151
|
Harrison PJ. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr Opin Neurobiol 2016; 36:1-6. [PMID: 26210959 PMCID: PMC4779149 DOI: 10.1016/j.conb.2015.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Bipolar disorder is a serious psychiatric disorder, with a high heritability and unknown pathogenesis. Recent genome-wide association studies have identified the first loci, implicating genes such as CACNA1C and ANK3. The genes highlight several pathways, notably calcium signalling, as being of importance. Molecular studies suggest that the risk variants impact on gene regulation and expression. Preliminary studies using reprogrammed patient-derived cells report alterations in the transcriptome and in cellular adhesion and differentiation. Mouse models show that genes involved in circadian biology, acting via dopaminergic effects, reproduce aspects of the bipolar phenotype. These findings together represent significant advances in identification of the genetic and molecular basis of bipolar disorder, yet we are still far from an integrated, evidence-based understanding of its aetiopathogenesis.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
152
|
Dalvie S, Fabbri C, Ramesar R, Serretti A, Stein DJ. Glutamatergic and HPA-axis pathway genes in bipolar disorder comorbid with alcohol- and substance use disorders. Metab Brain Dis 2016; 31:183-9. [PMID: 26563126 DOI: 10.1007/s11011-015-9762-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/06/2015] [Indexed: 01/13/2023]
Abstract
Glutamatergic neurotransmission has been shown to be dysregulated in bipolar disorder (BD), alcohol use disorder (AUD) and substance use disorder (SUD). Similarly, disruption in the hypothalamic-pituitary-adrenal (HPA)-axis has also been observed in these conditions. BD is often comorbid with AUD and SUD. The effects of the glutamatergic and HPA systems have not been extensively examined in individuals with BD-AUD and BD-SUD comorbidity. The aim of this investigation was to determine whether variants in the glutamatergic pathway and HPA-axis are associated with BD-AUD and BD-SUD comorbidity. The research cohort consisted of 498 individuals with BD type I from the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). A subset of the cohort had comorbid current AUD and current SUD. A total of 1935 SNPs from both the glutamatergic and HPA pathways were selected from the STEP-BD genome-wide dataset. To identify population stratification, IBS clustering was performed using the program Plink 1.07. Single SNP association and gene-based association testing were conducted using logistic regression. A pathway analysis of glutamatergic and HPA genes was performed, after imputation using IMPUTE2. No single SNP was associated with BD-AUD or BD-SUD comorbidity after correction for multiple testing. However, from the gene-based analysis, the gene PRKCI was significantly associated with BD-AUD. The pathway analysis provided overall negative findings, although several genes including GRIN2B showed high percentage of associated SNPs for BD-AUD. Even though the glutamatergic and HPA pathways may not be involved in BD-AUD and BD-SUD comorbidity, PRKCI deserves further investigation in BD-AUD.
Collapse
Affiliation(s)
- Shareefa Dalvie
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, University of Cape Town, Observatory, Cape Town, South Africa.
| | - Chiara Fabbri
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, Bologna, Italy
| | - Raj Ramesar
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, University of Cape Town, Observatory, Cape Town, South Africa
| | - Alessandro Serretti
- Institute of Psychiatry, University of Bologna, Viale Carlo Pepoli 5, Bologna, Italy
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| |
Collapse
|
153
|
Green EK, Rees E, Walters JTR, Smith KG, Forty L, Grozeva D, Moran JL, Sklar P, Ripke S, Chambert KD, Genovese G, McCarroll SA, Jones I, Jones L, Owen MJ, O'Donovan MC, Craddock N, Kirov G. Copy number variation in bipolar disorder. Mol Psychiatry 2016; 21:89-93. [PMID: 25560756 PMCID: PMC5038134 DOI: 10.1038/mp.2014.174] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/26/2014] [Accepted: 11/05/2014] [Indexed: 01/19/2023]
Abstract
Large (>100 kb), rare (<1% in the population) copy number variants (CNVs) have been shown to confer risk for schizophrenia (SZ), but the findings for bipolar disorder (BD) are less clear. In a new BD sample from the United Kingdom (n=2591), we have examined the occurrence of CNVs and compared this with previously reported samples of 6882 SZ and 8842 control subjects. When combined with previous data, we find evidence for a contribution to BD for three SZ-associated CNV loci: duplications at 1q21.1 (P=0.022), deletions at 3q29 (P=0.03) and duplications at 16p11.2 (P=2.3 × 10(-4)). The latter survives multiple-testing correction for the number of recurrent large CNV loci in the genome. Genes in 20 regions (total of 55 genes) were enriched for rare exonic CNVs among BD cases, but none of these survives correction for multiple testing. Finally, our data provide strong support for the hypothesis of a lesser contribution of very large (>500 kb) CNVs in BD compared with SZ, most notably for deletions >1 Mb (P=9 × 10(-4)).
Collapse
Affiliation(s)
- E K Green
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - E Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - J T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - K-G Smith
- Department of Psychiatry, School of Clinical and Experimental Medicine, National Centre for Mental Health, University of Birmingham, Birmingham, UK
| | - L Forty
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - D Grozeva
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - J L Moran
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P Sklar
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - S Ripke
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Psychiatric Genomics in the Department of Psychiatry, Friedman Brain Institute, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - K D Chambert
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - G Genovese
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - S A McCarroll
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - I Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - L Jones
- Department of Psychiatry, School of Clinical and Experimental Medicine, National Centre for Mental Health, University of Birmingham, Birmingham, UK
| | - M J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - M C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - N Craddock
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - G Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
154
|
Smoller JW. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders. Neuropsychopharmacology 2016; 41:297-319. [PMID: 26321314 PMCID: PMC4677147 DOI: 10.1038/npp.2015.266] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 02/06/2023]
Abstract
Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.
Collapse
Affiliation(s)
- Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
155
|
Misiak B, Frydecka D, Rybakowski JK. Editorial: Endophenotypes for Schizophrenia and Mood Disorders: Implications from Genetic, Biochemical, Cognitive, Behavioral, and Neuroimaging Studies. Front Psychiatry 2016; 7:83. [PMID: 27242553 PMCID: PMC4862973 DOI: 10.3389/fpsyt.2016.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland; Department of Genetics, Wroclaw Medical University, Wroclaw, Poland
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University , Wroclaw , Poland
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences , Poznan , Poland
| |
Collapse
|
156
|
Loebrich S, Rathje M, Hager E, Ataman B, Harmin DA, Greenberg ME, Nedivi E. Genomic mapping and cellular expression of human CPG2 transcripts in the SYNE1 gene. Mol Cell Neurosci 2015; 71:46-55. [PMID: 26704904 DOI: 10.1016/j.mcn.2015.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 01/13/2023] Open
Abstract
Bipolar disorder (BD) is a prevalent and severe mood disorder characterized by recurrent episodes of mania and depression. Both genetic and environmental factors have been implicated in BD etiology, but the biological underpinnings remain elusive. Recent genome-wide association studies (GWAS) for identifying genes conferring risk for schizophrenia, BD, and major depression, identified an association between single-nucleotide polymorphisms (SNPs) in the SYNE1 gene and increased risk of BD. SYNE1 has also been identified as a risk locus for multiple other neurological or neuromuscular genetic disorders. The BD associated SNPs map within the gene region homologous to part of rat Syne1 encompassing the brain specific transcripts encoding CPG2, a postsynaptic neuronal protein localized to excitatory synapses and an important regulator of glutamate receptor internalization. Here, we use RNA-seq, ChIP-seq and RACE to map the human SYNE1 transcriptome, focusing on the CPG2 locus. We validate several CPG2 transcripts, including ones not previously annotated in public databases, and identify and clone a full-length CPG2 cDNA expressed in human neocortex, hippocampus and striatum. Using lenti-viral gene knock down/replacement and surface receptor internalization assays, we demonstrate that human CPG2 protein localizes to dendritic spines in rat hippocampal neurons and is functionally equivalent to rat CPG2 in regulating glutamate receptor internalization. This study provides a valuable gene-mapping framework for relating multiple genetic disease loci in SYNE1 with their transcripts, and for evaluating the effects of missense SNPs identified by patient genome sequencing on neuronal function.
Collapse
Affiliation(s)
- Sven Loebrich
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mette Rathje
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily Hager
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bulent Ataman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02114, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Elly Nedivi
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
157
|
O'Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: iPSC models. Mol Cell Neurosci 2015; 73:63-83. [PMID: 26608002 DOI: 10.1016/j.mcn.2015.11.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 10/14/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BP) is a chronic neuropsychiatric condition characterized by pathological fluctuations in mood from mania to depression. Adoption, twin and family studies have consistently identified a significant hereditary component to BP, yet there is no clear genetic event or consistent neuropathology. BP has been suggested to have a developmental origin, although this hypothesis has been difficult to test since there are no viable neurons or glial cells to analyze, and research has relied largely on postmortem brain, behavioral and imaging studies, or has examined proxy tissues including saliva, olfactory epithelium and blood cells. Neurodevelopmental factors, particularly pathways related to nervous system development, cell migration, extracellular matrix, H3K4 methylation, and calcium signaling have been identified in large gene expression and GWAS studies as altered in BP. Recent advances in stem cell biology, particularly the ability to reprogram adult somatic tissues to a pluripotent state, now make it possible to interrogate these pathways in viable cell models. A number of induced pluripotent stem cell (iPSC) lines from BP patient and healthy control (C) individuals have been derived in several laboratories, and their ability to form cortical neurons examined. Early studies suggest differences in activity, calcium signaling, blocks to neuronal differentiation, and changes in neuronal, and possibly glial, lineage specification. Initial observations suggest that differentiation of BP patient-derived neurons to dorsal telencephalic derivatives may be impaired, possibly due to alterations in WNT, Hedgehog or Nodal pathway signaling. These investigations strongly support a developmental contribution to BP and identify novel pathways, mechanisms and opportunities for improved treatments.
Collapse
Affiliation(s)
- K Sue O'Shea
- Department of Cell and Developmental Biology, University of Michigan, 3051 BSRB, 109 Zina Pitcher PL, Ann Arbor, MI 48109-2200, United States; Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States.
| | - Melvin G McInnis
- Department of Psychiatry, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI 48109-5765, United States
| |
Collapse
|
158
|
Forstner AJ, Hofmann A, Maaser A, Sumer S, Khudayberdiev S, Mühleisen TW, Leber M, Schulze TG, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M, Schumacher J, Breuer R, Meier S, Herms S, Hoffmann P, Lacour A, Witt SH, Reif A, Müller-Myhsok B, Lucae S, Maier W, Schwarz M, Vedder H, Kammerer-Ciernioch J, Pfennig A, Bauer M, Hautzinger M, Moebus S, Priebe L, Sivalingam S, Verhaert A, Schulz H, Czerski PM, Hauser J, Lissowska J, Szeszenia-Dabrowska N, Brennan P, McKay JD, Wright A, Mitchell PB, Fullerton JM, Schofield PR, Montgomery GW, Medland SE, Gordon SD, Martin NG, Krasnov V, Chuchalin A, Babadjanova G, Pantelejeva G, Abramova LI, Tiganov AS, Polonikov A, Khusnutdinova E, Alda M, Cruceanu C, Rouleau GA, Turecki G, Laprise C, Rivas F, Mayoral F, Kogevinas M, Grigoroiu-Serbanescu M, Propping P, Becker T, Rietschel M, Cichon S, Schratt G, Nöthen MM. Genome-wide analysis implicates microRNAs and their target genes in the development of bipolar disorder. Transl Psychiatry 2015; 5:e678. [PMID: 26556287 PMCID: PMC5068755 DOI: 10.1038/tp.2015.159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms underlying brain development and plasticity, suggesting their possible involvement in the pathogenesis of several psychiatric disorders, including BD. In the present study, gene-based analyses were performed for all known autosomal microRNAs using the largest genome-wide association data set of BD to date (9747 patients and 14 278 controls). Associated and brain-expressed microRNAs were then investigated in target gene and pathway analyses. Functional analyses of miR-499 and miR-708 were performed in rat hippocampal neurons. Ninety-eight of the six hundred nine investigated microRNAs showed nominally significant P-values, suggesting that BD-associated microRNAs might be enriched within known microRNA loci. After correction for multiple testing, nine microRNAs showed a significant association with BD. The most promising were miR-499, miR-708 and miR-1908. Target gene and pathway analyses revealed 18 significant canonical pathways, including brain development and neuron projection. For miR-499, four Bonferroni-corrected significant target genes were identified, including the genome-wide risk gene for psychiatric disorder CACNB2. First results of functional analyses in rat hippocampal neurons neither revealed nor excluded a major contribution of miR-499 or miR-708 to dendritic spine morphogenesis. The present results suggest that research is warranted to elucidate the precise involvement of microRNAs and their downstream pathways in BD.
Collapse
Affiliation(s)
- A J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - A Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - A Maaser
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - S Sumer
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - S Khudayberdiev
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - T W Mühleisen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - M Leber
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
| | - T G Schulze
- Institute of Psychiatric Phenomics and Genomics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - J Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
| | - F Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - J Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
| | - M Mattheisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Institute for Genomics Mathematics, University of Bonn, Bonn, Germany
| | - J Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - R Breuer
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
| | - S Meier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
- National Center Register-Based Research, Aarhus University, Aarhus, Denmark
| | - S Herms
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - P Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - A Lacour
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - S H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
| | - A Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt, Germany
| | - B Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Liverpool, Institute of Translational Medicine, Liverpool, UK
| | - S Lucae
- Max Planck Institute of Psychiatry, Munich, Germany
| | - W Maier
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - M Schwarz
- Psychiatric Center Nordbaden, Wiesloch, Germany
| | - H Vedder
- Psychiatric Center Nordbaden, Wiesloch, Germany
| | | | - A Pfennig
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - M Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - M Hautzinger
- Department of Psychology, Clinical Psychology and Psychotherapy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - S Moebus
- Institute of Medical Informatics, Biometry and Epidemiology, University Duisburg-Essen, Essen, Germany
| | - L Priebe
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - S Sivalingam
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - A Verhaert
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - H Schulz
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - P M Czerski
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - J Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - J Lissowska
- Department of Cancer Epidemiology and Prevention, Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology Warsaw, Warsaw, Poland
| | | | - P Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - J D McKay
- Genetic Cancer Susceptibility Group, International Agency for Research on Cancer, Lyon, France
| | - A Wright
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
- Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - J M Fullerton
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - P R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - G W Montgomery
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - S E Medland
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - S D Gordon
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - N G Martin
- Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | - V Krasnov
- Moscow Research Institute of Psychiatry, Moscow, Russian Federation
| | - A Chuchalin
- Institute of Pulmonology, Russian State Medical University, Moscow, Russian Federation
| | - G Babadjanova
- Institute of Pulmonology, Russian State Medical University, Moscow, Russian Federation
| | - G Pantelejeva
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - L I Abramova
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - A S Tiganov
- Russian Academy of Medical Sciences, Mental Health Research Center, Moscow, Russian Federation
| | - A Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russian Federation
| | - E Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russian Federation
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russian Federation
| | - M Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - C Cruceanu
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies and Douglas Research Institute, Montreal, QC, Canada
| | - G A Rouleau
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - G Turecki
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies and Douglas Research Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - C Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Chicoutimi, QC, Canada
| | - F Rivas
- Department of Psychiatry, Hospital Regional Universitario, Biomedical Institute of Malaga, Malaga, Spain
| | - F Mayoral
- Department of Psychiatry, Hospital Regional Universitario, Biomedical Institute of Malaga, Malaga, Spain
| | - M Kogevinas
- Center for Research in Environmental Epidemiology, Barcelona, Spain
| | - M Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - P Propping
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - T Becker
- Institute for Medical Biometry, Informatics and Epidemiology, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - M Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/University of Heidelberg, Heidelberg, Germany
| | - S Cichon
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - G Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg, Marburg, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| |
Collapse
|
159
|
Gershon ES, Alliey-Rodriguez N, Grennan K. Ethical and public policy challenges for pharmacogenomics. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25733960 PMCID: PMC4336925 DOI: 10.31887/dcns.2014.16.4/egershon] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is timely to consider the ethical and social questions raised by progress in pharmacogenomics, based on the current importance of pharmacogenomics for avoidance of predictable side effects of drugs, and for correct choice of medications in certain cancers. It has been proposed that the entire population be genotyped for drug-metabolizing enzyme polymorphisms, as a measure that would prevent many untoward and dangerous drug reactions. Pharmacologic treatment targeting based on genomics of disease can be expected to increase greatly in the coming years. Policy and ethical issues exist on consent for large-scale genomic pharmacogenomic data collection, public vs corporate ownership of genomic research results, testing efficacy and safety of drugs used for rare genomic indications, and accessibility of treatments based on costly research that is applicable to relatively few patients. In major psychiatric disorders and intellectual deficiency, rare and de novo deletion or duplication of chromosomal segments (copy number variation), in the aggregate, are common causes of increased risk. This implies that the policy problems of pharmacogenomics will be particularly important for the psychiatric disorders.
Collapse
Affiliation(s)
- Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience; Department of Human Genetics; University of Chicago, Illinois, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago, Illinois, USA
| | - Kay Grennan
- Department of Psychiatry and Behavioral Neuroscience; University of Chicago, Illinois, USA
| |
Collapse
|
160
|
Is bipolar disorder associated with accelerating aging? A meta-analysis of telomere length studies. J Affect Disord 2015; 186:241-8. [PMID: 26253905 DOI: 10.1016/j.jad.2015.06.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with a reduced life expectancy compared to the general population mainly due to a high prevalence of comorbid somatic illnesses. A model of accelerated aging has been proposed as a potential explanation to these epidemiological findings. Nevertheless, studies measuring telomere length (TL) in patients with BD compared to healthy controls have provided mixed results. OBJECTIVE To compare TL between BD patients and healthy controls, and to search for potential modeP<rators for observed differences. METHODS We performed a systematic review and meta-analysis of original studies comparing TL in patients with BD vs. healthy controls published up to February 24th, 2015 in main electronic databases. Heterogeneity was explored through meta-regression and subgroup analysis. RESULTS Seven studies met inclusion criteria (N=1115). There was no difference in TL between participants with BD and healthy controls (Hedges's g=-0.012; 95% CI=-0.418 to 0.393, P=0.952). There was no evidence for publication bias. Heterogeneity was high (I(2)=89.65%). In meta-regression analyses, the percentage of females in healthy control samples (P=0.04) and the methodological quality of included studies (P<0.001) emerged as significant moderators, while subgroup analyses suggest that the type of assay employed to measure TL and age- and gender-matching of BD and HC participants may contribute to heterogeneity. CONCLUSIONS Telomere length does not differ between participants with BD vs. healthy controls; this finding does not support the view of BD as an illness associated with accelerated cellular aging. However, more studies controlling for potential confounders are necessary.
Collapse
|
161
|
McCarthy MJ, Le Roux MJ, Wei H, Beesley S, Kelsoe JR, Welsh DK. Calcium channel genes associated with bipolar disorder modulate lithium's amplification of circadian rhythms. Neuropharmacology 2015; 101:439-48. [PMID: 26476274 DOI: 10.1016/j.neuropharm.2015.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/08/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Bipolar disorder (BD) is associated with mood episodes and low amplitude circadian rhythms. Previously, we demonstrated that fibroblasts grown from BD patients show weaker amplification of circadian rhythms by lithium compared to control cells. Since calcium signals impact upon the circadian clock, and L-type calcium channels (LTCC) have emerged as genetic risk factors for BD, we examined whether loss of function in LTCCs accounts for the attenuated response to lithium in BD cells. We used fluorescent dyes to measure Ca(2+) changes in BD and control fibroblasts after lithium treatment, and bioluminescent reporters to measure Per2::luc rhythms in fibroblasts from BD patients, human controls, and mice while pharmacologically or genetically manipulating calcium channels. Longitudinal expression of LTCC genes (CACNA1C, CACNA1D and CACNB3) was then measured over 12-24 h in BD and control cells. Our results indicate that independently of LTCCs, lithium stimulated intracellular Ca(2+) less effectively in BD vs. control fibroblasts. In longitudinal studies, pharmacological inhibition of LTCCs or knockdown of CACNA1A, CACNA1C, CACNA1D and CACNB3 altered circadian rhythm amplitude. Diltiazem and knockdown of CACNA1C or CACNA1D eliminated lithium's ability to amplify rhythms. Knockdown of CACNA1A or CACNB3 altered baseline rhythms, but did not affect rhythm amplification by lithium. In human fibroblasts, CACNA1C genotype predicted the amplitude response to lithium, and the expression profiles of CACNA1C, CACNA1D and CACNB3 were altered in BD vs. CONTROLS We conclude that in cells from BD patients, calcium signaling is abnormal, and that LTCCs underlie the failure of lithium to amplify circadian rhythms.
Collapse
Affiliation(s)
- Michael J McCarthy
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA.
| | - Melissa J Le Roux
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - Heather Wei
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA
| | - Stephen Beesley
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - John R Kelsoe
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| | - David K Welsh
- Research and Psychiatry Service, Veterans Affairs, San Diego, USA; Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, USA
| |
Collapse
|
162
|
Ginns EI, Galdzicka M, Elston RC, Song YE, Paul SM, Egeland JA. Disruption of sonic hedgehog signaling in Ellis-van Creveld dwarfism confers protection against bipolar affective disorder. Mol Psychiatry 2015; 20:1212-8. [PMID: 25311364 DOI: 10.1038/mp.2014.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/30/2023]
Abstract
Ellis-van Creveld syndrome, an autosomal recessively inherited chondrodysplastic dwarfism, is frequent among Old Order Amish of Pennsylvania. Decades of longitudinal research on bipolar affective disorder (BPAD) revealed cosegregation of high numbers of EvC and Bipolar I (BPI) cases in several large Amish families descending from the same pioneer. Despite the high prevalence of both disorders in these families, no EvC individual has ever been reported with BPI. The proximity of the EVC gene to our previously reported chromosome 4p16 BPAD locus with protective alleles, coupled with detailed clinical observations that EvC and BPI do not occur in the same individuals, led us to hypothesize that the genetic defect causing EvC in the Amish confers protection from BPI. This hypothesis is supported by a significant negative association of these two disorders when contrasted with absence of disease (P=0.029, Fisher's exact test, two-sided, verified by permutation to estimate the null distribution of the test statistic). As homozygous Amish EVC mutations causing EvC dwarfism do so by disrupting sonic hedgehog (Shh) signaling, our data implicate Shh signaling in the underlying pathophysiology of BPAD. Understanding how disrupted Shh signaling protects against BPI could uncover variants in the Shh pathway that cause or increase risk for this and related mood disorders.
Collapse
Affiliation(s)
- E I Ginns
- Departments of Clinical Labs, Neurology, Pediatrics, Pathology and Psychiatry, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA, USA
| | - M Galdzicka
- Departments of Clinical Labs and Pathology, University of Massachusetts Medical School/UMass Memorial Medical Center, Worcester, MA, USA
| | - R C Elston
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Y E Song
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - S M Paul
- Departments of Neuroscience, Psychiatry and Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - J A Egeland
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
163
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
164
|
Logue MW, Amstadter AB, Baker DG, Duncan L, Koenen KC, Liberzon I, Miller MW, Morey RA, Nievergelt CM, Ressler KJ, Smith AK, Smoller JW, Stein MB, Sumner JA, Uddin M. The Psychiatric Genomics Consortium Posttraumatic Stress Disorder Workgroup: Posttraumatic Stress Disorder Enters the Age of Large-Scale Genomic Collaboration. Neuropsychopharmacology 2015; 40:2287-97. [PMID: 25904361 PMCID: PMC4538342 DOI: 10.1038/npp.2015.118] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/10/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
The development of posttraumatic stress disorder (PTSD) is influenced by genetic factors. Although there have been some replicated candidates, the identification of risk variants for PTSD has lagged behind genetic research of other psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Psychiatric genetics has moved beyond examination of specific candidate genes in favor of the genome-wide association study (GWAS) strategy of very large numbers of samples, which allows for the discovery of previously unsuspected genes and molecular pathways. The successes of genetic studies of schizophrenia and bipolar disorder have been aided by the formation of a large-scale GWAS consortium: the Psychiatric Genomics Consortium (PGC). In contrast, only a handful of GWAS of PTSD have appeared in the literature to date. Here we describe the formation of a group dedicated to large-scale study of PTSD genetics: the PGC-PTSD. The PGC-PTSD faces challenges related to the contingency on trauma exposure and the large degree of ancestral genetic diversity within and across participating studies. Using the PGC analysis pipeline supplemented by analyses tailored to address these challenges, we anticipate that our first large-scale GWAS of PTSD will comprise over 10 000 cases and 30 000 trauma-exposed controls. Following in the footsteps of our PGC forerunners, this collaboration-of a scope that is unprecedented in the field of traumatic stress-will lead the search for replicable genetic associations and new insights into the biological underpinnings of PTSD.
Collapse
Affiliation(s)
- Mark W Logue
- Research, VA Boston Healthcare System, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Dewleen G Baker
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, VA Center of Excellence for Stress and Mental Health (CESAMH), La Jolla, CA, USA
| | - Laramie Duncan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Veterans Affairs Ann Arbor Health System, Ann Arbor, MI, USA
| | - Mark W Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Rajendra A Morey
- Duke-UNC Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, VA Center of Excellence for Stress and Mental Health (CESAMH), La Jolla, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Alicia K Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan W Smoller
- Center of Human Genetics Research, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Sumner
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Monica Uddin
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
165
|
|
166
|
Frye MA, Doederlein A, Koenig B, McElroy SL, Nassan M, Seymour LR, Biernacka JM, Daniels AS. National survey and community advisory board development for a bipolar disorder biobank. Bipolar Disord 2015; 17:598-605. [PMID: 26291791 PMCID: PMC4643402 DOI: 10.1111/bdi.12322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/17/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVES The aim of the present study was to engage a national advocacy group and local stakeholders for guidance in developing a bipolar disorder biobank through a web-based survey and a community advisory board. METHODS The Depression and Bipolar Support Alliance and the Mayo Clinic Bipolar Biobank conducted a national web-based survey inquiring about interest in participating in a biobank (i.e., giving DNA and clinical information). A community advisory board was convened to guide establishment of the biobank and identify key deliverables from the research project and for the community. RESULTS Among 385 survey respondents, funding source (87%), professional opinion (76%), mental health consumer opinion (79%), and return of research results (91%) were believed to be important for considering study participation. Significantly more patients were willing to participate in a biobank managed by a university or clinic (78.2%) than one managed by government (63.4%) or industry (58.2%; both p < 0.001). The nine-member community advisory board expressed interest in research to help predict the likelihood of bipolar disorder developing in a child of an affected parent and which medications to avoid. The advisory board endorsed the use of a comprehension questionnaire to evaluate participants' understanding of the study (e.g., longevity of DNA specimens, right to remove samples, accessing medical records) as a means to strengthen the informed consent process. CONCLUSIONS These national survey and community advisory data support the merit of establishing a biobank to enable studies of disease risk, provided that health records and research results are adequately protected. The goals of earlier diagnosis and individualized treatment of bipolar disorder were endorsed.
Collapse
Affiliation(s)
- Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Barbara Koenig
- Institute for Health and Aging, University of California, San Francisco, CA, USA
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, USA
- Department of Psychiatry, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Malik Nassan
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Lisa R Seymour
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Joanna M Biernacka
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
167
|
Aminoff SR, Tesli M, Bettella F, Aas M, Lagerberg TV, Djurovic S, Andreassen OA, Melle I. Polygenic risk scores in bipolar disorder subgroups. J Affect Disord 2015; 183:310-4. [PMID: 26047958 DOI: 10.1016/j.jad.2015.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/09/2015] [Accepted: 05/10/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a genetically and clinically heterogeneous disorder. Current classifications of BD rely on clinical presentations without any validating biomarkers, making homogenous and valid subtypes warranted. This study aims at investigating whether a BD polygenic risk score (PGRS) can validate BD subtypes including diagnostic sub-categories (BD-I versus BD-II), patients with and without psychotic symptoms, polarity of first presenting episode and age at onset based groups. We also wanted to investigate whether illness severity indicators were associated with a higher polygenic risk for BD. METHODS Analyze differences in BD PGRS scores between suggested subtypes of BD and between healthy controls (CTR) and BD in a sample of N=669 (255 BD and 414 CTR). RESULTS The BD PGRS significantly discriminates between BD and CTR (p<0.001). There were no differences in BD PGRS between groups defined by diagnostic sub-categories, presenting polarity and age at onset. Patients with psychotic BD had nominally significantly higher BD PGRS than patients with non-psychotic BD after controlling for diagnostic sub-category (p=0.019). These findings remained trend level significant after Bonferroni corrections (p=0.079). LIMITATIONS The low explained variance of the current PGRS method could lead to type II errors. CONCLUSIONS There are nominally significant differences in BD PGRS scores between patients with and without psychotic symptoms, indicating that these two forms of BD might represent distinct subtypes of BD based in its polygenic architecture and a division between BD with and without psychotic symptoms could represent a more valid subclassification of BD than current diagnostic sub-categories. If replicated, this finding could affect future research, diagnostics and clinical practice.
Collapse
Affiliation(s)
- Sofie Ragnhild Aminoff
- Department of Specialized Inpatient Treatment, Division of Mental Health Services, Akershus University Hospital, Norway; NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Martin Tesli
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Monica Aas
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trine Vik Lagerberg
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
168
|
Brain membrane lipids in major depression and anxiety disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1052-65. [DOI: 10.1016/j.bbalip.2014.12.014] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/06/2014] [Accepted: 12/16/2014] [Indexed: 11/13/2022]
|
169
|
Harrison PJ. Molecular neurobiological clues to the pathogenesis of bipolar disorder. Curr Opin Neurobiol 2015. [PMID: 26210959 DOI: 10.1016/j.conb.2015.07.002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2022]
Abstract
Bipolar disorder is a serious psychiatric disorder, with a high heritability and unknown pathogenesis. Recent genome-wide association studies have identified the first loci, implicating genes such as CACNA1C and ANK3. The genes highlight several pathways, notably calcium signalling, as being of importance. Molecular studies suggest that the risk variants impact on gene regulation and expression. Preliminary studies using reprogrammed patient-derived cells report alterations in the transcriptome and in cellular adhesion and differentiation. Mouse models show that genes involved in circadian biology, acting via dopaminergic effects, reproduce aspects of the bipolar phenotype. These findings together represent significant advances in identification of the genetic and molecular basis of bipolar disorder, yet we are still far from an integrated, evidence-based understanding of its aetiopathogenesis.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, United Kingdom.
| |
Collapse
|
170
|
Ashbrook DG, Williams RW, Lu L, Hager R. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder. Front Behav Neurosci 2015; 9:171. [PMID: 26190982 PMCID: PMC4486840 DOI: 10.3389/fnbeh.2015.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, University of Tennessee Memphis, TN, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, University of Tennessee Memphis, TN, USA ; Jiangsu Key Laboratory of Neuroregeneration, Nantong University Nantong, China
| | - Reinmar Hager
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
171
|
Dong Y, Zhang X, Xie M, Arefnezhad B, Wang Z, Wang W, Feng S, Huang G, Guan R, Shen W, Bunch R, McCulloch R, Li Q, Li B, Zhang G, Xu X, Kijas JW, Salekdeh GH, Wang W, Jiang Y. Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genomics 2015; 16:431. [PMID: 26044654 PMCID: PMC4455334 DOI: 10.1186/s12864-015-1606-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/01/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics. RESULTS We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits. CONCLUSION Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.
Collapse
Affiliation(s)
- Yang Dong
- Kunming University of Science and Technology, Kunming, 650093, China.
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Xiaolei Zhang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Min Xie
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Babak Arefnezhad
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| | - Zongji Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | | | | | | | - Rui Guan
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Wenjing Shen
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Rowan Bunch
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | | | - Qiye Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China.
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China.
| | - James W Kijas
- CSIRO, Agriculture Flagship, Brisbane, 4065, QLD, Australia.
| | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Wen Wang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
| | - Yu Jiang
- CAS-Max Planck Junior Research Group, State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650223, China.
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
172
|
Amoruso A, Bardelli C, Cattaneo CI, Fresu LG, Manzetti E, Brunelleschi S. Neurokinin (NK)-1 receptor expression in monocytes from bipolar disorder patients: a pilot study. J Affect Disord 2015; 178:188-92. [PMID: 25841180 DOI: 10.1016/j.jad.2015.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neurokinin 1 receptors (NK-1R) have been involved in several psychiatric disorders including major depression, but less is known for bipolar disorder (BD). METHOD We compared NK-1R expression and Substance P (SP) ability to induce NF-κB activation in monocytes from BD patients and healthy donors (HD), also looking for the effects of tobacco smoke. After informed written consent, 20 euthymic BD patients, either bipolar type 1 (BDI) or type 2 (BDII), and 14 age-matched healthy donors (HD) were enrolled. NK-1R expression in monocytes was evaluated by Western blot and expressed as the ratio between NK-1R and Na(+)/K(+)-ATPase protein expressions. NF-κB activation was assessed by measuring the nuclear content of the p50 subunit (ELISA kit). RESULTS NK-1R expression was significantly reduced (P<0.001) in monocytes from BD patients as compared to HD, with no major differences between BDI and BDII patients. Tobacco smoke enhanced NK-1R expression in HD, but not in BD patients. Un-stimulated monocytes from BD patients presented a constitutively higher (P<0.05) content of nuclear p50 subunit as compared to HD. SP and an NK-1R agonist induced NF-κB activation, with a higher effect in HD: this effect was receptor-mediated as it was abrogated by an NK-1R antagonist. LIMITATIONS As a pilot study enrolling 20 BD patients, an obvious limitation is the sample size. CONCLUSIONS Our results show the existence of a relevant alteration in NK-1R expression in BD patients and further suggest SP involvement in BD, so improving our understanding of the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Angela Amoruso
- Department of Health Sciences, School of Medicine, University "A. Avogadro", Via Solaroli, 17, 28100 Novara, Italy
| | - Claudio Bardelli
- Department of Health Sciences, School of Medicine, University "A. Avogadro", Via Solaroli, 17, 28100 Novara, Italy
| | - Carlo Ignazio Cattaneo
- Department of Mental Health, ASL NO, Centre of Mental Health, Viale Zoppis, 8, 28021 Borgomanero, Novara, Italy
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of Medicine, University "A. Avogadro", Via Solaroli, 17, 28100 Novara, Italy
| | - Elena Manzetti
- Department of Mental Health, ASL NO, Centre of Mental Health, Viale Zoppis, 8, 28021 Borgomanero, Novara, Italy
| | - Sandra Brunelleschi
- Department of Health Sciences, School of Medicine, University "A. Avogadro", Via Solaroli, 17, 28100 Novara, Italy; Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), School of Medicine, Novara, Italy.
| |
Collapse
|
173
|
Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl Psychiatry 2015; 5:e588. [PMID: 26101851 PMCID: PMC4490286 DOI: 10.1038/tp.2015.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.
Collapse
|
174
|
Synaptic abnormalities and cytoplasmic glutamate receptor aggregates in contactin associated protein-like 2/Caspr2 knockout neurons. Proc Natl Acad Sci U S A 2015; 112:6176-81. [PMID: 25918374 DOI: 10.1073/pnas.1423205112] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Central glutamatergic synapses and the molecular pathways that control them are emerging as common substrates in the pathogenesis of mental disorders. Genetic variation in the contactin associated protein-like 2 (CNTNAP2) gene, including copy number variations, exon deletions, truncations, single nucleotide variants, and polymorphisms have been associated with intellectual disability, epilepsy, schizophrenia, language disorders, and autism. CNTNAP2, encoded by Cntnap2, is required for dendritic spine development and its absence causes disease-related phenotypes in mice. However, the mechanisms whereby CNTNAP2 regulates glutamatergic synapses are not known, and cellular phenotypes have not been investigated in Cntnap2 knockout neurons. Here we show that CNTNAP2 is present in dendritic spines, as well as axons and soma. Structured illumination superresolution microscopy reveals closer proximity to excitatory, rather than inhibitory synaptic markers. CNTNAP2 does not promote the formation of synapses and cultured neurons from Cntnap2 knockout mice do not show early defects in axon and dendrite outgrowth, suggesting that CNTNAP2 is not required at this stage. However, mature neurons from knockout mice show reduced spine density and levels of GluA1 subunits of AMPA receptors in spines. Unexpectedly, knockout neurons show large cytoplasmic aggregates of GluA1. Here we characterize, for the first time to our knowledge, synaptic phenotypes in Cntnap2 knockout neurons and reveal a novel role for CNTNAP2 in GluA1 trafficking. Taken together, our findings provide insight into the biological roles of CNTNAP2 and into the pathogenesis of CNTNAP2-associated neuropsychiatric disorders.
Collapse
|
175
|
Sullivan PF, Posthuma D. Biological pathways and networks implicated in psychiatric disorders. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2014.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
176
|
Balaraman Y, Lahiri DK, Nurnberger JI. Variants in Ion Channel Genes Link Phenotypic Features of Bipolar Illness to Specific Neurobiological Process Domains. MOLECULAR NEUROPSYCHIATRY 2015; 1:23-35. [PMID: 27602355 DOI: 10.1159/000371886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 11/19/2022]
Abstract
Recent advances in genome-wide association studies are pointing towards a major role for voltage-gated ion channels in neuropsychiatric disorders and, in particular, bipolar disorder (BD). The phenotype of BD is complex, with symptoms during mood episodes and deficits persisting between episodes. We have tried to elucidate the common neurobiological mechanisms associated with ion channel signaling in order to provide a new perspective on the clinical symptoms and possible endophenotypes seen in BD patients. We propose a model in which the multiple variants in genes coding for ion channel proteins would perturb motivational circuits, synaptic plasticity, myelination, hypothalamic-pituitary-adrenal axis function, circadian neuronal rhythms, and energy regulation. These changes in neurobiological mechanisms would manifest in endophenotypes of aberrant reward processing, white matter hyperintensities, deficits in executive function, altered frontolimbic connectivity, increased amygdala activity, increased melatonin suppression, decreased REM latency, and aberrant myo-inositol/ATP shuttling. The endophenotypes result in behaviors of poor impulse control, motivational changes, cognitive deficits, abnormal stress response, sleep disturbances, and energy changes involving different neurobiological process domains. The hypothesis is that these disturbances start with altered neural circuitry during development, following which multiple environmental triggers may disrupt the neuronal excitability balance through an activity-dependent molecular process, resulting in clinical mood episodes.
Collapse
Affiliation(s)
- Yokesh Balaraman
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - Debomoy K Lahiri
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| | - John I Nurnberger
- Institute of Psychiatric Research, Department of Psychiatry, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, Ind., USA
| |
Collapse
|
177
|
Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci U S A 2015; 112:3576-81. [PMID: 25730879 DOI: 10.1073/pnas.1424958112] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD.
Collapse
|
178
|
Abstract
Bipolar disorder (BD) is a chronic psychiatric illness of which the etiology remains unknown. Extensive research has provided some hypotheses for the pathophysiology of this disorder; however, there are no molecular tests available to help support the diagnosis obtained by self-report and behavioral observations. A major requirement is to identify potential biomarkers that could be used for early diagnosis in patients susceptible to the disease and for its treatment. The most recently published findings regarding alterations in BD were found to be related to oxidative stress, inflammatory and trophic factor deregulation, and also polymorphisms of genes that are associated with the development of BD. Many of these targets are potential biomarkers which could help to identify the BD subgroups and to advance treatment strategies, which would beneficiate the quality of life of these patients. Therefore, the main objective of this review is to examine the recent findings and critically evaluate their potential as biomarkers for BD.
Collapse
Affiliation(s)
- Gustavo Scola
- Department of Psychiatry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada,
| | | |
Collapse
|
179
|
Abstract
The last several years have been breakthrough ones in bipolar disorder (BPD) genetics, as the field has identified robust risk variants for the first time. Leading the way have been genome-wide association studies (GWAS) that have assessed common genetic markers across very large groups of patients and controls. These have resulted in findings in genes including ANK3, CACNA1C, SYNE1, ODZ4, and TRANK1. Additional studies have begun to examine the biology of these genes and how risk variants influence aspects of brain and behavior that underlie BPD. For example, carriers of the CACNA1C risk variant have been found to exhibit hippocampal and anterior cingulate dysfunction during episodic memory recall. This work has shed additional light on the relationship of bipolar susceptibility variants to other disorders, particularly schizophrenia. Even larger BPD GWAS are expected with samples now amassed of 21,035 cases and 28,758 controls. Studies have examined the pharmacogenomics of BPD with studies of lithium response, yielding high profile results that remain to be confirmed. The next frontier in the field is the identification of rare bipolar susceptibility variants through large-scale DNA sequencing. While only a couple of papers have been published to date, many studies are underway. The Bipolar Sequencing Consortium has been formed to bring together all of the groups working in this area, and to perform meta-analyses of the data generated. The consortium, with 13 member groups, now has exome data on ~3,500 cases and ~5,000 controls, and on ~162 families. The focus will likely shift within several years from exome data to whole genome data as costs of obtaining such data continue to drop. Gene-mapping studies are now providing clear results that provide insights into the pathophysiology of the disorder. Sequencing studies should extend this process further. Findings could eventually set the stage for rational therapeutic development.
Collapse
Affiliation(s)
- Gen Shinozaki
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | |
Collapse
|
180
|
Affiliation(s)
- Jordan W. Smoller
- Psychiatric and Neurodevelopmental Genetics Unit; Center for Human Genetic Research; Massachusetts General Hospital; Boston MA
- Department of Psychiatry; Massachusetts General Hospital; Boston MA
- Stanley Center for Psychiatric Research; Broad Institute; Boston MA
| |
Collapse
|
181
|
Smith KR, Kopeikina KJ, Fawcett-Patel JM, Leaderbrand K, Gao R, Schürmann B, Myczek K, Radulovic J, Swanson GT, Penzes P. Psychiatric risk factor ANK3/ankyrin-G nanodomains regulate the structure and function of glutamatergic synapses. Neuron 2014; 84:399-415. [PMID: 25374361 DOI: 10.1016/j.neuron.2014.10.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 01/21/2023]
Abstract
Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using superresolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, probably as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions and open directions for basic and translational investigation of psychiatric risk molecules.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine J Kopeikina
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jessica M Fawcett-Patel
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Britta Schürmann
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Kristoffer Myczek
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611 USA.
| |
Collapse
|
182
|
Abstract
From a neurobiological perspective there is no such thing as bipolar disorder. Rather, it is almost certainly the case that many somewhat similar, but subtly different, pathological conditions produce a disease state that we currently diagnose as bipolarity. This heterogeneity - reflected in the lack of synergy between our current diagnostic schema and our rapidly advancing scientific understanding of the condition - limits attempts to articulate an integrated perspective on bipolar disorder. However, despite these challenges, scientific findings in recent years are beginning to offer a provisional "unified field theory" of the disease. This theory sees bipolar disorder as a suite of related neurodevelopmental conditions with interconnected functional abnormalities that often appear early in life and worsen over time. In addition to accelerated loss of volume in brain areas known to be essential for mood regulation and cognitive function, consistent findings have emerged at a cellular level, providing evidence that bipolar disorder is reliably associated with dysregulation of glial-neuronal interactions. Among these glial elements are microglia - the brain's primary immune elements, which appear to be overactive in the context of bipolarity. Multiple studies now indicate that inflammation is also increased in the periphery of the body in both the depressive and manic phases of the illness, with at least some return to normality in the euthymic state. These findings are consistent with changes in the hypothalamic-pituitary-adrenal axis, which are known to drive inflammatory activation. In summary, the very fact that no single gene, pathway, or brain abnormality is likely to ever account for the condition is itself an extremely important first step in better articulating an integrated perspective on both its ontological status and pathogenesis. Whether this perspective will translate into the discovery of innumerable more homogeneous forms of bipolarity is one of the great questions facing the field and one that is likely to have profound treatment implications, given that fact that such a discovery would greatly increase our ability to individualize - and by extension, enhance - treatment.
Collapse
Affiliation(s)
- Vladimir Maletic
- Department of Neuropsychiatry and Behavioral Sciences, University of South Carolina School of Medicine , Columbia, SC , USA
| | - Charles Raison
- Department of Psychiatry, University of Arizona , Tucson, AZ , USA ; Norton School of Family and Consumer Sciences, College of Agriculture and Life Sciences, University of Arizona , Tucson, AZ , USA
| |
Collapse
|