151
|
Zhang W, Hu Y, Newman EA, Mulholland MW. Serum-free culture of rat postnatal neurons derived from the dorsal motor nucleus of the vagus. J Neurosci Methods 2005; 150:1-7. [PMID: 16076495 DOI: 10.1016/j.jneumeth.2005.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Revised: 02/24/2005] [Accepted: 03/01/2005] [Indexed: 11/16/2022]
Abstract
Previous studies on dorsal motor nucleus of the vagus (DMNV) neurons have mainly used in vivo animal models and in vitro brainstem slices. Primary culture of postnatal DMNV neurons in defined serum free medium has not been reported. We report a method for culture of postnatal rat DMNV neurons using serum free medium. Cultured DMNV neurons contain both Hu positive precursor cells and mature cells staining positively for microtubule associated protein 2 (MAP2) and choline acetyltransferase. Exposure of cultured DMNV neurons to glutamate (10(-7) to 10(-3)M) induced an increase in intracellular calcium concentration ([Ca(2+)](i)) in a dose-dependent manner, indicating the functional presence of glutamate receptors. Voltage-dependent calcium currents were present in cultured DMNV neurons. Active cell proliferation was demonstrated by BrdU incorporation. Upon removal of beta FGF, the percentage of MAP2 positive mature neurons was significantly increased from 36+/-3 to 73+/-3%. Our study demonstrates that postnatal rat DMNV neurons cultured in serum free medium retain morphological and physiological characteristics of DMNV neurons in situ.
Collapse
Affiliation(s)
- Weizhen Zhang
- Michigan Gastrointestinal Peptide Center, Department of Surgery, University of Michigan, 2101 Taubman, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
152
|
Abstract
Vagal and spinal afferent innervation of the portal hepatic area has not been studied as thoroughly as the innervation of other important organs. It is generally agreed that unlike noradrenergic sympathetic efferent nerve fibers, sensory nerve fibers of either vagal or dorsal root/spinal origin do not directly innervate hepatocytes, but are restricted to the stroma surrounding triades of hepatic vasculature and bile ducts, and to extrahepatic portions of the portal vein and bile ducts. For vagal afferent innervation, retrograde and anterograde tracing studies in the rat have clearly shown that only a minor portion of the common hepatic branch innervates the liver area, while the major portion descends in the gastroduodenal branch toward duodenum, pancreas, and pylorus. Hepatic paraganglia, bile ducts, and portal vein receive the densest vagal afferent innervation. Calretinin may be a relatively specific marker for vagal afferent innervation of the portal-hepatic space. Calcitonin gene-related peptide (CGRP) is a specific marker for dorsal root afferents, and CGRP-immunoreactive fibers are mainly present near the intrahepatic vascular bundles and bile ducts, and in the same extrahepatic compartments that contain vagal afferents. Because of the specific anatomical organization of hepatic nerves, selective hepatic denervation, whether selective for the vagal or sympathetic division, or for efferents and afferents, is nearly impossible. Great caution is therefore necessary when interpreting functional outcomes of so-called specific hepatic denervation studies.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge 70808, USA.
| |
Collapse
|
153
|
Glatzer NR, Smith BN. Modulation of synaptic transmission in the rat nucleus of the solitary tract by endomorphin-1. J Neurophysiol 2004; 93:2530-40. [PMID: 15615836 DOI: 10.1152/jn.00429.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of opioid receptors in the periphery and centrally in the brain results in inhibition of gastric and other vagally mediated functions. The aim of this study was to examine the role of the endogenous opioid agonist endomorphin 1 (EM-1) in regulating synaptic transmission within the nucleus tractus solitarius (NTS), an integration site for autonomic functions. We performed whole cell patch-clamp recordings from coronal brain slices of the rat medulla. A subset of the neurons studied was prelabeled with a stomach injection of the transsynaptic retrograde virus expressing EGFP, PRV-152. Solitary tract stimulation resulted in constant latency excitatory postsynaptic currents (EPSCs) that were decreased in amplitude by EM-1 (0.01-10 microM). The paired-pulse ratio was increased with little change in input resistance, suggesting a presynaptic mechanism. Spontaneous EPSCs were decreased in both frequency and amplitude by EM-1, and miniature EPSCs were reduced in frequency but not amplitude, suggesting a presynaptic mechanism for the effect. Spontaneous inhibitory postsynaptic currents (IPSCs) were also reduced in frequency by EM-1, but the effect was blocked by TTX, suggesting activity at receptors on the somata of local inhibitory neurons. Synaptic input arising from local NTS neurons, which were activated by focal photolysis of caged glutamate, was inhibited by EM-1. The actions of EM-1 were similar to those of D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and were blocked by naltrexone, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). These results suggest that EM-1 acts at mu-opioid receptors to modulate viscerosensory input and specific components of local synaptic circuitry in the NTS.
Collapse
Affiliation(s)
- Nicholas R Glatzer
- Department of Cell and Molecular Biology, Tulane Univ., 6400 Freret St., New Orleans, LA 70118, USA
| | | |
Collapse
|
154
|
Hollis JH, Lightman SL, Lowry CA. Integration of systemic and visceral sensory information by medullary catecholaminergic systems during peripheral inflammation. Ann N Y Acad Sci 2004; 1018:71-5. [PMID: 15240354 DOI: 10.1196/annals.1296.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nucleus of the solitary tract (nTS) is topographically organized with respect to the distribution of afferent sensory innervation and efferent projection patterns. Evidence suggests that the cells within the nTS, including medullary catecholaminergic (CA) neurons, are functionally diverse and that during peripheral inflammation they are recruited in a topographically organized manner that reflects their associations with afferent sensory systems. It is therefore feasible that topographically organized subdivisions of the nTS and the medullary CA neurons contained within them are differentially involved in signaling systemic (e.g., derived from blood-borne signals) versus visceral sensory information (e.g., derived from afferent sensory signals within the vagus nerve) during peripheral inflammation. The purpose of this review is to summarize (1) the topographic organization of afferent sensory input from vagal and systemic signaling pathways to the nTS in relation to medullary CA neurons and (2) the functional evidence to support the differential involvement of topographically organized subpopulations of CA and non-CA neurons in relaying signals of visceral versus systemic sensory information.
Collapse
Affiliation(s)
- Jacob H Hollis
- University of Bristol, Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Dorothy Hodgkin Building, Whitson St., Bristol BS1 3N4, UK.
| | | | | |
Collapse
|
155
|
Velde K, Ross MW, Orsini JA, Parente EJ, Foley B, Richardson DW, Miselis RR. Tracing axons of peripheral nerves in rats: a potential technique to study the equine recurrent laryngeal nerve. J INVEST SURG 2004; 17:151-62. [PMID: 15204959 DOI: 10.1080/08941930490446937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To study the fascicular anatomy of peripheral nerves, three different groups of retrograde axonal tracers were evaluated: fluorophores, horseradish peroxidase conjugated to subunit B of cholera toxin (CT-HRP), and adeno-associated virus (AAV). The hindlimb nerves in rats served as a model to identify the most efficient tracer in regard to labeling axons within peripheral nerves. The rat's tibial and common peroneal nerves were injected with the different tracers and the sciatic nerve was subsequently examined for evidence of labeled axons. The CT-HRP clearly provided the best results in this rat model. Subsequently, CT-HRP was injected into the recurrent laryngeal nerve (RLN) of two horses in order to identify the location and distribution pattern of the RLN axons within the course of the cervical vagus nerve trunk. No labeling could be observed in either of the two horses.
Collapse
Affiliation(s)
- Karsten Velde
- New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, Pennsylvania 19348-1692, USA.
| | | | | | | | | | | | | |
Collapse
|
156
|
y Valenzuela IMP, Browning KN, Travagli RA. Morphological differences between planes of section do not influence the electrophysiological properties of identified rat dorsal motor nucleus of the vagus neurons. Brain Res 2004; 1003:54-60. [PMID: 15019563 PMCID: PMC3062483 DOI: 10.1016/j.brainres.2003.10.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2003] [Indexed: 11/16/2022]
Abstract
Recent cytoarchitectonic studies have shown that the dorsal motor nucleus of the vagus (DMV) comprises neurons with different morphological features. Our own studies, conducted in horizontal brainstem slices, have shown that DMV neurons projecting to stomach areas can be distinguished from neurons projecting to the intestine on the basis of their electrophysiological as well as morphological properties. The majority of the in vitro experimental investigations, however, have been conducted on coronal brainstem slices. The aim of the present study was to assess whether the electrophysiological properties of DMV neurons are due to intrinsic membrane properties of the neurons or are dependent upon the plane of section, i.e., coronal vs. horizontal, in which the brainstem is cut. The fluorescent retrograde tracer DiI was applied to either the stomach or intestine of rats. Whole cell recordings were subsequently made from labeled DMV neurons in thin brainstem slices sectioned in either the horizontal or coronal plane. In the horizontal plane, both the somata and the dendritic tree of gastric-projecting neurons were smaller than intestinal-projecting neurons. In the coronal plane, however, apart from a smaller soma diameter in gastric-projecting neurons, morphological differences were not found between the groups. The electrophysiological differences observed between the groups were, however, consistent in both planes of section, that is, intestinal-projecting neurons had larger and longer afterhyperpolarization (AHP) as well as slower frequency-responses to depolarizing stimuli than gastric-projecting neurons. Our data suggest that intrinsic rather than morphological features govern the electrophysiological characteristics of DMV neurons.
Collapse
Affiliation(s)
| | - Kirsteen N. Browning
- Department of Internal Medicine–Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - R. Alberto Travagli
- Department of Internal Medicine–Gastroenterology, University of Michigan, Ann Arbor, MI, USA
- Department of Physiology, University of Michigan, Ann Arbor, MI, USA
- Corresponding author. Department of Internal Medicine–Gastroenterology, University of Michigan, 6520 MSRB I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0682, USA. Tel.: +1-734-615-8517; fax: +1-734-763-2535. (R.A. Travagli)
| |
Collapse
|
157
|
Rinaman L, Schwartz G. Anterograde transneuronal viral tracing of central viscerosensory pathways in rats. J Neurosci 2004; 24:2782-6. [PMID: 15028771 PMCID: PMC6729508 DOI: 10.1523/jneurosci.5329-03.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies demonstrated that strain H129 of herpes simplex virus-1 undergoes anterograde transneuronal transport in mice and primates after peripheral or central injection. In this study, H129 was used in rats to identify CNS regions that receive relayed viscero-sensory inputs from the stomach wall. We also examined whether transneuronal viral transport in this model is exclusively anterograde. H129 or an established retrograde transneuronal viral tracer, pseudorabies virus (PRV), was injected into the ventral stomach wall in intact rats or in rats with previous subdiaphragmatic vagal sensory deafferentation. Rats were perfused with fixative 3-5 d later, and tissues were processed for immunocytochemical detection of transported virus. In intact rats, H129 was transported transneuronally via vagal and spinal viscerosensory neurons to postsynaptic target cells in the medullary dorsal vagal complex and thoracic dorsal horn, respectively, with subsequent transport to discrete regions of the medullary and pontine reticular formation, cerebellum, parabrachial nucleus, periaqueductal gray, thalamus, hypothalamus, amygdala, bed nucleus of the stria terminalis, and other central sites. Comparison of labeling patterns in intact and vagal deafferented rats indicated that H129 also produced first-order retrograde infection of autonomic neurons that project directly to virus injection sites, similar to PRV. Unlike PRV, however, H129 was not transported transneuronally in the retrograde direction from infected neurons to central sources of presynaptic input. We conclude that transneuronal transport of H129 occurs exclusively in the anterograde direction to reveal CNS regions that receive direct and relayed viscerosensory signals.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
158
|
Pompeiano O, d'Ascanio P, Balaban E, Centini C, Pompeiano M. Gene expression in autonomic areas of the medulla and the central nucleus of the amygdala in rats during and after space flight. Neuroscience 2004; 124:53-69. [PMID: 14960339 DOI: 10.1016/j.neuroscience.2003.09.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2003] [Indexed: 11/19/2022]
Abstract
During space flight astronauts show vestibular-related changes in balance, eye movements, and spontaneous and reflex control of cardiovascular, respiratory and gastrointestinal function, sometimes associated with space motion sickness. These symptoms undergo compensation over time. Here we used changes in the expression of two immediate-early gene (IEG) products to identify cellular and molecular changes occurring in autonomic brainstem regions of adult male albino rats killed at different times during the Neurolab Space Mission (STS-90). Both direct effects of gravitational changes, as well as indirect effects of gravitational changes on responses to light exposure were examined. Regions under the direct control of vestibular afferents such as the area postrema and the caudal part of the nucleus of the tractus solitarius (NTSC) were both directly and indirectly affected by gravity changes. These areas showed no changes in the expression of IEG products during exposure to microgravity with respect to ground controls, but did show a significant increase 24 h after return to 1 G (gravity). Exposure to microgravity significantly inhibited gene responses to light exposure seen after return to 1 G. A similar direct and indirect response pattern was also shown by the central nucleus of the amygdala, a basal forebrain structure anatomically and functionally related to the NTS. The rostral part of the NTS (NTSR) receives different afferent projections than the NTSC. This region did not show any direct gravity-related changes in IEG expression, but showed an indirect effect of gravity on IEG responses to light. A similar pattern was also obtained in the intermediate reticular nucleus and the parvocellular reticular nucleus. Two other medullary reticular structures, the dorsal and the ventral medullary reticular nuclei showed a less well defined pattern of responses that differed from those seen in the NTSC and NTSR. The short- and long-lasting molecular changes in medullary and basal forebrain gene expression described here are thought to play an important role in the integration of autonomic and vestibular signals that ultimately regulate neural adaptations to space flight.
Collapse
Affiliation(s)
- O Pompeiano
- Dipartimento di Fisiologia e Biochimica, Università di Pisa, Via San Zeno 31, I-56127 Pisa, Italy.
| | | | | | | | | |
Collapse
|
159
|
Hassert DL, Miyashita T, Williams CL. The effects of peripheral vagal nerve stimulation at a memory-modulating intensity on norepinephrine output in the basolateral amygdala. Behav Neurosci 2004; 118:79-88. [PMID: 14979784 DOI: 10.1037/0735-7044.118.1.79] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vagal nerve stimulation (VNS) is known to improve cognitive processing, presumably by affecting activity in central nervous system structures that process recently acquired information. It has long been assumed that these effects are related to stimulation-induced increases of norepinephrine (NE) release in limbic brain structures. The present study examined this hypothesis by administering VNS at an intensity and duration that improves memory and then measuring fluctuations in NE output in the basolateral amygdala (BLA) with in vivo microdialysis. In Experiment 1, VNS caused a 98% increase in NE output relative to baseline. In Experiment 2, methyl atropine was given 10 min before VNS to assess whether stimulation-induced increases in amygdala NE are mediated by afferent or efferent vagal branches. Methyl atropine did not alter NE release in the BLA in comparison with saline. The significance of these findings in understanding how peripheral neural activity modulates limbic structures to encode and store new information into memory is discussed.
Collapse
Affiliation(s)
- D L Hassert
- Department of Psychology, University of Virginia, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
160
|
Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Distribution and ultrastructure of dopaminergic neurons in the dorsal motor nucleus of the vagus projecting to the stomach of the rat. Brain Res 2004; 1006:66-73. [PMID: 15047025 DOI: 10.1016/j.brainres.2004.01.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2004] [Indexed: 01/01/2023]
Abstract
Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Gray's type I). Most of the axodendritic terminals contacting TH-ir dendrites were Gray's type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II).
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | |
Collapse
|
161
|
Abstract
The parasubthalamic nucleus (PSTN) is a differentiation of the lateral hypothalamic area, characterized by a distinct population of neurons expressing beta-preprotachykinin (beta-PPT) mRNA. The axonal projections from the PSTN have been analyzed with the PHAL anterograde tract tracing method in rats. The results indicate that the cell group is distinguished by massive projections to parasympathetic preganglionic neurons in the brainstem (especially in the salivatory nuclei and dorsal motor nucleus of the vagus nerve) and to parts of the parabrachial nucleus and nucleus of the solitary tract that relay viscerosensory and gustatory information. In addition, the PSTN projects to cortical parts of the cerebral hemisphere (infralimbic, agranular insular, postpiriform transition and lateral entorhinal areas, and posterior basolateral amygdalar nucleus)-directly and also indirectly via thalamic feedback loops involving the paraventricular and mediodorsal nuclei-and to nuclear parts of the cerebral hemisphere (central amygdalar nucleus, striatal fundus, rhomboid nucleus of the bed nuclei of the stria terminalis, and substantia innominata). The PSTN is thus positioned to influence directly many cerebral hemisphere and hindbrain components of the central parasympathetic control network that is active, for example, during feeding behavior and cardiovascular regulation.
Collapse
Affiliation(s)
- Marina Goto
- Laboratory of Neurosciences, City University of São Paulo, São Paulo, São Paulo 03071-000, Brazil
| | | |
Collapse
|
162
|
Dauger S, Pattyn A, Lofaso F, Gaultier C, Goridis C, Gallego J, Brunet JF. Phox2bcontrols the development of peripheral chemoreceptors and afferent visceral pathways. Development 2003; 130:6635-42. [PMID: 14627719 DOI: 10.1242/dev.00866] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report that the afferent relays of visceral (cardiovascular, digestive and respiratory) reflexes, differentiate under the control of the paired-like homeobox gene Phox2b: the neural crest-derived carotid body, a chemosensor organ, degenerates in homozygous mutants, as do the three epibranchial placode-derived visceral sensory ganglia (geniculate, petrosal and nodose), while their central target, the nucleus of the solitary tract,which integrates all visceral information, never forms. These data establish Phox2b as an unusual `circuit-specific' transcription factor devoted to the formation of autonomic reflex pathways. We also show that Phox2b heterozygous mutants have an altered response to hypoxia and hypercapnia at birth and a decreased tyrosine hydroxylase expression in the petrosal chemosensory neurons, thus providing mechanistic insight into congenital central hypoventilation syndrome, which is associated with heterozygous mutations in PHOX2B.
Collapse
Affiliation(s)
- Stéphane Dauger
- Laboratoire de Neurologie et Physiologie du Développement, INSERM EPI9935, Hôpital Robert Debré, 48 Bd Serurier, 75019 Paris, France
| | | | | | | | | | | | | |
Collapse
|
163
|
Zhang X, Cui J, Tan Z, Jiang C, Fogel R. The central nucleus of the amygdala modulates gut-related neurons in the dorsal vagal complex in rats. J Physiol 2003; 553:1005-18. [PMID: 14555729 PMCID: PMC2343616 DOI: 10.1113/jphysiol.2003.045906] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using retrograde tract-tracing and electrophysiological methods, we characterized the anatomical and functional relationship between the central nucleus of the amygdala and the dorsal vagal complex. Retrograde tract-tracing techniques revealed that the central nucleus of the amygdala projects to the dorsal vagal complex with a topographic distribution. Following injection of retrograde tracer into the vagal complex, retrogradely labelled neurons in the central nucleus of the amygdala were clustered in the central portion at the rostral level and in the medial part at the middle level of the nucleus. Few labelled neurons were seen at the caudal level. Electrical stimulation of the central nucleus of the amygdala altered the basal firing rates of 65 % of gut-related neurons in the nucleus of the solitary tract and in the dorsal motor nucleus of the vagus. Eighty-one percent of the neurons in the nucleus of the solitary tract and 47 % of the neurons in the dorsal motor nucleus were inhibited. Electrical stimulation of the central nucleus of the amygdala also modulated the response of neurons in the dorsal vagal complex to gastrointestinal stimuli. The predominant effect on the neurons of the nucleus of the solitary tract was inhibition. These results suggest that the central nucleus of the amygdala influences gut-related neurons in the dorsal vagal complex and provides a neuronal circuitry that explains the regulation of gastrointestinal activity by the amygdala.
Collapse
Affiliation(s)
- Xueguo Zhang
- Laboratory of Neurogastroenterology Research, Division of Gastroenterology, Henry Ford Health System, Detroit, MI 48202, USA.
| | | | | | | | | |
Collapse
|
164
|
Glatzer NR, Hasney CP, Bhaskaran MD, Smith BN. Synaptic and morphologic properties in vitro of premotor rat nucleus tractus solitarius neurons labeled transneuronally from the stomach. J Comp Neurol 2003; 464:525-39. [PMID: 12900922 DOI: 10.1002/cne.10831] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurons in the rat nucleus tractus solitarius (NTS) possess morphologic characteristics that have been correlated with the type of synaptic information they receive. These features have been described for viscerosensory neurons but not for premotor NTS neurons. The morphologic and synaptic features of neurons in the rat caudal NTS were assessed using whole-cell patch-clamp recordings and biocytin labeling in brainstem slices. Gastric-related premotor NTS neurons were identified for recording after inoculation of the stomach wall with a transneuronal retrograde viral label that reports enhanced green fluorescent protein. Three morphologic groups of NTS neurons were identified based on quantitative aspects of soma area and proximal dendritic arborization, measures that were consistent across slice recordings. The most common type of cell (group I) had relatively small somata and one to three sparsely branching dendrites, whereas the other groups had larger somata and more than three dendrites, which branched predominantly close to (group II) or distant from (group III) the soma. Voltage-clamp recordings revealed spontaneous excitatory and inhibitory postsynaptic currents in all neurons, regardless of morphology. Gastric-related premotor NTS neurons composed two of the three morphologic types (i.e., groups I and II). Compared with unlabeled neurons, these cells were less likely to receive constant-latency synaptic input from the tractus solitarius. These results refute the hypothesis that general patterns of synaptic input to NTS neurons depend on morphology. Gastric premotor neurons comprise a subset of NTS morphologic types, the organization of the viscerosensory input to which has yet to be defined.
Collapse
Affiliation(s)
- Nicholas R Glatzer
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
165
|
Dong HW, Swanson LW. Projections from the rhomboid nucleus of the bed nuclei of the stria terminalis: implications for cerebral hemisphere regulation of ingestive behaviors. J Comp Neurol 2003; 463:434-72. [PMID: 12836178 DOI: 10.1002/cne.10758] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The basic organization of an exceptionally complex pattern of axonal projections from one distinct cell group of the bed nuclei of the stria terminalis, the rhomboid nucleus (BSTrh), was analyzed with the PHAL anterograde tract-tracing method in rats. Brain areas that receive a strong to moderate input from the BSTrh fall into nine general categories: central autonomic control network (central amygdalar nucleus, descending hypothalamic paraventricular nucleus, parasubthalamic nucleus and dorsal lateral hypothalamic area, ventrolateral periaqueductal gray, lateral parabrachial nucleus and caudal nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and salivatory nuclei), gustatory system (rostral nucleus of the solitary tract and medial parabrachial nucleus), neuroendocrine system (periventricular and paraventricular hypothalamic nuclei, hypothalamic visceromotor pattern generator network), orofaciopharyngeal motor control (rostral tip of the dorsal nucleus ambiguus, parvicellular reticular nucleus, retrorubral area, and lateral mesencephalic reticular nucleus), respiratory control (lateral nucleus of the solitary tract), locomotor or exploratory behavior control and reward prediction (nucleus accumbens, substantia innominata, and ventral tegmental area), ingestive behavior control (descending paraventricular nucleus and dorsal lateral hypothalamic area), thalamocortical feedback loops (medial-midline-intralaminar thalamus), and behavioral state control (dorsal raphé and locus coeruleus). Its pattern of axonal projections and its position in the basal telencephalon suggest that the BSTrh is part of a striatopallidal differentiation involved in modulating the expression of ingestive behaviors, although it may have other functions as well.
Collapse
Affiliation(s)
- Hong-Wei Dong
- Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520, USA
| | | |
Collapse
|
166
|
Jiang C, Fogel R, Zhang X. Lateral hypothalamus modulates gut-sensitive neurons in the dorsal vagal complex. Brain Res 2003; 980:31-47. [PMID: 12865157 DOI: 10.1016/s0006-8993(03)02844-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lateral hypothalamus (LH) regulates metabolic, behavioral and autonomic functions. The influence of the LH on gastrointestinal function and feeding behavior may be mediated by the dorsal vagal complex (DVC). In the present experiment, we used tract tracing and neurophysiologic techniques to evaluate the interrelationship between the LH and DVC. Using the tracer DiI, we demonstrated that the LH projects to both the nucleus of the solitary tract (NST) and the dorsal motor nucleus of the vagus (DMNV). We determined the effects of electrical stimulation of the LH and/or distention of the gastrointestinal tract on the firing rates of 107 DMNV neurons and 68 NST neurons. As previously reported, the majority of the DMNV neurons were inhibited and the majority of the NST neurons were excited by gastrointestinal distention. Electrical stimulation of the LH significantly changed the spontaneous activities of 71% of the DMNV neurons (46 excited and 30 inhibited). Of the 68 NST neurons characterized, 25 neurons were inhibited and 8 were excited by LH stimulation. In a separate experiment, we characterized the effects of both electrical and chemical stimulation of the LH on 36 DMNV and 14 NST neurons. Glutamate (0.8 nM) induced similar responses in the DVC neurons as electrical stimulation of the LH. The results indicate that the LH influences the electrical activity of DVC neurons. This effect may be the mechanism by which the LH modulates gastrointestinal function and feeding behavior.
Collapse
Affiliation(s)
- Chunhui Jiang
- Laboratory of Neurogastroenterology Research, Division of Gastroenterology, Henry Ford Health System, One Ford Place 2D, 6071 Second Avenue, Detroit, MI 48202, USA
| | | | | |
Collapse
|
167
|
Hermann GE, Tovar CA, Rogers RC. TNFalpha-stimulation of cFos-activation of neurons in the solitary nucleus is suppressed by TNFR:Fc adsorbant construct in the dorsal vagal complex. Brain Res 2003; 976:69-74. [PMID: 12763623 DOI: 10.1016/s0006-8993(03)02687-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cytokine tumor necrosis factor alpha (TNF(alpha)) may act within the neural circuitry of the medullary dorsal vagal complex (DVC) to affect changes in gastric function such as gastric stasis, loss of appetite, nausea, and vomiting. The definitive demonstration that endogenously generated TNF(alpha) is acting within the DVC circuitry to affect these changes has been impeded by the lack of an antagonist for TNF(alpha). The present studies used localized central nervous system microinjections of the TNF-adsorbant construct (TNFR:Fc) to specifically neutralize the ability of endogenously produced TNF(alpha) to activate NST neurons. Our studies reveal that TNFR:Fc suppresses induction of cFos normally evoked by TNF(alpha). These results validate our hypothesis that circulating TNF(alpha) may act directly within the DVC to affect gastric function in a variety of pathophysiological states.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
168
|
Corbett EKA, Saha S, Deuchars J, McWilliam PN, Batten TFC. Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurones projecting to the rat heart. Auton Neurosci 2003; 105:105-17. [PMID: 12798207 DOI: 10.1016/s1566-0702(03)00047-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ionotropic glutamate receptor subunits expressed by vagal preganglionic neurones in the rat medulla oblongata were examined by using fluorescence immunolabelling combined with retrograde neuronal tracing. The general population of these neurones in the medulla was identified by intraperitoneal injections of Fluorogold and also with choline acetyltransferase antibodies. Cardiac projecting neurones were specifically identified by applying the fluorescent tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine (DiI) to the heart or by injecting cholera toxin B-subunit into the pericardium. Both tracers labelled populations of neurones lying in the dorsal vagal nucleus, intermediate reticular formation and nucleus ambiguus, and when both tracers were applied simultaneously, approximately 50% of cells were dual-labelled. Control experiments established that the labelling was specific for neurones projecting to the heart. Most vagal preganglionic neurones, including those projecting to the heart, irrespective of their location in the medulla, had a similar profile of glutamate receptor immunoreactivity. Labelling of somata for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) subunit GluR1 was weak or absent, while labelling with antibodies directed to GluR2, a common sequence of GluR2 and GluR3, and GluR4 was moderate or intense. All neurones studied appeared to express the N-methyl-D-aspartate (NMDA) receptor subunit NR1, and while antibodies recognising the NR2A and NR2B splice variants gave strong labelling, immunoreactivity with a NR2B specific antibody was weaker. Weak to moderate labelling was seen in some neurones using antibodies to the kainate receptor subunits KA2 and GluR5-7. These results are consistent with neurophysiological data indicating the presence of AMPA, NMDA and kainate responses in cardiac vagal preganglionic neurones, and suggest that these neurones are similar to other vagal parasympathetic preganglionic neurones in expressing mainly AMPA receptor subunits GluR2-4.
Collapse
Affiliation(s)
- Eric K A Corbett
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | | | | |
Collapse
|
169
|
Grabauskas G, Moises HC. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin. J Physiol 2003; 549:37-56. [PMID: 12679367 PMCID: PMC2342920 DOI: 10.1113/jphysiol.2002.029546] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2002] [Accepted: 03/05/2003] [Indexed: 12/17/2022] Open
Abstract
Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30-300 nM) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage-clamp recordings orexin-A induced an inward current that reversed near the estimated equilibrium potential for K+, indicating the depolarization was due in large part to a reduction in K+ conductance. Orexins did not affect synaptically evoked excitation, but did reduce membrane excitability in a subset of gastric-projecting DMV neurones by enhancing GABA-mediated synaptic input. Lastly, although many DMV neurones responded to orexins and oxytocin with excitation, for the most part these peptides modulated excitability of distinct populations of gastric-projecting vagal motor neurones. These results indicate that orexins act preferentially within the DMV to directly excite vagal motor neurones that project to gastric fundus and corpus. In this way, release of endogenous orexins from descending hypothalamic projections into the DMV may mediate the increase in gastric acid secretion and motor activity associated with the cephalic phase of feeding.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Department of Physiology and Neuroscience Program, University of Michigan Medical School, Ann Arbor 48109-0622, USA
| | | |
Collapse
|
170
|
Barnes KL, DeWeese DM, Andresen MC. Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1340-53. [PMID: 12531785 DOI: 10.1152/ajpregu.00505.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Femtomole doses of angiotensin (ANG) II microinjected into nucleus tractus solitarii (nTS) decrease blood pressure and heart rate, mimicking activation of the baroreflex, whereas higher doses depress this reflex. ANG II might generate cardioinhibitory responses by augmenting cardiovascular afferent synaptic transmission onto nTS neurons. Intracellular recordings were obtained from 99 dorsal medial nTS region neurons in rat medulla horizontal slices to investigate whether ANG II modulated short-latency excitatory postsynaptic potentials (EPSPs) evoked by solitary tract (TS) stimulation. ANG II (200 fmol) increased TS-evoked EPSP amplitudes 20-200% with minimal membrane depolarization in 12 neurons excited by ANG II and glutamate, but not substance P (group A). Blockade of non-N-methyl-d-aspartate receptors eliminated TS-evoked EPSPs and responses to ANG II. ANG II did not alter TS-evoked EPSPs in 14 other neurons depolarized substantially by ANG II and substance P (group B). ANG II appeared to selectively augment presynaptic sensory transmission in one class of nTS neurons but had only postsynaptic effects on another group of cells. Thus ANG II is likely to modulate cardiovascular function by more than one nTS neuronal pathway.
Collapse
Affiliation(s)
- Karen L Barnes
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
171
|
Smith BN, Davis SF, Van Den Pol AN, Xu W. Selective enhancement of excitatory synaptic activity in the rat nucleus tractus solitarius by hypocretin 2. Neuroscience 2003; 115:707-14. [PMID: 12435409 DOI: 10.1016/s0306-4522(02)00488-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. Hypocretin 2-immunoreactive fibers were observed throughout the caudal NTS. In whole-cell recordings from neurons in acute slices, hypocretin 2 depolarized 48% and hyperpolarized 10% of caudal NTS neurons, effects that were not observed when Cs(+) was used as the primary cation carrier. Hypocretin 2 also increased the amplitude of tractus solitarius-evoked excitatory postsynaptic currents (EPSCs) in 36% of neurons and significantly enhanced the frequency of spontaneous EPSCs in most (59%) neurons. Spontaneous inhibitory postsynaptic currents (IPSCs) were relatively unaffected by the peptide. The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals. These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.
Collapse
Affiliation(s)
- B N Smith
- Department of Cell and Molecular Biology, Tulane University, 6400 Freret Street, New Orleans, LA 70118, USA.
| | | | | | | |
Collapse
|
172
|
Qin C, Chandler MJ, Miller KE, Foreman RD. Responses and afferent pathways of C(1)-C(2) spinal neurons to gastric distension in rats. Auton Neurosci 2003; 104:128-36. [PMID: 12648614 DOI: 10.1016/s1566-0702(03)00002-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Some evidence shows that the upper cervical spinal cord might play an important role in propriospinal processing as a sensory filter and modulator for visceral afferents. The aims of this study were to determine (1). the responses of C(1)-C(2) spinal neurons to gastric distension and (2). the relative contribution of vagal and spinal visceral afferent pathways for transmission of gastric input to the upper cervical spinal cord. Extracellular potentials of single C(1)-C(2) spinal neurons were recorded in pentobarbital anesthetized male rats. Graded gastric distension (20-80 mm Hg) was produced by air inflation of a latex balloon surgically placed in the stomach. Sixteen percent of the neurons (32/198) responded to gastric distension; 17 neurons were excited and 15 neurons were inhibited by gastric distension. Spontaneous activity of neurons with inhibitory responses was higher than those neurons with excitatory responses (18.1+/-2.7 vs. 3.8+/-1.7 impulses s(-1), p<0.001). Twenty-eight of thirty-two (87.5%) neurons responded to mechanical stimulation of somatic fields on head, neck, ears or shoulder. Most lesion sites of neurons with excitatory responses were found in laminae V, VII; however, neurons with inhibitory responses were in laminae III, IV. Bilateral cervical vagotomy abolished responses of 4/8 neurons tested. Spinal transection at C(6)-C(7) abolished responses of the other four neurons that still responded to gastric distension after bilateral vagotomy. Results of these data supported the concept that a group of C(1)-C(2) spinal neurons might play a role in processing sensory information from the stomach that travels in vagal and spinal visceral afferent fibers.
Collapse
Affiliation(s)
- Chao Qin
- Department of Physiology, University of Oklahoma Health Sciences Center, PO Box 26901, Oklahoma City, OK 73190, USA.
| | | | | | | |
Collapse
|
173
|
Zhang X, Fogel R. Involvement of glutamate in gastrointestinal vago-vagal reflexes initiated by gastrointestinal distention in the rat. Auton Neurosci 2003; 103:19-37. [PMID: 12531396 DOI: 10.1016/s1566-0702(02)00145-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vago-vagal reflexes play an integral role in the regulation of gastrointestinal function. Although there have been a number of reports describing the effects of various stimuli on the firing rates of vagal afferent fibers and vagal motor neurons, little is known regarding the neurotransmitters that mediate the vago-vagal reflexes. In the present work, we investigated the role of glutamate in the vago-vagal reflex induced by gastrointestinal distention. Using single-cell recording techniques, we determined the effects of gastric and duodenal distention on the firing rates of gut-related neurons in the dorsal vagal complex, in the absence and presence of glutamate antagonists. Kynurenic acid, a competitive glutamate receptor antagonist, injected into the dorsal vagal complex, blocked the neuronal response of neurons in the dorsal motor nucleus of the vagus and the nucleus of the solitary tract to gastrointestinal distention. Injection of glutamate into the nucleus of the solitary tract produced inhibition of dorsal motor nucleus of the vagus neurons that were also inhibited by gastric and/or duodenal distention. Thus, the distention-induced inhibition of dorsal motor nucleus of the vagus neurons may be mediated by glutamate-induced excitation of gut-related nucleus of the solitary tract neurons. To investigate the role of the various glutamate receptor subtypes in the distention-induced events, we studied the effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a selective non-NMDA receptor antagonist, and DL-2-amino-5-phosphonopentanoic acid (DL-AP5), a selective NMDA receptor antagonist. CNQX injected into the dorsal vagal complex either blocked or attenuated the inhibitory response of the neurons in the dorsal motor nucleus of the vagus and nucleus of the solitary tract neurons to gastric and duodenal distention. In contrast, DL-AP5 had less effect, especially in the vago-vagal reflex elicited by gastric distention. The results suggest (1) distention activates vagal afferents in the gastrointestinal tract; (2) the central branches of the vagal afferents from the gut terminate in the nucleus of the solitary tract and release glutamate that mainly act on non-NMDA receptors; (3) glutamate activates the inhibitory neurons in the nucleus of the solitary tract that project to the dorsal motor nucleus of the vagus; and (4) the inhibitory neurotransmitter suppresses the activity of the dorsal motor nucleus of the vagus neurons. For the excitatory neuronal responses of the dorsal motor nucleus of the vagus neurons to gastrointestinal distention, the possible circuit is that the vagal afferents containing glutamate directly activate the receptors on the dendrites of the dorsal motor nucleus of the vagus.
Collapse
Affiliation(s)
- Xueguo Zhang
- Laboratory of Neurogastroenterology Research, Division of Gastroenterology, Henry Ford Health System, One Ford Place 2D, 6071 Second Avenue, Detroit, MI 48202, USA.
| | | |
Collapse
|
174
|
Zhang X, Jiang C, Tan Z, Fogel R. Vagal motor neurons in rats respond to noxious and physiological gastrointestinal distention differentially. Eur J Neurosci 2002; 16:2027-38. [PMID: 12473070 DOI: 10.1046/j.1460-9568.2002.02281.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low-pressure gastrointestinal distention modulates gastrointestinal function by a vago-vagal reflex. Noxious visceral distention, as seen in an obstruction of the gastrointestinal tract, causes abdominal pain, vomiting and affective changes. Using single neuron recording and intracellular injection techniques, we characterized the neuronal responses of neurons in the dorsal motor nucleus of the vagus (DMNV) to low- and high-pressure distensions of stomach and duodenum. Low-pressure gastric distention inhibited the mean activity of the DMNV neurons whereas high-pressure gastric distention excited many neurons. Of 47 DMNV neurons, low-pressure gastric distention inhibited 39, excited four, and did not affect four neurons. High-pressure gastric distention inhibited 26, excited 20, and left one unaffected. Thirteen of the 39 DMNV neurons inhibited by low-pressure distention of the stomach reversed their response to excitation during high-pressure gastric distention. Among 47 DMNV neurons, low-pressure duodenal distention inhibited 30, excited 10, and did not affect the remaining seven neurons. High-pressure distention of the duodenum inhibited 25 and excited 22 neurons. Eight DMNV neurons inhibited by low-pressure duodenal distention were excited in early response to high-pressure distention of the duodenum. High-pressure duodenal distention caused an early excitation and late inhibition in the mean activity of the DMNV neurons while low-pressure duodenal distention only produced late inhibition. These results suggest that different reflexes are present between physiological distention and noxious stimulation of gastrointestinal tract.
Collapse
Affiliation(s)
- Xueguo Zhang
- Laboratory of Neurogastroenterology Research, Division of Gastroenterology, Henry Ford Health System, One Ford Place 2D, 6071 Second Avenue, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
175
|
Emch GS, Hermann GE, Rogers RC. Tumor necrosis factor-alpha inhibits physiologically identified dorsal motor nucleus neurons in vivo. Brain Res 2002; 951:311-5. [PMID: 12270510 DOI: 10.1016/s0006-8993(02)03178-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Our previous studies have shown that tumor necrosis factor-alpha (TNF-alpha) activates solitary nucleus neurons involved in vago-vagal reflex control of gastric motility. Here, we describe the dual role of TNF-alpha as also modulating neurons in the dorsal motor nucleus of the vagus (DMN) that respond to gastric distention. A large majority of physiologically identified DMN neurons are rapidly and completely inhibited by exposure to TNF-alpha, suggesting that TNF-alpha may induce gastric stasis by functioning as a hormone that modulates both portions of this reflex pathway during illness.
Collapse
Affiliation(s)
- Gregory S Emch
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
176
|
Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 2002; 453:389-417. [PMID: 12389210 DOI: 10.1002/cne.10418] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the present study the localization of pituitary adenylate cyclase-activating peptide (PACAP)-expressing cell bodies and PACAP projections were mapped in the adult rat brain and spinal cord by using immunohistochemistry and in situ hybridization histochemistry. A widespread occurrence of PACAP-containing cell bodies was found, with the greatest accumulation in several hypothalamic nuclei and in several brainstem nuclei, especially the habenular nuclei, the pontine nucleus, the lateral parabrachial nucleus (LPB), and the vagal complex. PACAP was also present in cell bodies in the olfactory areas, in neocortical areas, in the hippocampus, in the vestibulo- and cochlear nuclei, in cell bodies of the intermediolateral cell column of the spinal cord and in Purkinje cells of the cerebellum, in the subfornical organ, and in the organum vasculosum of the lamina terminalis. An intense accumulation of PACAP-immunoreactive (-IR) nerve fibers was observed throughout the hypothalamus, in the amydaloid and extended amygdaloid complex, in the anterior and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus of the solitary tract. PACAP-IR nerve fibers were also found in the area postrema, the posterior pituitary and the choroid plexus, and the dorsal and ventral horn of the spinal cord. The widespread distribution of PACAP in the brain and spinal cord suggests that PACAP is involved in the control of many autonomic and sensory functions as well as higher cortical processes.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen NV, Denmark.
| |
Collapse
|
177
|
Zafra MA, Simón MJ, Molina F, Puerto A. The role of the external lateral parabrachial subnucleus in flavor preferences induced by predigested food administered intragastrically. Brain Res 2002; 950:155-64. [PMID: 12231240 DOI: 10.1016/s0006-8993(02)03032-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A study was undertaken of the role of the external lateral parabrachial subnucleus (PBNLe) in flavor preferences induced by the intragastric administration of predigested/cephalic food. These preferences were developed using two different learning procedures, concurrent and sequential. In the concurrent procedure, two different-flavored stimuli were presented at the same time: one stimulus was paired with the simultaneous intragastric administration of partially digested food and the other with physiological saline. In the sequential learning procedure, the two stimuli were presented at alternate sessions. The results showed that PBNLe lesions blocked acquisition of concurrent learning but had no effect on the sequential procedure. In the latter case, both lesioned and control animals showed a strong preference for the gustatory stimulus paired with partially digested food. These results are interpreted in terms of a dual neurobiological system involved in the rewarding effects of visceral signals.
Collapse
Affiliation(s)
- M A Zafra
- Psychobiology Area, Department of Experimental Psychology and Physiology of Behavior, University of Granada, Campus de Cartuja, 18071, Granada, Spain.
| | | | | | | |
Collapse
|
178
|
Yuan PQ, Yang H. Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia. Am J Physiol Endocrinol Metab 2002; 283:E436-48. [PMID: 12169436 PMCID: PMC8091863 DOI: 10.1152/ajpendo.00538.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duodenal myenteric/submucosal plexuses. A substantial number of insulin hypoglycemia-activated DMN and NTS neurons were choline acetyltransferase and tyrosine hydroxylase positive, respectively, whereas the activated enteric neurons included NADPH- and vasoactive intestinal peptide neurons. The numbers of Fos-positive cells in each above-named brain nucleus or in the gastric/duodenal myenteric plexus of insulin-treated rats were negatively correlated with serum glucose levels and significantly increased when glucose levels were lower than 80 mg/dl. Acute bilateral cervical vagotomy did not influence insulin hypoglycemia-induced Fos induction in the brain vagal-regulatory nuclei but completely and partially prevented this response in the gastric and duodenal enteric plexuses, respectively. These results revealed that brain-gut neurons regulating vagal outflow to the stomach/duodenum are sensitively responsive to insulin hypoglycemia.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- Digestive Diseases Research Center, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, Division of Digestive Diseases and Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90073, USA
| | | |
Collapse
|
179
|
Hermann GE, Tovar CA, Rogers RC. LPS-induced suppression of gastric motility relieved by TNFR:Fc construct in dorsal vagal complex. Am J Physiol Gastrointest Liver Physiol 2002; 283:G634-9. [PMID: 12181177 DOI: 10.1152/ajpgi.00412.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Our previous studies suggested that the cytokine tumor necrosis factor-alpha (TNF-alpha) may act within the neural circuitry of the medullary dorsal vagal complex (DVC) to affect changes in gastric function, such as gastric stasis, loss of appetite, nausea, and vomiting. The definitive demonstration that endogenously generated TNF-alpha is capable of affecting gastric function via the DVC circuitry has been impeded by the lack of an antagonist for TNF-alpha. The present studies used localized central nervous system applications of the TNF-adsorbant construct (TNFR:Fc; TNF-receptor linked to the Fc portion of the human immunoglobulin IgG1) to attempt to neutralize the suppressive effects of endogenously produced TNF-alpha. Gastric motility of thiobutabarbital-anesthetized rats was monitored after systemic administration of lipopolysaccharide (LPS) to induce TNF-alpha production. Continuous perfusion of the floor of the fourth ventricle with TNFR:Fc reversed the potent gastroinhibition induced by LPS, i.e., central thyrotropin-releasing hormone-induced increases in motility were not inhibited. This disinhibition of gastric stasis was not seen after intravenous administration of similar doses of TNFR:Fc nor ventricular application of the Fc fragment of human immunoglobulin. These results validate our previous studies that suggest that circulating TNF-alpha may act directly within the DVC to affect gastric function in a variety of pathophysiological states.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
180
|
Lee PG, Cai F, Helke CJ. Streptozotocin-induced diabetes reduces retrograde axonal transport in the afferent and efferent vagus nerve. Brain Res 2002; 941:127-36. [PMID: 12031555 DOI: 10.1016/s0006-8993(02)02645-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes-induced alterations in nerve function include reductions in the retrograde axonal transport of neurotrophins. A decreased axonal accumulation of endogenous nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the vagus nerve of streptozotocin (STZ)-induced diabetic rats was previously shown. In the current study, no changes in the NGF and NT-3 protein or mRNA levels in the stomach or atrium, two vagally innervated organs, were noted after 16 or 24 weeks of diabetes. Moreover, the amounts of neurotrophin receptor (p75, TrkA, TrkC) mRNAs in the vagus nerve and vagal afferent nodose ganglion were not reduced in diabetic rats. These data suggest that neither diminished access to target-derived neurotrophins nor the loss of relevant neurotrophin receptors accounts for the diabetes-induced alteration in the retrograde axonal transport of neurotrophins. To assess whether diabetes causes a defect in axonal transport that may not be specific to neurotrophin transport, we studied the ability of a neuronal tracer (FluoroGold, FG) to be retrogradely transported by vagal neurons of control and diabetic rats. After vagal target tissue (stomach) injections of FG, the numbers of FG-labeled afferent and efferent vagal neurons were counted in the nodose ganglion and in the dorsal motor nucleus of the vagus, respectively. After 24 weeks of diabetes, FG was retrogradely transported to more than 50% fewer afferent and efferent vagal neurons in the STZ-diabetic compared to control rats. The diabetes-induced deficit in retrograde axonal transport of FG is likely to reflect alterations in basic axonal transport mechanisms in both the afferent and efferent vagus nerve that contribute to the previously observed reductions in neurotrophin transport.
Collapse
Affiliation(s)
- Paek Gyu Lee
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
181
|
Blondeau C, Clerc N, Baude A. Neurokinin-1 and neurokinin-3 receptors are expressed in vagal efferent neurons that innervate different parts of the gastro-intestinal tract. Neuroscience 2002; 110:339-49. [PMID: 11958875 DOI: 10.1016/s0306-4522(01)00452-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vagal efferent neurons innervating the digestive tract are mainly contained in the dorsal motor nucleus of the vagus. Previous studies have suggested that neurokinins and their neurokinin-1 and neurokinin-3 receptors are involved in the parasympathetic control of digestive functions. The purpose of the present study was to analyze the distribution of neurokinin-1 and neurokinin-3 receptors amongst vagal efferent neurons innervating the stomach, the duodenum, the ileum and the cecum. The immunocytochemical detection of neurokinin-1 and neurokinin-3 receptors was combined with the immunocytochemical detection of retrogradely transported cholera toxin-B subunit, previously injected in the gut wall. Neurokinin-1 and neurokinin-3 receptors were present in 19+/-7% and 8+/-3% of retrogradely labeled neurons innervating the stomach. Almost half of the labeled neurons innervating the duodenum (46+/-7%) expressed neurokinin-1 receptors but less than 0.5% contained neurokinin-3 receptors. None of the retrogradely labeled vagal efferent neurons innervating the ileum and the cecum were immunoreactive for neurokinin-1 and neurokinin-3 receptors. We conclude that neurokinin-1 and neurokinin-3 receptors are located on vagal efferent neurons which innervate the stomach and that neurokinin-1 receptors are common, whereas neurokinin-3 receptors are rare on neurons projecting to the duodenum. Additionally, the distal part of the rat small intestine is innervated by vagal efferent neurons that do not express neurokinins receptors on their membrane. This suggests that neurokinins may influence the parasympathetic control of different regions of the gastro-intestinal tract in specific ways.
Collapse
Affiliation(s)
- C Blondeau
- ITIS Laboratory, CNRS, Bâtiment N', 31 chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | |
Collapse
|
182
|
Gamboa-Esteves FO, Tavares I, Almeida A, Batten TF, McWilliam PN, Lima D. Projection sites of superficial and deep spinal dorsal horn cells in the nucleus tractus solitarii of the rat. Brain Res 2001; 921:195-205. [PMID: 11720726 DOI: 10.1016/s0006-8993(01)03118-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
By using anterograde transport of biotin dextran amine injected into the cervical spinal dorsal horn, we have shown that fibres from superficial and deep dorsal horn project to the nucleus tractus solitarii via two distinct pathways. Afferent fibres from the superficial lamina (I-III) were found to course in the dorsal funiculus and terminate bilaterally in the caudal zone of the nucleus tractus solitarii (NTS), mainly within the commissural subnucleus. In contrast, afferents from the deeper dorsal horn laminae (IV-V) were found to course in the dorsolateral fasciculus and terminate ipsilaterally, mostly in the lateral areas of the caudal nucleus tractus solitarii. Similar, but more extensive patterns of labelled fibres were produced by injections into the white matter of the dorsal funiculus and dorsolateral fasciculus, respectively. These observations suggest that the caudal NTS not only serves as a location of visceral afferent convergence and integration, but may also be a receptive area for monosynaptic projections from dorsal horn neurons receiving sensory afferent inputs. Such projections may represent pathways through which NTS neurons are influenced by nociceptive and non-nociceptive information from the dorsal horn and thereby can co-ordinate the appropriate autonomic response, including adjustments in cardiorespiratory reflex output.
Collapse
Affiliation(s)
- F O Gamboa-Esteves
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
183
|
Goyal RK, Padmanabhan R, Sang Q. Neural circuits in swallowing and abdominal vagal afferent-mediated lower esophageal sphincter relaxation. Am J Med 2001; 111 Suppl 8A:95S-105S. [PMID: 11749933 DOI: 10.1016/s0002-9343(01)00863-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this review is to identify the medullary subnuclei that house neural circuits for lower esophageal sphincter (LES) relaxation. LES relaxation may occur as a component of primary peristalsis elicited by superior laryngeal nerve (SLN) afferent stimulation, secondary peristalsis elicited by esophageal distention or as a component of belch reflex, and transient LES relaxation elicited by gastric vagal afferent stimulation. In mice, SLN stimulation at 10 Hz elicited complete swallowing reflex, including pharyngeal and esophageal peristalsis, and LES relaxation. SLN stimulation at 5 Hz elicited pharyngeal contractions and isolated LES relaxation, which is not accompanied by esophageal peristalsis. Electric stimulation of afferents in the ventral branch of the subdiaphragmatic vagus (vSDV) at 10 Hz also elicited isolated LES relaxation. Using these defined stimuli, c-fos expression was examined in the entire craniocaudal extent of the medullary nuclei. SLN stimulation at 10 Hz induced c-fos expression in neurons in: (1) interstitial (SolI), intermediate (SolIM), central (SolCe), occasional medial (SolM), and dorsomedial (SolDM) solitary subnuclei; (2) motor neurons in the nucleus ambiguus, including its semicompact (NAsc), loose (NAl), and compact (NAc) formations; and (3) dorsal motor nucleus of vagus, including its rostral (DMVr) and caudal (DMVc) parts. The activated neurons represent neurons involved with afferent SLN-mediated reflexes, including swallowing. SLN stimulation at 5 Hz evoked c-fos expression in neurons in SolI, SolIM, SolM, and SolDM but not in SolCe; and motor neurons in NAsc, NAl, and DMVc but not in NAc or DMVr. Stimulation of vSDV induced c-fos expression in neurons in SolM and SolDM and in motoneurons in DMVc. When considered with published reports in other animal species, these data support the speculation that (1) swallow-evoked primary peristalsis involves the following neural circuits: SolI/SolIM --> NAsc/NAl for pharyngeal and SolCe --> NAc for esophageal (striated muscle) peristalsis, SolM/SolDM --> preganglionic neurons in DMVc and DMVr and nitrergic and cholinergic neurons in myenteric plexus for esophageal (smooth muscle) peristalsis, and SolM/SolDM --> preganglionic neurons in DMVc --> postganglionic nitrergic neurons in the myenteric plexus for LES relaxation; and (2) abdominal vagus-stimulated isolated LES relaxation may involve neurons in SolM and SolDM --> preganglionic motor neurons in DMVc --> postganglionic nitrergic neurons in the myenteric plexus.
Collapse
Affiliation(s)
- R K Goyal
- Center for Swallowing and Motility Disorders, Department of Veterans Affairs Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
184
|
Ishikawa T, Yang H, Taché Y. Microinjection of bombesin into the ventrolateral reticular formation inhibits peripherally stimulated gastric acid secretion through spinal pathways in rats. Brain Res 2001; 918:1-9. [PMID: 11684036 DOI: 10.1016/s0006-8993(01)02833-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bombesin injected into the cisterna magna potently inhibits gastric acid secretion stimulated by intravenous infusion of pentagastrin. Sites in the medulla oblongata where bombesin acts to suppress gastric acid secretion were investigated in urethane-anesthetized rats with gastric cannula. Bombesin or vehicle was injected into the medullary parenchyma or intracisternally (i.c.) 60 min after the start of an intravenous pentagastrin infusion; gastric acid secretion was monitored every 10 min for 20 min before and 150 min after the start of pentagastrin. Bombesin (0.2, 0.6 or 6.2 pmol) microinjected into the ventrolateral reticular formation (VLRF) inhibited dose-dependently the net acid response to pentagastrin by 40.8+/-11.1, 75.4+/-12.8 and 96.7+/-19.4%, respectively, at the 40-50 min period after microinjection compared with the vehicle group. Bombesin action in the VLRF was long lasting (96% inhibition still observed at 90 min after 6.2 pmol), and completely abolished by cervical spinal cord transection at the C6 level. By contrast, bombesin injected i.c. at 0.2 or 0.6 pmol had no effect while at 6.2 pmol, there was a 79.0+/-3.9% peak inhibition of pentagastrin-stimulated acid secretion. Bombesin (6.2 pmol) injected into the dorsal motor nucleus reduced the acid response to pentagastrin by 29%. The parvicellular and gigantocellular reticular nuclei were not responsive to bombesin. These results indicate that bombesin acts in the VLRF to inhibit pentagastrin-stimulated gastric acid secretion through spinal pathways, suggesting a potential role of medullary VLRF area in the sympathetic control of gastric acid secretion.
Collapse
Affiliation(s)
- T Ishikawa
- CURE: Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, Department of Medicine, Digestive Diseases Division and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
185
|
Baird JP, Travers JB, Travers SP. Parametric analysis of gastric distension responses in the parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1568-80. [PMID: 11641130 DOI: 10.1152/ajpregu.2001.281.5.r1568] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the PBN. To more fully characterize gastric distension responses throughout the PBN, the responses of single units to gastric distension were tested using computer-controlled balloon inflation (3-18 ml air) in pentobarbital sodium- and/or urethan-anesthetized male rats. Distension-responsive neurons were indeed distributed throughout the nucleus from rostral areas typically considered to be visceral to more caudal areas associated with gustatory function, providing further anatomical support for the hypothesis that the PBN integrates taste and visceral signals that control feeding. Most PBN neurons had thresholds of 6 ml or less, similar to vagal afferent fibers. However, in contrast to the periphery, there were both excitatory and inhibitory responses. Increases in volume were associated with two distinct effects. First, as volume increased, the response rate increased; second, the duration of the response increased. In fact, in a subset of cells, responses to gastric distension lasted well beyond the stimulation period, particularly at larger volumes. Prolonged gastric distension responses are not common in the periphery and may constitute a central mechanism that contributes to satiation processes.
Collapse
Affiliation(s)
- J P Baird
- Oral Biology, College of Dentistry, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
186
|
Deng X, Guarita DR, Pedroso MR, Kreiss C, Wood PG, Sved AF, Whitcomb DC. PYY inhibits CCK-stimulated pancreatic secretion through the area postrema in unanesthetized rats. Am J Physiol Regul Integr Comp Physiol 2001; 281:R645-53. [PMID: 11448870 DOI: 10.1152/ajpregu.2001.281.2.r645] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide YY (PYY) inhibits CCK-8-secretin-stimulated pancreatic secretion in vivo. To investigate whether CCK-8-secretin-stimulated pancreatic secretion is mediated through a vago-vagal pathway and whether PYY inhibits this pathway through the area postrema (AP), chronic pancreatic, biliary, and duodenal catheters were implanted in AP-lesioned (APX) or sham-operated rats. The effects of APX on pancreatic secretion stimulated by bethanechol, pancreatic juice diversion (PJD), or CCK-8-secretin, were tested, with and without background PYY infusion, in unanesthetized rats. APX reduced basal pancreatic secretion by 15-20% (P < 0.01). APX had no effect on bethanechol-stimulated secretion and potentiated protein secretion stimulated by PJD (396 vs. 284%) and exogenous CCK-8-secretin. In sham-operated rats, background PYY potently inhibited CCK-8-secretin-stimulated pancreatic fluid (1.8 vs. 48.2%) and protein secretion (3.7 vs. 45.8%) but potentiated fluid (52.9 vs. 43.1%) and protein (132.9 vs. 68.9%) secretion in APX rats. Our findings demonstrate that PYY inhibits CCK-8-secretin-stimulated pancreatic secretion through an AP-dependent mechanism in sham-operated rats. The AP also contributes to basal pancreatic secretion.
Collapse
Affiliation(s)
- X Deng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Powley TL, Martinson FA, Phillips RJ, Jones S, Baronowsky EA, Swithers SE. Gastrointestinal projection maps of the vagus nerve are specified permanently in the perinatal period. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 129:57-72. [PMID: 11454413 DOI: 10.1016/s0165-3806(01)00183-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The vagal innervation of the proximal gastrointestinal (GI) tract is lateralized. To determine whether this pattern is specified as early as the perinatal period, neonatal rat pups were given unilateral cervical vagotomies. Separate groups received (1) transections below the left nodose ganglion, (2) left cervical resections that included removal of the nodose ganglion, or (3) sham surgeries. At 4 months of age, each animal's vagal afferent projections from the unoperated side were mapped by injecting the nodose with WGA-HRP, preparing the stomach as wholemounts, and processing the tissue with tetramethyl benzidine. The two types of vagal afferent endings in GI smooth muscle, namely intraganglionic laminar endings and intramuscular arrays, were surveyed separately, and their regional distributions were mapped. Changes in the nucleus of the solitary tract (NST) and dorsal motor nucleus of the vagus (DMNX) were assessed with cell counts and area measurements. Neonatal loss of the vagus innervating one side of the GI tract, with or without ganglionectomy, did not cause the unoperated vagus to sprout to the denervated side. In addition, removal of the projections to the one side of the target organ did not produce a reorganization of the projection maps of the unoperated vagus within its normal or ipsilateral wall of the GI tract. Although the regional patterns of the unoperated ipsilateral vagus were not affected, the packing densities of both types of afferents supplied by this trunk were moderately reduced. The DMNX of the vagotomized side displayed extensive (approximately 83%) neuronal loss; the DMNX on the unoperated side as well as the NST on both sides exhibited limited (approximately 20--25%) losses. The lack of a peripheral projection field reorganization -- except for a moderate down-regulation -- after complete unilateral denervation suggests that both the laterality and the afferent terminal phenotypes (or target tissues) of the vagus in the proximal GI tract are specified by postnatal day one in the rat. The present results, taken together with other observations, also suggest that three different combinations of signals orchestrate the commitments of vagal afferents respectively to (1) the side of the organ, (2) the region within the organ wall, and (3) the accessory and innervated tissues that complex with the fully differentiated ending.
Collapse
Affiliation(s)
- T L Powley
- Department of Psychological Sciences, Purdue University, 165 Peirce Hall, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Broberger C, Holmberg K, Shi TJ, Dockray G, Hökfelt T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 2001; 903:128-40. [PMID: 11382396 DOI: 10.1016/s0006-8993(01)02468-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cholecystokinin (CCK) is an important satiety factor, acting via the vagus nerve to influence central feeding centers. CCK binding sites have been demonstrated in the vagal sensory nodose ganglion and within the nerve proper. Using in situ hybridization, expression of the CCK(A) and (B) receptors (Rs), as well as of CCK itself, was studied in the normal nodose ganglion (NG), and after vagotomy, starvation and high-fat diet. CCK(A)-R mRNA expression in dorsal root ganglia (DRGs) was also explored. In the NG, 33% of the neuron profiles (NPs) contained CCK(A)-R mRNA and in 9% we observed CCK(B)-R mRNA. CCK mRNA was not found in normal NGs. Peripheral vagotomy decreased the number of CCK(A)-R mRNA-expressing NPs, dramatically increased the number of CCK(B)-R mRNA, and induced CCK mRNA and preproCCK-like immunoreactivity in nodose NPs. No significant differences in the number of NPs labelled for either mRNA species were detected following 48 h food deprivation or in rats fed a high-fat content diet. In DRGs, 10% of the NPs expressed CCK(A)-R mRNA, a number that was not affected by either axotomy or inflammation. This cell population was distinct from neurons expressing calcitonin gene-related peptide mRNA. These results demonstrate that the CCK(A)-R is expressed by both viscero- and somatosensory primary sensory neurons, supporting a role for this receptor as a mediator both of CCK-induced satiety and in sensory processing at the spinal level. The stimulation of CCK and CCK(B)-R gene expression following vagotomy suggests a possible involvement in the response to injury for these molecules.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Berzelius Väg 1, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
189
|
Browning KN, Travagli RA. Mechanism of action of baclofen in rat dorsal motor nucleus of the vagus. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1106-13. [PMID: 11352803 DOI: 10.1152/ajpgi.2001.280.6.g1106] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using whole cell patch-clamp recordings, we investigated the effects of the GABA(B) receptor agonist baclofen in thin slices of rat brain stem containing identified gastric- or intestinal-projecting dorsal motor nucleus of the vagus (DMV) neurons. Perfusion with baclofen (0.1-100 microM) induced a concentration-dependent outward current (EC(50), 3 microM) in 54% of DMV neurons with no apparent differences between gastric- and intestinal-projecting neurons. The outward current was attenuated by pretreatment with the selective GABA(B) antagonists saclofen and 2-hydroxysaclofen, but not by the synaptic blocker TTX, indicating a direct effect at GABA(B) receptors on DMV neurons. Using the selective ion channel blockers barium, nifedipine, and apamin, we showed that the outward current was due to effects on potassium and calcium currents as well as calcium-dependent potassium currents. The calcium-mediated components of the outward current were more prominent in intestinal-projecting neurons than in gastric-projecting neurons. These data indicate that although baclofen inhibits both intestinal- and gastric-projecting neurons in the rat DMV, its mechanism of action differs among the neuronal subpopulations.
Collapse
Affiliation(s)
- K N Browning
- Division of Gastroenterology, University of Michigan Medical Center, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
190
|
Trifunovic R, Reilly S. Medial versus lateral parabrachial nucleus lesions in the rat: effects on cholecystokinin- and D-fenfluramine-induced anorexia. Brain Res 2001; 894:288-96. [PMID: 11251203 DOI: 10.1016/s0006-8993(01)02037-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The two major components of the pontine parabrachial nucleus (PBN), the medial (gustatory) and lateral (visceral) subdivisions, have been implicated in a variety of ingestive behaviors. The present study examined the influence of bilateral ibotenic acid lesions of the medial or lateral PBN on the anorectic effects of two systemically administered drug treatments. In Experiment 1, 24-h food-deprived rats where injected with sulfated cholecystokinin (26-33) (CCK; 0, 4.0, or 8.0 microg/kg) and then given 60 min access to food. In Experiment 2, the influence of D-fenfluramine (DFEN; 0, 0.5, 1.0, or 2.0 mg/kg) on deprivation-induced feeding was examined in the same rats using the same behavioral procedure as in Experiment 1. Lesions of the lateral PBN abolished CCK-, but not DFEN-induced anorexia whereas lesions of the medial PBN augmented DFEN-, but had no influence on CCK-induced anorexia. The results suggest that the satiating effects of CCK and DFEN are mediated through different mechanisms involving, respectively, visceral and orosensory processing.
Collapse
Affiliation(s)
- R Trifunovic
- Department of Psychology, The University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
191
|
Hyland NP, Abrahams TP, Fuchs K, Burmeister MA, Hornby PJ. Organization and neurochemistry of vagal preganglionic neurons innervating the lower esophageal sphincter in ferrets. J Comp Neurol 2001; 430:222-34. [PMID: 11135258 DOI: 10.1002/1096-9861(20010205)430:2<222::aid-cne1027>3.0.co;2-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The motor control of the lower esophageal sphincter (LES) is critical for normal swallowing and emesis, as well as for the prevention of gastroesophageal reflux. However, there are surprisingly few data on the central organization and neurochemistry of LES-projecting preganglionic neurons. There are no such data in ferrets, which are increasingly being used to study LES relaxation. Therefore, we determined the location of preganglionic neurons innervating the ferret LES, with special attention to their relationship with gastric fundus-projecting neurons. The neurochemistry of LES-projecting neurons was also investigated using two markers of "nontraditional" neurotransmitters in vagal preganglionic neurons, nitric oxide synthase (NOS), and dopamine (tyrosine hydroxylase: TH). Injection of cholera toxin B subunit (CTB)-horseradish peroxidase (HRP) into the muscular wall of the LES-labeled profiles throughout the rostrocaudal extent of the dorsal motor nucleus of the vagus (DMN) The relative numbers of profiles in three regions of the DMN from caudal to rostral are, 43 +/- 5, 67 +/- 11, and 113 +/- 30). A similar rostrocaudal distribution occurred after injection into the gastric fundus. When CTB conjugated with different fluorescent tags was injected into the LES and fundus both labels were noted in 56 +/- 3% of LES-labeled profiles overall. This finding suggests an extensive coinnervation of both regions by vagal motor neurons. There were significantly fewer LES-labeled profiles that innervated the antrum (16 +/- 9%). In the rostral DMN, 15 +/- 4% of LES-projecting neurons also contained NADPH-diaphorase activity; however, TH immunoreactivity was never identified in LES-projecting neurons. This finding suggests that NO, but not catecholamine (probably dopamine), is synthesized by a population of LES-projecting neurons. We conclude that there are striking similarities between LES- and fundic-projecting preganglionic neurons in terms of their organization in the DMN, presence of NOS activity and absence of TH immunoreactivity. Coinnervation of the LES and gastric fundus is logical, because the LES has similar functions to the fundus, which relaxes to accommodate food during ingestion and preceding emesis, but has quite different functions from the antrum, which provides mixing and propulsion of contents for gastric emptying. The presence of NOS in some LES-projecting neurons may contribute to LES relaxation, as it does in the case of fundic relaxation. The neurologic linkage of vagal fundic and LES relaxation may have clinical relevance, because it helps explain why motor disorders of the LES and fundus frequently occur together.
Collapse
Affiliation(s)
- N P Hyland
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
192
|
Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura S. Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun 2001; 280:904-7. [PMID: 11162609 DOI: 10.1006/bbrc.2000.4212] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ghrelin is a novel acylated peptide that functions in the regulation of growth hormone release and energy metabolism. It was isolated from rat stomach as an endogenous ligand for growth hormone secretagogue receptor. Ghrelin is also localized in the arcuate nucleus of rat hypothalamus. Intracerebroventricular (ICV) administration increases food intake and body weight. We examined the effect of ghrelin on gastric acid secretion in urethane-anesthetized rats and found that ICV administration of ghrelin increased gastric acid output in a dose-dependent manner. Vagotomy and administration of atropine abolished the gastric acid secretion induced by ghrelin. ICV administration of ghrelin also induced c-fos expression in the neurons of the nucleus of the solitary tract and the dorsomotor nucleus of the vagus, which are key sites in the central nervous system for regulation of gastric acid secretion. Our results suggest that ghrelin participates in the central regulation of gastric acid secretion by activating the vagus system.
Collapse
Affiliation(s)
- Y Date
- Third Department of Internal Medicine, Miyazaki Medical College, Miyazaki 889-1692, Japan
| | | | | | | | | | | |
Collapse
|
193
|
Hermann GE, Emch GS, Tovar CA, Rogers RC. c-Fos generation in the dorsal vagal complex after systemic endotoxin is not dependent on the vagus nerve. Am J Physiol Regul Integr Comp Physiol 2001; 280:R289-99. [PMID: 11124163 DOI: 10.1152/ajpregu.2001.280.1.r289] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study used activation of the c-Fos oncogene protein within neurons in the dorsal vagal complex (DVC) as a marker of neuronal excitation in response to systemic endotoxin challenge [i.e. , lipopolysaccharide (LPS)]. Specifically, we investigated whether vagal connections with the brain stem are necessary for LPS cytokine- induced activation of DVC neurons. Systemic exposure to LPS elicited a significant activation of c-Fos in neurons in the nucleus of the solitary tract (NST) and area postrema of all thiobutabarbital-anesthetized rats examined, regardless of the integrity of their vagal nerves. That is, rats with both vagi cervically transected were still able to respond with c-Fos activation of neurons in the DVC. Unilateral cervical vagotomy produced a consistent but small reduction in c-Fos activation in the ipsilateral NST of all animals within this experimental group. Given that afferent input to the NST is exclusively excitatory, it is not surprising that unilateral elimination of all vagal afferents would diminish NST responsiveness (on the vagotomized side). These data lead us to conclude that the NST itself is a primary central nervous system detector of cytokines.
Collapse
Affiliation(s)
- G E Hermann
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
194
|
Emond M, Ladenheim EE, Schwartz GJ, Moran TH. Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 2001; 72:123-8. [PMID: 11239989 DOI: 10.1016/s0031-9384(00)00393-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Leptin affects food intake by reducing meal size, suggesting that it may modulate the efficacy of within-meal satiety signals. To assess whether leptin would amplify the feeding inhibitory actions of a nutrient gastric preload, we compared liquid diet food intake and patterns of c-Fos activation in response to intraventricular leptin (3.5 microg), intragastric Ensure (10 ml over 10 min), or their combination. Leptin alone did not affect Ensure intake but significantly increased the suppression of intake produced by the intragastric preload. Within the nucleus of the solitary tract (NTS), leptin alone did not stimulate c-Fos but significantly elevated the number of c-Fos positive cells in response to intragastric Ensure at medial and rostral levels. Within the paraventricular nucleus (PVN), both leptin and the gastric load stimulated c-Fos expression, but the combination resulted in significantly greater number of c-Fos positive cells. These data demonstrate that leptin modulates the feeding inhibition produced by meal-related signals and suggest that this modulation occurs at the levels of the NTS and PVN.
Collapse
Affiliation(s)
- M Emond
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Ross 618, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | | | | | | |
Collapse
|
195
|
Panteleev S, Grundy D. Descending influences from the infralimbic cortex on vago-vagal reflex control of gastric motor activity in the rat. Auton Neurosci 2000; 86:78-83. [PMID: 11269928 DOI: 10.1016/s1566-0702(00)00249-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In experiments on urethane anaesthetised rats the influence of electrical stimulation of ventral areas of the medial prefrontal cortex (mPFC) on spontaneous and vagally-mediated gastric motility were studied. Stimulation of the mPFC resulted in gastric relaxation manifested as a fall in intragastric pressure from a baseline value of 5.0 +/- 0.5 cm H2O. These were most prominent following a short latency when the infralimbic cortex (IL) was stimulated (27.4 +/- 2.5% fall in gastric pressure). Electrical stimulation of the central end of one cervical vagus nerve caused a comparable decrease in gastric pressure (27.1 +/- 2.9%). The cortical mediated relaxation was reduced by atropine and abolished by vagotomy. The cortically induced gastric relaxation followed a shorter latency (5.9 +/- 1.0 s), time to nadir (20.1 +/- 2.7 s) and the half recovery time (21.5 +/- 4.0 s) than vagally mediated-relaxations (9.9 +/- 2.3, 56.0 +/- 5.3 and 83.4 +/- 9.5 s, respectively). Vagally mediated relaxations were inhibited by simultaneous stimulation of the infralimbic cortex. In this case the decrease of gastric pressure, the time to nadir and the half recovery time were significantly decreased in comparison with the gastric relaxatory responses to vagal stimulation alone (P < 0.05). We conclude that one way in which the mPFC influences gastric motility is via corticofugal projections from the infralimbic cortex to the brain-stem which modulate transmission of vago-vagal reflexes.
Collapse
Affiliation(s)
- S Panteleev
- Laboratory of Cortico-visceral Physiology, I.P. Pavlov Institute of Physiology, n. Makarova, 6, St-Petersburg 199034, Russia.
| | | |
Collapse
|
196
|
Williams CL, Men D, Clayton EC. The effects of noradrenergic activation of the nucleus tractus solitarius on memory and in potentiating norepinephrine release in the amygdala. Behav Neurosci 2000; 114:1131-44. [PMID: 11142645 DOI: 10.1037/0735-7044.114.6.1131] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it is known that norepinephrine (NE) modulates memory by acting on limbic areas, few studies describe how structures supplying NE to the limbic system, such as the nucleus tractus solitarius (NTS) contribute to this process. The present study examined the effects on memory of activating the NE pathway between the NTS and the amygdala (AMYG). Rats received buffer or the beta-noradrenergic agonist clenbuterol (CLN; 10, 50, or 100 ng/0.5 microl) into the NTS after footshock training in a Y-maze discrimination task. Infusion of 100 ng CLN significantly improved memory when retention was tested in the absence or presence of cues associated with the footshock. Experiment 2 used in vivo microdialysis to determine whether the mnemonic effects of CLN are mediated by influencing NE output in the AMYG. Subjects were given an intra-NTS infusion of CLN or phosphate buffered saline, footshock (0.8 mA, 1 s), and injected with epinephrine (EPI; 0.3 mg/kg ip) or saline. CLN or EPI injection produced a significant increase in NE sampled from the AMYG. These findings indicate that activation of NTS neurons that project to and release NE in the AMYG modulates memory storage processing.
Collapse
Affiliation(s)
- C L Williams
- Department of Psychology, University of Virginia, Charlottesville 22904, USA.
| | | | | |
Collapse
|
197
|
Sang Q, Goyal RK. Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 2000; 119:1600-9. [PMID: 11113081 DOI: 10.1053/gast.2000.20234] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Isolated lower esophageal sphincter (LES) relaxation associated with belching and vomiting and the transient LES relaxation associated with gastroesophageal reflux are gastric afferent-mediated vagovagal reflexes. We aimed to identify the brain stem vagal subnuclei involved in these reflexes. METHODS In anesthetized mice, LES pressures were recorded using a manometric technique and response to electrical stimulation of the ventral trunk of subdiaphragmatic vagus was investigated. Anatomy of the vagal subnuclei was defined, and activated subnuclei with ventral subdiaphragmatic vagus stimulation were detected by c-fos immunohistochemical staining. RESULTS Ventral subdiaphragmatic vagal stimulation elicited frequency-dependent LES relaxation without evoking esophageal contractions and induced c-fos expression in interneurons in medial, dorsomedial, and commissural subnuclei along with outer shell of area postrema and motoneurons in the caudal dorsal motor nucleus of vagus. Brain stem subnuclei including interstitial, intermediate, and central subnuclei, and nucleus ambiguous, which have been reported to be involved in the response to swallowing, were not activated. CONCLUSIONS Stimulation of the ventral subdiaphragmatic vagus causes isolated LES relaxation and activates neurons in select vagal subnuclei that may represent the brain stem circuit involved in the abdominal vagal-afferent-evoked isolated LES relaxation. These observations suggest that different brain stem circuits are involved in swallow-induced and gastric afferent-mediated isolated LES relaxations.
Collapse
Affiliation(s)
- Q Sang
- Center for Swallowing and Motility Disorders, Department of Veterans Affairs Medical Center, West Roxbury, Massachusetts 02132, USA
| | | |
Collapse
|
198
|
Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci 2000; 84:8-18. [PMID: 11109985 DOI: 10.1016/s1566-0702(00)00176-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rats maintained on a high-fat diet (HF) reduce their food intake less in response to intestinal infusion of oleic acid than rats maintained on a low-fat diet (LF). Inhibition of gastric emptying by intestinal infusion of oleate also is attenuated in rats fed a high-fat diet. It is well documented that intestinal oleate reduces food intake and inhibits gastric emptying via vagal sensory neurons. In addition, activation of intrinsic myenteric neurons participates in oleate-induced changes in gastrointestinal motility. To determine whether diminished behavioral and gastric reflex responses to intestinal oleate infusion is accompanied by reduced vagal sensory and myenteric neuronal activation, we examined expression of Fos-like immunoreactivity (Fos-li) in the dorsal hindbrains and the small intestinal enteric plexuses of rats maintained on HF or LF, following, intraintestinal infusion of oleate (0.06 kcal/ml) or the oligosaccharide, maltotriose (0.26 kcal/ml). Following oleate infusion there was a dramatic increase in the number of Fos-li nuclei in the NTS and AP of LF rats but not in HF rats. There also were significantly more Fos-li neuronal nuclei in the upper small intestinal submucosal and myenteric plexuses of the LF rats than the HF rats. In contrast to the effects of oleate infusion, maltotriose infusion significantly and similarly increased Fos-li nuclei in the hindbrains of both LF and HF rats. The results indicate that adaptation to high-fat diet selectively reduces vagal and enteric neuronal sensitivity to intestinal oleate and suggests that reduced sensitivity to the satiation and gastric inhibitory effects of oleate in high-fat fed rats may be mediated by a selective reduction in the neuronal response to intestinal stimulation by fatty acid.
Collapse
Affiliation(s)
- M Covasa
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman 99164, USA.
| | | | | |
Collapse
|
199
|
Liubashina O, Jolkkonen E, Pitkänen A. Projections from the central nucleus of the amygdala to the gastric related area of the dorsal vagal complex: a Phaseolus vulgaris-leucoagglutinin study in rat. Neurosci Lett 2000; 291:85-8. [PMID: 10978580 DOI: 10.1016/s0304-3940(00)01392-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electrophysiological and anatomic studies suggest that the amygdala regulates gastrointestinal motility and gastric acid secretion via projections to the dorsal vagal complex. The topography of these projections is poorly understood. Here, these projections were investigated by injecting anterograde tracer, Phaseolus vulgaris-leucoagglutinin, into the different divisions of the central nucleus of the amygdala in 13 rats. The distribution of immunohistochemically labeled terminals in the different portions of the dorsal vagal complex was analyzed. We found that (1) the dorsal aspect of the medial division of the central nucleus provided moderate projections to the dorsal vagal complex; (2) the heaviest projections terminated in the parvicellular and medial divisions of the nucleus of the solitary tract. These data suggest that via topographically organized projections, the amygdala can modulate the vago-vagal gastrointestinal reflexes in emotional and stressful situations.
Collapse
Affiliation(s)
- O Liubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, nab. Makarova 6, 199034, St. Petersburg, Russia
| | | | | |
Collapse
|
200
|
Sequeira H, Viltart O, Ba-M'Hamed S, Poulain P. Cortical control of somato-cardiovascular integration: neuroanatomical studies. Brain Res Bull 2000; 53:87-93. [PMID: 11033212 DOI: 10.1016/s0361-9230(00)00312-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper will discuss experiments dedicated to the exploration of pathways linking the sensorimotor cortex (SMC) and the main bulbar nuclei involved in cardiovascular control: the nucleus tractus solitarius (NTS), the dorsal nucleus of the vagus (DMV) and the rostral ventrolateral medulla (RVLM). Results obtained through neurofunctional and neuroanatomical methods are presented in order to bring new answers to relevant points concerning somato-cardiovascular integration: firstly to show the ability of the SMC to influence neurons in bulbar cardiovascular nuclei, and secondly to identify pathways that transmit such influences. The neurofunctional approach, based on the identification of Fos-like immunoreactive neurons, indicated that the SMC has functional connections with cardiovascular bulbar nuclei. The neuroanatomical approach, which employed retrograde and anterograde axonal tracing methods, provided evidence of direct projections from the SMC to NTS/DMV and RVLM. Furthermore, experiments showed clearly that corticospinal neurons sent collaterals to bulbar cardiovascular nuclei, especially to the RVLM. Direct cortical projections to the NTS/DMV and the RVLM provide the anatomical basis for cortical influences on the baroreceptor reflex and sympathetic vasomotor mechanisms for blood pressure control, and support the hypothesis of cortical commands coupling somatic and cardiovascular outputs for action.
Collapse
Affiliation(s)
- H Sequeira
- Laboratoire de Neurosciences du Comportement, Université de Lille I, Villeneuve d'Ascq Cedex, France.
| | | | | | | |
Collapse
|