151
|
Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, Shen C, Chen WB, Tang FL, Lee D, Zhang JS, Mei L, Xiong WC. Critical Roles of Embryonic Born Dorsal Dentate Granule Neurons for Activity-Dependent Increases in BDNF, Adult Hippocampal Neurogenesis, and Antianxiety-like Behaviors. Biol Psychiatry 2021; 89:600-614. [PMID: 33183762 PMCID: PMC7889658 DOI: 10.1016/j.biopsych.2020.08.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Dentate gyrus (DG), a "gate" that controls information flow into the hippocampus, plays important roles in regulating both cognitive (e.g., spatial learning and memory) and mood behaviors. Deficits in DG neurons contribute to the pathogenesis of not only neurological, but also psychiatric, disorders, such as anxiety disorder. Whereas DG's function in spatial learning and memory has been extensively investigated, its role in regulating anxiety remains elusive. METHODS Using c-Fos to mark DG neuron activation, we identified a group of embryonic born dorsal DG (dDG) neurons, which were activated by anxiogenic stimuli and specifically express osteocalcin (Ocn)-Cre. We further investigated their functions in regulating anxiety and the underlying mechanisms by using a combination of chemogenetic, electrophysiological, and RNA-sequencing methods. RESULTS The Ocn-Cre+ dDG neurons were highly active in response to anxiogenic environment but had lower excitability and fewer presynaptic inputs than those of Ocn-Cre- or adult born dDG neurons. Activating Ocn-Cre+ dDG neurons suppressed anxiety-like behaviors and increased adult DG neurogenesis, whereas ablating or chronically inhibiting Ocn-Cre+ dDG neurons exacerbated anxiety-like behaviors, impaired adult DG neurogenesis, and abolished activity (e.g., voluntary wheel running)-induced anxiolytic effect and adult DG neurogenesis. RNA-sequencing screening for factors induced by activation of Ocn-Cre+ dDG neurons identified BDNF, which was required for Ocn-Cre+ dDG neurons mediated antianxiety-like behaviors and adult DG neurogenesis. CONCLUSIONS These results demonstrate critical functions of Ocn-Cre+ dDG neurons in suppressing anxiety-like behaviors but promoting adult DG neurogenesis, and both functions are likely through activation of BDNF.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Leena Milibari
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yang Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Chen Shen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Bing Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Fu-Lei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jun-Shi Zhang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio; Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia.
| |
Collapse
|
152
|
Wang Y, Yao L, Gao S, Zhang G, Zhang Q, Liu W, Zhou Y, Sun Y, Feng J, Liu J. Inhibition of striatal dopamine D 5 receptor attenuates levodopa-induced dyskinesia in a rat model of Parkinson's disease. Brain Res 2021; 1754:147266. [PMID: 33422541 DOI: 10.1016/j.brainres.2020.147266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/26/2020] [Indexed: 12/29/2022]
Abstract
Levodopa-induced dyskinesia (LID) is experienced by most patients of Parkinson's disease (PD) upon the long-term use of the dopamine precursor levodopa. Striatal dopaminergic signaling plays a critical role in the pathogenesis of LID through its interactions with dopamine receptors. The specific roles of striatal dopaminergic D5 receptors in the pathophysiological process of LID are still poorly established. In the study, we investigated the role of striatal dopamine D5 receptor in LID by using PD rats with or without dyskinetic symptoms after chronic levodopa administration. The experimental results showed that the expression level of D5 receptors in the sensorimotor striatum of dyskinetic rats is significantly higher than that of the non-dyskinetic controls. The administration of levodopa increased c-Fos expression in a subpopulation of sensorimotor striatum neurons of dyskinetic rats, but not in non-dyskinetic rats. The majority of the c-Fos+ neurons activated by levodopa in the striatum are positive for D5 receptor staining. Intrastriatal injection of D1-like (D1 and D5) dopamine receptor antagonist, SCH-23390, significantly inhibited dyskinetic behavior in dyskinetic rats after the injection of levodopa, meanwhile, intrastriatal administration of SKF-83959, a partial D5 receptor agonist, yielded significant dyskinetic movements in dyskinetic rats without levodopa. In contrast, intrastriatal perfusion of small interfering RNA directed against DRD5 downregulated D5 receptors expression and moderately inhibited dyskinetic behavior of dyskinetic animals. Our data suggested that the striatal dopamine D5 receptor might play a novel role in the pathophysiology of LID.
Collapse
Affiliation(s)
- Yong Wang
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| | - Lu Yao
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Shasha Gao
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Gejuan Zhang
- Department of Neurology, Xi'an No. 3 Hospital, Xi'an 710018, PR China
| | - Qiongchi Zhang
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wanyuan Liu
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yingqiong Zhou
- Undergraduate School, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yina Sun
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Jie Feng
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jian Liu
- Deptartment of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Institute of Neuroscience, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
153
|
Wnt signaling contributes to withdrawal symptoms from opioid receptor activation induced by morphine exposure or chronic inflammation. Pain 2021; 161:532-544. [PMID: 31738230 DOI: 10.1097/j.pain.0000000000001738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preventing and treating opioid dependence and withdrawal is a major clinical challenge, and the underlying mechanisms of opioid dependence and withdrawal remain elusive. We hypothesized that prolonged morphine exposure or chronic inflammation-induced μ-opioid receptor activity serves as a severe stress that elicits neuronal alterations and recapitulates events during development. Here, we report that Wnt signaling, which is important in developmental processes of the nervous system, plays a critical role in withdrawal symptoms from opioid receptor activation in mice. Repeated exposures of morphine or peripheral inflammation produced by intraplantar injection of complete Freund's adjuvant significantly increase the expression of Wnt5b in the primary sensory neurons in dorsal root ganglion (DRG). Accumulated Wnt5b in DRG neurons quickly transmits to the spinal cord dorsal horn (DH) after naloxone treatment. In the DH, Wnt5b, acts through the atypical Wnt-Ryk receptor and alternative Wnt-YAP/TAZ signaling pathways, contributing to the naloxone-precipitated opioid withdrawal-like behavioral symptoms and hyperalgesia. Inhibition of Wnt synthesis and blockage of Wnt signaling pathways greatly suppress the behavioral and neurochemical alterations after naloxone-precipitated withdrawal. These findings reveal a critical mechanism underlying naloxone-precipitated opioid withdrawal, suggesting that targeting Wnt5b synthesis in DRG neurons and Wnt signaling in DH may be an effective approach for prevention and treatment of opioid withdrawal syndromes, as well as the transition from acute to chronic pain.
Collapse
|
154
|
Xie L, Wu Q, Hu W, Wu X, Xiang G, Hao S, Guo H, Li S. Impact of histaminergic H3 receptor antagonist on hypoglossal nucleus in chronic intermittent hypoxia conditions. Psychopharmacology (Berl) 2021; 238:121-131. [PMID: 32964244 DOI: 10.1007/s00213-020-05663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/10/2020] [Indexed: 11/27/2022]
Abstract
RATIONALE The hypoglossal nucleus (HN) controls the movement of the genioglossus (GG) muscle whose dysfunction leads to airway occlusion and occurrence of obstructive sleep apnea (OSA). Histamine produced by the tuberomammillary nucleus (TMN) has a potent excitatory action on GG muscle activity. OBJECTIVES The aim of the study was to investigate the role histaminergic neurons play in the regulation of the genioglossus. METHODS C57BL/6 mice were exposed to chronic intermittent hypoxia (CIH) for 3 weeks to resemble OSA. The histamine H3 receptor (H3R) antagonist ciproxifan was applied to increase histamine in the brain. Histamine levels and GG activity were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and electromyogram (EMG) separately. Neuronal activity and repair ability of the HN and TMN and key proteins of histamine were analyzed by immunohistochemistry and western blots. RESULTS Significant decline of histamine level and GG activity of the HN and TMN induced by CIH exposure could be ameliorated by ciproxifan. Application of ciproxifan could also partly reverse the decline of the histidine decarboxylase (HDC) by CIH. CONCLUSIONS This investigation studied the impacts of ciproxifan on the HN and TMN in CIH conditions and revealed that the negative effects on the HN and TMN caused by CIH could be partly ameliorated by ciproxifan, which might open new perspectives for the development of pharmacological treatment for OSA.
Collapse
Affiliation(s)
- Liang Xie
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Guo
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd., Shanghai, 200032, China.
- Clinical Centre for Sleep Breathing Disorders and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
155
|
Chen ZF, Tian YS, Ma WH, Zhai JM. Gene expression changes in response to low temperatures in embryos of the kelp grouper, Epinephelus moara. Cryobiology 2020; 97:159-167. [PMID: 32628925 DOI: 10.1016/j.cryobiol.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/06/2023]
Abstract
The kelp grouper Epinephelus moara has high economic value and is popular in fisheries and aquaculture in China. In the previous study, we treated the embryos at 16-22 somite stage at 4 °C, -25.7 °C, -140 °C and -196 °C, and successfully obtained surviving embryos in each group. To better understand the molecular changes affected by the low temperatures, we conducted a comparative transcriptome analysis among embryos exposed at 4 °C for 30 min, embryos exposed at -25.7 °C for 30 min and the control group. qPCR assays were conducted for the validation. Signal transduction pathways were highly enriched for the differentially expressed genes. c-Fos, c-Jun, JunD, GADD45, involved in MAPK signaling pathway, were upregulated when embryos were treated at low temperatures. As immediate early genes, Egr-1a and b, and IER2, that respond quickly to the environment stress, their expression increased as well. Hsp70 showed similar expression pattern as immediate early genes. Meanwhile, transcription factors Sox, HES, TFIID, muscle movement and protein synthesis-related genes were downregulated. Taken together, our findings suggest that cooling disrupts gene expression patterns in E. moara embryos. The differentially expressed genes may be involved in cellular resistance against low temperatures, possibly through neural activation, apoptosis, proliferation, differentiation, cellular recovery and heat shock regulation. This study also provides transcriptome dataset of E. moara embryos exposed to cold temperatures for future studies focusing on the molecular effects of cryopreservation.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yong-Sheng Tian
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Wen-Hui Ma
- Ming Bo Aquatic Co. Ltd., Laizhou, 261400, China
| | | |
Collapse
|
156
|
Haney WA, Moussaoui B, Strother JA. Prolonged exposure to stressors suppresses exploratory behavior in zebrafish larvae. J Exp Biol 2020; 223:jeb224964. [PMID: 33106298 DOI: 10.1242/jeb.224964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/19/2020] [Indexed: 11/20/2022]
Abstract
Environmental stressors induce rapid physiological and behavioral shifts in vertebrate animals. However, the neurobiological mechanisms responsible for stress-induced changes in behavior are complex and not well understood. Similar to mammalian vertebrates, zebrafish adults display a preference for dark environments that is associated with predator avoidance, enhanced by stressors, and broadly used in assays for anxiety-like behavior. Although the larvae of zebrafish are a prominent model organism for understanding neural circuits, few studies have examined the effects of stressors on their behavior. This study examines the effects of noxious chemical and electric shock stressors on locomotion and light preference in zebrafish larvae. We found that both stressors elicited similar changes in behavior. Acute exposure induced increased swimming activity, while prolonged exposure depressed activity. Neither stressor produced a consistent shift in light-dark preference, but prolonged exposure to these stressors resulted in a pronounced decrease in exploration of different visual environments. We also examined the effects of exposure to a noxious chemical cue using whole-brain calcium imaging, and identified neural correlates in the area postrema, an area of the hindbrain containing noradrenergic and dopaminergic neurons. Pharmaceutical blockade experiments showed that α-adrenergic receptors contribute to the behavioral response to an acute stressor but are not necessary for the response to a prolonged stressor. These results indicate that zebrafish larvae have complex behavioral responses to stressors comparable to those of adult animals, and also suggest that these responses are mediated by similar neural pathways.
Collapse
Affiliation(s)
- William A Haney
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Bushra Moussaoui
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - James A Strother
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
157
|
Uselman TW, Barto DR, Jacobs RE, Bearer EL. Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 2020; 222:116975. [PMID: 32474079 PMCID: PMC7805483 DOI: 10.1016/j.neuroimage.2020.116975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.
Collapse
Affiliation(s)
- Taylor W Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel R Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA, USA; California Institute of Technology, Pasadena, CA, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
158
|
Neuronal activity-dependent myelin repair promotes motor function recovery after contusion spinal cord injury. Brain Res Bull 2020; 166:73-81. [PMID: 33197536 DOI: 10.1016/j.brainresbull.2020.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
An increasing number of studies connect neuronal activity with developmental myelination but how neuronal activity regulates remyelination has not been clarified. In this study, we induced the demyelination of the dorsal corticospinal tract (dCST) by a mild contusion spinal cord injury (SCI) on the T10 segment, and manipulated the neuronal activity of the primary motor cortex (M1) using chemogenetic viruses to induce activity and to suppress it. We found that oligodendrocyte precursor cell (OPC) proliferation and oligodendrocyte maturity following remyelination was strengthened after 4-week of neuronal activity stimulation. Furthermore, hindlimb motor function was also found to be improved. Vice versa, suppression of neuronal activity attenuated these effects. These results indicate that bidirectional regulation of neuronal activity can effectively modulate the development of oligodendrocyte lineage cells and the remyelination process. Neuronal activity supports the proliferation of OPCs, improves oligodendrocyte maturation and amplifies the axonal remyelination process, even though leads to better motor function recovery. Manipulation of neuronal activity in a non-invasive manner is therefore a promising avenue for exploration towards the treatment of central nervous system (CNS) demyelination diseases.
Collapse
|
159
|
Barson JR, Mack NR, Gao WJ. The Paraventricular Nucleus of the Thalamus Is an Important Node in the Emotional Processing Network. Front Behav Neurosci 2020; 14:598469. [PMID: 33192373 PMCID: PMC7658442 DOI: 10.3389/fnbeh.2020.598469] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has for decades been acknowledged to be an important node in the limbic system, but studies of emotional processing generally fail to incorporate it into their investigational framework. Here, we propose that the PVT should be considered as an integral part of the emotional processing network. Through its distinct subregions, cell populations, and connections with other limbic nuclei, the PVT participates in both major features of emotion: arousal and valence. The PVT, particularly the anterior PVT, can through its neuronal activity promote arousal, both as part of the sleep-wake cycle and in response to novel stimuli. It is also involved in reward, being both responsive to rewarding stimuli and itself affecting behavior reflecting reward, likely via specific populations of cells distributed throughout its subregions. Similarly, neuronal activity in the PVT contributes to depression-like behavior, through yet undefined subregions. The posterior PVT in particular demonstrates a role in anxiety-like behavior, generally promoting but also inhibiting this behavior. This subregion is also especially responsive to stressors, and it functions to suppress the stress response following chronic stress exposure. In addition to participating in unconditioned or primary emotional responses, the PVT also makes major contributions to conditioned emotional behavior. Neuronal activity in response to a reward-predictive cue can be detected throughout the PVT, and endogenous activity in the posterior PVT strongly predicts approach or seeking behavior. Similarly, neuronal activity during conditioned fear retrieval is detected in the posterior PVT and its activation facilitates the expression of conditioned fear. Much of this involvement of the PVT in arousal and valence has been shown to occur through the same general afferents and efferents, including connections with the hypothalamus, prelimbic and infralimbic cortices, nucleus accumbens, and amygdala, although a detailed functional map of the PVT circuits that control emotional responses remains to be delineated. Thus, while caveats exist and more work is required, the PVT, through its extensive connections with other prominent nuclei in the limbic system, appears to be an integral part of the emotional processing network.
Collapse
Affiliation(s)
- Jessica R. Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | | | | |
Collapse
|
160
|
Guadagno A, Verlezza S, Long H, Wong TP, Walker CD. It Is All in the Right Amygdala: Increased Synaptic Plasticity and Perineuronal Nets in Male, But Not Female, Juvenile Rat Pups after Exposure to Early-Life Stress. J Neurosci 2020; 40:8276-8291. [PMID: 32978287 PMCID: PMC7577595 DOI: 10.1523/jneurosci.1029-20.2020] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Early-life stress (ELS) is associated with increased vulnerability to mental disorders. The basolateral amygdala (BLA) plays a critical role in fear conditioning and is extremely sensitive to ELS. Using a naturalistic rodent model of ELS, the limited bedding paradigm (LB) between postnatal days 1-10, we previously documented that LB male, but not female preweaning rat pups display increased BLA neuron spine density paralleled with enhanced evoked synaptic responses and altered BLA functional connectivity. Since ELS effects are often sexually dimorphic and amygdala processes exhibit hemispheric asymmetry, we investigated changes in synaptic plasticity and neuronal excitability of BLA neurons in vitro in the left and right amygdala of postnatal days 22-28 male and female offspring from normal bedding or LB mothers. We report that LB conditions enhanced synaptic plasticity in the right, but not the left BLA of males exclusively. LB males also showed increased perineuronal net density, particularly around parvalbumin (PV) cells, and impaired fear-induced activity of PV interneurons only in the right BLA. Action potentials fired from right BLA neurons of LB females displayed slower maximal depolarization rates and decreased amplitudes compared with normal bedding females, concomitant with reduced NMDAR GluN1 subunit expression in the right BLA. In LB males, reduced GluA2 expression in the right BLA might contribute to the enhanced LTP. These findings suggest that LB differentially programs synaptic plasticity and PV/perineuronal net development in the left and right BLA. Furthermore, our study demonstrates that the effects of ELS exposure on BLA synaptic function are sexually dimorphic and possibly recruiting different mechanisms.SIGNIFICANCE STATEMENT Early-life stress (ELS) induces long-lasting consequences on stress responses and emotional regulation in humans, increasing vulnerability to the development of psychopathologies. The effects of ELS in a number of brain regions, including the amygdala, are often sexually dimorphic, and have been reproduced using the rodent limited bedding paradigm of early adversity. The present study examines sex differences in synaptic plasticity and cellular activation occurring in the developing left and right amygdala after limited bedding exposure, a phenomenon that could shape long-term emotional behavioral outcomes. Studying how ELS selectively produces effects in one amygdala hemisphere during a critical period of brain development could guide further investigation into sex-dependent mechanisms and allow for more targeted and improved treatment of stress-and emotionality-related disorders.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
| | - Tak Pan Wong
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, Quebec, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A 0G4, Canada
| |
Collapse
|
161
|
Hsieh YL, Wu BT, Yang CC. Increased substance P-like immunoreactivities in parabrachial and amygdaloid nuclei in a rat model with masticatory myofascial pain. Exp Brain Res 2020; 238:2845-2855. [PMID: 33047182 DOI: 10.1007/s00221-020-05942-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/01/2020] [Indexed: 11/26/2022]
Abstract
This study explores the involvement of substance P (SP) in the parabrachial nucleus (PBN) and central amygdaloid nucleus (CeA) in the nociception-emotion link and of rats with masticatory myofascial pain (MMP) induced by chronic tetanic eccentric muscle contraction. A total of 18 rats were randomly and equally assigned for MMP (MMP group) and sham-MMP induction (sMMP group). MMP was induced by electrical-stimulated repetitive tetanic eccentric contraction of the masseter muscle for 14 consecutive days. Myofascial trigger points in the masseter muscle were identified by palpable taut bands, increased prevalence of endplate noise (EPN), focal hypoechoic nodules on ultrasound and restricted jaw opening. All animals were killed for morphological and SP immunohistochemical analyses. Chronic tetanic eccentric contraction induced significantly thicker masseter muscle confirmed by hypoechogenicity, increased prevalence and amplitudes of EPN, and limited jaw opening. Immunohistochemically, the SP-like positive neurons increased significantly in PBN and CeA of the MMP group. Our results suggested that MMP increases the SP protein levels in PBN and CeA, which play important roles in MMP-mediated chronic pain processing as well as MMP-related emotional processes.
Collapse
Affiliation(s)
- Yueh-Ling Hsieh
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chen-Chia Yang
- Kao-An Physical Medicine and Rehabilitation Clinic, Taichung, Taiwan
| |
Collapse
|
162
|
Stanisavljević A, Perić I, Gass P, Inta D, Lang UE, Borgwardt S, Filipović D. Fluoxetine modulates neuronal activity in stress-related limbic areas of adult rats subjected to the chronic social isolation. Brain Res Bull 2020; 163:95-108. [DOI: 10.1016/j.brainresbull.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
|
163
|
Regmi B, Shah MK. Possible implications of animal models for the assessment of visceral pain. Animal Model Exp Med 2020; 3:215-228. [PMID: 33024943 PMCID: PMC7529330 DOI: 10.1002/ame2.12130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Acute pain, provoked generally after the activation of peripheral nociceptors, is an adaptive sensory function that alerts the individual to avoid noxious stimuli. However, uncontrolled acute pain has a maladaptive role in sensory activity leading to development of a chronic pain state which persists even after the damage is resolved, or in some cases, in the absence of an initial local acute injury. Huge numbers of people suffer from visceral pain at least once during their life span, leading to substantial health care costs. Although studies reporting on the mechanism of visceral pain are accumulating, it is still not precisely understood. Therefore, this review aims to elucidate the mechanism of visceral pain through an evaluation of different animal models and their application to develop novel therapeutic approaches for treating visceral pain. To assess the nociceptive responses in viscera, several visceral pain models such as inflammatory, traction, stress and genetic models utilizing different methods of measurement have been devised. Among them, the inflammatory and traction models are widely used for studying the visceral pain mechanism of different disease conditions and post-operative surgery in humans and animals. A hapten, 2,4,6-trinitrobenzene sulfonic acid (TNBS), has been extensively used as an inflammatory agent to induce visceral pain. The traction model seems to cause a strong pain stimulation and autonomic reaction and could thus be the most appropriate model for studying the underlying visceral pain mechanism and for probing the therapeutic efficacies of various anesthetic and analgesics for the treatment of visceral pain and hyperalgesia.
Collapse
Affiliation(s)
- Bharata Regmi
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| | - Manoj K Shah
- Department of Surgery and Pharmacology Agriculture and Forestry University (AFU) Rampur Chitwan Nepal
| |
Collapse
|
164
|
Yang L, Ton H, Zhao R, Geron E, Li M, Dong Y, Zhang Y, Yu B, Yang G, Xie Z. Sevoflurane induces neuronal activation and behavioral hyperactivity in young mice. Sci Rep 2020; 10:11226. [PMID: 32641746 PMCID: PMC7343864 DOI: 10.1038/s41598-020-66959-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/28/2020] [Indexed: 12/25/2022] Open
Abstract
Sevoflurane, a commonly used anesthetic, may cause agitation in patients. However, the mechanism underlying this clinical observation remains largely unknown. We thus assessed the effects of sevoflurane on neuronal activation and behaviors in mice. Ten-day-old mice received 2% sevoflurane, 1% isoflurane, or 6% desflurane for 10 minutes. The behavioral activities were recorded and evaluated at one minute after the loss of righting reflex in the mice, which was about two minutes after the anesthetic administration. The neuronal activation was evaluated by c-Fos expression and calcium imaging at one minute after the anesthetic administration. Propofol, which reduces neuronal activation, was used to determine the cause-and-effect of sevoflurane. We found that sevoflurane caused an increase in neuronal activation in primary somatosensory cortex of young mice and behavioral hyperactivity in the mice at one minute after the loss of righting reflex. Desflurane did not induce behavioral hyperactivity and isoflurane only caused behavioral hyperactivity with borderline significance. Finally, propofol attenuated the sevoflurane-induced increase in neuronal activation and behavioral hyperactivity in young mice. These results demonstrate an unexpected sevoflurane-induced increase in neuronal activation and behavioral hyperactivity in young mice. These findings suggest the potential mechanisms underlying the sevoflurane-induced agitation and will promote future studies to further determine whether anesthetics can induce behavioral hyperactivity via increasing neuronal activation.
Collapse
Affiliation(s)
- Lei Yang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, P. R. China.,Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Hoai Ton
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Ruohe Zhao
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Erez Geron
- Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Mengzhu Li
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.,Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yuanlin Dong
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Buwei Yu
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, P. R. China
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine; Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA.
| |
Collapse
|
165
|
Mohandass A, Krishnan V, Gribkova ED, Asuthkar S, Baskaran P, Nersesyan Y, Hussain Z, Wise LM, George RE, Stokes N, Alexander BM, Cohen AM, Pavlov EV, Llano DA, Zhu MX, Thyagarajan B, Zakharian E. TRPM8 as the rapid testosterone signaling receptor: Implications in the regulation of dimorphic sexual and social behaviors. FASEB J 2020; 34:10887-10906. [PMID: 32609392 PMCID: PMC7496617 DOI: 10.1096/fj.202000794r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/20/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023]
Abstract
Testosterone regulates dimorphic sexual behaviors in all vertebrates. However, the molecular mechanism underlying these behaviors remains unclear. Here, we report that a newly identified rapid testosterone signaling receptor, Transient Receptor Potential Melastatin 8 (TRPM8), regulates dimorphic sexual and social behaviors in mice. We found that, along with higher steroid levels in the circulation, TRPM8-/- male mice exhibit increased mounting frequency indiscriminate of sex, delayed sexual satiety, and increased aggression compared to wild-type controls, while TRPM8-/- females display an increased olfaction-exploratory behavior. Furthermore, neuronal responses to acute testosterone application onto the amygdala were attenuated in TRPM8-/- males but remained unchanged in females. Moreover, activation of dopaminergic neurons in the ventral tegmental area following mating was impaired in TRPM8-/- males. Together, these results demonstrate that TRPM8 regulates dimorphic sexual and social behaviors, and potentially constitutes a signalosome for mediation of sex-reward mechanism in males. Thus, deficiency of TRPM8 might lead to a delayed sexual satiety phenomenon.
Collapse
Affiliation(s)
- Adithya Mohandass
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Vivek Krishnan
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Ekaterina D Gribkova
- Department of Molecular and Integrative Physiology, Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Padmamalini Baskaran
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Yelena Nersesyan
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Zahir Hussain
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA.,Department of Physiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Leslie M Wise
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Robert E George
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Nadarra Stokes
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | | | - Alejandro M Cohen
- Biological Mass Spectrometry Core Facility, Life Sciences Research Institute, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Evgeny V Pavlov
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, Neuroscience Program and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Baskaran Thyagarajan
- College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Eleonora Zakharian
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| |
Collapse
|
166
|
Lin YJ, Chiou RJ, Chang CH. The Reuniens and Rhomboid Nuclei Are Required for Acquisition of Pavlovian Trace Fear Conditioning in Rats. eNeuro 2020; 7:ENEURO.0106-20.2020. [PMID: 32527745 PMCID: PMC7317181 DOI: 10.1523/eneuro.0106-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
The reuniens (Re) and rhomboid (Rh) nuclei (ReRh) of the midline thalamus interconnects the hippocampus (HPC) and the medial prefrontal cortex (mPFC). Several studies have suggested that the ReRh participates in various cognitive tasks. However, little is known about the contribution of the ReRh in Pavlovian trace fear conditioning, a procedure with a temporal gap between the conditioned stimulus (CS) and the unconditioned stimulus (US), and therefore making it harder for the animals to acquire. Because the HPC and mPFC are involved in trace, but not delay, fear conditioning and given the role of the ReRh in mediating this neurocircuitry, we hypothesized that ReRh inactivation leads to a learning deficit only in trace conditioning. In a series of experiments, we first examined the c-Fos expression in male Long-Evans rats and established that the ReRh was recruited in the encoding, but not the retrieval phase, of fear memory. Next, we performed behavioral pharmacology experiments and found that ReRh inactivation impaired only the acquisition, but not the consolidation or retrieval, of trace fear. However, although the ReRh was recruited during the encoding of delay fear demonstrated by c-Fos results, ReRh inactivation in any phases did not interfere with delay conditioning. Finally, we found that trace fear acquired under ReRh inactivation reprised when the ReRh was brought off-line during retrieval. Together, our data revealed the essential role of the ReRh in a learning task with temporally discontinuous stimuli.
Collapse
Affiliation(s)
- Yu-Ju Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Jen Chiou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
167
|
Yatziv SL, Yudco O, Dickmann S, Devor M. Patterns of neural activity in the mouse brain: Wakefulness vs. General anesthesia. Neurosci Lett 2020; 735:135212. [PMID: 32593772 DOI: 10.1016/j.neulet.2020.135212] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
In light of the general shift from rats to mice as the leading rodent model in neuroscience research we used c-Fos expression as a tool to survey brain regions in the mouse in which neural activity differs between the states of wakefulness and pentobarbital-induced general anesthesia. The aim was to complement prior surveys carried out in rats. In addition to a broad qualitative review, 28 specific regions of interest (ROIs) were evaluated quantitatively. Nearly all ROIs in the cerebral cortex showed suppressed activity during anesthesia. Subcortically, however, some ROIs showed suppression, some showed little change, and some showed increased activity. The overall picture was similar to the rat. Special attention was devoted to ROIs significantly activated during anesthesia, as such loci might actively drive the transition to anesthetic unconsciousness rather than responding passively to inhbitory agents distributed globally (the "wet blanket" hypothesis). Twelve such "anesthesia-on" ROIs were identified: the paraventricular hypothalamic nucleus, supraoptic nucleus, tuberomamillary nucleus, lateral habenular nucleus, dentate gyrus, nucleus raphe pallidus, central amygdaloid nucleus, perifornical lateral hypothalamus, ventro-lateral preoptic area, lateral septum, paraventricular thalamic nucleus and zona incerta. The same primary anti-FOS antibody was used in all mice, but two alternative reporter systems were employed: ABC-diaminobenzidine and the currently more popular AlexaFluor488. Fluorescence tagging revealed far fewer FOS-immunoreactive neurons, sounding an alert that the reporter system chosen can have major effects on results obtained.
Collapse
Affiliation(s)
- Shai-Lee Yatziv
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Or Yudco
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Shay Dickmann
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; Center for Research on Pain, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
168
|
Barker JS, Hines RM. Regulation of GABA A Receptor Subunit Expression in Substance Use Disorders. Int J Mol Sci 2020; 21:ijms21124445. [PMID: 32580510 PMCID: PMC7352578 DOI: 10.3390/ijms21124445] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/02/2023] Open
Abstract
The modulation of neuronal cell firing is mediated by the release of the neurotransmitter GABA (γ-aminobuytric acid), which binds to two major families of receptors. The ionotropic GABAA receptors (GABAARs) are composed of five distinct subunits that vary in expression by brain region and cell type. The action of GABA on GABAARs is modulated by a variety of clinically and pharmacologically important drugs such as benzodiazepines and alcohol. Exposure to and abuse of these substances disrupts homeostasis and induces plasticity in GABAergic neurotransmission, often via the regulation of receptor expression. Here, we review the regulation of GABAAR subunit expression in adaptive and pathological plasticity, with a focus on substance use. We examine the factors influencing the expression of GABAAR subunit genes including the regulation of the 5′ and 3′ untranslated regions, variations in DNA methylation, immediate early genes and transcription factors that regulate subunit expression, translational and post-translational modifications, and other forms of receptor regulation beyond expression. Advancing our understanding of the factors regulating GABAAR subunit expression during adaptive plasticity, as well as during substance use and withdrawal will provide insight into the role of GABAergic signaling in substance use disorders, and contribute to the development of novel targeted therapies.
Collapse
|
169
|
In Vivo Attenuation of M-Current Suppression Impairs Consolidation of Object Recognition Memory. J Neurosci 2020; 40:5847-5856. [PMID: 32554550 DOI: 10.1523/jneurosci.0348-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 06/06/2020] [Indexed: 11/21/2022] Open
Abstract
The M-current is a low voltage-activated potassium current generated by neuronal Kv7 channels. A prominent role of the M-current is to a create transient increase of neuronal excitability in response to neurotransmitters through the suppression of this current. Accordingly, M-current suppression is assumed to be involved in higher brain functions including learning and memory. However, there is little evidence supporting such a role to date. To address this gap, we examined behavioral tasks to assess learning and memory in homozygous Kv7.2 knock-in mice, Kv7.2(S559A), which show reduced M-current suppression while maintaining a normal basal M-current activity in neurons. We found that Kv7.2(S559A) mice had normal object location memory and contextual fear memory, but impaired long-term object recognition memory. Furthermore, short-term memory for object recognition was intact in Kv7.2(S559A) mice. The deficit in long-term object recognition memory was restored by the administration of a selective Kv7 channel inhibitor, XE991, when delivered during the memory consolidation phase. Lastly, c-Fos induction 2 h after training in Kv7.2(S559A) mice was normal in the hippocampus, which corresponds to intact object location memory, but was reduced in the perirhinal cortex, which corresponds to impaired long-term object recognition memory. Together, these results support the overall conclusion that M-current suppression is important for memory consolidation of specific types of memories.SIGNIFICANCE STATEMENT Dynamic regulation of neuronal excitation is a fundamental mechanism for information processing in the brain, which is mediated by changes in synaptic transmissions or by changes in ion channel activity. Some neurotransmitters can facilitate action potential firing by suppression of a low voltage-activated potassium current, M-current. We demonstrate that M-current suppression is critical for establishment of long-term object recognition memory, but is not required for establishment of hippocampus-dependent location memory or contextual memory. This study suggests that M-current suppression is important for stable encoding of specific types of memories.
Collapse
|
170
|
Yao S, Liu Y, Cui S, Li H, Ji C, Yuan S, Ye Q, Zhang Y, Xu N. Effect of Different Frequencies of Electroacupuncture on Post-Stroke Dysphagia in Mice. J Mol Neurosci 2020; 70:1871-1879. [PMID: 32519209 DOI: 10.1007/s12031-020-01580-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the optimum frequency of electroacupuncture (EA) for the treatment of dysphagia after stroke. Male C57BL/6 J mice were randomly divided into five groups: normal, model, 2 Hz, 50 Hz, and 100 Hz groups. All mice received a photochemical ischemia, except the normal group. The EA parameters were 1 mA for 15 min, with different frequencies (2, 50, and 100 Hz) applied. After a three day treatment, neuronal activation was detected by the expression of c-Fos. A multi-channel electrophysiological technique was used to assess the discharge of contralateral neurons and the neuron types in each group. The concentration of brain-derived neurotrophic factor (BDNF) in the contralateral neurons was also examined. In addition, the dysfunction of swallowing in mice was calculated according to the lick counts and the lick-lick interval within a certain period of time. The number of c-Fos neurons (P < 0.05) and the expression of BDNF (P < 0.05) increased after the 2 Hz EA treatment. The total frequency of neuron discharge in the 2 Hz group increased compared with the model group (P < 0.05). The pattern of sorted neuron populations was similar between the normal and 2 Hz groups. Consistent with these results, the lick counts increased (P < 0.05) and the lick-lick interval decreased after the 2 Hz EA treatment, which indicated a functional improvement in swallowing. These results indicated that the 2 Hz EA treatment had a good effect on dysphagia after stroke.
Collapse
Affiliation(s)
- Shuqi Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yun Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Shuai Cui
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Hongzhu Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Chang Ji
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Si Yuan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Qiuping Ye
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Yu Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, 232 East Ring Road, Panyu District, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
171
|
Moshitzky G, Shoham S, Madrer N, Husain AM, Greenberg DS, Yirmiya R, Ben-Shaul Y, Soreq H. Cholinergic Stress Signals Accompany MicroRNA-Associated Stereotypic Behavior and Glutamatergic Neuromodulation in the Prefrontal Cortex. Biomolecules 2020; 10:E848. [PMID: 32503154 PMCID: PMC7355890 DOI: 10.3390/biom10060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.
Collapse
Affiliation(s)
- Gilli Moshitzky
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Shai Shoham
- Herzog Medical Center, Givat Shaul, P.O. Box 3900, Jerusalem 9103702, Israel;
| | - Nimrod Madrer
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Amir Mouhammed Husain
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - David S. Greenberg
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel;
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| |
Collapse
|
172
|
Liu Q, Liu Y, Bian J, Li Q, Zhang Y. The preemptive analgesia of pre-electroacupuncture in rats with formalin-induced acute inflammatory pain. Mol Pain 2020; 15:1744806919866529. [PMID: 31322476 PMCID: PMC6685110 DOI: 10.1177/1744806919866529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Electroacupuncture has been elicited to effectively alleviate the pain sensation. Preemptive analgesic effect of pre-electroacupuncture has also been suggested in recent studies, while the underlying analgesic mechanism of pre-electroacupuncture requires further investigation. This study aimed to explore the preemptive analgesia of pre-electroacupuncture in formalin-induced acute inflammatory pain model. Methods Forty rats were randomly divided into control, model, pre-electroacupuncture, and post-electroacupuncture group. Inflammatory pain model was induced via injecting 50 µl 5% formalin into the plantar surface of right hind paw, while the equal volume of saline injection in the control group. Rats in the pre-electroacupuncture group were treated with electroacupuncture at ipsilateral Zusanli (ST36) and Weizhong (BL40) acupoints (2 Hz, 1 mA) for 30 min before formalin injection, while received the same electroacupuncture treatment immediately after formalin injection in the post-electroacupuncture group. Flinching number and licking time were recorded during 60 min after formalin injection. Immunofluorescence and Western blot were used to detect the expression of ionized calcium binding adapter molecule 1 (Iba1) and c-fos in spinal cord. Moreover, enzyme-linked immunosorbent assay was applied to measure the secretion of IL-6, IFN-γ, IL-4, substance P, and calcitonin gene-related peptide in spinal cord. Results Paw flinching and licking were obviously induced by formalin injection. Iba1, c-fos, proinflammatory cytokines (IL-6 and IFN-γ), and pain neurotransmitters (substance P and calcitonin gene-related peptide) were dramatically increased in the L4-5 spinal cord after formalin injection, while anti-inflammatory cytokine IL-4 was decreased. Pre-electroacupuncture and post-electroacupuncture administration significantly attenuated formalin-induced nociceptive effects, spinal microglia and neurons activation, proinflammatory cytokines and pain neurotransmitters upregulation, and upregulated the anti-inflammatory cytokine. Furthermore, these effects of pre-electroacupuncture were more significant than that of post-electroacupuncture. Conclusions This study illustrates the potential therapeutic effect of pre-electroacupuncture against acute inflammatory pain and reveals the mechanism underlying pre-electroacupuncture mediated analgesia, thus providing a novel preemptive analgesic treatment.
Collapse
Affiliation(s)
- Qing Liu
- 1 Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Liu
- 1 Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiang Bian
- 1 Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qun Li
- 1 Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
173
|
Deep brain stimulation as a possible treatment of hyperthermia in patients with serotonin syndrome. Med Hypotheses 2020; 139:109704. [DOI: 10.1016/j.mehy.2020.109704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
|
174
|
Yoon HH, Nam MH, Choi I, Min J, Jeon SR. Optogenetic inactivation of the entopeduncular nucleus improves forelimb akinesia in a Parkinson's disease model. Behav Brain Res 2020; 386:112551. [PMID: 32057827 DOI: 10.1016/j.bbr.2020.112551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 11/28/2022]
Abstract
We performed optogenetic inactivation of rats' entopeduncular nucleus (EP, homologous to primates' globus pallidus interna (GPi)) and investigated the therapeutic effect in a rat model of PD. 6-Hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats were injected with either a virus for halorhodopsin expression that is used to inactivate GABAergic neurons or a control virus injection and received optic fiber insertion. All the rats were illuminated by 590 nm of light. Each rat was then subjected to sequential sessions of stepping tests under controlled illumination patterns. The stepping test is a reliable evaluation method for forelimb akinesia. The number of adjusting steps was significantly higher in experimental (optogene with reporter gene expression) (5Hz - 10ms: 15.7 ± 1.9, 5Hz - 100ms: 16.0 ± 1.8, continuous: 21.6 ± 1.9) than control rats (reporter gene expression) (5Hz-10ms: 1.9 ± 1.1, 5Hz-100ms: 2.6 ± 1.0, continuous: 2.5 ± 1.2) (p < 0.001). Continuous EP illumination showed a significantly higher improvement of forelimb akinesia than other illumination patterns (p < 0.01). Optogene expression in the GABAergic neurons of the EP was confirmed by immunohistochemistry. Optogenetic inhibition of EP was effective to improve contralateral forelimb akinesia. However, further studies using prolonged illumination are needed to investigate the best illumination pattern for optogenetic stimulation.
Collapse
Affiliation(s)
- Hyung Ho Yoon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Il Choi
- Department of Neurosurgery, Hallym University, Dongtan Sacred Heart Hospital, 7, Keunjaebong-gil, Hwaseong-si, Gyeonggi-do 445-907, Republic of Korea
| | - Joongkee Min
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Ryong Jeon
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
175
|
Simpson S, Kimbrough A, Boomhower B, McLellan R, Hughes M, Shankar K, de Guglielmo G, George O. Depletion of the Microbiome Alters the Recruitment of Neuronal Ensembles of Oxycodone Intoxication and Withdrawal. eNeuro 2020; 7:ENEURO.0312-19.2020. [PMID: 32341122 PMCID: PMC7242819 DOI: 10.1523/eneuro.0312-19.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
Substance use disorders have a complex etiology. Genetics, the environment, and behavior all play a role in the initiation, escalation, and relapse of drug use. Recently, opioid use disorder has become a national health crisis. One aspect of opioid addiction that has yet to be fully examined is the effects of alterations of the microbiome and gut-brain axis signaling on central nervous system activity during opioid intoxication and withdrawal. The effect of microbiome depletion on the activation of neuronal ensembles was measured by detecting Fos-positive (Fos+) neuron activation during intoxication and withdrawal using a rat model of oxycodone dependence. Daily oxycodone administration (2 mg/kg) increased pain thresholds and increased Fos+ neurons in the basolateral amygdala (BLA) during intoxication, with a decrease in pain thresholds and increase in Fos+ neurons in the periaqueductal gray (PAG), central nucleus of the amygdala (CeA), locus coeruleus (LC), paraventricular nucleus of the thalamus (PVT), agranular insular cortex (AI), bed nucleus of the stria terminalis (BNST), and lateral habenula medial parvocellular region during withdrawal. Microbiome depletion produced widespread but region- and state-specific changes in neuronal ensemble activation. Oxycodone intoxication and withdrawal also increased functional connectivity among brain regions. Microbiome depletion resulted in a decorrelation of this functional network. These data indicate that microbiome depletion by antibiotics produces widespread changes in the recruitment of neuronal ensembles that are activated by oxycodone intoxication and withdrawal, suggesting that the gut microbiome may play a role in opioid use and dependence. Future studies are needed to better understand the molecular, neurobiological, and behavioral effects of microbiome depletion on addiction-like behaviors.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | - Adam Kimbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Brent Boomhower
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Rio McLellan
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Marcella Hughes
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Kokila Shankar
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| | | | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093,
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
176
|
McCosh RB, Lopez JA, Szeligo BM, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology 2020; 161:bqaa010. [PMID: 32067028 PMCID: PMC7060766 DOI: 10.1210/endocr/bqaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Brett M Szeligo
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| |
Collapse
|
177
|
Yin X, Jing Y, Chen Q, Abbas AB, Hu J, Xu H. The intraperitoneal administration of MOTS-c produces antinociceptive and anti-inflammatory effects through the activation of AMPK pathway in the mouse formalin test. Eur J Pharmacol 2020; 870:172909. [DOI: 10.1016/j.ejphar.2020.172909] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/10/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
|
178
|
Abstract
Pain-related diseases are the top leading causes of life disability. Identifying brain regions involved in persistent neuronal changes will provide new insights for developing efficient chronic pain treatment. Here, we showed that anterior nucleus of paraventricular thalamus (PVA) plays an essential role in the development of mechanical hyperalgesia in neuropathic and inflammatory pain models in mice. Increase in c-Fos, phosphorylated extracellular signal-regulated kinase, and hyperexcitability of PVA neurons were detected in hyperalgesic mice. Direct activation of PVA neurons using optogenetics and pharmacological approaches were sufficient to induce persistent mechanical hyperalgesia in naive animals. Conversely, inhibition of PVA neuronal activity using DREADDs (designer receptors exclusively activated by designer drugs) or inactivation of PVA extracellular signal-regulated kinase at the critical time window blunted mechanical hyperalgesia in chronic pain models. At the circuitry level, PVA received innervation from central nucleus of amygdala, a known pain-associated locus. As a result, activation of right central nucleus of amygdala with blue light was enough to induce persistent mechanical hyperalgesia. These findings support the idea that targeting PVA can be a potential therapeutic strategy for pain relief.
Collapse
|
179
|
Shin JH, Fan Y, Kim DH, Jang HB, Chang S, Ryu Y, Bae JH, Lee S, Lee BH, Steffensen SC, Yang CH, Kim HY. Paired mechanical and electrical acupuncture of neurogenic spots induces opioid-mediated suppression of hypertension in rats. J Physiol Sci 2020; 70:14. [PMID: 32039692 PMCID: PMC7005077 DOI: 10.1186/s12576-020-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/10/2019] [Indexed: 12/12/2022]
Abstract
While our recent studies have suggested that effective acupoints display neurogenic inflammation and can be identified as neurogenic spots (Neuro-Sps), the optimal stimulation conditions and the underlying mechanisms remain uncharacterized. We developed a combined mechano-electrical acupuncture device (MEA) and examined the effects of acupuncture at Neuro-Sps on systolic blood pressure (BP) in a rat model of immobilization-induced hypertension (IMH) and the mediation of endogenous opioid systems in its effect. Cutaneous neurogenic spots were found mostly in the forelimb. Electrical and mechanical acupuncture of Neuro-Sps increased 22-kHz ultrasonic vocalizations (USVs), c-Fos expression and cell excitability in the midbrain and synergistically alleviated the development of hypertension following immobilization stress, which was prevented by administration of the opioid antagonist naloxone into the rostral ventrolateral medulla (rVLM). These findings suggest that mechanical and electrical stimulation at Neuro-Sps suppresses the development of hypertension via mediation of the endogenous opioid system.
Collapse
Affiliation(s)
- Joo Hyun Shin
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Yu Fan
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Do-Hee Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Han Byeol Jang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Suchan Chang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Yeonhee Ryu
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Jong Han Bae
- Department of Physics, Yeungnam University, Gyeongsan, Gyeongbukdo, 38541, South Korea
| | - Sanghag Lee
- TriBell Lab, Yeungnam University, Gyeongsan, Gyeongbukdo, 38541, South Korea
| | - Bong Hyo Lee
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Scott C Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, 84602, USA
| | - Chae Ha Yang
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea
| | - Hee Young Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, 42158, South Korea.
| |
Collapse
|
180
|
Leidmaa E, Gazea M, Patchev AV, Pissioti A, Christian Gassen N, Kimura M, Liposits Z, Kallo I, Almeida OFX. Blunted leptin sensitivity during hedonic overeating can be reinstated by activating galanin 2 receptors (Gal2R) in the lateral hypothalamus. Acta Physiol (Oxf) 2020; 228:e13345. [PMID: 31310704 DOI: 10.1111/apha.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
AIM Since foods with high hedonic value are often consumed in excess of energetic needs, this study was designed to identify the mechanisms that may counter anorexigenic signalling in the presence of hedonic foods in lean animals. METHODS Mice, in different states of satiety (fed/fasted, or fed/fasted and treated with ghrelin or leptin, respectively), were allowed to choose between high-fat/high-sucrose and standard foods. Intake of each food type and the activity of hypothalamic neuropetidergic neurons that regulate appetite were monitored. In some cases, food choice was monitored in leptin-injected fasted mice that received microinjections of galanin receptor agonists into the lateral hypothalamus. RESULTS Appetite-stimulating orexin neurons in the lateral hypothalamus are rapidly activated when lean, satiated mice consume a highly palatable food (PF); such activation (upregulated c-Fos expression) occurred even after administration of the anorexigenic hormone leptin and despite intact leptin signalling in the hypothalamus. The ability of leptin to restrain PF eating is restored when a galanin receptor 2 (Gal2R) agonist is injected into the lateral hypothalamus. CONCLUSION Hedonically-loaded foods interrupt the inhibitory actions of leptin on orexin neurons and interfere with the homeostatic control of feeding. Overeating of palatable foods can be curtailed in lean animals by activating Gal2R in the lateral hypothalamus.
Collapse
Affiliation(s)
- Este Leidmaa
- Max Planck Institute of Psychiatry Munich Germany
- Graduate School of Systems Neuroscience Munich University Planegg‐Martinsried Germany
- Institute of Molecular Psychiatry Bonn Germany
| | - Mary Gazea
- Max Planck Institute of Psychiatry Munich Germany
| | | | | | | | | | - Zsolt Liposits
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | - Imre Kallo
- Institute of Experimental Medicine Hungarian Academy of Sciences Budapest Hungary
| | | |
Collapse
|
181
|
Triaca V, Fico E, Sposato V, Caioli S, Ciotti MT, Zona C, Mercanti D, La Mendola D, Satriano C, Rizzarelli E, Tirassa P, Calissano P. hNGF Peptides Elicit the NGF-TrkA Signalling Pathway in Cholinergic Neurons and Retain Full Neurotrophic Activity in the DRG Assay. Biomolecules 2020; 10:biom10020216. [PMID: 32024191 PMCID: PMC7072391 DOI: 10.3390/biom10020216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), International Campus A. Buzzati Traverso, Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
- Correspondence: ; Tel.: +39-06-90091357
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Valentina Sposato
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| | - Silvia Caioli
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Cristina Zona
- IRCCS S. Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (S.C.); (C.Z.)
- Department of Systems Medicine, University of Rome “TorVergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
| | - Enrico Rizzarelli
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.S.); (E.R.)
- Institute of Crystallography, National Research Council (CNR-IC), Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR-IBBC), at Department of Sense Organs, University of Rome “ La Sapienza”, Viale del Policlinico 155, 00161 Rome, Italy; (E.F.); (M.T.C.); (D.M.); (P.T.)
| | - Pietro Calissano
- European Brain Research Institute (EBRI Foundation), Viale Regina Elena 295, 00161 Rome, Italy; (V.S.); (P.C.)
| |
Collapse
|
182
|
Yang F, Yang L, Wataya-Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS One 2020; 15:e0228204. [PMID: 31978189 PMCID: PMC6980560 DOI: 10.1371/journal.pone.0228204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To clarify the complex mechanism underlying epileptogeneis, a novel animal model was generated. METHODS In our previous research, we have generated a melanocyte-lineage mTOR hyperactivation mouse model (Mitf-M-Cre Tsc2 KO mice; cKO mice) to investigate mTOR pathway in melanogenesis regulation, markedly reduced skin pigmentation was observed. Very unexpectedly, spontaneous recurrent epilepsy was also developed in this mouse model. RESULTS Compared with control littermates, no change was found in either brain size or brain mass in cKO mice. Hematoxylin staining revealed no obvious aberrant histologic features in the whole brains of cKO mice. Histoimmunofluorescence staining and electron microscopy examination revealed markedly increased mTOR signaling and hyperproliferation of mitochondria in cKO mice, especially in the hippocampus. Furthermore, rapamycin treatment reversed these abnormalities. CONCLUSIONS This study suggests that our melanocyte-lineage mTOR hyperactivation mouse is a novel animal model of epilepsy, which may promote the progress of both epilepsy and neurophysiology research.
Collapse
Affiliation(s)
- Fei Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lingli Yang
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mari Wataya-Kaneda
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Lanting Teng
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Course of Integrated Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
183
|
Lee JH, Shaker MR, Lee E, Lee B, Sun W. NeuroCore formation during differentiation of neurospheres of mouse embryonic neural stem cells. Stem Cell Res 2020; 43:101691. [PMID: 32018208 DOI: 10.1016/j.scr.2019.101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSCs) in the embryonic neocortex have the potential to generate a well-organized laminar architecture of the cerebral cortex through precise regulation of the proliferation, differentiation, and migration of neural cells. NSCs can be isolated in vitro and expanded as cell clusters, called neurospheres, which are primarily related to the proliferation ability of NSCs. Conversely, the tissue-organizing properties of NSCs via regulated differentiation and migration of the cells are not well understood. In this study, we established a three-dimensional (3D) differentiation model of neurospheres, which produce unique neuronal clusters, termed NeuroCore (NC). NC formation was initiated by the aggregation of young neurons. Upon maturation of the neurons and the establishment of radial glia-like structures, the initial organization of the NCs transformed into a glomeruli-like arrangement of cortical neurons. These neurons expressed multiple markers of upper and deep cortical neurons. Taken together, we propose that NSCs in vitro maintain some aspects of their original in vivo tissue-organizing properties, providing an alternative opportunity to explore the fundamental components of brain histogenesis in vitro.
Collapse
Affiliation(s)
- Ju-Hyun Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mohammed R Shaker
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunsoo Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Boram Lee
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Program for Biomedical Science, Korea University College of Medicine, 73, Inchon-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
184
|
Pflüger P, Pinnell RC, Martini N, Hofmann UG. Chronically Implanted Microelectrodes Cause c-fos Expression Along Their Trajectory. Front Neurosci 2020; 13:1367. [PMID: 31998057 PMCID: PMC6965008 DOI: 10.3389/fnins.2019.01367] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
When designing electrodes and probes for brain–machine interfaces, one of the challenges faced involves minimizing the brain-tissue response, which would otherwise create an environment that is detrimental for the accurate functioning of such probes. Following the implantation process, the brain reacts with a sterile inflammation response and resulting astrocytic glial scar formation, potentially resulting in neuronal cell loss around the implantation site. Such alterations in the naïve brain tissue can hinder both the quality of neuronal recordings, and the efficacy of deep-brain stimulation. In this study, we chronically implanted a glass-supported polyimide microelectrode in the dorsolateral striatum of Sprague–Dawley rats. The effect of high-frequency stimulation (HFS) was investigated using c-fos immunoreactivity techniques. GFAP and ED1 immunohistochemistry were used to analyze the brain-tissue response. No changes in c-fos expression were found for either the acute or chronic stimulus groups; although a c-fos expression was found along the length of the implantation trajectory, following chronic implantation of our stiffened polyimide microelectrode. Furthermore, we also observed the formation of a glial scar around the microelectrode, with an accompanying low number of inflammation cells. Histological and statistical analysis of NeuN-positive cells did not demonstrate a pronounced “kill zone” with accompanying neuronal cell death around the implantation site, neither on the polymer side, nor on the glass side of the PI-glass probe.
Collapse
Affiliation(s)
- Patrick Pflüger
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Richard C Pinnell
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nadja Martini
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Clinic for Neurosurgery, Medical Center - University of Freiburg, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
185
|
McKeown J, McGeoch PD, Grieve DJ. The influence of vestibular stimulation on metabolism and body composition. Diabet Med 2020; 37:20-28. [PMID: 31667892 DOI: 10.1111/dme.14166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/16/2022]
Abstract
Obesity, diabetes and metabolic disease represent an ongoing and rapidly worsening public health issue in both the developed, and much of the developing world. Although there are many factors that influence fat storage, it has been clearly demonstrated that the homeostatic cornerstone of metabolism lies within the hypothalamus. Moreover, neuronal damage to vital areas of the hypothalamus can drive reregulation or dysregulation of endocrine function, energy expenditure and appetite, thereby promoting a shift in overall metabolic function towards a state of obesity. Therefore, identification of treatments that influence the hypothalamus to improve obesity and associated metabolic diseases has long been a medical goal. Interestingly, evidence from animal studies suggests that activating the vestibular system, specifically the macular gravity receptor, influences the hypothalamus in a way that decreases body fat storage and causes a metabolic shift towards a leaner state. Given that the macular element of the vestibular system has been shown to activate with transdermal electrical stimulation applied to the mastoids, this may be a potential therapeutic approach for obesity, diabetes or related metabolic diseases, whereby repetitive stimulation of the vestibular system influences hypothalamic control of metabolic homeostasis, thereby encouraging decreased fat storage. Here, we present an up-to-date review of the current literature surrounding the vestibular influence of the hypothalamus and associated homeostatic sites in the context of current and novel therapeutic approaches for improved clinical management of obesity and diabetes.
Collapse
Affiliation(s)
- J McKeown
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
- Neurovalens Ltd, Belfast, UK
- Center for Brain and Cognition, University of California, San Diego, CA, USA
| | - P D McGeoch
- Neurovalens Ltd, Belfast, UK
- Center for Brain and Cognition, University of California, San Diego, CA, USA
| | - D J Grieve
- Queen's University Belfast, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| |
Collapse
|
186
|
Samoudi G, Nilsson A, Carlsson T, Bergquist F. c-Fos Expression after Stochastic Vestibular Stimulation and Levodopa in 6-OHDA Hemilesioned Rats. Neuroscience 2020; 424:146-154. [DOI: 10.1016/j.neuroscience.2019.10.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022]
|
187
|
Verharen JPH, Luijendijk MCM, Vanderschuren LJMJ, Adan RAH. Dopaminergic contributions to behavioral control under threat of punishment in rats. Psychopharmacology (Berl) 2020; 237:1769-1782. [PMID: 32221695 PMCID: PMC7239833 DOI: 10.1007/s00213-020-05497-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
RATIONALE Excessive intake of rewards, such as food and drugs, often has explicit negative consequences, including the development of obesity and addiction, respectively. Thus, choosing not to pursue reward is the result of a cost/benefit decision, proper execution of which requires inhibition of behavior. An extensive body of preclinical and clinical evidence implicates dopamine in certain forms of inhibition of behavior, but it is not fully known how it contributes to behavioral inhibition under threat of explicit punishment. OBJECTIVES To assess the involvement of midbrain dopamine neurons and their corticostriatal output regions, the ventral striatum and prefrontal cortex, in control over behavior under threat of explicit (foot shock) punishment in rats. METHODS We used a recently developed behavioral inhibition task, which assesses the ability of rats to exert behavioral restraint at the mere sight of food reward, under threat of foot shock punishment. Using in vivo fiber photometry, chemogenetics, c-Fos immunohistochemistry, and behavioral pharmacology, we investigated how dopamine neurons in the ventral tegmental area, as well as its output areas, the ventral striatum and prefrontal cortex, contribute to behavior in this task. RESULTS Using this multidisciplinary approach, we found little evidence for a direct involvement of ascending midbrain dopamine neurons in inhibitory control over behavior under threat of punishment. For example, photometry recordings suggested that VTA DA neurons do not directly govern control over behavior in the task, as no differences were observed in neuronal population activity during successful versus unsuccessful behavioral control. In addition, chemogenetic and pharmacological manipulations of the mesocorticolimbic DA system had little or no effect on the animals' ability to exert inhibitory control over behavior. Rather, the dopamine system appeared to have a role in the motivational components of reward pursuit. CONCLUSIONS Together, our data provide insight into the mesocorticolimbic mechanisms behind motivated behaviors by showing a modulatory role of dopamine in the expression of cost/benefit decisions. In contrast to our expectations, dopamine did not appear to directly mediate the type of behavioral control that is tested in our task.
Collapse
Affiliation(s)
- Jeroen P. H. Verharen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands ,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands ,Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Mieneke C. M. Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louk J. M. J. Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Roger A. H. Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands ,Institute of Physiology and Neuroscience, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
188
|
Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging 2019; 87:98-107. [PMID: 31889558 DOI: 10.1016/j.neurobiolaging.2019.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Homing pigeons experience age-related spatial-cognitive decline similar to that seen in mammals. In contrast to mammals, however, previous studies have shown the hippocampal formation (HF) of old, cognitively impaired pigeons to be greater in volume and neuron number compared with young pigeons. As a partial explanation of the cognitive decline in older birds, it was hypothesized that older pigeons have reduced HF activation during spatial learning. The present study compared HF activation (via the activity-dependent expression of the immediate early gene c-Fos) between younger and older pigeons during learning of a spatial, delayed nonmatch-to-sample task. On the last day of training, c-Fos activation significantly correlated with behavioral performance in the young, but not old, pigeons suggesting more HF engagement by the young pigeons in solving the task. The behavioral correlation was additionally associated with consistently higher, but insignificant c-Fos activation across practically every HF subdivision in the young compared with the old pigeons. In sum, the results of the present study are consistent with the hypothesis that age-related decline in the spatial cognitive ability of homing pigeons is in part a result of an older HF being less responsive to the processing of spatial information. However, alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA
| |
Collapse
|
189
|
McCosh RB, Kreisman MJ, Tian K, Ho BS, Thackray VG, Breen KM. Insulin-induced hypoglycaemia suppresses pulsatile luteinising hormone secretion and arcuate Kiss1 cell activation in female mice. J Neuroendocrinol 2019; 31:e12813. [PMID: 31758872 PMCID: PMC6933080 DOI: 10.1111/jne.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Stress suppresses pulsatile luteinising hormone (LH) secretion in a variety of species, although the mechanism underlying this inhibition of reproductive function remains unclear. Metabolic stress, particularly hypoglycaemia, is a clinically-relevant stress type that is modelled with bolus insulin injection (insulin-induced hypoglycaemia). The present study utilised ovariectomised C57BL/6 mice to test the hypothesis that acute hypoglycaemia suppresses pulsatile LH secretion via central mechanisms. Pulsatile LH secretion was measured in 90-minute sampling periods immediately prior to and following i.p. injection of saline or insulin. The secretion of LH was not altered over time in fed animals or acutely fasted (5 hours) animals following an i.p. saline injection. By contrast, insulin elicited a robust suppression of pulsatile LH secretion in fasted animals, preventing LH pulses in five of six mice. To identify the neuroendocrine site of impairment, a kisspeptin challenge was performed in saline or insulin pre-treated animals in a cross-over design. LH secretion in response to exogenous kisspeptin was not different between animals pre-treated with saline or insulin, indicating normal gonadotrophin-releasing hormone cell and pituitary responses during acute hypoglycaemia. Based on this finding, the effect of insulin-induced hypoglycaemia on arcuate kisspeptin (Kiss1) cell function was determined using c-Fos as a marker of neuronal activation. Insulin caused a significant suppression in the percentage of Kiss1 cells in the arcuate nucleus that contained c-Fos compared to saline-injected controls. Taken together, these data support the hypothesis that insulin-induced hypoglycaemia suppresses pulsatile LH secretion in the female mouse via predominantly central mechanisms, which culminates in the suppression of the arcuate Kiss1 population.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Michael J Kreisman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Katherine Tian
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Bryan S Ho
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, CA, USA
| |
Collapse
|
190
|
Neonatal anoxia impairs long‐term energy metabolism and somatic development of Wistar rats. Int J Dev Neurosci 2019; 79:76-85. [DOI: 10.1016/j.ijdevneu.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/23/2019] [Accepted: 11/06/2019] [Indexed: 01/29/2023] Open
|
191
|
Dagistan Y, Kilinc E, Balci CN. Cervical sympathectomy modulates the neurogenic inflammatory neuropeptides following experimental subarachnoid hemorrhage in rats. Brain Res 2019; 1722:146366. [DOI: 10.1016/j.brainres.2019.146366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/28/2023]
|
192
|
Schumacher JD, Guo GL. Pharmacologic Modulation of Bile Acid-FXR-FGF15/FGF19 Pathway for the Treatment of Nonalcoholic Steatohepatitis. Handb Exp Pharmacol 2019; 256:325-357. [PMID: 31201553 DOI: 10.1007/164_2019_228] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is within the spectrum of nonalcoholic fatty liver disease (NAFLD) and can progress to fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). The prevalence of NASH is rising and has become a large burden to the medical system worldwide. Unfortunately, despite its high prevalence and severe health consequences, there is currently no therapeutic agent approved to treat NASH. Therefore, the development of efficacious therapies is of utmost urgency and importance. Many molecular targets are currently under investigation for their ability to halt NASH progression. One of the most promising and well-studied targets is the bile acid (BA)-activated nuclear receptor, farnesoid X receptor (FXR). In this chapter, the characteristics, etiology, and prevalence of NASH will be discussed. A brief introduction to FXR regulation of BA homeostasis will be described. However, for more details regarding FXR in BA homeostasis, please refer to previous chapters. In this chapter, the mechanisms by which tissue and cell type-specific FXR regulates NASH development will be discussed in detail. Several FXR agonists have reached later phase clinical trials for treatment of NASH. The progress of these compounds and summary of released data will be provided. Lastly, this chapter will address safety liabilities specific to the development of FXR agonists.
Collapse
Affiliation(s)
- Justin D Schumacher
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
193
|
Harriott AM, Strother LC, Vila-Pueyo M, Holland PR. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019; 20:91. [PMID: 31464579 PMCID: PMC6734323 DOI: 10.1186/s10194-019-1043-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Background Migraine is a common debilitating condition whose main attributes are severe recurrent headaches with accompanying sensitivity to light and sound, nausea and vomiting. Migraine-related pain is a major cause of its accompanying disability and can encumber almost every aspect of daily life. Main body Advancements in our understanding of the neurobiology of migraine headache have come in large from basic science research utilizing small animal models of migraine-related pain. In this current review, we aim to describe several commonly utilized preclinical models of migraine. We will discuss the diverse array of methodologies for triggering and measuring migraine-related pain phenotypes and highlight briefly specific advantages and limitations therein. Finally, we will address potential future challenges/opportunities to refine existing and develop novel preclinical models of migraine that move beyond migraine-related pain and expand into alternate migraine-related phenotypes. Conclusion Several well validated animal models of pain relevant for headache exist, the researcher should consider the advantages and limitations of each model before selecting the most appropriate to answer the specific research question. Further, we should continually strive to refine existing and generate new animal and non-animal models that have the ability to advance our understanding of head pain as well as non-pain symptoms of primary headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Lauren C Strother
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Marta Vila-Pueyo
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Philip R Holland
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychology, Psychiatry and Neuroscience, King's College London, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
194
|
Touj S, Tokunaga R, Al Aïn S, Bronchti G, Piché M. Pain Hypersensitivity is Associated with Increased Amygdala Volume and c-Fos Immunoreactivity in Anophthalmic Mice. Neuroscience 2019; 418:37-49. [PMID: 31472214 DOI: 10.1016/j.neuroscience.2019.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
It is well established that early blindness results in brain plasticity and behavioral changes in both humans and animals. However, only a few studies have examined the effects of blindness on pain perception. In these studies, pain hypersensitivity was reported in early, but not late, blind humans. The underlying mechanisms remain unclear, but considering its key role in pain perception and modulation, the amygdala may contribute to this pain hypersensitivity. The first aim of this study was to develop an animal model of early blindness to examine the effects of blindness on pain perception. A mouse cross was therefore developed (ZRDBA mice), in which half of the animals are born sighted and half are born anophthalmic, allowing comparisons between blind and sighted mice with the same genetic background. The second aim of the present study was to examine mechanical and thermal pain thresholds as well as pain behaviors and pain-related c-Fos immunoreactivity induced by the formalin test in the amygdalas of blind and sighted mice. Group differences in amygdala volume were also assessed histologically. Blind mice exhibited lower mechanical and thermal pain thresholds and more pain behaviors during the acute phase of the formalin test, compared with sighted mice. Moreover, pain hypersensitivity during the formalin test was associated with increased c-Fos immunoreactivity in the amygdala. Furthermore, amygdala volume was larger bilaterally in blind compared with sighted mice. These results indicate that congenitally blind mice show pain hypersensitivity like early blind individuals and suggest that this is due in part to plasticity in the amygdala.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Ryota Tokunaga
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7; CogNAC Research Group, Université du Québec à Trois-Rivières, 3351 Boul. Des Forges, C.P. 500, Trois-Rivières, QC, Canada, G9A 5H7.
| |
Collapse
|
195
|
Fazekas EA, Morvai B, Zachar G, Dóra F, Székely T, Pogány Á, Dobolyi A. Neuronal activation in zebra finch parents associated with reintroduction of nestlings. J Comp Neurol 2019; 528:363-379. [PMID: 31423585 DOI: 10.1002/cne.24761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/23/2022]
Abstract
Recent studies of the brain mechanisms of parental behaviors have mainly focused on rodents. Using other vertebrate taxa, such as birds, can contribute to a more comprehensive, evolutionary view. In the present study, we investigated a passerine songbird, the zebra finch (Taeniopygia guttata), with a biparental caring system. Parenting-related neuronal activation was induced by first temporarily removing the nestlings, and then, either reuniting the focal male or female parent with the nestlings (parental group) or not (control group). To identify activated neurons, the immediate early gene product, Fos protein, was labeled. Both parents showed an increased level of parental behavior following reunion with the nestlings, and no sexual dimorphism occurred in the neuronal activation pattern. Offspring-induced parental behavior-related neuronal activation was found in the preoptic, ventromedial (VMH), paraventricular hypothalamic nuclei, and in the bed nucleus of the stria terminalis. In addition, the number of Fos-immunoreactive (Fos-ir) neurons in the nucleus accumbens predicted the frequency of the feeding of the nestlings. No difference was found in Fos expression when the effect of isolation or the presence of the mate was examined. Thus, our study identified a number of nuclei involved in parental care in birds and suggests similar regulatory mechanisms in caring females and males. The activated brain regions show similarities to rodents, while a generally lower number of brain regions were activated in the zebra finch. Furthermore, future studies are necessary to establish the role of the apparently avian-specific neuronal activation in the VMH of zebra finch parents.
Collapse
Affiliation(s)
- Emese A Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.,Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Boglárka Morvai
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Fanni Dóra
- SE-NAP-Human Brain Tissue Bank Microdissection Laboratory and Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Tamás Székely
- Milner Center for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungary Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
196
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019; 65:29-33. [PMID: 31379411 PMCID: PMC6667379 DOI: 10.3164/jcbn.19-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Cinnamtannin A2, an (−)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
197
|
Fujii Y, Suzuki K, Adachi T, Taira S, Osakabe N. Corticotropin-releasing hormone is significantly upregulated in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 as an (-)-epicatechin tetramer. J Clin Biochem Nutr 2019. [PMID: 31379411 DOI: 10.3164/jcbn.19.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cinnamtannin A2, an (-)-epicatechin tetramer, was reported to have potent physiological activity. Cinnamtannin A2 is rarely absorbed from the gastrointestinal tract into the blood and the mechanisms of its beneficial activities are unknown. Cinnamtannin A2 reported to increase sympathetic nervous activity, which was induced by various stressors. In present study, we examined the stress response in the mouse paraventricular nucleus following a single oral dose of cinnamtannin A2 by monitoring mRNA expression of corticotropin-releasing hormone (CRH) and c-fos using in situ hybridization. Corticotropin-releasing hormone mRNA showed a tendency to increase at 15 min and significantly increased at 60 min following a single oral administration of 100 µg/kg cinnamtannin A2. After a single dose of 10 µg/kg cinnamtannin A2, there was significant upregulation of CRH mRNA at 60 min. These results suggested that cinnamtannin A2 was recognized as a stressor in central nervous system and this may lead to its beneficial effects on circulation and metabolism.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Kenta Suzuki
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| | - Takahiro Adachi
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Taira
- Fukushima University, Faculty of Food and Agricultural Sciences, 1 Kanayagawa, Fukushima 960-1248, Japan
| | - Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
198
|
Wang H, Li Q, Tang H, Ding J, Xu N, Sun S, Chen S. The activated newborn neurons participate in enriched environment induced improvement of locomotor function in APP/PS1 mice. Brain Behav 2019; 9:e01316. [PMID: 31094092 PMCID: PMC6625533 DOI: 10.1002/brb3.1316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is an age-related neurodegenerative disorder. One of the pathological features of AD is neuronal loss in brain regions associated with cognition, particularly the hippocampus. An enriched environment (EE) can facilitate neuronal plasticity and improve behaviors such as emotion, motor function, and cognition in AD. METHODS After APP/PS1 mice were exposed to EE at an early stage (2 months of age), elevated plus maze performance and contextual fear conditioning were tested, and neurogenesis and the extent of activation in the hippocampus were observed. RESULTS The results showed that, compared with that in the mice that experienced a standard environment, the cognition of the mice exposed to EE, as measured by contextual fear conditioning, was not statistically significant. However, based on their performance in the elevated plus maze, the index was increased in the mice, especially the APP/PS1 mice, exposed to EE. Consistent with the behavioral changes, the APP/PS1 mice exposed to EE showed an increased number of c-Fos-positive neurons and elevated neurogenesis in the dentate gyrus (DG) area. In addition, the activation of newborn neurons did not occur in the other three groups. CONCLUSIONS These results indicate that the activation of newborn neurons may participate in the improvement of behavioral performance in APP/PS1 mice after EE.
Collapse
Affiliation(s)
- Hualong Wang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongqiong Li
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Tang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nanjie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suya Sun
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
199
|
Yu J, Dong HW, Shi LT, Tang XY, Liu JR, Shi JH. Reproductive toxicity of perchlorate in rats. Food Chem Toxicol 2019; 128:212-222. [PMID: 30991129 DOI: 10.1016/j.fct.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Perchlorate, as an oxidizer, has many applications such as explosives and pyrotechnics, especially in rocket propellants and missile motors. Because it was found in water including wells and drinking water in the US, its effect on human health was being noted. However, the reproductive toxic effect on perchlorate is still unclear. In present study, the effects of repeated exposure to perchlorate on reproductive toxicity were evaluated in Wistar rats. The rats were treated orally with perchlorate at doses of 0.05, 1.00 or 10.00 mg/kg body weight (b.w.) daily for 8 weeks. The levels of T3 and T4 hormones in the rat serum were detected by radioimmunoassay kit. The indexes of reproduction, percentage of organ in body weight (%) and frequency of abnormal sperm cells were also analyzed in this study. DNA damage in testicular cells was evaluated by Comet assay. The levels of MDA, GSH and SOD were examined in testicle tissues of rats by ELISA. The expression of c-fos and fas protein was examined in testicle tissues by immunohistochemistry. The results showed that perchlorate did not affect the body weight of rats. Perchlorate also significantly decreased indexes of live birth and weaning in the groups of 1.00 and 10.00 mg/kg, and viability index only in the 10.00 mg/kg group (P < 0.05). Perchlorate also significantly decreased the serum level of T3 in male rats of 1.00 and 10.00 mg/kg groups, increased the rate of sperm abnormality (10.00 mg/kg), potentially caused DNA damage in testicular cells and altered the status of oxidative stress in male rats. In addition, because of the increase in the expression of fas and c-fos protein in testicle tissues, perchlorate could induce apoptosis in spermatogenesis. Thus, these findings indicate that perchlorate could cause DNA damage in testicular tissues and reduce testicular spermatogenic ability, resulting in reproductive toxicity.
Collapse
Affiliation(s)
- Jia Yu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Hong-Wei Dong
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Li-Tian Shi
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China
| | - Xuan-Yue Tang
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China.
| | - Jia-Ren Liu
- Department of Environmental Health, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, 150081, People's Republic of China; The department of Clinical Laboratory, The 4th Affiliated Hospital of Harbin Medical University, 37 YiYuan Street, Harbin, 150001, People's Republic of China.
| | - Ji-Hong Shi
- Harbin Medical University Library, 194 XueFu Road, NanGang District, Harbin, 150081, People's Republic of China.
| |
Collapse
|
200
|
Yang C, Zhang L, Hao H, Ran M, Li J, Dong H. Serotonergic neurons in the dorsal raphe nucleus mediate the arousal-promoting effect of orexin during isoflurane anesthesia in male rats. Neuropeptides 2019; 75:25-33. [PMID: 30935682 DOI: 10.1016/j.npep.2019.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/23/2022]
Abstract
Previous studies have demonstrated that the activation of orexinergic neurons facilitates the recovery of animals from general anesthesia. Moreover, serotonergic neurons that receive projections from orexin neurons have also been shown to participate in sleep-wakefulness regulation. In the present study, we aimed to explore whether orexinergic neurons facilitate emergence from isoflurane anesthesia in rats by activating serotonergic neurons. Orexin A (30 or 100 pmol), orexin B (30 or 100 pmol), and their respective antagonists SB-334867 and TCS-OX2-29 (5 or 20 μg) were microinjected into the dorsal raphe nucleus (DRN) of rats, and their effects on induction and emergence times were analyzed. Electroencephalogram (EEG) changes were also recorded and analyzed to illuminate the effect of orexin injection into the DRN on cortical excitability under isoflurane anesthesia. Activation of serotonergic neurons was detected via immunohistochemical analysis of c-Fos expression following orexin administration. Our results indicated that injection of neither orexins nor orexin antagonists into the rat DRN exerted an impact on induction time, whereas orexin-A injection (100 pmol) enhanced arousal when compared with the saline group. In contrast, administration of orexin receptor type 1 antagonist SB-334867 (20 μg) prolonged emergence time from isoflurane anesthesia. Microinjection of orexin-A induced an arousal pattern on EEG, and decreased the burst suppression ratio under isoflurane anesthesia. Isoflurane anesthesia inhibited the activity of serotonergic neurons, as shown by decrease in the number of c-Fos-immunoreactive serotonergic neurons when compared with the sham group. This inhibitory effect was partially reversed by administration of orexin-A. Taken together, our findings suggest that orexinergic signals facilitate emergence from isoflurane anesthesia, at least partially, by reversing the effects of isoflurane on serotonergic neurons of the DRN.
Collapse
Affiliation(s)
- Cen Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China; Department of Anesthesiology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong Province 518055, China
| | - Lina Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of stomatology, Xi'an Jiaotong University, Xi'an 710032, Shaanxi, China
| | - Haizhi Hao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Mingzi Ran
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|