151
|
Dopamine transporter (SLC6A3) genotype impacts neurophysiological correlates of cognitive response control in an adult sample of patients with ADHD. Neuropsychopharmacology 2010; 35:2193-202. [PMID: 20631685 PMCID: PMC3055310 DOI: 10.1038/npp.2010.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Studies provide ample evidence for a dysfunction in dopaminergic neurotransmission in Attention-Deficit/Hyperactivity Disorder (ADHD). In that respect, a common variable number of tandem repeats (VNTR) polymorphism in the 3' untranslated region (UTR) of the dopamine transporter gene (SLC6A3) has been repeatedly associated with the disorder. Here, we examined the influence of the common 9- and 10-repeat alleles of SLC6A3 on prefrontal brain functioning and cognitive response control in a large sample of adult ADHD patients (n=161) and healthy controls (n=109). To this end, we inspected a neurophysiological marker of cognitive response control (NoGo anteriorization, NGA) elicited by means of a Go-NoGo task (continuous performance test, CPT). Within the group of ADHD patients, nine-repeat allele carriers showed significantly reduced NGA, whereas no influence of SLC6A3 genotype was observed in the control group. In contrast to previous association studies of children, the nine-repeat-not the 10-repeat-allele was associated with functional impairments in our sample of adult ADHD patients. Our findings confirm a significant effect of the SLC6A3 genotype on the neurophysiological correlates of cognitive response control in ADHD, and indicate that still to-be-identified age-related factors are important variables modulating the effect of genetic factors on endophenotypes.
Collapse
|
152
|
Sysoeva OV, Tonevitsky AG, Wackermann J. Genetic determinants of time perception mediated by the serotonergic system. PLoS One 2010; 5. [PMID: 20862259 PMCID: PMC2941468 DOI: 10.1371/journal.pone.0012650] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background The present study investigates neurobiological underpinnings of individual differences in time perception. Methodology Forty-four right-handed Russian Caucasian males (18–35 years old) participated in the experiment. The polymorphism of the genes related to the activity of serotonin (5-HT) and dopamine (DA)-systems (such as 5-HTT, 5HT2a, MAOA, DAT, DRD2, COMT) was determined upon the basis of DNA analysis according to a standard procedure. Time perception in the supra-second range (mean duration 4.8 s) was studied, using the duration discrimination task and parametric fitting of psychometric functions, resulting in individual determination of the point of subjective equality (PSE). Assuming the ‘dual klepsydra model’ of internal duration representation, the PSE values were transformed into equivalent values of the parameter (kappa), which is a measure of the ‘loss rate’ of the duration representation. An association between time representation parameters (PSE and , respectively) and 5-HT-related genes was found, but not with DA-related genes. Higher ‘loss rate’ () of the cumulative duration representation were found for the carriers of genotypes characterized by higher 5-HT transmission, i.e., 1) lower 5-HT reuptake, known for the 5-HTTLPR SS polymorphism compared with LL, 2) lower 5-HT degradation, described for the ‘low expression’ variant of MAOA VNTR gene compared with ‘high expression’ variant, and 3) higher 5-HT2a receptor density, proposed for the TT polymorphism of 5-HT2a T102C gene compared with CC. Conclusion Convergent findings of the present study and previous psychopharmacological studies suggest an action path from 5-HT-activity-related genes, via activity of 5-HT in the brain, to time perception. An involvement of the DA-system in the encoding of durations in the supra-second range is questioned.
Collapse
Affiliation(s)
- Olga V Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | | | | |
Collapse
|
153
|
Hahn T, Heinzel S, Dresler T, Plichta MM, Renner TJ, Markulin F, Jakob PM, Lesch KP, Fallgatter AJ. Association between reward-related activation in the ventral striatum and trait reward sensitivity is moderated by dopamine transporter genotype. Hum Brain Mapp 2010; 32:1557-65. [PMID: 20845394 DOI: 10.1002/hbm.21127] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 05/14/2010] [Accepted: 06/21/2010] [Indexed: 12/31/2022] Open
Abstract
The impact of individual differences on human reward processing has been a focus of research in recent years, particularly, as they are associated with a variety of neuropsychiatric diseases including addiction and attention-deficit/hyperactivity disorder. Studies exploring the neural basis of individual differences in reward sensitivity have consistently implicated the ventral striatum (VS) as a core component of the human reward system. However, the mechanisms of dopaminergic neurotransmission underlying ventral striatal activation as well as trait reward sensitivity remain speculative. We addressed this issue by investigating the triadic interplay between VS reactivity during reward anticipation using functional magnetic resonance imaging, trait reward sensitivity, and dopamine (DA) transporter genotype (40-bp 3'VNTR of DAT, SLC6A3) affecting synaptic DA neurotransmission. Our results show that DAT variation moderates the association between VS-reactivity and trait reward sensitivity. Specifically, homozygote carriers of the DAT 10-repeat allele exhibit a strong positive correlation between reward sensitivity and reward-related VS activity whereas this relationship is absent in the DAT 9-repeat allele carriers. We discuss the possibility that this moderation of VS-trait relation might arise from DAT-dependent differences in DA availability affecting synaptic plasticity within the VS. Generally, studying the impact of dopaminergic gene variations on the relation between reward-related brain activity and trait reward sensitivity might facilitate the investigation of complex mechanisms underlying disorders linked to dysregulation of DA neurotransmission.
Collapse
Affiliation(s)
- Tim Hahn
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Simon JR, Stollstorff M, Westbay LC, Vaidya CJ, Howard JH, Howard DV. Dopamine transporter genotype predicts implicit sequence learning. Behav Brain Res 2010; 216:452-7. [PMID: 20817043 DOI: 10.1016/j.bbr.2010.08.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 11/30/2022]
Abstract
Implicit learning, the non-conscious acquisition of sequential and spatial environmental regularities, underlies skills such as language, social intuition, or detecting a target in a complex scene. We examined relationships between a variation of the dopamine transporter (DAT1) gene (SLC6A3), which influences dopamine transporter expression in the striatum, and two forms of implicit learning that differ in the regularity to be learned and in striatal involvement. Participants, grouped as 9-repeat carriers or 10/10 homozygotes, completed the triplets learning task (TLT) and the spatial contextual cueing task (SCCT). The TLT assesses sequence learning, recruiting the striatal system, particularly as training continues. In contrast, the SCCT assesses spatial context learning, recruiting medial temporal brain networks. For both tasks, participants demonstrated learning in faster and/or more accurate responses to repeating patterns or spatial arrays. As predicted, TLT learning was greater for the 9-repeat carriers than the 10/10 group (despite equal overall accuracy and response speed) whereas there were no significant group differences in SCCT. Thus, presence of the DAT1 9-repeat allele was beneficial only for implicit sequence learning, indicating the influence of DAT1 genotype on one form of implicit learning and supporting evidence that implicit learning of sequential dependencies and spatial layouts recruit different neural systems.
Collapse
Affiliation(s)
- Jessica R Simon
- Department of Psychology, Georgetown University, Washington, DC 20057, United States.
| | | | | | | | | | | |
Collapse
|
155
|
Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology 2010; 35:1943-51. [PMID: 20463658 PMCID: PMC3055632 DOI: 10.1038/npp.2010.68] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine has been hypothesized to provide the basis for the interaction between motivational and cognitive control. However, there is no evidence for this hypothesis in humans. We fill this gap by using fMRI, a novel behavioral paradigm and a common polymorphism in the DAT1 gene (SLC6A3). Carriers of the 9-repeat (9R) allele of a 40 base pair repeat polymorphism in the 3' untranslated region of DAT1, associated with high striatal dopamine, showed greater activity in the ventromedial striatum during reward anticipation than homozygotes for the 10-repeat allele, replicating previous genetic imaging studies. The crucial novel finding is that 9R carriers also exhibited a greater influence of anticipated reward on switch costs, as well as greater activity in the dorsomedial striatum during task switching in anticipation of high reward relative to low reward. These data establish a crucial role for human striatal dopamine in the modulation of cognitive flexibility by reward anticipation, thus, elucidating the neurochemical mechanism of the interaction between motivation and cognitive control.
Collapse
|
156
|
Abstract
Cigarette smoking is the main preventable cause of death in developed countries, and the development of more effective treatments is necessary. Cumulating evidence suggests that cognitive enhancement may contribute to the addictive actions of nicotine. Several studies have demonstrated that nicotine enhances cognitive performance in both smokers and non-smokers. Genetic studies support the role of both dopamine (DA) and nicotinic acetylcholine receptors (nAChRs) associated with nicotine-induced cognitive enhancement. Based on knockout mice studies, beta2 nAChRs are thought to be essential in mediating the cognitive effects of nicotine. alpha7nAChRs are associated with attentional and sensory filtering response, especially in schizophrenic individuals. Genetic variation in D2 type DA receptors and the catechol-O-methyltransferase enzyme appears to moderate cognitive deficits induced by smoking abstinence. Serotonin transporter (5-HTT) gene variation also moderates nicotine-induced improvement in spatial working memory. Less is known about the contribution of genetic variation in DA transporter and D4 type DA receptor genetic variation on the cognitive effects of nicotine. Future research will provide a clearer understanding of the mechanism underlying the cognitive-enhancing actions of nicotine.
Collapse
Affiliation(s)
- Aryeh I Herman
- Department of Psychiatry and VA Connecticut Healthcare System, School of Medicine, Yale University, West Haven, CT 06516, USA
| | | |
Collapse
|
157
|
Shumay E, Fowler JS, Volkow ND. Genomic features of the human dopamine transporter gene and its potential epigenetic States: implications for phenotypic diversity. PLoS One 2010; 5:e11067. [PMID: 20548783 PMCID: PMC2883569 DOI: 10.1371/journal.pone.0011067] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/18/2010] [Indexed: 02/06/2023] Open
Abstract
Human dopamine transporter gene (DAT1 or SLC6A3) has been associated with various brain-related diseases and behavioral traits and, as such, has been investigated intensely in experimental- and clinical-settings. However, the abundance of research data has not clarified the biological mechanism of DAT regulation; similarly, studies of DAT genotype-phenotype associations yielded inconsistent results. Hence, our understanding of the control of the DAT protein product is incomplete; having this knowledge is critical, since DAT plays the major role in the brain's dopaminergic circuitry. Accordingly, we reevaluated the genomic attributes of the SLC6A3 gene that might confer sensitivity to regulation, hypothesizing that its unique genomic characteristics might facilitate highly dynamic, region-specific DAT expression, so enabling multiple regulatory modes. Our comprehensive bioinformatic analyzes revealed very distinctive genomic characteristics of the SLC6A3, including high inter-individual variability of its sequence (897 SNPs, about 90 repeats and several CNVs spell out all abbreviations in abstract) and pronounced sensitivity to regulation by epigenetic mechanisms, as evident from the GC-bias composition (0.55) of the SLC6A3, and numerous intragenic CpG islands (27 CGIs). We propose that this unique combination of the genomic features and the regulatory attributes enables the differential expression of the DAT1 gene and fulfills seemingly contradictory demands to its regulation; that is, robustness of region-specific expression and functional dynamics.
Collapse
Affiliation(s)
- Elena Shumay
- Brookhaven National Laboratory, Medical Department, Upton, New York, United States of America
- * E-mail: (ES); (JSF); (NDV)
| | - Joanna S. Fowler
- Brookhaven National Laboratory, Medical Department, Upton, New York, United States of America
- * E-mail: (ES); (JSF); (NDV)
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (ES); (JSF); (NDV)
| |
Collapse
|
158
|
Turic D, Swanson J, Sonuga-Barke E. DRD4 and DAT1 in ADHD: Functional neurobiology to pharmacogenetics. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2010; 3:61-78. [PMID: 23226043 PMCID: PMC3513209 DOI: 10.2147/pgpm.s6800] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Indexed: 12/26/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is a common and potentially very impairing neuropsychiatric disorder of childhood. Statistical genetic studies of twins have shown ADHD to be highly heritable, with the combination of genes and gene by environment interactions accounting for around 80% of phenotypic variance. The initial molecular genetic studies where candidates were selected because of the efficacy of dopaminergic compounds in the treatment of ADHD were remarkably successful and provided strong evidence for the role of DRD4 and DAT1 variants in the pathogenesis of ADHD. However, the recent application of non-candidate gene strategies (eg, genome-wide association scans) has failed to identify additional genes with substantial genetic main effects, and the effects for DRD4 and DAT1 have not been replicated. This is the usual pattern observed for most other physical and mental disorders evaluated with current state-of-the-art methods. In this paper we discuss future strategies for genetic studies in ADHD, highlighting both the pitfalls and possible solutions relating to candidate gene studies, genome-wide studies, defining the phenotype, and statistical approaches.
Collapse
Affiliation(s)
- Darko Turic
- Institute for Disorders of Impulse and Attention, School of Psychology, University of Southampton, UK
| | | | | |
Collapse
|
159
|
Yeh YW, Lu RB, Tao PL, Shih MC, Lin WW, Huang SY. Neither single-marker nor haplotype analyses support an association between the dopamine transporter gene and heroin dependence in Han Chinese. GENES BRAIN AND BEHAVIOR 2010; 9:638-47. [PMID: 20497233 DOI: 10.1111/j.1601-183x.2010.00597.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Much evidence suggests that dysfunction of dopamine transporter-mediated dopamine transmission may be involved in the pathophysiology of substance abuse and dependence. The aim of this study was to examine whether the dopamine transporter gene (DAT1; SLC6A3) is associated with the development of heroin dependence (HD) and whether DAT1 influences personality traits in patients with HD. Polymorphisms of DAT1 were analyzed in a case-control study of 1046 Han Chinese (615 patients and 431 controls). All participants were screened using a Chinese version of the modified Schedule of Affective Disorder and Schizophrenia-Lifetime and all patients met the criteria for HD. Furthermore, a Chinese version of the Tridimensional Personality Questionnaire (TPQ) was used to assess personality traits in the patient group and examine the association between their personality traits and DAT1 polymorphisms. Of the patient group, 271 completed the TPQ. No statistically significant differences in allele or genotype frequencies of all investigated variants between HD patients and controls were observed. In haplotype analyses, four haplotype blocks of DAT1 were not associated with the development of HD. These DAT1 polymorphisms did not influence novelty seeking and harm avoidance scores in HD patients. This study suggests that the DAT1 gene may not contribute to the risk of HD and specific personality traits in HD among the Han Chinese population.
Collapse
Affiliation(s)
- Y-W Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
160
|
Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S. The immunoregulatory role of dopamine: an update. Brain Behav Immun 2010; 24:525-8. [PMID: 19896530 PMCID: PMC2856781 DOI: 10.1016/j.bbi.2009.10.015] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/17/2009] [Accepted: 10/27/2009] [Indexed: 12/20/2022] Open
Abstract
The neurotransmitter dopamine (DA) is an important molecule bridging the nervous and immune systems. DA through autocrine/paracrine manner modulates the functions of immune effector cells by acting through its receptors present in these cells. DA also has unique and opposite effects on T cell functions. Although DA activates naïve or resting T cells, but it inhibits activated T cells. In addition, changes in the expression of DA receptors and their signaling pathways especially in T cells are associated with altered immune functions in disorders like schizophrenia and Parkinson's disease. These results suggest an immunoregulatory role of DA. Therefore, targeting DA receptors and their signaling pathways in these cells by using DA receptor agonists and antagonists may be useful for the treatment of diseases where DA induced altered immunity play a pathogenic role.
Collapse
Affiliation(s)
- Chandrani Sarkar
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Biswarup Basu
- Signal Transduction and Biogenic Amines Department, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | | | - Partha Sarthi Dasgupta
- Signal Transduction and Biogenic Amines Department, Chittaranjan National Cancer Institute, Kolkata 700026, India
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
161
|
Willeit M, Praschak-Rieder N. Imaging the effects of genetic polymorphisms on radioligand binding in the living human brain: A review on genetic neuroreceptor imaging of monoaminergic systems in psychiatry. Neuroimage 2010; 53:878-92. [PMID: 20399868 DOI: 10.1016/j.neuroimage.2010.04.030] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/08/2010] [Accepted: 04/12/2010] [Indexed: 12/16/2022] Open
Abstract
Imaging genetics is a research field that describes the impact of genetic risk variants on brain structure and function. While magnetic resonance based imaging techniques are able to provide complex information on a system level, positron emission tomography (PET) and single photon emission computer tomography (SPECT) allow for determination of distribution and density of single receptor molecules in the human brain. Major psychiatric disorders are highly heritable, and have been associated with a dysregulation in brain dopamine and serotonin systems. Understanding the role of genetic polymorphisms within these neurotransmitter systems on brain phenotype is essential. This review tries to cover the literature on the impact of gene variants implicated in psychiatric disorders on serotonin, dopamine, and MAO-A radioligand binding in living humans. The majority of PET and SPECT studies investigated the role of polymorphisms within genes coding for the serotonin and dopamine transporters, the serotonin 1A receptor, and the dopamine D2 receptor on G protein coupled receptors or transporter proteins critically involved in serotonin or dopamine neurotransmission. Other studies investigated the impact of variants in genes for monoamine oxidase-A (MAO-A) or brain derived neurotrophic factor on monoamine transporters, receptors, or MAO-A activity. Two main findings in healthy subjects emerge from the current literature: one is an increased binding of the selective ligand [(11)C]DASB to serotonin transporters in subjects homozygous for the triallelic 5-HTTLPR LA allele. The other one is decreased binding of the radioligand [(11)C]raclopride to dopamine D2 receptors in D2 Taq1 A1 allele carriers. Other findings reported are highly interesting but require independent replication.
Collapse
Affiliation(s)
- Matthäus Willeit
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | | |
Collapse
|
162
|
Temperature and length-dependent modulation of the MH class II beta gene expression in brook charr (Salvelinus fontinalis) by a cis-acting minisatellite. Mol Immunol 2010; 47:1817-29. [PMID: 20381151 DOI: 10.1016/j.molimm.2009.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 01/19/2023]
Abstract
It is widely recognized that the variation in gene regulation is an important factor from which evolutionary changes in diverse aspects of phenotype can be observed in all organisms. Distinctive elements with functional roles on gene regulation have been identified within the non-coding part of the genome, including repeated elements. Major histocompatibility complex (MHC) genes have been the subject of an abundant literature which made them unique candidates for studies of adaptation in natural populations. Yet, the vast majority of studies on MHC genes have dealt with patterns of polymorphism in sequence variation while very few paid attention to the possible implication of differential expression in adaptive responses. In this paper, we report the identification of a polymorphic minisatellite formed of a 32 nucleotides motif (38% G+C) involved in regulation of the major histocompatibility class II beta gene (MHII beta) of brook charr (Salvelinus fontinalis). Our main objectives were: to analyze the variability of this minisatellite found in the second intron of the MHII beta gene and to document its effect to the variation of expression level of this gene under different environmental conditions. Distinctive number of the minisatellite repeats were associated with each different MHII beta alleles identified from exon 2 sequences. Relative expression levels of specific alleles in heterozygous individuals were determined from fish lymphocytes in different genotypes. We found that alleles carrying the longest minisatellite showed a significant 1.67-2.56-fold reduction in the transcript expression relatively to the shortest one. Results obtained in three different genotypes also indicated that the repressive activity associated to the longest minisatellite was more effective at 18 degrees C compared to 6 degrees C. In contrast, no significant difference was observed in transcript levels between alleles with comparable minisatellite length at both temperatures. We also depicted a significant up-regulation of the total MHII beta transcript at 6 degrees C relative to 18 degrees C. These results reveal for the first time that a temperature-sensitive minisatellite could potentially play an important role in the gene regulation of the adaptive immune response in fishes.
Collapse
|
163
|
Brown AB, Biederman J, Valera EM, Doyle AE, Bush G, Spencer T, Monuteaux MC, Mick E, Whitfield-Gabrieli S, Makris N, LaViolette PS, Oscar-Berman M, Faraone SV, Seidman LJ. Effect of dopamine transporter gene (SLC6A3) variation on dorsal anterior cingulate function in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:365-375. [PMID: 19676101 PMCID: PMC2915441 DOI: 10.1002/ajmg.b.31022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although attention-deficit/hyperactivity disorder (ADHD) is associated both with brain alterations in attention and executive function (EF) circuitry and with genetic variations within the dopamine system (including the dopamine transporter gene [SLC6A3]), few studies have directly investigated how genetic variations are linked to brain alterations. We sought to examine how a polymorphism in the 3' untranslated region (UTR) of SLC6A3, associated with ADHD in meta-analysis, might contribute to variation in dorsal anterior cingulate cortex (dACC) function in subjects with ADHD. We collected fMRI scans of 42 individuals with ADHD, all of European descent and over the age of 17, while they performed the multi-source interference task (MSIT), a cognitive task shown to activate dACC. SLC6A3 3' UTR variable number tandem repeat (VNTR) polymorphisms were genotyped and brain activity was compared for groups based on allele status. ADHD individuals homozygous for the 10R allele showed significant hypoactivation in the left dACC compared to 9R-carriers. Exploratory analysis also showed trends toward hypoactivation in the 10R homozygotes in left cerebellar vermis and right lateral prefrontal cortex. Further breakdown of genotype groups showed similar activation in individuals heterozygous and homozygous for the 9R allele. Alterations in activation of attention and EF networks found previously to be involved in ADHD are likely influenced by SLC6A3 genotype. This genotype may contribute to heterogeneity of brain alterations found within ADHD samples.
Collapse
Affiliation(s)
- Ariel B. Brown
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114,Ph.D. Program in Behavioral Neuroscience, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118
| | - Joseph Biederman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Eve M. Valera
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114,Psychiatric Neuroimaging Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston MA, 02129
| | - Alysa E. Doyle
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - George Bush
- Psychiatric Neuroimaging Research Program, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston MA, 02129
| | - Thomas Spencer
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Michael C. Monuteaux
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Eric Mick
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Susan Whitfield-Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nikos Makris
- Departments of Neurology and Radiology Services, Harvard Medical School, Boston, MA, 02118,Center for Morphometric Analysis, Massachusetts General Hospital, Boston, MA 02129
| | - Peter S. LaViolette
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114
| | - Marlene Oscar-Berman
- Ph.D. Program in Behavioral Neuroscience, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02118,Departments of Psychiatry, Neurology, and Anatomy & Neurobiology, Boston University School of Medicine, and US Department of Veterans Affairs Healthcare System, Boston, MA
| | - Stephen V. Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210
| | - Larry J. Seidman
- Clinical and Research Programs in Pediatric Psychopharmacology and Adult ADHD, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114,The Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Department of Psychiatry, Harvard Medical School Department of Psychiatry, Boston, MA, 02215
| |
Collapse
|
164
|
Schosser A, Fuchs K, Scharl T, Schloegelhofer M, Kindler J, Mossaheb N, Kaufmann RM, Leisch F, Kasper S, Sieghart W, Aschauer HN. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians. World J Biol Psychiatry 2010; 11:417-24. [PMID: 20218802 DOI: 10.3109/15622970801935586] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.
Collapse
Affiliation(s)
- Alexandra Schosser
- Division of Biological Psychiatry, Department of Psychiatry & Psychotherapy, Medical University Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Holmboe K, Nemoda Z, Fearon RMP, Csibra G, Sasvari-Szekely M, Johnson MH. Polymorphisms in dopamine system genes are associated with individual differences in attention in infancy. Dev Psychol 2010; 46:404-16. [PMID: 20210499 PMCID: PMC3276838 DOI: 10.1037/a0018180] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine(1)methionine (Val 158 Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3; variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.
Collapse
Affiliation(s)
- Karla Holmboe
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
166
|
Garcia-Garcia M, Clemente I, Domínguez-Borràs J, Escera C. Dopamine transporter regulates the enhancement of novelty processing by a negative emotional context. Neuropsychologia 2010; 48:1483-8. [PMID: 20117122 DOI: 10.1016/j.neuropsychologia.2010.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/20/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
The dopaminergic (DA) system has been recently related the emotional modulation of cognitive processes. Moreover, patients with midbrain DA depletion, such as Parkinson's Disease (PD), have shown diminished reactivity during unpleasant events. Here, we examined the role of DA in the enhancement of novelty processing during negative emotion. Forty healthy volunteers were genotyped for the dopamine transporter (DAT) gene SLC6A3 or DAT1 and performed an auditory-visual distraction paradigm in negative and neutral emotional context conditions. 9R- individuals, associated to a lesser striatal DA display, failed to show increased distraction during negative emotion, but experienced an enhancement of the early phase of the novelty-P3 brain response, associated to the evaluation of novel events, in the negative relative to the neutral context. However, 9R+ individuals (associated to larger striatal DA display) showed larger distraction during negative emotion and larger amplitudes of the novelty-P3, irrespective of the condition. These results suggest a blunted reactivity to novelty during negative emotion in 9R- individuals due to a lesser DA display and stronger activation of the representation of novel events in the 9R+ group, due to a larger DA availability, thus reaching a ceiling effect in the neutral context condition with no further enhancement during negative emotion. The present results might help to understand the functional implications of dopamine in some neuropsychiatric disorders.
Collapse
Affiliation(s)
- Manuel Garcia-Garcia
- Institute for Brain, Cognition and Behavior (IR3C), University of Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
167
|
Garcia-Garcia M, Barceló F, Clemente IC, Escera C. The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. Eur J Neurosci 2010; 31:754-60. [DOI: 10.1111/j.1460-9568.2010.07102.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
168
|
Marazziti D, Catena Dell'osso M, Baroni S, Masala I, Dell'Osso B, Consoli G, Giannaccini G, Betti L, Lucacchini A. Alterations of the dopamine transporter in resting lymphocytes of patients with different psychotic disorders. Psychiatry Res 2010; 175:54-7. [PMID: 19910055 DOI: 10.1016/j.psychres.2009.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/29/2009] [Accepted: 03/16/2009] [Indexed: 12/12/2022]
Abstract
The aim of our study was to investigate and compare the dopamine (DA) transporter (DAT) in resting lymphocytes of 20 psychotic patients and 20 healthy control subjects, by means of both the binding parameters (Bmax and Kd) of 3H-WIN 35,428, and the reuptake parameters (Vmax and Km) of 3H-DA. The results showed that both the Bmax of 3H-WIN 35,428 binding and the Vmax of 3H-DA reuptake of the patients were significantly lower than those of healthy subjects, while the Kd or Km did not show any change. These findings, while indicating a reduced density of the lymphocyte DAT proteins, provide further support of the role of DA in psychoses and suggest that DA alterations may not be limited to brain structures.
Collapse
Affiliation(s)
- Donatella Marazziti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Pisa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Neural response to working memory load varies by dopamine transporter genotype in children. Neuroimage 2010; 53:970-7. [PMID: 20053379 DOI: 10.1016/j.neuroimage.2009.12.104] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/02/2009] [Accepted: 12/23/2009] [Indexed: 11/23/2022] Open
Abstract
Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7-12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal-striatal-parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1xLoad interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei - SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands.
Collapse
|
170
|
Eye-blink rate predicts individual differences in pseudoneglect. Neuropsychologia 2009; 48:1265-8. [PMID: 20036680 DOI: 10.1016/j.neuropsychologia.2009.12.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022]
Abstract
Most healthy individuals display a subtle spatial attentional bias, exhibiting relative inattention for stimuli on one side of the visual field, a phenomenon known as pseudoneglect. Prior work in animals and patients has implicated dopamine in spatial attention asymmetries. The current study therefore examined - in healthy individuals - the relationship between the attentional bias and spontaneous eye-blink rate (EBR), a putative measure of central dopaminergic function. We found that those individuals, who blinked more often under resting conditions, displayed greater preference for the right side of the visual display in a subsequent attention task. This finding may support the idea that the observed attentional bias in healthy individuals reflects asymmetries in dopaminergic circuits, and corroborates previous findings implicating dopamine in spatial attention.
Collapse
|
171
|
Hill M, Anney RJL, Gill M, Hawi Z. Functional analysis of intron 8 and 3' UTR variable number of tandem repeats of SLC6A3: differential activity of intron 8 variants. THE PHARMACOGENOMICS JOURNAL 2009; 10:442-7. [PMID: 20029387 DOI: 10.1038/tpj.2009.66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Association studies have found that variation in the dopamine transporter gene (SLC6A3) is important in the susceptibility to attention-deficit hyperactivity disorder (ADHD) and response to methylphenidate treatment. An understanding of the biological mechanisms underlying these associations is still inconclusive. We assessed the relative activity of variable number tandem repeat (VNTR) alleles of SLC6A3 under basal and stimulated cellular conditions, as well as in the presence of pharmacological blockade of the dopamine transporter using gene-reporter constructs. The intron 8 VNTR 5-repeat allele is more active than the 6-repeat allele. In the presence of forskolin, both alleles were significantly induced. Blockade of the dopamine transporter did not influence activity of either allelic construct. No difference in activity between 9- and 10-repeat alleles of the 3'-untranslated region VNTR was observed under any experimental condition. These data suggest that the intron 8 VNTR is a functional variant with an ADHD susceptibility allele having reduced activity. The lack of enhanced allele-specific activity in response to treatment regimes suggests that differential activity under basal conditions is the primary mode of action.
Collapse
Affiliation(s)
- M Hill
- Department of Psychiatry, Neuropsychiatric Genetics Research Group, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
172
|
Bédard AC, Schulz KP, Cook EH, Fan J, Clerkin SM, Ivanov I, Halperin JM, Newcorn JH. Dopamine transporter gene variation modulates activation of striatum in youth with ADHD. Neuroimage 2009; 53:935-42. [PMID: 20026227 DOI: 10.1016/j.neuroimage.2009.12.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 10/20/2022] Open
Abstract
Polymorphisms in the 3'UTR variable number tandem repeat (VNTR) of exon 15 of the dopamine transporter gene (DAT1) have been linked to attention-deficit hyperactivity disorder (ADHD); moreover, variability in DAT1 3'UTR genotype may contribute to both heterogeneity of the ADHD phenotype and differences in response to stimulant medications. The impact of this VNTR on neuronal function in individuals with ADHD remains unclear despite evidence that the polymorphisms influence dopamine transporter expression. Thus, we used event-related functional magnetic resonance imaging to examine the impact of DAT1 3'UTR genotype on brain activation during response inhibition in unmedicated children and adolescents with ADHD. Twenty-one youth with ADHD who were homozygous for the 10-repeat (10R) allele of the DAT1 3'UTR and 12 youth who were carriers of the 9-repeat (9R) allele were scanned while they performed a Go/No-Go task. Response inhibition was modeled by contrasting activation during correct No-Go trials versus correct Go trials. Participants who were homozygous for the DAT1 3'UTR 10R allele and those who had a single 9R allele did not differ on percent of trials with successful inhibition, which was the primary measure of inhibitory control. Yet, youth with the DAT1 3'UTR 10R/10R genotype had significantly greater inhibitory control-related activation than those with one 9R allele in the left striatum, right dorsal premotor cortex, and bilaterally in the temporoparietal cortical junction. These findings provide preliminary evidence that neural activity related to inhibitory control may differ as a function of DAT1 3'UTR genotype in youth with ADHD.
Collapse
Affiliation(s)
- Anne-Claude Bédard
- Department of Psychiatry, Mount Sinai School of Medicine, Box 1230, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Abstract
Neuroimaging, especially BOLD fMRI, has begun to identify how variability in brain function contributes to individual differences in complex behavioral traits. In parallel, pharmacological fMRI and multimodal PET/fMRI are identifying how variability in molecular signaling pathways influences individual differences in brain function. Against this background, functional genetic polymorphisms are being utilized to understand the origins of variability in signaling pathways as well as to model efficiently how such emergent variability impacts behaviorally relevant brain function. This article provides an overview of a research strategy seeking to integrate these complementary technologies and utilizes existing empirical data to illustrate its effectiveness in illuminating the neurobiology of individual differences in complex behavioral traits. The article also discusses how such efforts can contribute to the identification of predictive markers that interact with environmental factors to precipitate disease and to develop more effective and individually tailored treatment regimes.
Collapse
Affiliation(s)
- Ahmad R Hariri
- Department of Psychology and Neuroscience, Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
174
|
Relationships between angry-impulsive personality traits and genetic polymorphisms of the dopamine transporter. Biol Psychiatry 2009; 66:717-21. [PMID: 19368898 DOI: 10.1016/j.biopsych.2009.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/04/2009] [Accepted: 03/04/2009] [Indexed: 11/22/2022]
Abstract
BACKGROUND The 9-repeat variable number tandem repeat allele of the dopamine transporter has recently been associated with borderline personality disorder (BPD) in depressed patients. METHODS We investigated the association between the 9-repeat allele of the dopamine transporter and angry-impulsive personality traits in a family study with 512 subjects on the molecular genetics of depression and personality. RESULTS Across the whole sample, the 9-repeat allele of the dopamine transporter was associated with angry-impulsive personality traits (p = .002). This association was stronger in subjects with no history of mood disorders or BPD (odds ratio [OR] = 4.85, p = .008) than in subjects with a history of mood disorders (OR = 1.73, p = .033). Angry-impulsive traits were also associated with lifetime mood disorder diagnoses and with BPD. CONCLUSIONS The associations reported in this article suggest that the 9-repeat allele of the dopamine transporter is associated with angry-impulsive personality traits, independent of any link to mood disorder or BPD. This could form the basis of a dopaminergic neurobiological model of angry-impulsive personality traits.
Collapse
|
175
|
Abstract
We utilized a cohort of 828 treatment-seeking self-identified white cigarette smokers (50% female) to rank candidate gene single nucleotide polymorphisms (SNPs) associated with the Fagerström Test for Nicotine Dependence (FTND), a measure of nicotine dependence which assesses quantity of cigarettes smoked and time- and place-dependent characteristics of the respondent's smoking behavior. A total of 1123 SNPs at 55 autosomal candidate genes, nicotinic acetylcholine receptors and genes involved in dopaminergic function, were tested for association to baseline FTND scores adjusted for age, depression, education, sex, and study site. SNP P-values were adjusted for the number of transmission models, the number of SNPs tested per candidate gene, and their intragenic correlation. DRD2, SLC6A3, and NR4A2 SNPs with adjusted P-values <0.10 were considered sufficiently noteworthy to justify further genetic, bioinformatic, and literature analyses. Each independent signal among the top-ranked SNPs accounted for approximately 1% of the FTND variance in this sample. The DRD2 SNP appears to represent a novel association with nicotine dependence. The SLC6A3 SNPs have previously been shown to be associated with SLC6A3 transcription or dopamine transporter density in vitro, in vivo, and ex vivo. Analysis of SLC6A3 and NR4A2 SNPs identified a statistically significant gene-gene interaction (P=0.001), consistent with in vitro evidence that the NR4A2 protein product (NURR1) regulates SLC6A3 transcription. A community cohort of N=175 multiplex ever-smoking pedigrees (N=423 ever smokers) provided nominal evidence for association with the FTND at these top ranked SNPs, uncorrected for multiple comparisons.
Collapse
|
176
|
Haile CN, Kosten TR, Kosten TA. Pharmacogenetic treatments for drug addiction: cocaine, amphetamine and methamphetamine. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2009; 35:161-77. [PMID: 19462300 DOI: 10.1080/00952990902825447] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pharmacogenetics uses genetic variation to predict individual differences in response to medications and holds much promise to improve treatment of addictive disorders. OBJECTIVES To review how genetic variation affects responses to cocaine, amphetamine, and methamphetamine and how this information may guide pharmacotherapy. METHODS We performed a cross-referenced literature search on pharmacogenetics, cocaine, amphetamine, and methamphetamine. RESULTS We describe functional genetic variants for enzymes dopamine-beta-hydroxylase (DbetaH), catechol-O-methyltransferase (COMT), and dopamine transporter (DAT1), dopamine D4 receptor, and brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP; C-1021T) in the DbetaH gene is relevant to paranoia associated with disulfiram pharmacotherapy for cocaine addiction. Individuals with variable number tandem repeats (VNTR) of the SLC6A3 gene 3'-untranslated region polymorphism of DAT1 have altered responses to drugs. The 10/10 repeat respond poorly to methylphenidate pharmacotherapy and the 9/9 DAT1 variant show blunted euphoria and physiological response to amphetamine. COMT, D4 receptor, and BDNF polymorphisms are linked to methamphetamine abuse and psychosis. CONCLUSIONS Disulfiram and methylphenidate pharmacotherapies for cocaine addiction are optimized by considering polymorphisms affecting DbetaH and DAT1 respectively. Altered subjective effects for amphetamine in DAT1 VNTR variants suggest a 'protected' phenotype. SCIENTIFIC SIGNIFICANCE Pharmacogenetic-based treatments for psychostimulant addiction are critical for successful treatment.
Collapse
Affiliation(s)
- Colin N Haile
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, and Michael E DeBakey VA Medical Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
177
|
Epistasis between the DAT 3' UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proc Natl Acad Sci U S A 2009; 106:13600-5. [PMID: 19666577 DOI: 10.1073/pnas.0903007106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dopamine has a crucial role in the modulation of neurocognitive function, and synaptic dopamine activity is normally regulated by the dopamine transporter (DAT) and catechol-O-methyltransferase (COMT). Perturbed dopamine function is a key pathophysiological feature of schizophrenia. Our objectives were (i) to examine epistasis between the DAT 3' UTR variable number of tandem repeats (VNTR) and COMT Val158Met polymorphisms on brain activation during executive function, and (ii) to then determine the extent to which such interaction is altered in schizophrenia. Regional brain response was measured by using blood-oxygen-level-dependent fMRI during an overt verbal fluency task in 85 subjects (44 healthy volunteers and 41 patients with DSM-IV schizophrenia), and inferences were estimated by using an ANOVA in SPM5. There was a significant COMT x DAT nonadditive interaction effect on activation in the left supramarginal gyrus, irrespective of diagnostic group (Z-score = 4.3; family-wise error (FWE) p = 0.03), and in healthy volunteers alone (Z-score = 4.7; FWEp = 0.006). In this region, relatively increased activation was detected only when COMT Met-158/Met-158 subjects also carried the 9-repeat DAT allele, or when, reversely, Val-158/Val-158 subjects carried the 10/10-repeat genotype. Also, there was a significant diagnosis x COMT x DAT nonadditive interaction in the right orbital gyrus (Z-score = 4.3; FWEp = 0.04), where, only within patients, greater activation was only associated with a 9-repeat allele and Val-158 conjunction, and with a 10-repeat and Met-158 conjunction (Z-score = 4.3; FWE p = 0.04). These data demonstrate that COMT and DAT genes interact nonadditively to modulate cortical function during executive processing, and also, that this effect is significantly altered in schizophrenia, which may reflect abnormal dopamine function in the disorder.
Collapse
|
178
|
Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 2009; 126:51-90. [PMID: 19506906 DOI: 10.1007/s00439-009-0694-x] [Citation(s) in RCA: 688] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Affiliation(s)
- Ian R Gizer
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Room 5015 Genetic Medicine Building CB 7264, Chapel Hill, NC 27599-7264, USA.
| | | | | |
Collapse
|
179
|
Yacubian J, Büchel C. The genetic basis of individual differences in reward processing and the link to addictive behavior and social cognition. Neuroscience 2009; 164:55-71. [PMID: 19446009 DOI: 10.1016/j.neuroscience.2009.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 04/20/2009] [Accepted: 05/06/2009] [Indexed: 11/17/2022]
Abstract
Dopaminergic neurotransmission is widely recognized to be critical to the neurobiology of reward, motivation and addiction. Interestingly, social interactions and related behavior also activate the same neuronal system. Consequently, genetic variations of dopamine neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. This review focuses on advances made to date in an effort to link genetic individual variations and reward processing as a possible basis for addictive behaviors.
Collapse
Affiliation(s)
- J Yacubian
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
180
|
van der Zwaluw CS, Engels RCME, Buitelaar J, Verkes RJ, Franke B, Scholte RHJ. Polymorphisms in the dopamine transporter gene (SLC6A3/DAT1) and alcohol dependence in humans: a systematic review. Pharmacogenomics 2009; 10:853-66. [DOI: 10.2217/pgs.09.24] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dopamine neurotransmission has been a key player in attempts to identify genetic factors involved in alcohol dependence. The dopamine transporter terminates dopaminergic neurotransmission, making the gene encoding the transporter (SLC6A3/DAT1) an attractive candidate in clinical studies on alcohol dependence. We conducted a systematic review of 18 studies examining associations between polymorphisms in DAT1 and alcohol dependence. The DAT1 variable number tandem repeat, the most frequent studied polymorphism in DAT1, did not show a direct association with alcohol dependence in general. Several, but not all, studies found that the DAT1 variable number tandem repeat (9-repeat allele) was associated with alcohol-withdrawal symptoms, such as seizures and delirium tremens. We discuss shortcomings, such as lack of power and disregarding moderating variables, as well as future challenges of gene association studies.
Collapse
Affiliation(s)
- Carmen S van der Zwaluw
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Rutger CME Engels
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Jan Buitelaar
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Robbert J Verkes
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Barbara Franke
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| | - Ron HJ Scholte
- Behavioural Science Institute, Radboud University Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
181
|
Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans. J Neurosci 2009; 29:1224-34. [PMID: 19176830 DOI: 10.1523/jneurosci.4858-08.2009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dopamine modulation of neuronal activity during memory tasks identifies a nonlinear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D(2) receptors (encoded by DRD(2)) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D(2) proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD(2) polymorphism (rs1076560) causing reduced presynaptic D(2) receptor expression and the DAT 3'-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing blood oxygenation level-dependent (BOLD)-functional magnetic resonance imaging (MRI) during memory tasks and structural MRI. Results indicated a significant DRD(2)/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD(2) allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a nonlinear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D(2) knock-out animals (D2R(-/-)) indicate that DAT and D(2) proteins interact in vivo. Together, our results demonstrate that the interaction between genetic variants in DRD(2) and DAT critically modulates the nonlinear relationship between dopamine and neuronal activity during memory processing.
Collapse
|
182
|
Congdon E, Constable RT, Lesch KP, Canli T. Influence of SLC6A3 and COMT variation on neural activation during response inhibition. Biol Psychol 2009; 81:144-52. [PMID: 19482231 DOI: 10.1016/j.biopsycho.2009.03.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 11/26/2022]
Abstract
There is evidence concerning the neural and genetic correlates of inhibitory control, but there have been limited attempts to combine this information. This study tested the hypothesis that two dopaminergic polymorphisms, SLC6A3 and COMT, influence neural activation during response inhibition. Healthy adults were genotyped for these polymorphisms and performed a measure of response inhibition while undergoing functional magnetic resonance imaging (fMRI). Results support the role of key frontostriatal regions underlying response inhibition. Furthermore, results support a significant influence of SLC6A3 and COMT variants on neural activity during inhibition, with greater activation during inhibition in carriers of the SLC6A3 9-allele or the COMT met-allele as compared to carriers of the SLC6A3 10/10 genotype or the COMT val/val genotype. These results add to a growing literature suggesting that inhibitory control is sensitive to variation in dopamine function, and suggest that this variation may be detectable at the level of individuals' genotypes.
Collapse
Affiliation(s)
- Eliza Congdon
- Department of Psychology and UCLA Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095-1563, USA.
| | | | | | | |
Collapse
|
183
|
Reduced sensitivity to the locomotor-stimulant effects of cocaine is associated with increased sensitivity to its discriminative stimulus properties. Behav Pharmacol 2009; 20:67-77. [PMID: 19125118 DOI: 10.1097/fbp.0b013e3283242fdd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Outbred Long-Evans rats exhibit wide variation in their locomotor response to cocaine. Here, we investigated the relationship between these individual differences and interoceptive effects of cocaine in low cocaine responder (LCR) and high cocaine responder (HCR) phenotypes. Rats were trained to discriminate cocaine (10.0 mg/kg, intraperitoneally) from saline by repeated pairings of injections with one of two response levers. In subsequent tests for stimulus generalization to other cocaine doses (1.25-15.0 mg/kg), LCRs exhibited partial-to-full generalization at 1.85 and 2.5 mg/kg cocaine, respectively, whereas HCRs did not. When the selective 5-HT reuptake inhibitor fluoxetine (5.0 mg/kg) was coadministered with saline or different cocaine doses, we observed similar upward shifts in dose-response in both phenotypes. In contrast, coadministration of the 5-HT2A/2C agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 0.3 mg/kg) led to partial substitution of DOI for cocaine and enhancement of the stimulus properties of 1.25 mg/kg cocaine in LCRs only. Finally, a retest of cocaine-induced locomotion after discrimination testing revealed marked behavioral sensitization in LCRs and modest changes in behavior in HCRs. Taken together, these results suggest that initial sensitivity to the locomotor-stimulant effects of cocaine is inversely related to its interoceptive properties and that differences in 5-HT systems may contribute to the phenotypic differences observed.
Collapse
|
184
|
Xu X, Mill J, Sun B, Chen CK, Huang YS, Wu YY, Asherson P. Association study of promoter polymorphisms at the dopamine transporter gene in Attention Deficit Hyperactivity Disorder. BMC Psychiatry 2009; 9:3. [PMID: 19196467 PMCID: PMC2644291 DOI: 10.1186/1471-244x-9-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 02/05/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a complex neurobehavioral disorder. The dopamine transporter gene (DAT1/SLC6A3) has been considered a good candidate for ADHD. Most association studies with ADHD have investigated the 40-base-pair variable number of tandem repeat (VNTR) polymorphism in the 3'-untranslated region of DAT1. Only few studies have reported association between promoter polymorphisms of the gene and ADHD. METHODS To investigate the association between the polymorphisms -67A/T (rs2975226) and -839C/T (rs2652511) in promoter region of DAT1 in ADHD, two samples of ADHD patients from the UK (n = 197) and Taiwan (n = 212) were genotyped, and analysed using within-family transmission disequilibrium test (TDT). RESULTS A significant association was found between the T allele of promoter polymorphism -67A/T and ADHD in the Taiwanese population (P = 0.001). There was also evidence of preferential transmission of the T allele of -67A/T polymorphism in combined samples from the UK and Taiwan (P = 0.003). No association was detected between the -839C/T polymorphism and ADHD in either of the two populations. CONCLUSION The finding suggests that genetic variation in the promoter region of DAT1 may be a risk factor in the development of ADHD.
Collapse
Affiliation(s)
- Xiaohui Xu
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK.
| | - Jonathan Mill
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK
| | - Bo Sun
- School of Medicine, King's College London, UK
| | - Chih-Ken Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taiwan,Chang Gung University School of Medicine, Taiwan
| | - Yu-Shu Huang
- Chang Gung University School of Medicine, Taiwan,Department of Child Psychiatry, Chang Gung Children's Hospital, Taiwan
| | - Yu-Yu Wu
- Chang Gung University School of Medicine, Taiwan,Department of Child Psychiatry, Chang Gung Children's Hospital, Taiwan
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, UK
| |
Collapse
|
185
|
Franklin TR, Lohoff FW, Wang Z, Sciortino N, Harper D, Li Y, Jens W, Cruz J, Kampman K, Ehrman R, Berrettini W, Detre JA, O'Brien CP, Childress AR. DAT genotype modulates brain and behavioral responses elicited by cigarette cues. Neuropsychopharmacology 2009; 34:717-28. [PMID: 18704100 PMCID: PMC3348625 DOI: 10.1038/npp.2008.124] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously demonstrated differential activation of the mesocorticolimbic reward circuitry in response to cigarette cues independent of withdrawal. Despite robust effects, we noted considerable individual variability in brain and subjective responses. As dopamine (DA) is critical for reward and its predictive signals, genetically driven variation in DA transmission may account for the observed differences. Evidence suggests that a variable number of tandem repeats (VNTRs) polymorphism in the DA transporter (DAT) SLC6A3 gene may influence DA transport. Brain and behavioral responses may be enhanced in probands carrying the 9-repeat allele. To test this hypothesis, perfusion fMR images were acquired during cue exposure in 19 smokers genotyped for the 40 bp VNTR polymorphism in the SLC6A3 gene. Contrasts between groups revealed that 9-repeat (9-repeats) had a greater response to smoking (vs nonsmoking) cues than smokers homozygous for the 10-repeat allele (10/10-repeats) bilaterally in the interconnected ventral striatal/pallidal/orbitofrontal cortex regions (VS/VP/OFC). Activity was increased in 9-repeats and decreased in 10/10-repeats in the VS/VP/OFC (p<0.001 for all analyses). Brain activity and craving was strongly correlated in 10/10-repeats in these regions and others (anterior cingulate, parahippocampal gyrus, and insula; r(2)=0.79-0.86, p<0.001 in all regions). Alternatively, there were no significant correlations between brain and behavior in 9-repeats. There were no differences in cigarette dependence, demographics, or resting baseline neural activity between groups. These results provide evidence that genetic variation in the DAT gene contributes to the neural and behavioral responses elicited by smoking cues.
Collapse
Affiliation(s)
- Teresa R Franklin
- Department of Psychiatry, Addiction Treatment Research Center, University of Pennsylvania and Philadelphia VA Medical Center, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Azzato EM, Morton LM, Bergen AW, Wang SS, Chatterjee N, Kvale P, Yeager M, Hayes RB, Chanock SJ, Caporaso NE. SLC6A3 and body mass index in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. BMC MEDICAL GENETICS 2009; 10:9. [PMID: 19183461 PMCID: PMC2640369 DOI: 10.1186/1471-2350-10-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 01/30/2009] [Indexed: 11/29/2022]
Abstract
Background To investigate the contribution of the dopamine transporter to dopaminergic reward-related behaviors and anthropometry, we evaluated associations between polymorphisms at the dopamine transporter gene(SLC6A3) and body mass index (BMI), among participants in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Methods Four polymorphisms (rs6350, rs6413429, rs6347 and the 3' variable number of tandem repeat (3' VNTR) polymorphism) at the SLC6A3 gene were genotyped in 2,364 participants selected from the screening arm of PLCO randomly within strata of sex, age and smoking history. Height and weight at ages 20 and 50 years and baseline were assessed by questionnaire. BMI was calculated and categorized as underweight, normal, overweight and obese (<18.5, 18.5–24.9, 25.0–29.9, or ≥ 30 kg/m2, respectively). Odds ratios (ORs) and 95% confidence intervals (CIs) of SLC6A3 genotypes and haplotypes were computed using conditional logistic regression. Results Compared with individuals having a normal BMI, obese individuals at the time of the baseline study questionnaire were less likely to possess the 3' VNTR variant allele with 9 copies of the repeated sequence in a dose-dependent model (** is referent; OR*9 = 0.80, OR99 = 0.47, ptrend = 0.005). Compared with individuals having a normal BMI at age 50, overweight individuals (A-C-G-* is referent; ORA-C-G-9 = 0.80, 95% CI 0.65–0.99, p = 0.04) and obese individuals (A-C-G-* is referent; ORA-C-G-9 = 0.70, 95% CI 0.49–0.99, p = 0.04) were less likely to possess the haplotype with the 3'variant allele (A-C-G-9). Conclusion Our results support a role of genetic variation at the dopamine transporter gene, SLC6A3, as a modifier of BMI.
Collapse
Affiliation(s)
- Elizabeth M Azzato
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Rockville, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Forbes EE, Brown SM, Kimak M, Ferrell RE, Manuck SB, Hariri AR. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 2009; 14:60-70. [PMID: 17893706 PMCID: PMC2668513 DOI: 10.1038/sj.mp.4002086] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Individual differences in traits such as impulsivity involve high reward sensitivity and are associated with risk for substance use disorders. The ventral striatum (VS) has been widely implicated in reward processing, and individual differences in its function are linked to these disorders. Dopamine (DA) plays a critical role in reward processing and is a potent neuromodulator of VS reactivity. Moreover, altered DA signaling has been associated with normal and pathological reward-related behaviors. Functional polymorphisms in DA-related genes represent an important source of variability in DA function that may subsequently impact VS reactivity and associated reward-related behaviors. Using an imaging genetics approach, we examined the modulatory effects of common, putatively functional DA-related polymorphisms on reward-related VS reactivity associated with self-reported impulsivity. Genetic variants associated with relatively increased striatal DA release (DRD2 -141C deletion) and availability (DAT1 9-repeat), as well as diminished inhibitory postsynaptic DA effects (DRD2 -141C deletion and DRD4 7-repeat), predicted 9-12% of the interindividual variability in reward-related VS reactivity. In contrast, genetic variation directly affecting DA signaling only in the prefrontal cortex (COMT Val158Met) was not associated with variability in VS reactivity. Our results highlight an important role for genetic polymorphisms affecting striatal DA neurotransmission in mediating interindividual differences in reward-related VS reactivity. They further suggest that altered VS reactivity may represent a key neurobiological pathway through which these polymorphisms contribute to variability in behavioral impulsivity and related risk for substance use disorders.
Collapse
Affiliation(s)
- EE Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - SM Brown
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Kimak
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - RE Ferrell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - SB Manuck
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - AR Hariri
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
188
|
Variation in dopamine genes influences responsivity of the human reward system. Proc Natl Acad Sci U S A 2008; 106:617-22. [PMID: 19104049 DOI: 10.1073/pnas.0805517106] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, dopamine neurotransmission is influenced by functional polymorphisms in the dopamine transporter (DAT1) and catechol-O-methyltransferase (COMT) genes. Here, we used event-related functional magnetic resonance imaging to directly investigate the neurofunctional effects of the Val(158)Met COMT and variable number of tandem repeat DAT1 polymorphisms on distinct components of the reward system in humans. The results revealed a main effect of COMT genotype in the ventral striatum and lateral prefrontal cortex during reward anticipation (P < 0.001, uncorrected) and in the orbitofrontal cortex at the time of reward delivery (P < 0.005), met/met individuals exhibiting the highest activation. The main effect of DAT1 genotype was seen in robust blood-oxygen-level-dependent response differences in the caudate nucleus and ventral striatum during reward anticipation (P < 0.001) and in the lateral prefrontal cortex and midbrain at the time of reward delivery, with carriers of the DAT1 9-repeat allele showing the highest activity. Moreover, an interaction between the COMT and DAT1 genes was found in the ventral striatum and lateral prefrontal cortex during reward anticipation and in the lateral prefrontal and orbitofrontal cortices as well as in the midbrain at the time of reward delivery, with carriers of the DAT1 9-repeat allele and COMT met/met allele exhibiting the highest activation, presumably reflecting functional change consequent to higher synaptic dopamine availability. Taken together, these results indicate that genetically influenced variations in dopamine transmission modulate the response of brain regions involved in anticipation and reception of rewards and suggest that these responses may contribute to individual differences in reward-seeking behavior and in predisposition to neuropsychiatric disorders.
Collapse
|
189
|
Rommelse NNJ, Altink ME, Arias-Vásquez A, Buschgens CJM, Fliers E, Faraone SV, Buitelaar JK, Sergeant JA, Franke B, Oosterlaan J. A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:1536-46. [PMID: 18729135 DOI: 10.1002/ajmg.b.30848] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Meta-analyses indicate that the gene coding for the dopamine transporter (DAT1 or SLC6A3) is associated with an increased risk for ADHD. The mechanisms of this gene for ADHD are unclear. We systematically reviewed studies linking the VNTR in the 3' UTR of the DAT1 to neurophysiological and neuropsychological measures. In addition, a broad set of executive/cognitive and motor tests was administered to 350 children (5-11 years) and adolescents (11-19 years) with ADHD and 195 non-affected siblings. Two VNTRs (in intron 8 and the 3' UTR) and four SNPs (two 5' and two 3') in DAT1 were genotyped. The effect of the polymorphisms on neuropsychological functioning was studied. The review indicated that the majority of studies did not find a relation between DAT1 and neurophysiological or neuropsychological measures. In our sample, several of the polymorphisms of DAT1 were associated with ADHD and ADHD was associated with impaired neuropsychological functioning. However, none of the DAT1 polymorphisms was convincingly associated with neuropsychological dysfunctioning. This suggests that the effect of DAT1 on ADHD was not mediated by neuropsychological performance. However, since DAT1 is mainly expressed in the striatum and not the prefrontal cortex, it may influence striatum-related functions (such as delay aversion) more heavily than prefrontal related functions (such as executive functions). Associations of DAT1 with ADHD were only found in adolescents, which may suggest that DAT1 mainly exerts its effect in adolescence, and/or that having a more persistent form of ADHD may mark a more severe or homogeneous genetic form of the disorder.
Collapse
Affiliation(s)
- Nanda N J Rommelse
- Department of Clinical Neuropsychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
Impulsivity is a complex and multidimensional trait that is of interest to both personality psychologists and to clinicians. For investigators seeking the biological basis of personality traits, the use of neuroimaging techniques such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) revolutionized personality psychology in less than a decade. Now, another revolution is under way, and it originates from molecular biology. Specifically, new findings in molecular genetics, the detailed mapping and the study of the function of genes, have shown that individual differences in personality traits can be related to individual differences within specific genes. In this article, we will review the current state of the field with respect to the neural and genetic basis of trait impulsivity.
Collapse
Affiliation(s)
| | - Turhan Canli
- Department of Psychology, Stony Brook University
- Graduate Program in Genetics, Stony Brook University
| |
Collapse
|
191
|
Abstract
The search for genes influencing the development of attention-deficit/hyperactivity disorder (ADHD) has identified a number of associated genes within, or influencing, the dopamine neurotransmitter system. The focus on this system as the site of genetic susceptibility was prompted by information from animal models, particularly transgenics, as well as the mechanism of action of the psychostimulants, the primary pharmacological treatment for ADHD. Thus far, genes in the dopamine system reported as associated with ADHD, by at least one study, include the dopamine transporter, the dopamine receptors D1, D4 and D5, as well as genes encoding proteins that control the synthesis, degradation and release of dopamine. For some of these genes, replication across studies provides evidence supporting the relationship; however, for others, the data is far from conclusive and further work is needed. The quick progress in the genetic findings was initially surprising given the complexity of the phenotype and the relatively small sample sizes used in the initial studies. However, the high heritability of ADHD, as indicated by twin studies, may have contributed to the success. The genes studied so far are estimated to contribute only weakly or moderately to the risk for the development of ADHD. This may be because these genes, in fact, make only a small contribution. However, few studies have comprehensively examined the genetic information across the gene. This will lead to underestimates of risk if the polymorphism(s) tested is/are not the functional change(s) actually contributing to the genetic susceptibility and if linkage disequilibrium between tested marker(s) and causal variant(s) is weak, or if there is substantial allelic heterogeneity. While the studies thus far are very promising, virtually nothing is known on precisely how genetic variation in these genes actually contributes to risk; thus, functional studies are now required.
Collapse
Affiliation(s)
- Cathy L Barr
- Room MP14-302, Genetics & Development Division, The Toronto Western Hospital, 399 Bathurst St, Toronto, ON, Canada M5T 2S8
| | - Virginia L Misener
- Genetics and Development Division, Toronto Western Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
192
|
Filonzi L, Magnani C, Lavezzi AM, Rindi G, Parmigiani S, Bevilacqua G, Matturri L, Marzano FN. Association of dopamine transporter and monoamine oxidase molecular polymorphisms with sudden infant death syndrome and stillbirth: new insights into the serotonin hypothesis. Neurogenetics 2008; 10:65-72. [PMID: 18810510 DOI: 10.1007/s10048-008-0149-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/02/2008] [Indexed: 11/26/2022]
Abstract
Recent findings demonstrated the role of neurotransmitters in the aetiopathogenesis of sudden unexpected deaths in infancy. Although genes involved in serotonin metabolism have been proposed as risk factors for sudden infant death syndrome (SIDS), the contribution of additional neurotransmitters and genes different from the serotonin transporter (SLC6A4, 5-HTT) has not been investigated. Considering the common metabolic pathway and synergism between dopamine and serotonin, the role of dopamine transporter (SLC6A3, DAT) and monoamine oxidase A (MAOA) genes in SIDS and stillbirth (sudden intrauterine unexplained death, SIUD) was investigated. Genotypes and allelic frequencies of DAT and MAOA were determined in 20 SIDS and five stillbirth cases and compared with 150 controls. No association was found between DAT polymorphisms and SIDS either at genotype (P = 0.64) or allelic (P = 0.86) level; however, a highly significant association was found between MAOA genotypes (P = 0.047) and alleles (P = 0.002) regulating different expression patterns (3R/3R vs 3.5R/3.5R + 4R/4R) in SIDS + SIUD and controls. Analysis of combined 5-HTTLPR (serotonin transporter linked polymorphic region)/MAOA genotypes revealed that frequency of L/L-4R/4R genotype combination was eightfold higher in SIDS + SIUD than in controls (P < 0.001). Findings are discussed considering the metabolic association among DAT, 5-HTT and MAOA with special emphasis on the linked action of 5-HTT/MAOA in regulating serotonin metabolism of SIDS and SIUD infants.
Collapse
Affiliation(s)
- Laura Filonzi
- Department of Evolutionary and Functional Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Imaging genetics in ADHD: a focus on cognitive control. Neurosci Biobehav Rev 2008; 33:674-89. [PMID: 18789356 DOI: 10.1016/j.neubiorev.2008.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/18/2008] [Accepted: 08/17/2008] [Indexed: 01/17/2023]
Abstract
This paper evaluates neuroimaging of cognitive control as an endophenotype for investigating the role of dopamine genes in ADHD. First, this paper reviews both data-driven and theory-driven approaches from genetics and neuroimaging. Several viable candidate genes have been implicated in ADHD, including the dopamine DRD4 and DAT1 genes. Neuroimaging studies have resulted in a good understanding of the neurobiological basis of deficits in cognitive control in this disorder. Second, this paper discusses imaging genetics in ADHD. Papers to date have taken one of two approaches: whereas early papers investigated the effects of one or two candidate genes on many brain areas, later papers constrained regions of interest by gene expression patterns. These papers have largely focused on cognitive control and the dopamine circuits involved in this ability. The results show that neuroimaging of cognitive control is useful as an endophenotype in investigating dopamine gene effects in ADHD. Other avenues of investigation are suggested by a combination of data- and theory-driven approaches in both genetics and neuroimaging.
Collapse
|
194
|
Common genetic variations in human brain-specific tryptophan hydroxylase-2 and response to antidepressant treatment. Pharmacogenet Genomics 2008; 18:495-506. [PMID: 18496129 DOI: 10.1097/fpc.0b013e3282fb02cb] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Genetic variability within the serotoninergic system may predict the response to antidepressant drugs. Several polymorphisms in the gene coding for the brain-specific tryptophan hydroxylase (TPH2) have been associated with susceptibility to psychiatric diseases. In this study, we analyzed the correlation between TPH2 polymorphisms and response to antidepressant drugs. METHODS The study included 182 patients who received drug treatment for major depression. To assess the variability in the TPH2 gene, four single nucleotide polymorphisms (SNPs) tagging the common TPH2 haplotypes and six SNPs medically relevant according to data from other studies were analyzed in a multiplex single base primer extension reaction. RESULTS Two SNPs, rs10897346 and rs1487278, were significantly associated with response to therapy (P=0.003 and 0.007). The rs10897346 variant showed the highest predictive values with carriers of null C alleles showing a 2.6-fold increased risk (95% confidence interval 1.4-4.8) for nonresponse compared with the others. The effect was found in all major types of antidepressant medications administered in this study and was statistically significant in the subgroup on selective serotonin reuptake inhibitors. Multiple logistic regression analyses confirmed the rs10879346 polymorphism as an independent predictor of the antidepressant response (odds ratio: 3.86; 1.75-8.55, P=0.0008). The therapeutically relevant variant rs10897346 is completely linked with the functional Pro312Pro polymorphism, which is known to affect TPH2 expression and may influence serotonin synthesis in the brain. CONCLUSION The polymorphisms rs10897346 and Pro312Pro in the TPH2 gene might play an important role for TPH2 expression and antidepressant drug response.
Collapse
|
195
|
Abstract
Brain dopamine has often been implicated in impulsive and/or inflexible behaviors, which may reflect failures of motivational and/or cognitive control. However, the precise role of dopamine in such failures of behavioral control is not well understood, not least because they implicate paradoxical changes in distinct dopamine systems that innervate dissociable neural circuits. In addition, there are large individual differences in the response to dopaminergic drugs with some individuals benefiting from and others being impaired by the same drug. This complicates progress in the understanding of dopamine's role in behavioral control processes, but also provides a major problem for neuropsychiatry, where some individuals are disproportionately vulnerable to the adverse effects of dopamine-enhancing drugs on motivation and cognition. Recent progress is reviewed from cognitive and behavioral neuroscience research on motivation and cognitive control, which begins to elucidate the factors that mediate the complex roles of mesolimbic, mesocortical, and nigrostriatal dopamine in behavioral control. NEUROSCIENTIST 14(4):381–395, 2008. DOI: 10.1177/1073858408317009
Collapse
Affiliation(s)
- Roshan Cools
- F. C. Donders Centre for Cognitive Neuroimaging, Radboud
University Nijmegen, The Netherlands
| |
Collapse
|
196
|
Need AC, Ahmadi KR, Spector TD, Goldstein DB. Obesity is Associated with Genetic Variants That Alter Dopamine Availability. Ann Hum Genet 2008; 70:293-303. [PMID: 16674552 DOI: 10.1111/j.1529-8817.2005.00228.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.
Collapse
Affiliation(s)
- A C Need
- Department of Biology, University College London, The Darwin Building, Gower Street, London WC1E 6BT
| | | | | | | |
Collapse
|
197
|
Flierl MA, Rittirsch D, Huber-Lang M, Sarma JV, Ward PA. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora's box? Mol Med 2008; 14:195-204. [PMID: 18079995 DOI: 10.2119/2007-00105.flierl] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 12/03/2007] [Indexed: 01/11/2023] Open
Abstract
It is well established that catecholamines (CAs), which regulate immune and inflammatory responses, derive from the adrenal medulla and from presynaptic neurons. Recent studies reveal that T cells also can synthesize and release catecholamines which then can regulate T cell function. We have shown recently that macrophages and neutrophils, when stimulated, can generate and release catecholamines de novo which, then, in an autocrine/paracrine manner, regulate mediator release from these phagocytes via engagement of adrenergic receptors. Moreover, regulation of catecholamine-generating enzymes as well as degrading enzymes clearly alter the inflammatory response of phagocytes, such as the release of proinflammatory mediators. Accordingly, it appears that phagocytic cells and lymphocytes may represent a major, newly recognized source of catecholamines that regulate inflammatory responses.
Collapse
Affiliation(s)
- Michael A Flierl
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | |
Collapse
|
198
|
Kooij JS, Boonstra AM, Vermeulen SH, Heister AG, Burger H, Buitelaar JK, Franke B. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 2008; 147B:201-8. [PMID: 17955457 DOI: 10.1002/ajmg.b.30586] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this pharmacogenetic study in adults with ADHD (n = 42), a stratified analysis was performed of the association between response to methylphenidate (MPH), assessed under double-blind conditions, and polymorphisms in the genes encoding the dopamine transporter, SLC6A3 (DAT1), the norepinephrine transporter, SLC6A2 (NET), and the dopamine receptor D4, DRD4. The VNTR polymorphism in the 3' untranslated region of SLC6A3 was significantly associated with an increased likelihood of a response to MPH treatment (OR 3.8; 95% CI 1.0-15.2, and OR 5.4; 95% CI 1.4-21.9, depending on the definition of response) in carriers of a single 10-repeat allele compared to patients with the 10/10 genotype. The polymorphisms in DRD4 and the SLC6A2 were not associated with treatment response. This study supports a role of the SLC6A3 genotype in determining the response to MPH in the treatment of adults with ADHD.
Collapse
Affiliation(s)
- J Sandra Kooij
- PsyQ, Psycho-Medical Programs, The Hague, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
199
|
Interaction of dopamine transporter genotype with prenatal smoke exposure on ADHD symptoms. J Pediatr 2008; 152:263-9. [PMID: 18206700 DOI: 10.1016/j.jpeds.2007.07.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 05/14/2007] [Accepted: 07/02/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To demonstrate that children homozygous for the 10-repeat allele of the common dopamine transporter (DAT1) polymorphism who were exposed to maternal prenatal smoke exhibited significantly higher hyperactivity-impulsivity than children without these environmental or genetic risks. STUDY DESIGN We performed a prospective longitudinal study from birth into early adulthood monitoring the long-term outcome of early risk factors. Maternal prenatal smoking was determined during a standardized interview with the mother when the child was 3 months old. At age 15 years, 305 adolescents participated in genotyping for the DAT1 40 base pair variable number of tandem repeats polymorphism and assessment of inattention, hyperactivity-impulsivity, and oppositional defiant/conduct disorder symptoms with the Kiddie-Sads-Present and Lifetime Version. RESULTS There was no bivariate association between DAT1 genotype, prenatal smoke exposure and symptoms of attention deficit hyperactivity disorder. However, a significant interaction between DAT1 genotype and prenatal smoke exposure emerged (P = .012), indicating that males with prenatal smoke exposure who were homozygous for the DAT1 10r allele had higher hyperactivity-impulsivity than males from all other groups. In females, no significant main effects of DAT1 genotype or prenatal smoke exposure or interaction effects on any symptoms were evident (all P > .25). CONCLUSIONS This study provides further evidence for the multifactorial nature of attention deficit hyperactivity disorder and the importance of studying both genetic and environmental factors and their interaction.
Collapse
|
200
|
Kuntsi J, McLoughlin G, Asherson P. Attention deficit hyperactivity disorder. Neuromolecular Med 2008; 8:461-84. [PMID: 17028370 DOI: 10.1385/nmm:8:4:461] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 11/30/1999] [Accepted: 02/06/2006] [Indexed: 11/11/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a behavioral diagnosis based on the presence of developmentally inappropriate levels of impulsivity, overactivity, and inattentiveness. It is a familial condition with a complex pattern of inheritance. Variation of several genes involved in the regulation of dopamine, norepinephrine, and serotonin neurotransmission is associated with ADHD. We highlight the two most prominent findings with the dopamine D4 receptor (DRD4) gene and the dopamine transporter (DAT1) gene, and their implications for the understanding of the cellular and neurobiological basis for ADHD. Cognitive and functional studies using electrophysiology and brain imaging frequently indicate altered processing in ADHD during performance on cognitive tasks hypothesized to measure a "core" deficit, such as response inhibition. Yet, children with ADHD appear to suffer from a more general deficit, including impairment in attentional alerting, orienting, response preparation, and control. Reward processes are also altered and, further, a strong association emerges with intraindividual variability, with several causal hypotheses being proposed. Task performance correlates with underactivation of, especially, frontostriatal areas of the brain, but an extended network of brain regions is also implicated. Electroencephalography studies indicate abnormalities in ADHD in relation to slow-wave activity, linked to underarousal. These advances in the areas of genetics, cognitive function, neurophysiology, and neuroanatomy of ADHD give important leads for interdisciplinary research that aims to delineate the causal pathways. Such research is only at its beginning, but is illustrated by recent findings of an association between DAT1 and increased response variability in ADHD.
Collapse
Affiliation(s)
- Jonna Kuntsi
- MRC Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK.
| | | | | |
Collapse
|