151
|
Kelliher S, Gamba S, Weiss L, Shen Z, Marchetti M, Schieppati F, Scaife C, Madden S, Bennett K, Fortune A, Maung S, Fay M, Ní Áinle F, Maguire P, Falanga A, Kevane B, Krishnan A. Platelet proteo-transcriptomic profiling validates mediators of thrombosis and proteostasis in patients with myeloproliferative neoplasms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563619. [PMID: 37961700 PMCID: PMC10634751 DOI: 10.1101/2023.10.23.563619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patients with chronic Myeloproliferative Neoplasms (MPN) including polycythemia vera (PV) and essential thrombocythemia (ET) exhibit unique clinical features, such as a tendency toward thrombosis and hemorrhage, and risk of disease progression to secondary bone marrow fibrosis and/or acute leukemia. Although an increase in blood cell lineage counts (quantitative features) contribute to these morbid sequelae, the significant qualitative abnormalities of myeloid cells that contribute to vascular risk are not well understood. Here, we address this critical knowledge gap via a comprehensive and untargeted profiling of the platelet proteome in a large (n= 140) cohort of patients (from two independent sites) with an established diagnosis of PV and ET (and complement prior work on the MPN platelet transcriptome from a third site). We discover distinct MPN platelet protein expression and confirm key molecular impairments associated with proteostasis and thrombosis mechanisms of potential relevance to MPN pathology. Specifically, we validate expression of high-priority candidate markers from the platelet transcriptome at the platelet proteome (e.g., calreticulin (CALR), Fc gamma receptor (FcγRIIA) and galectin-1 (LGALS1) pointing to their likely significance in the proinflammatory, prothrombotic and profibrotic phenotypes in patients with MPN. Together, our proteo-transcriptomic study identifies the peripherally-derived platelet molecular profile as a potential window into MPN pathophysiology and demonstrates the value of integrative multi-omic approaches in gaining a better understanding of the complex molecular dynamics of disease.
Collapse
Affiliation(s)
- Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sara Gamba
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Zhu Shen
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Marina Marchetti
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Schieppati
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Caitriona Scaife
- UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen Madden
- Data Science Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kathleen Bennett
- School of Population Health, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Anne Fortune
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Su Maung
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Fay
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Fionnuala Ní Áinle
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, Royal College of Surgeons in Ireland
| | - Patricia Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
- University of Milano-Bicocca, Department of Medicine and Surgery, Monza, Italy
| | - Barry Kevane
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Rutgers University, Piscataway, NJ
- Stanford Cancer Institute, Stanford, CA, USA
| |
Collapse
|
152
|
Heo YJ, Lee N, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW, Kim HJ. Amphiregulin Induces iNOS and COX-2 Expression through NF- κB and MAPK Signaling in Hepatic Inflammation. Mediators Inflamm 2023; 2023:2364121. [PMID: 37868614 PMCID: PMC10586434 DOI: 10.1155/2023/2364121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
Background Inflammation is a major cause of hepatic tissue damage and accelerates the progression of nonalcoholic fatty liver disease (NAFLD). Amphiregulin (AREG), an epidermal growth factor receptor ligand, is associated with human liver cirrhosis and hepatocellular carcinoma. We aimed to investigate the effects of AREG on hepatic inflammation during NAFLD progression, in vivo and in vitro. Methods AREG gene expression was measured in the liver of mice fed a methionine choline-deficient (MCD) diet for 2 weeks. We evaluated inflammatory mediators and signaling pathways in HepG2 cells after stimulation with AREG. Nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were analyzed using an enzyme-linked immunosorbent assay and western blotting. Nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase, were analyzed using western blotting. Results Proinflammatory cytokines (interleukin (IL)-6, IL-1β, and IL-8) and immune cell recruitment (as indicated by L3T4, F4/80, and ly6G mRNA expression) increased, and expression of AREG increased in the liver of mice fed the MCD diet. AREG significantly increased the expression of IL-6 and IL-1β and the production of NO, PGE2, and IL-8 in HepG2 cells. It also activated the protein expression of iNOS and COX-2. AREG-activated NF-κB and MAPKs signaling, and together with NF-κB and MAPKs inhibitors, AREG significantly reduced the protein expression of iNOS and COX-2. Conclusion AREG plays a role in hepatic inflammation by increasing iNOS and COX-2 expression via NF-κB and MAPKs signaling.
Collapse
Affiliation(s)
- Yu Jung Heo
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
- Institute of Medical Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Nami Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, 206, World cup-ro, Yeongtong-gu, Suwon 16499, Republic of Korea
| |
Collapse
|
153
|
Abdel-Hamid NM, Zakaria SM, Ansary AM, El-Senduny FF, El-Shishtawy MM. The expression of tuftelin 1 as a new theranostic marker in early diagnosis and as a therapeutic target in hepatocellular carcinoma. Cell Biochem Funct 2023; 41:788-800. [PMID: 37470499 DOI: 10.1002/cbf.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer M Ansary
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry (Biochemistry Division), Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
154
|
Atique M, Javed R, Seerat I, Atique U, Bhatti T. The Intensity and Pattern of Syndecan-1 (CD138) Expression in Normal and Diseased Livers. Cureus 2023; 15:e46718. [PMID: 38022112 PMCID: PMC10630907 DOI: 10.7759/cureus.46718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Heparan sulfate proteoglycans (HSPGs) belong to the syndecan family, and syndecan-1 (CD138) is a heparan sulfate proteoglycan. Syndecan-1 has a potential role in cell-matrix and cell-cell communications as they are present in cell epithelium. Its expression is different in an extensive range of benign, inflammatory, and neoplastic diseases. In routine histopathology, it is used as a marker for plasma cells. However, it is expressed in a large variety of normal and neoplastic epithelia including squamous epithelium and gastric glandular epithelium expressed in other tissues, i.e., the liver. In the liver, variable expression is seen in cirrhosis, hepatitis, and carcinoma. The objective of this study was to investigate the expression of this marker in normal, inflammatory, and neoplastic lesions of the liver. This in turn may help clinicians to select patients who may benefit from anti-CD138 therapy. It is currently used in the diagnosis and management of plasma cell proliferations. Material and methods This is a retrospective study in which we retrieved 53 formalin-fixed paraffin-embedded (FFPE) liver specimen blocks and selected one block from each case by reviewing the hematoxylin and eosin (H&E) slides of each case. Syndecan-1 (CD138), pancytokeratin, and CD68 expression were analyzed immunohistochemically (IHC) to evaluate the percentage and intensity of CD138 expression in various hepatic entities and identify those entities where syndecan-1 can be consistently used to make a definitive diagnosis. Results The expression of pancytokeratin and CD68 was analyzed in hepatocytes and Kupffer cells, respectively. For syndecan-1 (CD138), 15.4% of cases showed basolateral membranous positivity, 44.6% of cases showed complete membranous positivity, and 40% of cases showed no positivity in hepatocytes. Cytokeratin (CK) was positive as expected in hepatocytes, and CD68 was expressed in Kupffer cells. Conclusion CD138 does not appear to be a reliable surrogate marker for liver disease. However, it may be included with other ancillary markers as a predictor of the stage of chronic liver disease and metastatic potential. The response to anti-CD138 therapy needs to be further studied.
Collapse
Affiliation(s)
- Muhammad Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Rabia Javed
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Iqtadar Seerat
- Pediatric Gastroenterology and Hepatology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Usman Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Tayyaba Bhatti
- Pathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| |
Collapse
|
155
|
Batheja S, Sahoo RK, Tarannum S, Vaiphei KK, Jha S, Alexander A, Goyal AK, Gupta U. Hepatocellular carcinoma: Preclinical and clinical applications of nanotechnology with the potential role of carbohydrate receptors. Biochim Biophys Acta Gen Subj 2023; 1867:130443. [PMID: 37573973 DOI: 10.1016/j.bbagen.2023.130443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer; accounts for 75-85% of cases. The treatment and management of HCC involve different sanative options like surgery, chemotherapy, immunotherapy, etc. Recently, various advancements have been introduced for the diagnosis and targeting of hepatic tumor cells. Among these, biomarkers are considered the primary source for the diagnosis and differentiation of tumor cells. With the advancement in the field of nanotechnology, different types of nanocarriers have been witnessed in tumor targeting. Nanocarriers such as nanoparticles, liposomes, polymeric micelles, nanofibers, etc. are readily prepared for effective tumor targeting with minimal side-effects. The emergence of various approaches tends to improve the effectiveness of these nanocarriers as demonstrated in ample clinical trials. This review focuses on the significant role of carbohydrates such as mannose, galactose, fructose, etc. in the development, diagnosis, and therapy of HCC. Hence, the current focus of this review is to acknowledge various perspectives regarding the occurrence, diagnosis, treatment, and management of HCC.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Rakesh Kumar Sahoo
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Sofiya Tarannum
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sila Katamur, Changsari, Kamrup, Guwahati, Assam 781101, India
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
156
|
Alshehri A, Albuhayri A, Alanazi M, Althubaiti MA, Aljehani RF, Alsharif FI, Alatawi TM, Albalawi SS, Khodir AE, Al-Gayyar MM. Effects of Echinacoside on Ehrlich Carcinoma in Rats by Targeting Proliferation, Hypoxia and Inflammation. Cureus 2023; 15:e46800. [PMID: 37822691 PMCID: PMC10564261 DOI: 10.7759/cureus.46800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/13/2023] Open
Abstract
Background and objectives Ehrlich solid carcinoma (ESC) is a type of tumor originating from a spontaneous mammary adenocarcinoma in mice. It is highly aggressive and fast-growing and can create a solid undifferentiated mass when inserted under the skin. This makes it an ideal model for assessing cancer biology and tumor immunology. Echinacoside is a natural phenylethanoid glycoside with anti-inflammatory, anti-endoplasmic reticulum stress, anti-oxidative stress, and other beneficial properties. This study explored the potential anti-cancer benefits of echinacoside in rats with ESC. The study also analyzed its effects on tumor cell proliferation, differentiation, motility, and inflammation. Methods The study involved injecting rats with tumors in their left hind limb using an intramuscular injection of 2×106 cells. After 14 days, some rats were given a daily intraperitoneal dose of 30 mg/kg echinacoside for three weeks. Muscle samples were then analyzed under an electron microscope. In addition, gene expression and protein levels of various factors such as phosphoinositide 3-kinases (PI3K), mammalian target of rapamycin (mTOR), hypoxia-inducible factor (HIF)-1α, cyclin D1, cyclin-dependent kinase 2 (CDK2), tumor necrosis factor (TNF)-α, and nuclear factor (NF)κB were evaluated in another part of the muscle samples. Results After being treated with echinacoside, the ESC rats experienced a significant increase in their mean survival time from 27 days to 48 days. This treatment also resulted in a decrease in the volume and weight of the tumor. Upon examining the tumor tissue under an electron microscope, signs of damage such as pleomorphic cells, necrosis, nuclear fragmentation, membrane damage with cytoplasmic content spilling, and loss of cellular junction were observed. However, the treatment with echinacoside was effective in improving these effects. Furthermore, the expression of PI3K, mTOR, HIF-1α, cyclin D1, CDK2, TNF-α, and NFκB was significantly reduced due to the echinacoside treatment. Conclusions Our research found that echinacoside has antitumor properties that resulted in a substantial decrease in tumor size and weight, leading to an increase in the average survival time of rats and an improvement in muscle structure. Additionally, echinacoside was shown to ameliorate hypoxia by suppressing HIF-1α, reduce inflammation by decreasing NFκB and TNF-α, decrease proliferation by reducing PI3K, and block cyclin D1 and CDK2 to inhibit differentiation.
Collapse
Affiliation(s)
- Afnan Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
| | | | - May Alanazi
- PharmD Program, University of Tabuk, Tabuk, SAU
| | | | - Raghad F Aljehani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
| | - Fai I Alsharif
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
| | | | - Shouq S Albalawi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
| | - Ahmed E Khodir
- Pharmacology and Toxicology, Horus University, New Damietta, EGY
| | - Mohammed M Al-Gayyar
- Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
- Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, EGY
| |
Collapse
|
157
|
Al-Tantawy SM, Eraky SM, Eissa LA. Promising renoprotective effect of gold nanoparticles and dapagliflozin in diabetic nephropathy via targeting miR-192 and miR-21. J Biochem Mol Toxicol 2023; 37:e23430. [PMID: 37352119 DOI: 10.1002/jbt.23430] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
Diabetic nephropathy (DN) is a worldwide issue that eventually leads to end-stage renal failure, with limited therapeutic options. Prior research has revealed that gold nanoparticles (AuNPs) have a substantial antidiabetic impact. In addition, sodium-glucose cotransporter2 (SGLT2) inhibitors, including dapagliflozin (DAPA), had renoprotective impact on DN. Therefore, this research attempted to determine the potential AuNPs and DAPA impacts in ameliorating experimentally DN induction and the underlying mechanisms focusing on miR-192 and miR-21, correlating them with autophagy, apoptosis, fibrosis, and oxidative stress. Diabetes induction was through a single intraperitoneal streptozotocin (55 mg/kg) injection, and rats with diabetes received AuNPs (2.5 mg/kg/day) as well as DAPA (2 mg/kg/day) for 7 weeks as a treatment. AuNPs and DAPA treatment for 7 weeks substantially alleviated DN. AuNPs and DAPA significantly increased catalase (CAT) activity as well as serum total antioxidant capacity (TAC), along with a substantial decline in malondialdehyde (MDA). AuNPs and DAPA treatment alleviated renal fibrosis as they decreased transforming growth factorß1(TGF-ß1) as well as matrix metalloproteinase-2 (MMP-2) renal expression, decreased apoptosis through alleviating the proapoptotic gene (caspase-3) renal expression and increased the antiapoptotic gene (Bcl-2) renal expression, and increased autophagy as they increased LC-3 as well as Beclin-1 renal expression. Autophagy activation, inhibition of apoptosis, and renal fibrosis could be due to their inhibitory impact on miR-192 and miR-21 renal expression. AuNPs and DAPA have a protective effect on DN in rats by targeting miR-192 and miR-21 and their downstream pathways, including fibrosis, apoptosis, autophagy, and oxidative stress.
Collapse
Affiliation(s)
- Samar M Al-Tantawy
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Laila A Eissa
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
158
|
Wang Y, Xu S, Tang L, Gong J, Su D, Yang H. Piperine as a Potential Nutraceutical Agent for Managing Diabetes and Its Complications: A Literature Review. J Med Food 2023. [PMID: 37725004 DOI: 10.1089/jmf.2023.k.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The global prevalence of diabetes and its related complications has increased drastically and is currently a worldwide health challenge. There is still an urgent need for safe and effective natural products and supplements as alternative and/or adjunctive therapeutic interventions. Nowadays, people pay more and more attention to the nutritional and medicinal value of food ingredients. As one of the most widely employed spices in cooking, pepper also has novel medicinal values attributed to its main component, piperine (Pip). Pip is an amide alkaloid with pleiotropic properties such as anti-inflammatory, antioxidant, anti-cancer, and other related activities. Recently, Pip has received increasing scientific attention due to its antidiabetic and related complication properties. However, the values of existing studies are limited due to being scattered and unsystematic. The present study reviewed the therapeutic potential and possible mechanisms of Pip in diabetes and related complications, with the aim of providing promising candidates for the development of novel and effective alternative and/or adjunctive nutraceutical agents for the management of diabetes.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Pharmacy, the Third Affiliated Hospital of Soochow University, the First Peoples's Hospital of Changzhou, Changzhou, China
| | - Shan Xu
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Lidan Tang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhong Gong
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Dan Su
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
159
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
160
|
Masarkar N, Ray SK, Saleem Z, Mukherjee S. Potential anti-cancer activity of Moringa oleifera derived bio-active compounds targeting hypoxia-inducible factor-1 alpha in breast cancer. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 0:jcim-2023-0182. [PMID: 37712721 DOI: 10.1515/jcim-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Breast cancer (BC) will become a highly detected malignancy in females worldwide in 2023, with over 2 million new cases. Studies have established the role of hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls cellular response to hypoxic stress, and is essential for BC spread. HIF-1 is implicated in nearly every critical stage of the metastatic progression, including invasion, EMT, intravasation, extravasation, angiogenesis, and the formation of metastatic niches. HIF-1 overexpression has been associated with poor prognosis and increased mortality in BC patients. This is accomplished by controlling the expression of HIF-1 target genes involved in cell survival, angiogenesis, metabolism, and treatment resistance. Studies have indicated that inhibiting HIF-1 has an anti-cancer effect on its own and that inhibiting HIF-1-mediated signaling improves the efficacy of anti-cancer therapy. Approximately 74 % of recognized anti-cancer drugs are sourced from plant species. Studies on anti-cancer characteristics of phytochemicals derived from Moringa oleifera (MO), also known as the 'Tree of Life', have revealed a high therapeutic potential for BC. In this review, we have highlighted the various mechanisms through which bioactive compounds present in MO may modulate HIF and its regulatory genes/pathways, to prove their efficacy in treating and preventing BC.
Collapse
Affiliation(s)
- Neha Masarkar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | | | - Zirha Saleem
- Department of Biotechnology, Institute for Excellence in Higher Education, Bhopal, Madhya Pradesh, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
161
|
Hoshino A, Clemente V, Shetty M, Castle B, Odde D, Bazzaro M. The Microtubule Severing Protein UNC-45A Counteracts the Microtubule Straightening Effects of Taxol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557417. [PMID: 37745537 PMCID: PMC10515786 DOI: 10.1101/2023.09.12.557417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
UNC-45A is the only known ATP-independent microtubule (MT) severing protein. Thus, it severs MTs via a novel mechanism. In vitro and in cells UNC-45A-mediated MT severing is preceded by the appearance of MT bends. While MTs are stiff biological polymers, in cells, they often curve, and the result of this curving can be breaking off. The contribution of MT severing proteins on MT lattice curvature is largely undefined. Here we show that UNC-45A curves MTs. Using in vitro biophysical reconstitution and TIRF microscopy analysis, we show that UNC-45A is enriched in the areas where MTs are curved versus the areas where MTs are straight. In cells, we show that UNC-45A overexpression increases MT curvature and its depletion has the opposite effect. We also show that this effect occurs is independent of actomyosin contractility. Lastly, we show for the first time that in cells, Paclitaxel straightens MTs, and that UNC-45A can counteracts the MT straightening effects of the drug. Significance: Our findings reveal for the first time that UNC-45A increases MT curvature. This hints that UNC-45A-mediated MT severing could be due to the worsening of MT curvature and provide a mechanistic understanding of how this MT-severing protein may act. UNC-45A is the only MT severing protein expressed in human cancers, including paclitaxel-resistant ovarian cancer. Our finding that UNC-45A counteracts the paclitaxel-straightening effects of MTs in cells suggests an additional mechanism through which cancer cells escape drug treatment.
Collapse
|
162
|
Perisset S, Potilinski MC, Gallo JE. Role of Lnc-RNAs in the Pathogenesis and Development of Diabetic Retinopathy. Int J Mol Sci 2023; 24:13947. [PMID: 37762249 PMCID: PMC10531058 DOI: 10.3390/ijms241813947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Important advances in diabetic retinopathy (DR) research and management have occurred in the last few years. Neurodegenerative changes before the onset of microvascular alterations have been well established. So, new strategies are required for earlier and more effective treatment of DR, which still is the first cause of blindness in working age. We describe herein gene regulation through Lnc-RNAs as an interesting subject related to DR. Long non-coding RNAs (Lnc-RNAs) are non-protein-coding transcripts larger than 200 nucleotides. Lnc-RNAs regulate gene expression and protein formation at the epigenetic, transcriptional, and translational levels and can impact cell proliferation, apoptosis, immune response, and oxidative stress. These changes are known to take part in the mechanism of DR. Recent investigations pointed out that Lnc-RNAs might play a role in retinopathy development as Metastasis-Associated Lung Adenocarcinoma Transcript (Lnc-MALAT1), Maternally expressed gene 3 (Lnc-MEG3), myocardial-infarction-associated transcript (Lnc-MIAT), Lnc-RNA H19, Lnc-RNA HOTAIR, Lnc-RNA ANRIL B-Raf proto-oncogene (Lnc-RNA BANCR), small nucleolar RNA host gene 16 (Lnc-RNA SNHG16) and others. Several molecular pathways are impacted. Some of them play a role in DR pathophysiology, including the PI3K-Akt signaling axis, NAD-dependent deacetylase sirtuin-1 (Sirti1), p38 mitogen-activated protein kinase (P38/mapk), transforming growth factor beta signaling (TGF-β) and nuclear factor erythroid 2-related factor 2 (Nrf2). The way Lnc-RNAs affect diabetic retinopathy is a question of great relevance. Performing a more in-depth analysis seems to be crucial for researchers if they want to target Lnc-RNAs. New knowledge on gene regulation and biomarkers will enable investigators to develop more specialized therapies for diabetic retinopathy, particularly in the current growing context of precision medicine.
Collapse
Affiliation(s)
- Sofia Perisset
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - M. Constanza Potilinski
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
| | - Juan E. Gallo
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Facultad de Ciencias Biomédicas, Universidad Austral—CONICET, Pilar B1629, Buenos Aires, Argentina; (S.P.); (M.C.P.)
- Departamento de Oftalmología, Hospital Universitario Austral, Pilar B1629, Buenos Aires, Argentina
| |
Collapse
|
163
|
Iqbal Z, Quds R, Mahmood R. Vanillin attenuates CdCl 2-induced cytotoxicity in isolated human erythrocytes. Toxicol In Vitro 2023; 91:105633. [PMID: 37336463 DOI: 10.1016/j.tiv.2023.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Cadmium is a toxic heavy metal with no physiological role in the human body. Cadmium has high mobility due to its widespread industrial use, with no safe and effective therapeutic management. Cadmium toxicity manifests by increasing oxidative stress in target cells. We have explored the potential role of vanillin, a plant phenolic aldehyde and antioxidant, in mitigating cadmium chloride (CdCl2) induced hemotoxicity using isolated human erythrocytes. CdCl2 was added to erythrocytes, in the absence and presence of vanillin. Incubation of erythrocytes with CdCl2 alone inhibited methemoglobin reductase and enhanced methemoglobin level. Heme degradation and release of free iron (Fe2+), along with protein and membrane lipid oxidation, were also increased. A CdCl2-induced enhancement in reactive oxygen and nitrogen species was also seen, lowering the overall antioxidant power of cells. However, pre-incubation of erythrocytes with vanillin resulted in significant decreased generation of reactive species and prevented heme degradation and heme oxidation. Vanillin augmented the erythrocyte antioxidant capacity and reinstated the activities of major antioxidant, plasma membrane-bound and glucose metabolism enzymes. Scanning electron microscopy showed that CdCl2 treatment led to the formation of echinocytes which was prevented by vanillin. In all cases, no harmful effects of vanillin alone were seen. Thus, vanillin alleviates the toxicity of cadmium and can be potentially employed as a chemoprotectant against the damaging effects of this heavy metal.
Collapse
Affiliation(s)
- Zarmin Iqbal
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Ruhul Quds
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
164
|
Chan AC, Shan PY, Wu MH, Lin PH, Tsai CS, Hsu CC, Chiu TH, Hsu TW, Yeh YC, Lai YJ, Liu WM, Tu LH. Piperic acid derivative as a molecular modulator to accelerate the IAPP aggregation process and alter its antimicrobial activity. Chem Commun (Camb) 2023; 59:10660-10663. [PMID: 37581279 DOI: 10.1039/d3cc03363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.
Collapse
Affiliation(s)
- Ai-Ci Chan
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Pei-Ya Shan
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Men-Hsin Wu
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Pin-Han Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Chang-Shun Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chia-Chien Hsu
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Ting-Hsiang Chiu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ting-Wei Hsu
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Wei-Min Liu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Ling-Hsien Tu
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| |
Collapse
|
165
|
Bellia F, Lanza V, Naletova I, Tomasello B, Ciaffaglione V, Greco V, Sciuto S, Amico P, Inturri R, Vaccaro S, Campagna T, Attanasio F, Tabbì G, Rizzarelli E. Copper(II) Complexes with Carnosine Conjugates of Hyaluronic Acids at Different Dipeptide Loading Percentages Behave as Multiple SOD Mimics and Stimulate Nrf2 Translocation and Antioxidant Response in In Vitro Inflammatory Model. Antioxidants (Basel) 2023; 12:1632. [PMID: 37627627 PMCID: PMC10452038 DOI: 10.3390/antiox12081632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
A series of copper(II) complexes with the formula [Cu2+Hy(x)Car%] varying the molecular weight (MW) of Hyaluronic acid (Hy, x = 200 or 700 kDa) conjugated with carnosine (Car) present at different loading were synthesized and characterized via different spectroscopic techniques. The metal complexes behaved as Cu, Zn-superoxide dismutase (SOD1) mimics and showed some of the most efficient reaction rate values produced using a synthetic and water-soluble copper(II)-based SOD mimic reported to date. The increase in the percentage of Car moieties parallels the enhancement of the I50 value determined via the indirect method of Fridovich. The presence of the non-functionalized Hy OH groups favors the scavenger activity of the copper(II) complexes with HyCar, recalling similar behavior previously found for the copper(II) complexes with Car conjugated using β-cyclodextrin or trehalose. In keeping with the new abilities of SOD1 to activate protective agents against oxidative stress in rheumatoid arthritis and osteoarthritis diseases, Cu2+ interaction with HyCar promotes the nuclear translocation of erythroid 2-related factor that regulates the expressions of target genes, including Heme-Oxigenase-1, thus stimulating an antioxidant response in osteoblasts subjected to an inflammatory/oxidative insult.
Collapse
Affiliation(s)
- Francesco Bellia
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valeria Lanza
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Valeria Ciaffaglione
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Pietro Amico
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Rosanna Inturri
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Susanna Vaccaro
- Fidia Farmaceutici SpA, Contrada Pizzuta, 96017 Noto, Italy; (P.A.); (R.I.); (S.V.)
| | - Tiziana Campagna
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (F.B.); (V.L.); (I.N.); (V.C.); (T.C.); (F.A.); (E.R.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
166
|
Si S, Zhao X, Su F, Lu H, Zhang D, Sun L, Wang F, Xu L. New advances in clinical application of neostigmine: no longer focusing solely on increasing skeletal muscle strength. Front Pharmacol 2023; 14:1227496. [PMID: 37601044 PMCID: PMC10436336 DOI: 10.3389/fphar.2023.1227496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023] Open
Abstract
Neostigmine is a clinical cholinesterase inhibitor, that is, commonly used to enhance the function of the cholinergic neuromuscular junction. Recent studies have shown that neostigmine regulates the immune-inflammatory response through the cholinergic anti-inflammatory pathway, affecting perioperative neurocognitive function. This article reviews the relevant research evidence over the past 20 years, intending to provide new perspectives and strategies for the clinical application of neostigmine.
Collapse
Affiliation(s)
- Shangkun Si
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohu Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fan Su
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongxiu Lu
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Sun
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fulei Wang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Li Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
167
|
Abdel-Hamid NM, ElNakeeb NA, El-Senduny FF. Efficient chemosensitizing and antimetastatic combinations of a naturally occurring trans-ferulic acid with different chemotherapies on an in vitro hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1741-1747. [PMID: 36811666 DOI: 10.1007/s00210-023-02431-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Trans-ferulic acid (TFA) is a polyphenolic compound present in many dietary supplements. The aim of this study was to get better chemotherapeutic outcomes through treatment protocols for human hepatocellular carcinoma (HCC). This study focused on the exploration of the in vitro influence of a combination of TFA with 5-fluorouracil (5-FU), doxorubicin (DOXO), and cisplatin (CIS) on HepG2 cell line. Treatment with 5-FU, DOXO, and CIS alone down-regulated oxidative stress and alpha-fetoprotein (AFP), and decreased cell migration through the depression of metalloproteinases (MMP-3, MMP-9, and MMP-12) expression. Co-treatment with TFA synergized the effects of these chemotherapies by decreased MMP-3, MMP-9, and MMP-12 expression, and gelatinolytic activity of both MMP-9 and MMP-2 in cancer cells. TFA significantly reduced the elevated levels of AFP and NO, and depressed cell migration ability (metastasis) in HepG2 groups. Co-treatment with TFA elevated the chemotherapeutic potency of 5-FU, DOXO, and CIS in managing HCC.
Collapse
Affiliation(s)
- Nabil Mohie Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Nadia A ElNakeeb
- Department of Chemistry, Faculty of Science, Port Said University, Port Fuad, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
168
|
Alatawi YF, Alhablani MA, Al-Rashidi FA, Khubrani WS, Alqaisi SA, Hassan HM, Al-Gayyar MM. Garcinol-Attenuated Gastric Ulcer (GU) Experimentally Induced in Rats Via Affecting Inflammation, Cell Proliferation, and DNA Polymerization. Cureus 2023; 15:e43317. [PMID: 37577271 PMCID: PMC10415854 DOI: 10.7759/cureus.43317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Gastric ulcer (GU) is one of the most critical gastrointestinal tract disorders. Garcinol is a polyisoprenylated benzophenone in Garcinia fruit with antioxidant and anti-inflammatory priorities. OBJECTIVES We aimed to assess the protective effects of garcinol against GU induced in rats. We investigated garcinol's effects on DNA polymerization via mammalian targets of rapamycin (mTOR) and cyclin D1, cell proliferation via proliferating cell nuclear antigen (PCNA), inflammatory pathway via cyclooxygenase-2 (COX2), TNF-α, and IL-1β, and anti-inflammatory pathway via IL-4 and IL10. METHODS In our study, we administered a single oral dose of 80 mg/kg of indomethacin to rats to induce GU. Some of the rats were given a treatment of 50 mg/kg of garcinol. We examined the expressions of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1β/4/10 in the gastric tissues. Furthermore, we stained sections of the gastric tissues with Masson trichrome. RESULTS The areas of gastric tissues in the GU group showed severe hemorrhage and extensive fibrosis. Treating GU rats with garcinol prevented bleeding and ameliorated the fibrosis caused in gastric cells by GU. Moreover, treatment with garcinol significantly decreased the expression of mTOR, cyclin D1, PCNA, COX2, TNF-α, and IL-1β associated with elevation of IL-4 and IL-10. CONCLUSION Garcinol has been found to provide therapeutic benefits in rats with induced GU. These benefits may be due to its ability to decrease the expression of DNA polymerization markers, cell proliferation markers, and inflammatory markers at the gene and protein levels.
Collapse
Affiliation(s)
| | | | | | | | | | - Hanan M Hassan
- Pharmacology and Biochemistry, Delta University for Science and Technology, Gamasa, EGY
| | - Mohammed M Al-Gayyar
- Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, SAU
- Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, EGY
| |
Collapse
|
169
|
Guo Z, Liu X, Zhao S, Sun F, Ren W, Ma M. RUNX1 promotes liver fibrosis progression through regulating TGF-β signalling. Int J Exp Pathol 2023; 104:188-198. [PMID: 37070207 PMCID: PMC10349244 DOI: 10.1111/iep.12474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
Liver fibrosis is caused by chronic liver injury. There are limited treatments for it, and the pathogenesis is unclear. Therefore, there is an urgent need to explore the pathogenesis of liver fibrosis, and to try to identify new potential therapeutic targets. For this study we used the carbon tetrachloride abdominal injection induced liver fibrosis animal model in mice. Primary hepatic stellate cell isolation was performed by a density-gradient separation method, and this was followed by immunofluorescence stain analyses. Signal pathway analysis was performed by dual-luciferase reporter assay and western blotting. Our results showed that RUNX1 was upregulated in cirrhotic liver tissues compared with normal liver tissues. Besides, overexpression of RUNX1 caused more severe liver fibrosis lesions than control group under CCl4 -induced conditions. Moreover, α-SMA expression in the RUNX1 overexpression group was significantly higher than in the control group. Interestingly, we found that RUNX1 could promote the activation of TGF-β/Smads in a dual-luciferase reporter assay. Thus we demonstrated that RUNX1 could be considered as a new regulator of hepatic fibrosis by activating TGF-β/Smads signalling. Based on this, we concluded that RUNX1 may be developed as a new therapeutic target in the treatment of liver fibrosis in the future. In addition, this study also provides a new insight about the aetiology of liver fibrosis.
Collapse
Affiliation(s)
- Zhaoyang Guo
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xinxin Liu
- Department of Digestive Endoscopy CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shulei Zhao
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fengkai Sun
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- School of Basic Medical Sciences, Cheeloo Medical CollegeShandong UniversityJinanShandongChina
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial HospitalShandong UniversityJinanChina
- Department of Infectious DiseasesShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
170
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
171
|
Patil VS, Harish DR, Sampat GH, Roy S, Jalalpure SS, Khanal P, Gujarathi SS, Hegde HV. System Biology Investigation Revealed Lipopolysaccharide and Alcohol-Induced Hepatocellular Carcinoma Resembled Hepatitis B Virus Immunobiology and Pathogenesis. Int J Mol Sci 2023; 24:11146. [PMID: 37446321 DOI: 10.3390/ijms241311146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatitis B infection caused by the hepatitis B virus is a life-threatening cause of liver fibrosis, cirrhosis, and hepatocellular carcinoma. Researchers have produced multiple in vivo models for hepatitis B virus (HBV) and, currently, there are no specific laboratory animal models available to study HBV pathogenesis or immune response; nonetheless, their limitations prevent them from being used to study HBV pathogenesis, immune response, or therapeutic methods because HBV can only infect humans and chimpanzees. The current study is the first of its kind to identify a suitable chemically induced liver cirrhosis/HCC model that parallels HBV pathophysiology. Initially, data from the peer-reviewed literature and the GeneCards database were compiled to identify the genes that HBV and seven drugs (acetaminophen, isoniazid, alcohol, D-galactosamine, lipopolysaccharide, thioacetamide, and rifampicin) regulate. Functional enrichment analysis was performed in the STRING server. The network HBV/Chemical, genes, and pathways were constructed by Cytoscape 3.6.1. About 1546 genes were modulated by HBV, of which 25.2% and 17.6% of the genes were common for alcohol and lipopolysaccharide-induced hepatitis. In accordance with the enrichment analysis, HBV activates the signaling pathways for apoptosis, cell cycle, PI3K-Akt, TNF, JAK-STAT, MAPK, chemokines, NF-kappa B, and TGF-beta. In addition, alcohol and lipopolysaccharide significantly activated these pathways more than other chemicals, with higher gene counts and lower FDR scores. In conclusion, alcohol-induced hepatitis could be a suitable model to study chronic HBV infection and lipopolysaccharide-induced hepatitis for an acute inflammatory response to HBV.
Collapse
Affiliation(s)
- Vishal S Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Darasaguppe R Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Ganesh H Sampat
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| | - Sunil S Jalalpure
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Pukar Khanal
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Swarup S Gujarathi
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
- KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, India
| | - Harsha V Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India
| |
Collapse
|
172
|
Song L, Tan R, Xiong D, Jiao X, Pan Z. Accurate identification and discrimination of Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum by a multiplex PCR based on the new genes of torT and I137_14430. Front Vet Sci 2023; 10:1220118. [PMID: 37476820 PMCID: PMC10354433 DOI: 10.3389/fvets.2023.1220118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Most cases of chicken salmonellosis are caused by Salmonella enterica serovar Gallinarum biovars Gallinarum and Pullorum, which lead to a significant morbidity and fatality rate. Although the conventional Kaufmann-White scheme is the reliable method for the serotyping of Salmonella, it does not distinguish between closely related biotypes like S. Pullorum and S. Gallinarum. Herein, we conducted a single one-step multiplex PCR assay that can identify and distinguish between S. Pullorum and S. Gallinarum in an accurate manner. This PCR method was based on three genes, including torT for S. Pullorum identification, I137_14430 for S. Gallinarum identification, and stn as the genus-level reference gene for Salmonella. By comparing S. Pullorum to S. Gallinarum and other serovars of Salmonella, in silico study revealed that only the former has a deletion of 126 bp-region in the carboxyl terminus of torT. The I137_14430 gene does not exist in S. Gallinarum. However, it is present in all other Salmonella serotypes. The multiplex PCR approach utilizes unique sets of primers that are intended to specifically target these three different genes. The established PCR method was capable of distinguishing between the biovars Pullorum and Gallinarum from the 29 distinct Salmonella serotypes as well as the 50 distinct pathogens that are not Salmonella, showing excellent specificity and exclusivity. The minimal amount of bacterial cells required for PCR detection was 100 CFU, while the lowest level of genomic DNA required was 27.5 pg/μL for both S. Pullorum and S. Gallinarum. After being implemented on the clinical Salmonella isolates collected from a poultry farm, the PCR test was capable of distinguishing the two biovars Pullorum and Gallinarum from the other Salmonella strains. The findings of the PCR assay were in line with those of the traditional serotyping and biochemical identification methods. This new multiplex PCR could be used as a novel tool to reinforce the clinical diagnosis and differentiation of S. Pullorum and S. Gallinarum, particularly in high-throughput screening situations, providing the opportunity for early screening of infections and, as a result, more effective management of the illness among flocks.
Collapse
Affiliation(s)
- Li Song
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Ruimeng Tan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Dan Xiong
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou, China
| |
Collapse
|
173
|
Sedik AA, Hassan A, Saleh DO. Neuromodulatory role of L-arginine: nitric oxide precursor against thioacetamide-induced-hepatic encephalopathy in rats via downregulation of NF-κB-mediated apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84791-84804. [PMID: 37378730 PMCID: PMC10359237 DOI: 10.1007/s11356-023-28184-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The aim of the present study was to investigate the impact of arginine (ARG), a nitric oxide (NO) precursor, on thioacetamide (TAA)-induced hepatic encephalopathy (HE) in rats by injection of TAA (100 mg/kg, i.p) three times per week for six consecutive weeks. TAA-injected rats were administered ARG (100 mg/kg; p.o.) concurrently with TAA for the six consecutive weeks. Blood samples were withdrawn, and rats were sacrificed; liver and brain tissues were isolated. Results of the present study demonstrated that ARG administration to TAA-injected rats revealed a restoration in the serum and brain ammonia levels as well as serum aspartate transaminase, alanine transaminase, and alkaline phosphatase and total bilirubin levels as well as behavioral alterations evidenced by restoration in locomotor activity, motor skill performance, and memory impairment. ARG showed also improvement in the hepatic and neuro-biochemical values, pro-inflammatory cytokines, and oxidative stress biomarkers. All these results were confirmed by histopathological evaluation as well as ultrastructural imaging of the cerebellum using a transmission electron microscope. Furthermore, treatment with ARG could ameliorate the immunological reactivity of nuclear factor erythroid-2-related factor 2 (Nrf2) and cleaved caspase-3 proteins in the cerebellum and hepatic tissues. From all the previous results, it can be fulfilled that ARG showed a beneficial role in modulating the adverse complications associated with TAA-induced HE in rats via reducing hyperammonemia and downregulating nuclear factor kappa B (NF-κB)-mediated apoptosis.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt.
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt
| |
Collapse
|
174
|
Rahmani AH, Babiker AY, Anwar S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023; 28:5152. [PMID: 37446814 DOI: 10.3390/molecules28135152] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
175
|
Ghica A, Drumea V, Moroșan A, Mihaiescu DE, Costea L, Luță EA, Mihai DP, Balaci DT, Fița AC, Olaru OT, Boscencu R, Gîrd CE. Phytochemical Screening and Antioxidant Potential of Selected Extracts from Betula alba var. pendula Roth., Glycyrrhiza glabra L., and Avena sativa L. PLANTS (BASEL, SWITZERLAND) 2023; 12:2510. [PMID: 37447070 DOI: 10.3390/plants12132510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of the present study was to obtain, characterize, and evaluate the antioxidant potential of some extracts obtained from the bark of Betula alba var. pendula Roth., the root of Glycyrrhiza glabra L., and the green herb of the Avena sativa. The results revealed that the lowest IC50 value, determined by all three methods, was obtained for Betulae extractum (BE) (73.6 µg/mL-DPPH method, 11.2 µg/mL-ABTS method, and 58.7 µg/mL-FRAP method), followed by Liquiritiae extractum (LE) (805.6 µg/mL, 92.1 µg/mL, and 722 µg/mL) and Avenae extractum (1.13 mg/mL-DPPH method, 99.7 µg/mL-ABTS method, and 135.1 µg/mL-FRAP method). These results correlate with total polyphenols content (expressed in g tannic acid/100 g dry extract), with BE having more polyphenols than LE and AE (47.96 ± 9.7083 for BE, compared with 9.31 ± 0.9913 for LE and 40.55 ± 6.3715 for AE). The total flavonoid content (expressed as g rutoside/100 g dry extract) is similar for BE and LE (3.75 ± 0.3140 and 3.44 ± 0.3037) and smaller for AE (1.95 ± 0.0526). Therefore, Betulae extractum has the strongest antioxidant action, with an IC50 value very close to the standard used as a reference (ascorbic acid-16.5 μg/mL solution). The FT-ICR-MS analysis confirmed the presence of the major compounds in all three extracts. The antioxidant properties of the studied extracts were further supported by molecular docking experiments that revealed the potential of the analyzed phytochemicals to act as both noncovalent and covalent activators of the Nrf2 signaling pathway, with promising benefits in treating various skin disorders.
Collapse
Affiliation(s)
- Adelina Ghica
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
- Biotehnos SA, Gorunului Street No. 3-5, 075100 Otopeni, Romania
| | - Veronica Drumea
- Biotehnos SA, Gorunului Street No. 3-5, 075100 Otopeni, Romania
| | - Alina Moroșan
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry "Costin Nenițescu", Faculty of Applied Chemistry and Materials Science, University POLITEHNICA of Bucharest, 011061 Bucharest, Romania
| | - Liliana Costea
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Emanuela Alice Luță
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dalila Teodora Balaci
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Ancuța Cătălina Fița
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
176
|
Liu K, Hong B, Wang S, Lou F, You Y, Hu R, Shafqat A, Fan H, Tong Y. Pharmacological Activity of Cepharanthine. Molecules 2023; 28:5019. [PMID: 37446681 DOI: 10.3390/molecules28135019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cepharanthine, a natural bisbenzylisoquinoline (BBIQ) alkaloid isolated from the plant Stephania Cephalantha Hayata, is the only bisbenzylisoquinoline alkaloid approved for human use and has been used in the clinic for more than 70 years. Cepharanthine has a variety of medicinal properties, including signaling pathway inhibitory activities, immunomodulatory activities, and antiviral activities. Recently, cepharanthine has been confirmed to greatly inhibit SARS-CoV-2 infection. Therefore, we aimed to describe the pharmacological properties and mechanisms of cepharanthine, mainly including antitumor, anti-inflammatory, anti-pathogen activities, inhibition of bone resorption, treatment of alopecia, treatment of snake bite, and other activities. At the same time, we analyzed and summarized the potential antiviral mechanism of cepharanthine and concluded that one of the most important anti-viral mechanisms of cepharanthine may be the stability of plasma membrane fluidity. Additionally, we explained its safety and bioavailability, which provides evidence for cepharanthine as a potential drug for the treatment of a variety of diseases. Finally, we further discuss the potential new clinical applications of cepharanthine and provide direction for its future development.
Collapse
Affiliation(s)
- Ke Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bixia Hong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuqi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fuxing Lou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yecheng You
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruolan Hu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Amna Shafqat
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
177
|
Gull N, Arshad F, Naikoo GA, Hassan IU, Pedram MZ, Ahmad A, Aljabali AAA, Mishra V, Satija S, Charbe N, Negi P, Goyal R, Serrano-Aroca Á, Al Zoubi MS, El-Tanani M, Tambuwala MM. Recent Advances in Anticancer Activity of Novel Plant Extracts and Compounds from Curcuma longa in Hepatocellular Carcinoma. J Gastrointest Cancer 2023; 54:368-390. [PMID: 35285010 PMCID: PMC8918363 DOI: 10.1007/s12029-022-00809-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.
Collapse
Affiliation(s)
- Nighat Gull
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, U.P., India
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah, Sultanate of Oman.
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, Salalah, Sultanate of Oman
| | - Mona Zamani Pedram
- Faculty of Mechanical Engineering-Energy Division, K. N. Toosi University of Technology, P.O. Box: 19395-1999, No. 15-19, Pardis St., Mollasadra Ave., Vanak Sq., Tehran, 1999 143344, Iran
| | - Arif Ahmad
- School of Sciences, Maulana Azad National Urdu University, 32, Hyderabad, TS, India
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX, 78363, USA
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, 173229, India
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, 46001, Valencia, Spain
| | - Mazhar S Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Northern Ireland, Coleraine, BT52 1SA, County Londonderry, UK.
| |
Collapse
|
178
|
Sayed AA, Soliman AM, Marzouk M, Mohammed FF, Desouky S. Bromelain mitigates liver fibrosis via targeting hepatic stellate cells in vitro and in vivo. Tissue Cell 2023; 82:102118. [PMID: 37269556 DOI: 10.1016/j.tice.2023.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
Various therapeutic approaches are conducted for regression of liver fibrosis and prevent possible further carcinogenic transformation. This study was aimed to assess the prospective therapeutic potential of bromelain against thioacetamide (TAA)-induced liver fibrosis using in-vitro and in vivo approaches. In vitro study, HSC-T6 cell line was used to evaluate the effect of bromelain on HSC-T6 cell viability and apoptosis. In vivo, Rats were treated by TAA for 6 weeks for induction of hepatic fibrosis followed by post treatment by different doses of bromelain and silymarin for further 4 weeks to assess the regression of hepatic fibrosis. The in-vitro findings indicated that bromelain hindered the proliferation of HSCs in concentration dependent manner compared with the untreated cells. The in vivo study revealed that treatment of TAA fibrotic rats with different doses of bromelain and silymarin induced a significant restoration in liver function biomarkers, attenuation of oxidative stress, upregulation of total antioxidant capacity and thereby decline of fibrotic biomarkers and improving histopathological and immunohistochemical changes. In conclusion, This study indicates that bromelain can regress TAA induced hepatic fibrosis in rats via inhibiting HSCs activation, α-SMA expression and the ECM deposition in hepatic tissue in addition to its antioxidants pathway, these findings prove the promising therapeutic potential of bromelain as a novel therapeutic approach for chronic hepatic fibrotic diseases.
Collapse
Affiliation(s)
- Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Amel M Soliman
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed Marzouk
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Faten F Mohammed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Shreen Desouky
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
179
|
Guo K, Zhang Z, Yang Y, Zhang W, Wang J, Li S, Chu X, Guo W, Liu D, Wang Y, Hu Z, Wang X. Development and Application of an iELISA for the Detection of Antibody against Salmonella Abortusequi. Transbound Emerg Dis 2023; 2023:1403180. [PMID: 40303659 PMCID: PMC12016898 DOI: 10.1155/2023/1403180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/02/2025]
Abstract
Equine abortus salmonellosis is a bacterial disease that causes high abortion rates in susceptible equids and therefore significant economic losses. Although the tube agglutination test (TAT) is a commonly used serological test for S. Abortusequi, it is not highly specific or sensitive, and the development of more sensitive, specific and rapid assays is therefore urgently required. In this study, an indirect enzyme-linked immunosorbent assay (iELISA) was developed for the specific detection of flagellum protein (FljB) antibodies against S. Abortusequi. Negative sera from horses in China (n = 1030) were used to establish the baseline for a negative population, and reference antisera positive against other viruses or bacteria were used to test the cross reactivity of the technique. The performance of the FljB iELISA was evaluated against that of the standard TAT, and was tested using field serum samples. The FljB iELISA assay was 8-16 times more sensitive than TAT. ROC analysis showed that the FljB iELISA was accurate, with an area under the curve (AUC) = 0.9943 (95% CI, 0.9815-1.000). The diagnostic sensitivity (DSe) of the FljB iELISA was 98.9% (95% Cl, 93.84%-100.00%), which was higher than that of TAT (DSe 38.6; 95% CI, 29.14%-49.08%). The diagnostic specificity (DSp) of the iELISA was 100.0% (95% CI, 95.82%-100.0%). When the 508 clinical samples were tested, the FljB iELISA had a positive detection rate of 51.38% (261/508, 95% CI, 51.24%-51.51%), which was higher than that of TAT (44/508). We also performed a serological survey for S. Abortusequi infection, using a series of samples collected from across eighteen provinces of China in 2021. The results showed that all provinces except Jiangsu had a certain number of cases, and the positive rates ranged from 0% to 96.9%, indicating the wide spread of S. Abortusequi in China. The abovementioned results suggest that the FljB iELISA developed in this study is rapid, sensitive, specific, and repeatable and is likely to be a suitable test for large-scale serological surveys for the detection and control of S. Abortusequi infection.
Collapse
Affiliation(s)
- Kui Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zenan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yan Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiguo Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinhui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuaijie Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaoxin Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
180
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. MATERIALS AND METHODS Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. RESULTS The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. CONCLUSION In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
181
|
Wang Y, Sui Z, Wang M, Liu P. Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol 2023; 14:1196016. [PMID: 37215100 PMCID: PMC10196020 DOI: 10.3389/fimmu.2023.1196016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent and severe complications of diabetes and serves as the primary cause of end-stage kidney disease (ESKD) globally. Increasing evidence indicates that renal inflammation is critical in the pathogenesis of DKD. The nucleotide - binding oligomerization domain (NOD) - like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most extensively researched inflammasome complex and is considered a crucial regulator in the pathogenesis of DKD. The activation of NLRP3 inflammasome is regulated by various signaling pathways, including NF- κB, thioredoxin-interacting protein (TXNIP), and non-coding RNAs (ncRNA), among others. Natural products are chemicals extracted from living organisms in nature, and they typically possess pharmacological and biological activities. They are invaluable sources for drug design and development. Research has demonstrated that many natural products can alleviate DKD by targeting the NLRP3 inflammasome. In this review, we highlight the role of the NLRP3 inflammasome in DKD, and the pathways by which natural products fight against DKD via inhibiting the NLRP3 inflammasome activation, so as to provide novel insights for the treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Zhun Sui
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Mi Wang
- Department of Nephrology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China
| |
Collapse
|
182
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
183
|
ElSayed MH, Elbayoumi KS, Eladl MA, Mohamed AAK, Hegazy A, El-Sherbeeny NA, Attia MA, Hisham FA, Saleh MAK, Elaskary A, Morsi K, Mustsafa AMA, Enan ET, Zaitone SA. Memantine mitigates ROS/TXNIP/NLRP3 signaling and protects against mouse diabetic retinopathy: Histopathologic, ultrastructural and bioinformatic studies. Biomed Pharmacother 2023; 163:114772. [PMID: 37116352 DOI: 10.1016/j.biopha.2023.114772] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/30/2023] Open
Abstract
Diabetic retinopathy (DRET) triggers vision loss in adults, however, little therapeutic options are existing. Memantine is an anti-Alzheimer drug that antagonizes the activity of glutamate at N-methyl-D-aspartate (NMDA) receptors. Glutamate and thioredoxin-interacting protein (TXNIP) are known to be overexpressed in diabetic retinas and can produce activation of NOD-like receptor protein 3 (NLRP3) with subsequent secretion of interlukin-1β. This study repurposed memantine for its neuroprotective effect in experimental DRET and tested its impact on ROS/TXNIP/NLRP3. In addition, KEGG pathway database and STRING database identified the protein-protein interaction between glutamate receptors and TXNIP/NLRP3. Male Swiss albino mice received alloxan (180 mg/kg) to induce DRET. After 9 weeks, we divided the mice into groups: (a) saline, (ii) DRET, (iii and iv) DRET + oral memantine (5 or 10 mg per kg) for 28 days. Then, mice were euthanized, and eyeballs were removed. Retinal samples were utilized for biochemical, histopathological, and electron microscopy studies. Retinal levels of glutamate, TXNIP, NLRP3 and interlukin-1β were estimated using ELISA technique as well as retinal malondialdehyde. Histopathological and ultrastructural examination demonstrated that oral memantine attenuated vacuolization and restored normal retinal cell layers. Moreover, memantine reduced TXNIP, NLRP3, interleukin-1β and MDA concentrations. These results provide evidence demonstrating memantine' efficacy in alleviating DRET via suppressing reactive oxygen species/TXNIP/NLRP3 signaling cascade. Therefore, memantine might serve as a potential therapy for retinopathy after adequate clinical research.
Collapse
Affiliation(s)
- Mohammed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Khaled S Elbayoumi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic medical Sciences, Ibn Sina University for Medical Sciences, Amman 16197, Jordan
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abeer A K Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ann Hegazy
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nagla A El-Sherbeeny
- Department of Clinical Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic medical sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia
| | - Fatma Azzahraa Hisham
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A K Saleh
- Ophthalmology Department, Al-Asher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Abdelhakeem Elaskary
- Ophthalmology Department, Al-Asher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | - Khaled Morsi
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman Bin Faisal University, Jubail 35811, Saudi Arabia.
| | - Amna M A Mustsafa
- Department of Pediatric Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Eman T Enan
- Department of Basic medical sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
184
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
185
|
Shoaib S, Khan FB, Alsharif MA, Malik MS, Ahmed SA, Jamous YF, Uddin S, Tan CS, Ardianto C, Tufail S, Ming LC, Yusuf N, Islam N. Reviewing the Prospective Pharmacological Potential of Isothiocyanates in Fight against Female-Specific Cancers. Cancers (Basel) 2023; 15:2390. [PMID: 37190316 PMCID: PMC10137050 DOI: 10.3390/cancers15082390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Gynecological cancers are the most commonly diagnosed malignancies in females worldwide. Despite the advancement of diagnostic tools as well as the availability of various therapeutic interventions, the incidence and mortality of female-specific cancers is still a life-threatening issue, prevailing as one of the major health problems worldwide. Lately, alternative medicines have garnered immense attention as a therapeutic intervention against various types of cancers, seemingly because of their safety profiles and enhanced effectiveness. Isothiocyanates (ITCs), specifically sulforaphane, benzyl isothiocyanate, and phenethyl isothiocyanate, have shown an intriguing potential to actively contribute to cancer cell growth inhibition, apoptosis induction, epigenetic alterations, and modulation of autophagy and cancer stem cells in female-specific cancers. Additionally, it has been shown that ITCs plausibly enhance the chemo-sensitization of many chemotherapeutic drugs. To this end, evidence has shown enhanced efficacy in combinatorial regimens with conventional chemotherapeutic drugs and/or other phytochemicals. Reckoning with these, herein, we discuss the advances in the knowledge regarding the aspects highlighting the molecular intricacies of ITCs in female-specific cancers. In addition, we have also argued regarding the potential of ITCs either as solitary treatment or in a combinatorial therapeutic regimen for the prevention and/or treatment of female-specific cancers. Hopefully, this review will open new horizons for consideration of ITCs in therapeutic interventions that would undoubtedly improve the prognosis of the female-specific cancer clientele. Considering all these, it is reasonable to state that a better understanding of these molecular intricacies will plausibly provide a facile opportunity for treating these female-specific cancers.
Collapse
Affiliation(s)
- Shoaib Shoaib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Meshari A. Alsharif
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - M. Shaheer Malik
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department of Chemistry, Faculty of Applied Sciences, Assiut University, Assiut 71515, Egypt
| | - Yahya F. Jamous
- Vaccines and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Laboratory of Animal Center, Qatar University, Doha 2731, Qatar
| | - Ching Siang Tan
- School of Pharmacy, KPJ Healthcare University College, Nilai 71800, Malaysia;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
| | - Saba Tufail
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; (C.A.); (L.C.M.)
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Nabiha Yusuf
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Najmul Islam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
186
|
Zheng S, Zhang K, Zhang Y, He J, Ouyang Y, Lang R, Ao C, Jiang Y, Xiao H, Li Y, Li M, Li C, Wu D. Human Umbilical Cord Mesenchymal Stem Cells Inhibit Pyroptosis of Renal Tubular Epithelial Cells through miR-342-3p/Caspase1 Signaling Pathway in Diabetic Nephropathy. Stem Cells Int 2023; 2023:5584894. [PMID: 37056456 PMCID: PMC10089783 DOI: 10.1155/2023/5584894] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the microvascular complications of diabetes. Recent studies suggest that the pyroptosis of renal tubular epithelial cell plays a critical role in DN. Currently, effective therapeutic strategies to counteract and reverse the progression of DN are lacking. Mesenchymal stem cells (MSCs) represent an attractive therapeutic tool for tissue damage and inflammation owing to their unique immunomodulatory properties. However, the underlying mechanisms remain largely unknown. In the present study, we found that human umbilical cord MSCs (UC-MSCs) can effectively ameliorate kidney damage and reduce inflammation in DN rats. Importantly, UC-MSC treatment inhibits inflammasome-mediated pyroptosis in DN. Mechanistically, we performed RNA sequencing and identified that miR-342-3p was significantly downregulated in the kidneys of DN rats. Furthermore, we found that miR-342-3p was negatively correlated with renal injury and pyroptosis in DN rats. The expression of miR-342-3p was significantly increased after UC-MSC treatment. Moreover, miR-342-3p decreased the expression of Caspase1 by targeting its 3
-UTR, which was confirmed by double-luciferase assay. Using miRNA mimic transfection, we demonstrated that UC-MSC-derived miR-342-3p inhibited pyroptosis of renal tubular epithelial cells through targeting the NLRP3/Caspase1 pathway. These findings would provide a novel intervention strategy for the use of miRNA-modified cell therapy for kidney diseases.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Ke Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yu Ouyang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Ruibo Lang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yijia Jiang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Huan Xiao
- School of Life Science, Hubei University, Wuhan, China
| | - Yu Li
- School of Life Science, Hubei University, Wuhan, China
| | - Mao Li
- School of Life Science, Hubei University, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
187
|
Wang J, Guo K, Li S, Liu D, Chu X, Wang Y, Guo W, Du C, Wang X, Hu Z. Development and Application of Real-Time PCR Assay for Detection of Salmonella Abortusequi. J Clin Microbiol 2023; 61:e0137522. [PMID: 36856425 PMCID: PMC10035326 DOI: 10.1128/jcm.01375-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Abortusequi is a major pathogen in horse and donkey herds, causing abortion in pregnant equids and resulting in enormous economic losses. A rapid and reliable method is urgently needed to detect S. Abortusequi in herds where the disease is suspected. To achieve this goal, a TaqMan-based real-time PCR assay targeting the gene for the flagellin protein phase 2 antigen FljB was developed. This real-time PCR assay had high specificity, sensitivity, and reproducibility. The detection limit of the assay was 30 copies/μL of standard plasmid and 10 CFU/μL of bacterial DNA. Furthermore, 540 clinical samples, including 162 tissue, 192 plasma, and 186 vaginal swab samples collected between 2018 and 2021 in China, were tested to assess the performance of the developed assay. Compared to the gold standard method of bacterial isolation, the real-time PCR assay exhibited 100% positive agreement for all tissue, plasma and vaginal swab tests. Additionally, this assay detected DNA from S. Abortusequi from 56.7% (34/60) culture-negative tissue and 22.9% (41/179) culture-negative vaginal swab samples from infected equids. Receiver operating characteristic analysis demonstrated that the results of the developed real-time PCR assays were in significant agreement with those of the culture method. The real-time PCR assay can be completed within 45 min of extraction of DNA from samples. Our results show that this assay could serve as a reliable tool for the rapid detection of S. Abortusequi in tissue, plasma, and vaginal swab clinical samples.
Collapse
Affiliation(s)
- Jinhui Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kui Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shuaijie Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyu Chu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaoxin Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
188
|
Langa S, Peirotén Á, Curiel JA, de la Bastida AR, Landete JM. Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health. Foods 2023; 12:1293. [PMID: 36981219 PMCID: PMC10048179 DOI: 10.3390/foods12061293] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work.
Collapse
Affiliation(s)
| | | | | | | | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
189
|
Caruso G, Di Pietro L, Caraci F. Gap Junctions and Connexins in Microglia-Related Oxidative Stress and Neuroinflammation: Perspectives for Drug Discovery. Biomolecules 2023; 13:biom13030505. [PMID: 36979440 PMCID: PMC10046203 DOI: 10.3390/biom13030505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microglia represent the immune system of the brain. Their role is central in two phenomena, neuroinflammation and oxidative stress, which are at the roots of different pathologies related to the central nervous system (CNS). In order to maintain the homeostasis of the brain and re-establish the equilibrium after a threatening imbalance, microglia communicate with each other and other cells within the CNS by receiving specific signals through membrane-bound receptors and then releasing neurotrophic factors into either the extracellular milieu or directly into the cytoplasm of nearby cells, such as astrocytes and neurons. These last two mechanisms rely on the activity of protein structures that enable the formation of channels in the membrane, namely, connexins and pannexins, that group and form gap junctions, hemichannels, and pannexons. These channels allow the release of gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, together with calcium ion (Ca2+), that seem to play a pivotal role in inter-cellular communication. The aim of the present review is focused on the physiology of channel protein complexes and their contribution to neuroinflammatory and oxidative stress-related phenomena, which play a central role in neurodegenerative disorders. We will then discuss how pharmacological modulation of these channels can impact neuroinflammatory phenomena and hypothesize that currently available nutraceuticals, such as carnosine and N-acetylcysteine, can modulate the activity of connexins and pannexins in microglial cells and reduce oxidative stress in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
- Correspondence: ; Tel.: +39-0957385036
| | - Lucia Di Pietro
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Scuola Superiore di Catania, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| |
Collapse
|
190
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
191
|
Development and characterization of a fucoidan-based nanoemulsion using Nigella sativa oil for improvement of anti-obesity activity of fucoxanthin in an obese rat model. Int J Biol Macromol 2023; 235:123867. [PMID: 36870664 DOI: 10.1016/j.ijbiomac.2023.123867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The anti-obesity activity of encapsulated fucoxanthin in fucoidan-based nanoemulsion was investigated. Then, high-fat diet (HFD) induced-obese rats were fed along with different treatments including administration of encapsulated fucoxanthin (10 mg/kg and 50 mg/kg/day), fucoidan (70 mg/kg), Nigella sativa oil (250 mg/kg), metformin (200 mg/kg), and free form of fucoxanthin (50 mg/kg) by oral gavage daily for 7 weeks. The study discovered that fucoidan-based nanoemulsions with a low and high dose of fucoxanthin had droplet size in the range of 181.70-184.87 nm and encapsulation efficacy of 89.94-91.68 %, respectively. Also exhibited 75.86 % and 83.76 % fucoxanthin in vitro release. The TEM images and FTIR spectera confirmed the particle size and encapsulation of fucoxanthin, respectively. Moreover, in vivo results revealed that encapsulated fucoxanthin reduced body and liver weight compared with a HFD group (p < 0.05). Biochemical parameters (FBS, TG, TC, HDL, LDL) and liver enzymes (ALP, AST, and ALT) were decreased after fucoxanthin and fucoidan administration. According to the histopathological analysis, fucoxanthin and fucoidan attenuated lipid accumulation in the liver.
Collapse
|
192
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
193
|
Caruso G, Di Pietro L, Cardaci V, Maugeri S, Caraci F. The therapeutic potential of carnosine: Focus on cellular and molecular mechanisms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023. [DOI: 10.1016/j.crphar.2023.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
194
|
Famurewa AC, Asogwa NT, Ezea SC. Antidiabetic drug sitagliptin blocks cyclophosphamide cerebral neurotoxicity by activating Nrf2 and suppressing redox cycle imbalance, inflammatory iNOS/NO/NF-κB response and caspase-3/Bax activation in rats. Int Immunopharmacol 2023; 116:109816. [PMID: 36774854 DOI: 10.1016/j.intimp.2023.109816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
Cyclophosphamide (CYP) is a classic DNA-interacting anticancer agent with broad application in chemotherapy. However, CYP cerebral neurotoxicity is a worrisome side effect for clinicians and patients. Strategies to mitigate the underlying oxidative inflammatory cascades and neuroapoptosis induced by CYP are urgently needed. Herein, we have repurposed an antidiabetic drug, sitagliptin (STG), for a possible abrogation of CYP-induced cerebral neurotoxicity in rats. Healthy rats were administered STG (20 mg/kg body weight) for 5 days prior to neurotoxicity induced by CYP (200 mg/kg body weight, ip) on day 5 only, and rats were sacrificed after 24 h post-CYP injection. CYP caused profound increases in the cerebral levels of nitric oxide (NO), acetylcholinesterase (AChE), malondialdehyde (MDA), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS), caspase-3 and Bax protein compared to the control. Furthermore, CYP markedly depressed the activities of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), along with levels of reduced glutathione (GSH) and nuclear factor erythroid 2-related factor2 (Nrf2) compared to the control (p < 0.05). Interestingly, STG pretreatment inhibited the CYP-induced alterations in caspase-3, Bax, pro-inflammatory cytokines, NO, iNOS, AChE, NF-κB, and restored the cerebral antioxidant apparatus, including the Nrf2 and histopathological abrasions. Therefore, these findings show that STG could be repurposed to prevent CYP-induced cerebral toxicity in the brain.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria; Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal University, Karnataka State, India.
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Tanke, Ilorin, Kwara State, Nigeria
| | - Samson C Ezea
- Department of Pharmacognosy and Environmental Medicine, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
195
|
Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2023; 19:199-206. [PMID: 35218451 PMCID: PMC9984584 DOI: 10.1007/s11302-022-09851-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammation is one of the potential factors to cause the damage of ocular surface in dry eye disease (DED). Increasing evidence indicated that purinergic A1, A2A, A3, P2X4, P2X7, P2Y1, P2Y2, and P2Y4 receptors play an important role in the regulation of inflammation in DED: A1 adenosine receptor (A1R) is a systemic pro-inflammatory factor; A2AR is involved in the activation of the MAPK/NF-kB pathway; A3R combined with inhibition of adenylate cyclase and regulation of the mitogen-activated protein kinase (MAPK) pathway leads to regulation of transcription; P2X4 promotes receptor-associated activation of pro-inflammatory cytokines and inflammatory vesicles; P2X7 promotes inflammasome activation and release of pro-inflammatory cytokines IL-1β and IL-18; P2Y receptors affect the phospholipase C(PLC)/IP3/Ca2+ signaling pathway and mucin secretion. These suggested that purinergic receptors would be promising targets to control the inflammation of DED in the future.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Fan
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
196
|
Akbar N, Kawish M, Jabri T, Khan NA, Shah MR, Siddiqui R. Cinnamic acid and lactobionic acid based nanoformulations as a potential antiamoebic therapeutics. Exp Parasitol 2023; 246:108474. [PMID: 36708943 DOI: 10.1016/j.exppara.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Acanthamoeba castellanii causes granulomatous amoebic encephalitis, an uncommon but severe brain infection and sight-threatening Acanthamoeba keratitis. Most of the currently used anti-amoebic treatments are not always effective, due to persistence of the cyst stage, and recurrence can occur. Here in this study we synthesize cinnamic acid and lactobionic acid-based magnetic nanoparticles (MNPs) using co-precipitation technique. These nanoformulations were characterized by Fourier transform infrared spectroscopy and Atomic form microscopy. The drugs alone (Hesperidin, Curcumin and Amphotericin B), magnetic NPs alone, and drug-loaded nano-formulations were evaluated at a concentration of 100 μg/mL for antiamoebic activity against a clinical isolate of A. castellanii. Amoebicidal assays revealed that drugs and conjugation of drugs and NPs further enhanced amoebicidal effects of drug-loaded nanoformulations. Drugs and drug-loaded nanoformulations inhibited both encystation and excystation of amoebae. In addition, drugs and drug-loaded nanoformulations inhibited parasite binding capability to the host cells. Neither drugs nor drug-loaded nanoformulations showed cytotoxic effects against host cells and considerably reduced parasite-mediated host cell death. Overall, these findings imply that conjugation of medically approved drugs with MNPs produce potent anti-Acanthamoebic effects, which could eventually lead to the development of therapeutic medications.
Collapse
Affiliation(s)
- Noor Akbar
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates; Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, University City, Sharjah, 27272, United Arab Emirates.
| | - Muhammad Kawish
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Tooba Jabri
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah, 27272, United Arab Emirates; Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, University City, Sharjah, 27272, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, 26666, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| |
Collapse
|
197
|
Hassan NH, Yousef DM, Alsemeh AE. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: biochemical, histological, and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36208-36227. [PMID: 36547838 PMCID: PMC10039835 DOI: 10.1007/s11356-022-24800-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
Aluminum, one of the most abundant metallic elements, is known to be toxic to multiple organs including the kidneys. This study aimed to investigate the pleiotropic nephroprotective effects of Hesperidin in aluminum chloride (ALCL3)-induced renal injury, highlighting the potential molecular mechanisms underlying. Twenty-four male albino rats were divided into four groups: control, Hesperidin (80 mg/kg BW, orally), ALCL3 (10 mg/kg BW, IP), and ALCL3 + Hesperidin groups. By the end of the study, blood samples were collected, and tissue samples were harvested at sacrifice. ALCL3 rats showed dramatically declined renal function, enhanced intrarenal oxidative stress, inflammation, apoptosis, and extravagant renal histopathological damage with interstitial fibrosis as shown by a higher Endothelial, Glomerular, Tubular, and Interstitial (EGTI) score. Hesperidin significantly reversed all the aforementioned detrimental effects in ALCL3-treated rats. The study verified the nephroprotective effects of Hesperidin on ALCL3-induced renal damage and confirmed the critical role of extracellular matrix (ECM) remodeling and apoptosis inhibition.
Collapse
Affiliation(s)
- Nancy Husseiny Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
198
|
Xu X, Qin Z, Zhang C, Mi X, Zhang C, Zhou F, Wang J, Zhang L, Hua F. TRIM29 promotes podocyte pyroptosis in diabetic nephropathy through the NF-kB/NLRP3 inflammasome pathway. Cell Biol Int 2023; 47:1126-1135. [PMID: 36841942 DOI: 10.1002/cbin.12006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes. Gradual loss of podocytes is a sign of DN and pyroptosis mechanistically correlates with podocyte injury in DN; however, the mechanism(s) involved remain unknown. Here we reveal that TRIM29 is overexpressed in high glucose (HG)-treated murine podocytes cells and that TRIM29 silencing significantly inhibits podocyte damage due to HG treatment, as evidenced by lower desmin expression and greater nephrin expression. Additionally, flow cytometry analysis showed that TRIM29 silencing significantly inhibited HG treatment-induced pyroptosis, which was confirmed by immunoblotting for NLRP3, active Caspase-1, GSDMD-N, and phosphorylated NF-κB-p65. Conversely, overexpression of TRIM29 could trigger pyroptosis that was attenuated by NF-κB inhibition, indicating that TRIM29 promotes pyroptosis through the NF-κB pathway. Mechanistic studies revealed that TRIM29 interacts with IκBα to mediate its ubiquitination-dependent degradation, which in turn leads to NF-κB activation. Taken together, our data demonstrate that TRIM29 can promote podocyte pyroptosis by activating the NF-κB/NLRP3 pathway. Thus, TRIM29 represents a potentially novel therapeutic target that may also be clinically relevant in the management of DN.
Collapse
Affiliation(s)
- Xiaohong Xu
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China.,Department of Nephrology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Zihan Qin
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ce Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Xia Mi
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Chi Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Feihong Zhou
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Junsheng Wang
- Department of Nephrology, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Liexiang Zhang
- Department of Neurosurgery, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
199
|
Biochemical and pathophysiological improvements in rats with thioacetamide induced-hepatocellular carcinoma using aspirin plus vitamin C. BMC Cancer 2023; 23:175. [PMID: 36809998 PMCID: PMC9942340 DOI: 10.1186/s12885-023-10644-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, so we should be concerned and look for effective/less-harmful treatments than chemotherapeutics already clinically in application. Aspirin works well ''in conjunction'' with other therapies for HCC since aspirin can boost the sensitivity of anti-cancer activity. Vitamin C also was shown to have antitumor effects. In this study, we examined the anti-HCC activities of synergistic combination (aspirin and vitamin C) vs. doxorubicin on HCC-bearing rats and hepatocellular carcinoma (HepG-2) cells. METHODS In vitro, we evaluated IC50 and selectivity index (SI) using HepG-2 and human lung fibroblast (WI-38) cell lines. In vivo, four rat groups were used: Normal, HCC (intraperitoneally (i.p.) administered 200 mg thioacetamide/kg/twice a week), HCC + DOXO (HCC-bearing rats i.p. administered 0.72 mg doxorubicin (DOXO)/rat/once a week), and HCC + Aspirin + Vit. C (i.p. administered vitamin C (Vit. C) 4 g/kg/day after day concomitant with aspirin 60 mg/kg/orally day after day). We evaluated biochemical factors [aminotransferases (ALT and AST), albumin, and bilirubin (TBIL) spectrophotometrically, caspase 8 (CASP8), p53, Bcl2 associated X protein (BAX), caspase 3 (CASP3), alpha-fetoprotein (AFP), cancer antigen 19.9 (CA19.9), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) using ELISA], and liver histopathologically. RESULTS HCC induction was accompanied by significant time-dependent elevations in all measured biochemical parameters except the p53 level significantly declined. Liver tissue architecture organization appeared disturbed with cellular infiltration, trabeculae, fibrosis, and neovascularization. Following drug medication, all biochemical levels significantly reversed toward normal, with fewer signs of carcinogenicity in liver tissues. Compared to doxorubicin, aspirin & vitamin C therapy ameliorations were more appreciated. In vitro, combination therapy (aspirin & vitamin C) exhibited potent cytotoxicity (HepG-2 IC50 of 17.41 ± 1.4 µg/mL) and more excellent safety with a SI of 3.663. CONCLUSIONS Based on our results, aspirin plus vitamin C can be considered reliable, accessible, and efficient synergistic anti-HCC medication.
Collapse
|
200
|
El-Shenawy AA, Elsayed MMA, Atwa GMK, Abourehab MAS, Mohamed MS, Ghoneim MM, Mahmoud RA, Sabry SA, Anwar W, El-Sherbiny M, Hassan YA, Belal A, Ramadan AEH. Anti-Tumor Activity of Orally Administered Gefitinib-Loaded Nanosized Cubosomes against Colon Cancer. Pharmaceutics 2023; 15:pharmaceutics15020680. [PMID: 36840004 PMCID: PMC9960579 DOI: 10.3390/pharmaceutics15020680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Gefitinib (GFT) is a tyrosine kinase inhibitor drug used as a first-line treatment for patients with advanced or metastatic non-small cell lung, colon, and breast cancer. GFT exhibits low solubility and hence low oral bioavailability, which restricts its clinical application. One of the most important trends in overcoming such problems is the use of a vesicular system. Cubosomes are considered one of the most important vesicular systems used to improve solubility and oral bioavailability. In this study, GFT cubosomal nanoparticles (GFT-CNPs) were prepared by the emulsification method. The selected formulation variables were analyzed and optimized by full factorial design and response surface methodology. Drug entrapment efficiency (EE%), transmission electron microscopy, particle size, polydispersity index, in vitro release and its kinetics, and the effect of storage studies were estimated. The chosen GFT-CNPs were subjected to further investigations as gene expression levels of tissue inhibitors of metalloproteinases-1 (TIMP-1) and matrix metalloproteinases-7 (MMP-7), colon biomarkers, and histopathological examination of colon tissues. The prepared GFT-CNPs were semi-cubic in shape, with high EE%, smaller vesicle size, and higher zeta potential values. The in vivo data showed a significant decrease in the serum level of embryonic antigen (CEA), carbohydrate antigen 19-9 (CA 19-9), and gene expression level of TIMP-1 and MMP-7. Histopathological examination showed enhancement in cancer tissue and highly decreased focal infiltration in the lamina propria after treatment with GFT-CNPs.
Collapse
Affiliation(s)
- Ahmed A. El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
- Correspondence: ; Tel.: +20-122-766-0470
| | - Gamal M. K. Atwa
- Department of Biochemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Reda A. Mahmoud
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Shereen A. Sabry
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Yasser A. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abd El hakim Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| |
Collapse
|