was comprised of 35 women of reproductive age diagnosed with PCOS and treated with metformin for 12 weeks, and their corresponding controls (n=41), adjusted by age and BMI. We evaluated the alteration of endocrinological and anthropometrical parameters and androgen levels. Mitochondrial O2 consumption (using a Clark-type O2 electrode), membrane potential, mitochondrial mass, and levels of reactive oxygen species (ROS) and glutathione (GSH) (by means of fluorescence microscopy) were assessed in poymorphonuclear cells. H2O2 was evaluated with the Amplex Red(R) H2O2/Peroxidase Assay kit. IL6 and TNFα were measured using the Luminex 200 flow analyser system. RESULTS Metformin had beneficial effects on patients by increasing mitochondrial O2 consumption, membrane potential, mitochondrial mass and glutathione levels, and by decreasing levels of reactive oxygen species and H2O2. In addition, metformin reduced glucose, follicle-stimulating hormone, IL6 and TNFα levels and increased dehydroepiandrosterone sulfate levels. HOMA-IR and mitochondrial function biomarkers positively correlated with ROS production (r=0.486, P=0.025), GSH content (r=0.710, P=0.049) and H2O2 (r=0.837, P=0.010), and negatively correlated with membrane potential (r=-0.829, P=0.011) at baseline. These differences disappeared after metformin treatment. CONCLUSIONS Our results demonstrate the beneficial effects of metformin treatment on mitochondrial function in leukocytes of PCOS patients.
Collapse
Affiliation(s)
- Victor M Victor
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Celia Bañuls
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Noelia Diaz-Morales
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Raquel Castelló
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Rosa Falcón
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Marcelino Gómez
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Milagros Rocha
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain Service of EndocrinologyUniversity Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Avenida Gaspar Aguilar 90, 46017 Valencia, SpainInstitute of Health Research INCLIVAUniversity of Valencia, Valencia, SpainCIBERehd - Department of Pharmacology and PhysiologyUniversity of Valencia, Valencia, SpainDepartment of MedicineUniversity of Valencia, Valencia, Spain
| |
Collapse
|