151
|
Intensity and duration of TCR signaling is limited by p38 phosphorylation of ZAP-70 T293 and destabilization of the signalosome. Proc Natl Acad Sci U S A 2018; 115:2174-2179. [PMID: 29440413 DOI: 10.1073/pnas.1713301115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ZAP-70 is a tyrosine kinase that is essential for initiation of T cell antigen receptor (TCR) signaling. We have found that T cell p38 MAP kinase (MAPK), which is directly phosphorylated and activated by ZAP-70 downstream of the TCR, in turn phosphorylates Thr-293 in the interdomain B region of ZAP-70. Mutant T cells expressing ZAP-70 with an alanine substitution at this residue (ZAP-70T293A) had enhanced TCR proximal signaling and increased effector responses. Lack of ZAP-70T293 phosphorylation increased association of ZAP-70 with the TCR and prolonged the existence of TCR signaling microclusters. These results identify a tight negative feedback loop in which ZAP-70-activated p38 reciprocally phosphorylates ZAP-70 and destabilizes the signaling complex.
Collapse
|
152
|
Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci Rep 2018; 8:1020. [PMID: 29348664 PMCID: PMC5773696 DOI: 10.1038/s41598-018-19360-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/29/2017] [Indexed: 12/20/2022] Open
Abstract
Transactivation response element RNA-binding protein (TRBP or TARBP2) initially identified to play an important role in human immunodeficiency virus (HIV) replication also has emerged as a regulator of microRNA biogenesis. In addition, TRBP functions in signaling pathways by negatively regulating the interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) during viral infections and cell stress. During cellular stress, PKR is activated and phosphorylates the α subunit of the eukaryotic translation factor eIF2, leading to the cessation of general protein synthesis. TRBP inhibits PKR activity by direct interaction as well as by binding to PKR’s two known activators, dsRNA and PACT, thus preventing their interaction with PKR. In this study, we demonstrate for the first time that TRBP is phosphorylated in response to oxidative stress and upon phosphorylation, inhibits PKR more efficiently promoting cell survival. These results establish that PKR regulation through stress-induced TRBP phosphorylation is an important mechanism ensuring cellular recovery and preventing apoptosis due to sustained PKR activation.
Collapse
|
153
|
Abstract
The ERK1 and ERK2 (ERK1/2) cascade is a central signaling pathway activated by a wide variety of extracellular agents that transmit the messages of G Protein Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs). Being such a central pathway, the activity of the cascade is well regulated, including by dynamic changes of the subcellular localization of components of the ERK1/2 cascade. In resting cells, ERK1/2 are localized in the cytosol due to their interactions with different anchoring proteins. After stimulation, ERK1/2 are phosphorylated by MEK1/2 on their regulatory TEY motif, which permits their detachment from the anchoring proteins. This detachment exposes ERK1/2 to additional phosphorylation on two serine residues (SPS motif) within the nuclear translocation signal (NTS) of the kinases. This additional phosphorylation allows ERK1/2 to interact with importin7, which consequently promotes their translocation to the nucleus. More studies are still required in order to better understand the mechanism and consequence of the nuclear translocation of ERK1/2. In this chapter, we describe some of the techniques used to study nuclear translocation of ERK1/2 in mammalian cells. We briefly mention methods such as digitonin permeabilization and cellular fractionation, as well as overexpression of reporter constructs. More thoroughly, we describe immunofluorescence, immunoprecipitation, and proximity ligation assay (PLA) approaches that are routinely used in our laboratory. Hopefully, the increase of knowledge based on these methods will open more opportunities for the identification of new therapeutic targets for diseases where the ERK1/2 cascade is dysregulated, such as cancer, neurodegenerative diseases, and diabetes.
Collapse
Affiliation(s)
- Denise A Berti
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
154
|
Delaforge E, Kragelj J, Tengo L, Palencia A, Milles S, Bouvignies G, Salvi N, Blackledge M, Jensen MR. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. J Am Chem Soc 2018; 140:1148-1158. [PMID: 29276882 DOI: 10.1021/jacs.7b12407] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R1ρ, Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.
Collapse
Affiliation(s)
- Elise Delaforge
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Jaka Kragelj
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Laura Tengo
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieur, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06 , École Normale Supérieur, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Nicola Salvi
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | | |
Collapse
|
155
|
Abstract
NMR spectroscopy and other solution methods are increasingly being used to obtain novel insights into the mechanisms by which MAPK regulatory proteins bind and direct the activity of MAPKs. Here, we describe how interactions between the MAPK p38α and its regulatory proteins are studied using NMR spectroscopy, isothermal titration calorimetry, and small angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA. .,Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
156
|
Zhang S, Zhang X, Wang K, Xu X, Li M, Zhang J, Zhang Y, Hao J, Sun X, Chen Y, Liu X, Chang Y, Jin R, Wu H, Ge Q. Newly Generated CD4 + T Cells Acquire Metabolic Quiescence after Thymic Egress. THE JOURNAL OF IMMUNOLOGY 2017; 200:1064-1077. [PMID: 29288207 DOI: 10.4049/jimmunol.1700721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
Mature naive T cells circulate through the secondary lymphoid organs in an actively enforced quiescent state. Impaired cell survival and cell functions could be found when T cells have defects in quiescence. One of the key features of T cell quiescence is low basal metabolic activity. It remains unclear at which developmental stage T cells acquire this metabolic quiescence. We compared mitochondria among CD4 single-positive (SP) T cells in the thymus, CD4+ recent thymic emigrants (RTEs), and mature naive T cells in the periphery. The results demonstrate that RTEs and naive T cells had reduced mitochondrial content and mitochondrial reactive oxygen species when compared with SP thymocytes. This downregulation of mitochondria requires T cell egress from the thymus and occurs early after young T cells enter the circulation. Autophagic clearance of mitochondria, but not mitochondria biogenesis or fission/fusion, contributes to mitochondrial downregulation in RTEs. The enhanced apoptosis signal-regulating kinase 1/MAPKs and reduced mechanistic target of rapamycin activities in RTEs relative to SP thymocytes may be involved in this mitochondrial reduction. These results indicate that the gain of metabolic quiescence is one of the important maturation processes during SP-RTE transition. Together with functional maturation, it promotes the survival and full responsiveness to activating stimuli in young T cells.
Collapse
Affiliation(s)
- Shusong Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xinwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Ke Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingyang Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingjun Chang
- Peking University Institute of Hematology, People's Hospital, Beijing 100044, China; and
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; .,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; .,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
157
|
Liu WY, Liou SS, Hong TY, Liu IM. The Benefits of the Citrus Flavonoid Diosmin on Human Retinal Pigment Epithelial Cells under High-Glucose Conditions. Molecules 2017; 22:molecules22122251. [PMID: 29258224 PMCID: PMC6149669 DOI: 10.3390/molecules22122251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/02/2017] [Accepted: 12/08/2017] [Indexed: 12/22/2022] Open
Abstract
We investigate diosmin for its effect on the ARPE-19 human retinal pigment epithelial cells exposed to high glucose, a model of diabetic retinopathy (DR). After incubation for 4 days with a normal (5 mmol/L) concentration of D-glucose, ARPE-19 cells were exposed separately to normal or high concentrations of D-glucose (30 mmol/L) with or without diosmin at different concentrations (0.1, 1, 10 μg/mL) for another 48 h. Next, we assessed cell viability, reactive oxygen species (ROS) generation and antioxidant enzyme activities. In order to examine the underlying molecular mechanisms, we meanwhile analyzed the expressions of Bax, Bcl-2, total and phosphorylated JNK and p38 mitogen-activated protein kinase (MAPK). Diosmin dose dependently enhanced cell viability following high glucose treatment in ARPE-19 cells. The activities of superoxide dismutase and glutathione peroxidase, as well as the levels of reduced glutathione were decreased, while it was observed that levels of ROS in high glucose cultured ARPE-19 cells increased. High glucose also disturbed Bax and Bcl-2 expression, interrupted Bcl-2/Bax balance, and triggered subsequent cytochrome c release into the cytosol and activation of caspase-3. These detrimental effects were ameliorated dose dependently by diosmin. Furthermore, diosmin could abrogate high glucose-induced apoptosis as well as JNK and P38 MAPK phosphorylation in ARPE-19 cells. Our results suggest that treatment ARPE-19 cells with diosmin halts hyperglycemia-mediated oxidative damage and thus this compound may be a candidate for preventing the visual impairment caused by DR.
Collapse
Affiliation(s)
- Wayne Young Liu
- Department of Urology, Jen-Ai Hospital, Taichung City 41625, Taiwan.
- Center for Basic Medical Science, College of Health Science, Central Taiwan University of Science and Technology, Taichung City 40601, Taiwan.
| | - Shorong-Shii Liou
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| | - Tang-Yao Hong
- Department of Biotechnology, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| | - I-Min Liu
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan.
| |
Collapse
|
158
|
Protective Effects of Hesperidin (Citrus Flavonone) on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy. Nutrients 2017; 9:nu9121312. [PMID: 29207476 PMCID: PMC5748762 DOI: 10.3390/nu9121312] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate the protective effects and mechanisms of hesperidin, a plant based active flavanone found in citrus fruits, under the oxidative stress and apoptosis induced by high levels of glucose in retinal ganglial cells (RGCs). RGC-5 cells were pretreated with hesperidin (12.5, 25, or 50 μmol/L) for 6 h followed by exposure to high (33.3 mmol/L) d-glucose for 48 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was adopted to evaluate cell viability. Mitochondrial function was estimated by measuring the mitochondrial membrane potential (ΔΨm). A fluorescent probe was employed to evaluate the intercellular production of reactive oxygen species (ROS). Colorimetric assay kits were used to evaluate lipid peroxidation, antioxidant enzyme activities, and protein carbonyls formation. The expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) were measured with Western blotting. Hesperidin inhibited high glucose-mediated cell loss and restored mitochondrial function including a reversion of ΔΨm loss and cytochrome c release. Treated with hesperidin, high glucose-induced increase in ROS, malondialdehyde, and protein carbonyl levels were blocked in RGC-5 cells. Hesperidin was found to elevate the activities of superoxide dismutase, catalase, glutathione peroxidase, and to recover glutathione levels. Hesperidin inhibited high glucose-induced cell apoptosis by attenuating the downregulation of caspase-9, caspase-3, and Bax/Bcl-2. Furthermore, the phosphorylation of c-Jun N-terminal kinases (JNK) and p38 MAPK triggered by high glucose were attenuated in RGC-5 cells after their incubation with hesperdin. We concluded that hesperidin may protect RGC-5 cells from high glucose-induced injury since it owns the properties of antioxidant action and blocks mitochondria-mediated apoptosis.
Collapse
|
159
|
Gógl G, Biri-Kovács B, Póti ÁL, Vadászi H, Szeder B, Bodor A, Schlosser G, Ács A, Turiák L, Buday L, Alexa A, Nyitray L, Reményi A. Dynamic control of RSK complexes by phosphoswitch-based regulation. FEBS J 2017; 285:46-71. [PMID: 29083550 DOI: 10.1111/febs.14311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Assembly and disassembly of protein-protein complexes needs to be dynamically controlled and phosphoswitches based on linear motifs are crucial in this process. Extracellular signal-regulated kinase 2 (ERK2) recognizes a linear-binding motif at the C-terminal tail (CTT) of ribosomal S6 kinase 1 (RSK1), leading to phosphorylation and subsequent activation of RSK1. The CTT also contains a classical PDZ domain-binding motif which binds RSK substrates (e.g. MAGI-1). We show that autophosphorylation of the disordered CTT promotes the formation of an intramolecular charge clamp, which efficiently masks critical residues and indirectly hinders ERK binding. Thus, RSK1 CTT operates as an autoregulated phosphoswitch: its phosphorylation at specific sites affects its protein-binding capacity and its conformational dynamics. These biochemical feedbacks, which form the structural basis for the rapid dissociation of ERK2-RSK1 and RSK1-PDZ substrate complexes under sustained epidermal growth factor (EGF) stimulation, were structurally characterized and validated in living cells. Overall, conformational changes induced by phosphorylation in disordered regions of protein kinases, coupled to allosteric events occurring in the kinase domain cores, may provide mechanisms that contribute to the emergence of complex signaling activities. In addition, we show that phosphoswitches based on linear motifs can be functionally classified as ON and OFF protein-protein interaction switches or dimmers, depending on the specific positioning of phosphorylation target sites in relation to functional linear-binding motifs. Moreover, interaction of phosphorylated residues with positively charged residues in disordered regions is likely to be a common mechanism of phosphoregulation. DATABASE Structural data are available in the PDB database under the accession numbers 5N7D, 5N7F and 5N7G. NMR spectral assignation data are available in the BMRB database under the accession numbers 27213 and 27214.
Collapse
Affiliation(s)
- Gergő Gógl
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary.,Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám L Póti
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Henrietta Vadászi
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bálint Szeder
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, ELTE Eötvös Loránd University, Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lilla Turiák
- MS Proteomics Research Group, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Reményi
- Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
160
|
Hashimoto R, Kakigi R, Nakamura K, Itoh S, Daida H, Okada T, Katoh Y. LPS enhances expression of CD204 through the MAPK/ERK pathway in murine bone marrow macrophages. Atherosclerosis 2017; 266:167-175. [DOI: 10.1016/j.atherosclerosis.2017.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/09/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
161
|
MAPK and ERK polymorphisms are associated with PCOS risk in Chinese women. Oncotarget 2017; 8:100261-100268. [PMID: 29245975 PMCID: PMC5725017 DOI: 10.18632/oncotarget.22153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022] Open
Abstract
In this case-control study, we analyzed the association between eight RegulomeDB-annotated single nucleotide polymorphisms (SNPs) in the MEK1, MEK2, ERK1 and ERK2 genes and polycystic ovarian syndrome (PCOS). Logistic regression analysis demonstrated that MEK1 rs12050732 (OR = 1.29 [95%CI: 1.06-1.58], P = 0.012), ERK2 rs2266966 (OR = 0.81 [95%CI: 0.67-0.99], P = 0.040) and ERK2 rs5999521 (OR = 0.66 [95%CI: 0.51-0.86], P = 0.002) were associated with PCOS risk without adjusting for age and body mass index. Moreover, PCOS risk increased with allele dosage when these three polymorphisms were combined (Ptrend = 0.001). These findings suggest that genetic variants in key MAPK and ERK genes contribute to PCOS risk in Chinese women.
Collapse
|
162
|
Li H, Liu X, Zhang L, Li X. LncRNA BANCR facilitates vascular smooth muscle cell proliferation and migration through JNK pathway. Oncotarget 2017; 8:114568-114575. [PMID: 29383102 PMCID: PMC5777714 DOI: 10.18632/oncotarget.21603] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/08/2017] [Indexed: 01/17/2023] Open
Abstract
Deregulated migration and proliferation of vascular smooth muscle cells (VSMCs) acts a crucial role in the pathogenesis of many cardiovascular diseases such as atherosclerosis, coronary heart disease and hypertension. Long noncoding RNAs (lncRNAs) play crucial functional roles in a lot of biological processes such as cell development, cell proliferation, differentiation and invasion. In our study, we demonstrated that the BANCR expression level was upregulated in the atherosclerotic plaques tissues compared to in the normal vessels tissues. TNF-α could emhance the VSMCs proliferation. The expression level of BANCR and p-JNK were upregulated and activated in the proliferating VSMCs. Overexpression of BANCR enhanced VSMCs proliferation and migration. Elevated expression of BANCR induced JNK activation, which can be decreased by the specific JNK inhibitor SP600125. We demonstrated that ectopic expression of BANCR increased the VSMCs proliferation and migration through activating JNK pathway. These data suggested that lncRNA BANCR acts a crucial role in the regulating VSMCs proliferation and migration partly by activating the JNK pathway.
Collapse
Affiliation(s)
- He Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xian Liu
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Lan Zhang
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xueqi Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
163
|
Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Proc Natl Acad Sci U S A 2017; 114:E6287-E6296. [PMID: 28716922 DOI: 10.1073/pnas.1702973114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitogen-activated protein (MAP) kinase substrates are believed to require consensus docking motifs (D-site, F-site) to engage and facilitate efficient site-specific phosphorylation at specific serine/threonine-proline sequences by their cognate kinases. In contrast to other MAP kinase substrates, the transcription factor Ets-1 has no canonical docking motifs, yet it is efficiently phosphorylated by the MAP kinase ERK2 at a consensus threonine site (T38). Using NMR methodology, we demonstrate that this phosphorylation is enabled by a unique bipartite mode of ERK2 engagement by Ets-1 and involves two suboptimal noncanonical docking interactions instead of a single canonical docking motif. The N terminus of Ets-1 interacts with a part of the ERK2 D-recruitment site that normally accommodates the hydrophobic sidechains of a canonical D-site, retaining a significant degree of disorder in its ERK2-bound state. In contrast, the C-terminal region of Ets-1, including its Pointed (PNT) domain, engages in a largely rigid body interaction with a section of the ERK2 F-recruitment site through a binding mode that deviates significantly from that of a canonical F-site. This latter interaction is notable for the destabilization of a flexible helix that bridges the phospho-acceptor site to the rigid PNT domain. These two spatially distinct, individually weak docking interactions facilitate the highly specific recognition of ERK2 by Ets-1, and enable the optimal localization of its dynamic phospho-acceptor T38 at the kinase active site to enable efficient phosphorylation.
Collapse
|
164
|
Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. ACS Med Chem Lett 2017; 8:726-731. [PMID: 28740606 DOI: 10.1021/acsmedchemlett.7b00127] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022] Open
Abstract
ERK is the effector kinase of the RAS-RAF-MEK-ERK signaling cascade, which promotes cell transformation and malignancy in many cancers and is thus a major drug target in oncology. Kinase inhibitors targeting RAF or MEK are already used for the treatment of certain cancers, such as melanoma. Although the initial response to these drugs can be dramatic, development of drug resistance is a major challenge, even with combination therapies targeting both RAF and MEK. Importantly, most resistance mechanisms still rely on activation of the downstream effector kinase ERK, making it a promising target for drug development efforts. Here, we report the design and structural/functional characterization of a set of bivalent ERK inhibitors that combine a small molecule inhibitor that binds to the ATP-binding pocket with a peptide that selectively binds to an ERK protein interaction surface, the D-site recruitment site (DRS). Our studies show that the lead bivalent inhibitor, SBP3, has markedly improved potency compared to the small molecule inhibitor alone. Unexpectedly, we found that SBP3 also binds to several ERK-related kinases that contain a DRS, highlighting the importance of experimentally verifying the predicted specificity of bivalent inhibitors. However, SBP3 does not target any other kinases belonging to the same CMGC branch of the kinome. Additionally, our modular click chemistry inhibitor design facilitates the generation of different combinations of small molecule inhibitors with ERK-targeting peptides.
Collapse
Affiliation(s)
- Bernhard C. Lechtenberg
- Cancer
Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Peter D. Mace
- Cancer
Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - E. Hampton Sessions
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States
| | - Robert Williamson
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States
| | - Romain Stalder
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States
| | - Yann Wallez
- Cancer
Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Gregory P. Roth
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, Florida 32827, United States
| | - Stefan J. Riedl
- Cancer
Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Elena B. Pasquale
- Cancer
Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
- Pathology
Department, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
165
|
Hu S, Rao M, Lei H, Wu Y, Wang Y, Ke D, Xia W, Zhu C. Expression patterns of p38αMAPK during follicular development in the ovaries of neonatal rats. Acta Histochem 2017; 119:538-542. [PMID: 28606727 DOI: 10.1016/j.acthis.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 01/02/2023]
Abstract
The p38αMAPK signaling pathway plays a critical role in female reproduction, but an understanding of its expression in rats remains elusive. This study was carried out to investigate the temporal and spatial expression of p38αMAPK and p-p38αMAPK. Ovarian tissue samples were collected from 2-, 4-, 8-, 12-, 16-, 20- and 30-day-old female rats. Western blotting was used to examine the relative expression of p38αMAPK and p-p38αMAPK in ovarian tissue, and subcellular localization was examined using immunohistochemistry of the rat ovaries at different ages of postpartum. The immunohistochemical results showed that p38αMAPK and p-p38αMAPK were widely expressed in the rat ovaries, mainly localized in the follicle cells and granulosa cells. The expression of p38αMAPK was relatively stable for the different stages of oocytes, whereas the expression of p-p38αMAPK gradually increased. At different stages of granulosa cells, the expression of p38αMAPK was also relatively stable, and the p-p38αMAPK expression showed an upward trend during follicular development. Western blotting revealed that the expression of p38αMAPK in the ovaries was relatively stable, where as p-p38αMAPK expression initially exhibited an increasing trend and subsequently decreased, with a maximum at day 20. The expression patterns of p38αMAPK and p-p38αMAPK in the rat ovaries indicate their possible involvement in folliculogenesis. Taken together, the stage- and cell-specific expression of p-p38αMAPK in rat ovaries indicated that p-p38αMAPK might play a vital role during rat follicular development.
Collapse
|
166
|
Johnson MD, O’Connell M, Walter K, Silberstein H. mTOR activation is increased in pilocytic astrocytomas from older adults compared with children. Surg Neurol Int 2017; 8:85. [PMID: 28607819 PMCID: PMC5461564 DOI: 10.4103/sni.sni_367_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/20/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Recent studies suggest that the behavior and biology of WHO grade I pilocytic astrocytomas (PAs) in adults is different than that associated with grade I PAs in children. METHODS We evaluated Ki-67 labeling, BRAF abnormalities, isocitrate dehydrogenase R132 immunoreactivity phosphorylation (activation) of p44/42 mitogen activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) in formalin-fixed tissue from 21 adult (18 years or older, mean age 37 years) and 10 children (mean age 9.4 years) WHO grade I PAs. RESULTS The mean Ki-67 labeling was 4.8% in adults and 3.8% in children. There was no significant difference between Ki-67 labeling in children and adults or either subgroups of adults. No differences were found in phospho p44/42MAPK in adult subgroups (18-33 years and 34 and older) compared to children. Activation/phosphorylation of mTOR was biphasic in adults being significantly lower than children in young adults but significantly higher than children in older adults (age 34 and older). CONCLUSIONS Identifying mTOR phosphorylation/activation may represent a difference in biology and a new marker to guide chemotherapy with recently approved mTOR inhibitors.
Collapse
Affiliation(s)
- Mahlon D. Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Mary O’Connell
- Department of Pathology, Division of Neuropathology, University of Rochester School of Medicine, Rochester, New York, USA
| | - Kevin Walter
- Department of Neurosurgery, University of Rochester School of Medicine, Rochester, New York, USA
| | - Howard Silberstein
- Department of Neurosurgery, University of Rochester School of Medicine, Rochester, New York, USA
| |
Collapse
|
167
|
Liao B, Chen R, Lin F, Mai A, Chen J, Li H, Dong S, Xu Z. Imperatorin protects H9c2 cardiomyoblasts cells from hypoxia/reoxygenation-induced injury through activation of ERK signaling pathway. Saudi Pharm J 2017; 25:615-619. [PMID: 28579900 PMCID: PMC5447431 DOI: 10.1016/j.jsps.2017.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Imperatorin is a compound found in plants and has been widely used in Chinese medicine for many years. It has many pharmacological effects, including the recently reported anti-apoptotic function, however, the mechanism largely remains unclear. This study is aimed to elucidate the mechanism of Imperatorin's anti-apoptotic function. METHODS A model of hypoxia and reoxygenation (H/R) treated h9c2 cardiomyoblasts was successfully constructed. The cells were treated with H/R condition, and followed by adding Imperatorin alone, Imperatorin with ERK inhibitor and/or ERK inhibitor alone, to examine the cell viability by Cell Counting Kit-8 assay, cell apoptosis rate by flow cytometry, and ERK expression by Western-blot under different conditions. RESULTS The results showed that imperatorin exerted protective effect on h9c2 cells from H/R injure. It was also found that it not only increased cell viability but also reduced the apoptotic rate for H/R treated h9c2 cells. The experiments also demonstrated that imperatorin could upregulate the expression levels of both ERK1 and ERK2, which is a key step in ERK signaling pathway activation. CONCLUSIONS These findings provided evidence that imperatorin could increase the cell viability and lower apoptotic rate in H/R treated h9c2 cells, and could also enhance the expression of ERK1/ERK2, demonstrating imperatorin's protective effect on H/R injured h9c2 cells through ERK signaling pathway.
Collapse
Affiliation(s)
- Bihong Liao
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Ruimian Chen
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Feng Lin
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Aihuan Mai
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Jie Chen
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Huimin Li
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Shaohong Dong
- Department of Cardiology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| | - Zhenglei Xu
- Department of Gastroenterology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China
| |
Collapse
|
168
|
Kadiri M, El Azreq MA, Berrazouane S, Boisvert M, Aoudjit F. Human Th17 Migration in Three-Dimensional Collagen Involves p38 MAPK. J Cell Biochem 2017; 118:2819-2827. [PMID: 28198034 DOI: 10.1002/jcb.25932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
Abstract
T cell migration across extracellular matrix (ECM) is an important step of the adaptive immune response but is also involved in the development of inflammatory autoimmune diseases. Currently, the molecular mechanisms regulating the motility of effector T cells in ECM are not fully understood. Activation of p38 MAPK has been implicated in T cell activation and is critical to the development of immune and inflammatory responses. In this study, we examined the implication of p38 MAPK in regulating the migration of human Th17 cells through collagen. Using specific inhibitor and siRNA, we found that p38 is necessary for human Th17 migration in three-dimensional (3D) collagen and that 3D collagen increases p38 phosphorylation. We also provide evidence that the collagen receptor, discoidin domain receptor 1 (DDR1), which promotes Th17 migration in 3D collagen, is involved in p38 activation. Together, our findings suggest that targeting DDR1/p38 MAPK pathway could be beneficial for the treatment of Th17-mediated inflammatory diseases. J. Cell. Biochem. 118: 2819-2827, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Sofiane Berrazouane
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, Quebec, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
169
|
Bardwell AJ, Lagunes L, Zebarjedi R, Bardwell L. The WW domain of the scaffolding protein IQGAP1 is neither necessary nor sufficient for binding to the MAPKs ERK1 and ERK2. J Biol Chem 2017; 292:8750-8761. [PMID: 28396345 DOI: 10.1074/jbc.m116.767087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) scaffold proteins, such as IQ motif containing GTPase activating protein 1 (IQGAP1), are promising targets for novel therapies against cancer and other diseases. Such approaches require accurate information about which domains on the scaffold protein bind to the kinases in the MAPK cascade. Results from previous studies have suggested that the WW domain of IQGAP1 binds to the cancer-associated MAPKs ERK1 and ERK2, and that this domain might thus offer a new tool to selectively inhibit MAPK activation in cancer cells. The goal of this work was therefore to critically evaluate which IQGAP1 domains bind to ERK1/2. Here, using quantitative in vitro binding assays, we show that the IQ domain of IQGAP1 is both necessary and sufficient for binding to ERK1 and ERK2, as well as to the MAPK kinases MEK1 and MEK2. Furthermore, we show that the WW domain is not required for ERK-IQGAP1 binding, and contributes little or no binding energy to this interaction, challenging previous models of how WW-based peptides might inhibit tumorigenesis. Finally, we show that the ERK2-IQGAP1 interaction does not require ERK2 phosphorylation or catalytic activity and does not involve known docking recruitment sites on ERK2, and we obtain an estimate of the dissociation constant (Kd ) for this interaction of 8 μm These results prompt a re-evaluation of published findings and a refined model of IQGAP scaffolding.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Leonila Lagunes
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Ronak Zebarjedi
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
170
|
Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM, Mace PD. Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc Natl Acad Sci U S A 2017; 114:E2096-E2105. [PMID: 28242696 PMCID: PMC5358389 DOI: 10.1073/pnas.1620813114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Apoptosis signal-regulating kinases (ASK1-3) are apical kinases of the p38 and JNK MAP kinase pathways. They are activated by diverse stress stimuli, including reactive oxygen species, cytokines, and osmotic stress; however, a molecular understanding of how ASK proteins are controlled remains obscure. Here, we report a biochemical analysis of the ASK1 kinase domain in conjunction with its N-terminal thioredoxin-binding domain, along with a central regulatory region that links the two. We show that in solution the central regulatory region mediates a compact arrangement of the kinase and thioredoxin-binding domains and the central regulatory region actively primes MKK6, a key ASK1 substrate, for phosphorylation. The crystal structure of the central regulatory region reveals an unusually compact tetratricopeptide repeat (TPR) region capped by a cryptic pleckstrin homology domain. Biochemical assays show that both a conserved surface on the pleckstrin homology domain and an intact TPR region are required for ASK1 activity. We propose a model in which the central regulatory region promotes ASK1 activity via its pleckstrin homology domain but also facilitates ASK1 autoinhibition by bringing the thioredoxin-binding and kinase domains into close proximity. Such an architecture provides a mechanism for control of ASK-type kinases by diverse activators and inhibitors and demonstrates an unexpected level of autoregulatory scaffolding in mammalian stress-activated MAP kinase signaling.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Abhishek Kumar
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Sam A Jamieson
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Chontelle M King
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | | | - Elizabeth C Ledgerwood
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand;
| |
Collapse
|
171
|
Kubiniok P, Lavoie H, Therrien M, Thibault P. Time-resolved Phosphoproteome Analysis of Paradoxical RAF Activation Reveals Novel Targets of ERK. Mol Cell Proteomics 2017; 16:663-679. [PMID: 28188228 DOI: 10.1074/mcp.m116.065128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/31/2016] [Indexed: 12/19/2022] Open
Abstract
Small molecules targeting aberrant RAF activity, like vemurafenib (PLX4032), are highly effective against cancers harboring the V600E BRAF mutation and are now approved for clinical use against metastatic melanoma. However, in tissues showing elevated RAS activity and in RAS mutant tumors, these inhibitors stimulate RAF dimerization, resulting in inhibitor resistance and downstream "paradoxical" ERK activation. To understand the global signaling response of cancer cells to RAF inhibitors, we profiled the temporal changes of the phosphoproteome of two colon cancer cell lines (Colo205 and HCT116) that respond differently to vemurafenib. Comprehensive data mining and filtering identified a total of 37,910 phosphorylation sites, 660 of which were dynamically modulated upon treatment with vemurafenib. We established that 83% of these dynamic phosphorylation sites were modulated in accordance with the phospho-ERK profile of the two cell lines. Accordingly, kinase substrate prediction algorithms linked most of these dynamic sites to direct ERK1/2-mediated phosphorylation, supporting a low off-target rate for vemurafenib. Functional classification of target proteins indicated the enrichment of known (nuclear pore, transcription factors, and RAS-RTK signaling) and novel (Rho GTPases signaling and actin cytoskeleton) ERK-controlled functions. Our phosphoproteomic data combined with experimental validation established novel dynamic connections between ERK signaling and the transcriptional regulators TEAD3 (Hippo pathway), MKL1, and MKL2 (Rho serum-response elements pathway). We also confirm that an ERK-docking site found in MKL1 is directly antagonized by overlapping actin binding, defining a novel mechanism of actin-modulated phosphorylation. Altogether, time-resolved phosphoproteomics further documented vemurafenib selectivity and identified novel ERK downstream substrates.
Collapse
Affiliation(s)
- Peter Kubiniok
- From the ‡Institute for Research in Immunology and Cancer and.,Departments of §Chemistry
| | - Hugo Lavoie
- From the ‡Institute for Research in Immunology and Cancer and
| | - Marc Therrien
- From the ‡Institute for Research in Immunology and Cancer and .,‖Pathology and Cell Biology, and
| | - Pierre Thibault
- From the ‡Institute for Research in Immunology and Cancer and .,Departments of §Chemistry.,‡‡Biochemistry, Université de Montréal, C.P. 6128, Succursale Centreville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
172
|
He W, Wu Y, Tang X, Xia Y, He G, Min Z, Li C, Xiong S, Shi Z, Lu Y, Yuan Z. HDAC inhibitors suppress c-Jun/Fra-1-mediated proliferation through transcriptionally downregulating MKK7 and Raf1 in neuroblastoma cells. Oncotarget 2017; 7:6727-47. [PMID: 26734995 PMCID: PMC4872745 DOI: 10.18632/oncotarget.6797] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 12/23/2015] [Indexed: 12/19/2022] Open
Abstract
Activator protein 1 (AP-1) is a transcriptional factor composed of the dimeric members of bZIP proteins, which are frequently deregulated in human cancer cells. In this study, we aimed to identify an oncogenic AP-1 dimer critical for the proliferation of neuroblastoma cells and to investigate whether histone deacetylase inhibitors (HDACIs), a new generation of anticancer agents, could target the AP-1 dimer. We report here that HDACIs including trichostatin A, suberoylanilidehydroxamic acid, valproic acid and M344 can transcriptionally suppress both c-Jun and Fra-1, preceding their inhibition of cell growth. c-Jun preferentially interacting with Fra-1 as a heterodimer is responsible for AP-1 activity and critical for cell growth. Mechanistically, HDACIs suppress Fra-1 expression through transcriptionally downregulating Raf1 and subsequently decreasing MEK1/2-ERK1/2 activity. Unexpectedly, HDACI treatment caused MKK7 downregulation at both the protein and mRNA levels. Deletion analysis of the 5′-flanking sequence of the MKK7 gene revealed that a major element responsible for the downregulation by HDACI is located at −149 to −3 relative to the transcriptional start site. Knockdown of MKK7 but not MKK4 remarkably decreased JNK/c-Jun activity and proliferation, whereas ectopic MKK7-JNK1 reversed HDACI-induced c-Jun suppression. Furthermore, suppression of both MKK-7/c-Jun and Raf-1/Fra-1 activities was involved in the tumor growth inhibitory effects induced by SAHA in SH-SY5Y xenograft mice. Collectively, these findings demonstrated that c-Jun/Fra-1 dimer is critical for neuroblastoma cell growth and that HDACIs act as effective suppressors of the two oncogenes through transcriptionally downregulating MKK7 and Raf1.
Collapse
Affiliation(s)
- Weiwen He
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yanna Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Guozhen He
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Zhiqun Min
- Clinical Laboratory Center of Molecular Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chun Li
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Shiqiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Zhi Shi
- Department of Cell Biology and Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yongjian Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
173
|
Abstract
ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand
| | - Stefan J Riedl
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter D Mace
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand.
| |
Collapse
|
174
|
Maphis N, Jiang S, Xu G, Kokiko-Cochran ON, Roy SM, Van Eldik LJ, Watterson DM, Lamb BT, Bhaskar K. Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. ALZHEIMERS RESEARCH & THERAPY 2016; 8:54. [PMID: 27974048 PMCID: PMC5157054 DOI: 10.1186/s13195-016-0221-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hyperphosphorylation and aggregation of tau protein are the pathological hallmarks of Alzheimer's disease and related tauopathies. We previously demonstrated that the microglial activation induces tau hyperphosphorylation and cognitive impairment via activation of p38 mitogen-activated protein kinase (p38 MAPK) in the hTau mouse model of tauopathy that was deficient for microglial fractalkine receptor CX3CR1. METHOD We report an isoform-selective, brain-permeable, and orally bioavailable small molecule inhibitor of p38α MAPK (MW181) and its effects on tau phosphorylation in vitro and in hTau mice. RESULTS First, pretreatment of mouse primary cortical neurons with MW181 completely blocked inflammation-induced p38α MAPK activation and AT8 (pS199/pS202) site tau phosphorylation, with the maximum effect peaking at 60-90 min after stimulation. Second, treatment of old (~20 months of age) hTau mice with MW181 (1 mg/kg body weight; 14 days via oral gavage) significantly reduced p38α MAPK activation compared with vehicle-administered hTau mice. This also resulted in a significant reduction in AT180 (pT231) site tau phosphorylation and Sarkosyl-insoluble tau aggregates. Third, MW181 treatment significantly increased synaptophysin protein expression and resulted in improved working memory. Fourth, MW181 administration reduced phosphorylated MAPK-activated protein kinase 2 (pMK2) and phosphorylated activating transcription factor 2 (pATF2), which are known substrates of p38α MAPK. Finally, MW181 reduced the expression of interferon-γ and interleukin-1β. CONCLUSIONS Taken together, these studies support p38α MAPK as a valid therapeutic target for the treatment of tauopathies.
Collapse
Affiliation(s)
- Nicole Maphis
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shanya Jiang
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guixiang Xu
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Olga N Kokiko-Cochran
- Department of Neurosciences, The Ohio State University, 4198 Graves Hall, 333 West 10th Avenue, Columbus, OH, 43210, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 101 Sanders-Brown Bldg., 800S. Limestone Street, Lexington, KY, 40536, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Ward Building Room Mail Code W896, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University, 320W 15th Street, NB Suite 414C, Indianapolis, IN, 46202, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, MSC08 4660, 1 University of New Mexico, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
175
|
Proteomics approaches to decipher new signaling pathways. Curr Opin Struct Biol 2016; 41:128-134. [DOI: 10.1016/j.sbi.2016.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 01/01/2023]
|
176
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
177
|
St-Denis N, Gupta GD, Lin ZY, Gonzalez-Badillo B, Veri AO, Knight JD, Rajendran D, Couzens AL, Currie KW, Tkach JM, Cheung SW, Pelletier L, Gingras AC. Phenotypic and Interaction Profiling of the Human Phosphatases Identifies Diverse Mitotic Regulators. Cell Rep 2016; 17:2488-2501. [DOI: 10.1016/j.celrep.2016.10.078] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/03/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023] Open
|
178
|
Talipov MR, Nayak J, Lepley M, Bongard RD, Sem DS, Ramchandran R, Rathore R. Critical Role of the Secondary Binding Pocket in Modulating the Enzymatic Activity of DUSP5 toward Phosphorylated ERKs. Biochemistry 2016; 55:6187-6195. [PMID: 27739308 DOI: 10.1021/acs.biochem.6b00498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DUSP5 is an inducible nuclear dual-specificity phosphatase that specifically interacts with and deactivates extracellular signal-regulated kinases ERK1 and ERK2, which are responsible for cell proliferation, differentiation, and survival. The phosphatase domain (PD) of DUSP5 has unique structural features absent from other nuclear DUSPs, such as the presence of a secondary anion-binding site in the proximity of the reaction center and a glutamic acid E264 positioned next to the catalytic cysteine C263, as well as a remote intramolecular disulfide linkage. The overall 400 ns molecular dynamics simulations indicate that the secondary binding site of DUSP5 PD acts as an allosteric regulator of the phosphatase activity of DUSP5. Our studies have identified E264 as a critical constituent of the dual binding pocket, which regulates the catalytic activity of DUSP5 by forming a salt bridge with arginine R269. Molecular dynamics studies showed that initial occupation of the secondary binding pocket leads to the breakage of the salt bridge, which then allows the occupation of the active site. Indeed, biochemical analysis using the pERK assay on mutant E264Q demonstrated that mutation of glutamic acid E264 leads to an increase in the DUSP5 catalytic activity. The role of the secondary binding site in assembling the DUSP5-pERK pre-reactive complex was further demonstrated by molecular dynamics simulations that showed that the remote C197-C219 disulfide linkage controls the structure of the secondary binding pocket based on its redox state (i.e., disulfide/dithiol) and, in turn, the enzymatic activity of DUSP5.
Collapse
Affiliation(s)
- Marat R Talipov
- Department of Chemistry, Marquette University , Wehr Chemistry Building, P.O. Box 1881, 535 North 14th Street, Milwaukee, Wisconsin 53201, United States
| | - Jaladhi Nayak
- Department of Pediatrics, Department of Obstetrics and Gynecology, Children's Research Institute (CRI) Developmental Vascular Biology Program, and Translational and Biomedical Research Center, Medical College of Wisconsin , 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, Wisconsin 53226, United States
| | - Michael Lepley
- Department of Pediatrics, Department of Obstetrics and Gynecology, Children's Research Institute (CRI) Developmental Vascular Biology Program, and Translational and Biomedical Research Center, Medical College of Wisconsin , 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, Wisconsin 53226, United States
| | - Robert D Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin , Mequon, Wisconsin 53097, United States
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin , Mequon, Wisconsin 53097, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Department of Obstetrics and Gynecology, Children's Research Institute (CRI) Developmental Vascular Biology Program, and Translational and Biomedical Research Center, Medical College of Wisconsin , 8701 Watertown Plank Road, P.O. Box 26509, Milwaukee, Wisconsin 53226, United States
| | - Rajendra Rathore
- Department of Chemistry, Marquette University , Wehr Chemistry Building, P.O. Box 1881, 535 North 14th Street, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
179
|
Lin W, Zhong M, Liang S, Chen Y, Liu D, Yin Z, Cao Q, Wang C, Ling C. Emodin inhibits migration and invasion of MHCC-97H human hepatocellular carcinoma cells. Exp Ther Med 2016; 12:3369-3374. [PMID: 27882165 DOI: 10.3892/etm.2016.3793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
Emodin, an anthraquinone derivative from the root and rhizome of Rheum palmatum L., was found to have antitumor effects in different types of cancer by regulating multi-molecular targets. The aim of the present study was to explore the effect of emodin on the migration and invasion of MHCC-97H human hepatocellular carcinoma cells and the underlying molecular mechanisms. Firstly, it was demonstrated that emodin can inhibit cell proliferation and induce apoptosis of cells in a time- and dose-dependent manner, using a MTT assay and flow cytometry, respectively. However, when emodin concentration was <50 µmol/l, it had little effect on the inhibition of proliferation or the induction of apoptosis. Then, it was observed that emodin can significantly suppress cell migration and invasion with a treatment dose <50 µmol/l compared with the control (P<0.05), which was not attributed to a decrease in cell number. Further study demonstrated that emodin significantly suppressed the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9 compared with the control, which may be mediated by the activation of the p38 mitogen-activated protein kinases (MAPK) signaling pathway and suppression of extracellular signal regulated kinase (ERK)/MAPK and phosphatidylinositol 3-kinase/Akt signaling pathways. Therefore, the present study, for the first time, used MHCC-97H cells, which have the high potential of malignant invasion, to demonstrate that emodin may inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Wanfu Lin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Maofeng Zhong
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shufang Liang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yongan Chen
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Dong Liu
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Zifei Yin
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qingxin Cao
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
180
|
Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1. Int J Mol Sci 2016; 17:ijms17091419. [PMID: 27618897 PMCID: PMC5037698 DOI: 10.3390/ijms17091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.
Collapse
|
181
|
Han HM, Kim SJ, Kim JS, Kim BH, Lee HW, Lee YT, Kang KH. Ameliorative effects of Artemisia argyi Folium extract on 2,4‑dinitrochlorobenzene‑induced atopic dermatitis‑like lesions in BALB/c mice. Mol Med Rep 2016; 14:3206-14. [PMID: 27571702 PMCID: PMC5042749 DOI: 10.3892/mmr.2016.5657] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Artemisia argyi Folium has been used to treat skin diseases, including eczema and dermatitis, in South Korean medicine. The present study investigated the curative effects of Artemisia argyi Folium extract (AAFE) on 2,4‑dinitrochlorobenzene (DNCB)‑induced atopic dermatitis (AD)‑like skin lesions in a BALB/c mouse model. Briefly, the dorsal skin of the BALB/c mice was sensitized three times with DNCB, whereas the ears were challenged twice. Repeated treatment with DNCB induced AD‑like lesions. The effects of AAFE on AD‑like lesions were evaluated by clinical observation, histopathological analysis, immunohistochemistry and enzyme‑linked immunosorbent assay. In addition, reverse transcription‑polymerase chain reaction and western blotting were performed. Treatment with AAFE reduced AD‑like lesions, as determined by clinical observation, histopathological analysis, and detection of the serum levels of histamine, immunoglobulin E and cytokines. With regards to its mechanism of action, AAFE inhibited the phosphorylation of Lck/yes‑related novel tyrosine kinase (Lyn), spleen tyrosine kinase (Syk), mitogen‑activated protein kinases (MAPKs), phosphoinositide 3‑kinase (PI3K)/Akt and IκBα, which have essential roles in the production of various cytokines in lymph nodes. The suppressive activity of AAFE may be due to the inhibition of a series of immunopathological events, including the release of proinflammatory cytokines. The results of the present study strongly suggest that AAFE exerts an anti‑AD effect by inhibiting the Lyn, Syk, MAPKs, PI3K/Akt and IκBα pathways. Therefore, AAFE may be considered an effective herbal remedy for the treatment of AD.
Collapse
Affiliation(s)
- Hyoung-Min Han
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Seung-Ju Kim
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Jong-Sik Kim
- Department of Anatomy, College of Medicine, Kosin University, Busan 602‑703, Republic of Korea
| | - Bum Hoi Kim
- Department of Anatomy, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Hai Woong Lee
- Department of Public Health, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Yong Tae Lee
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| | - Kyung-Hwa Kang
- Department of Physiology, College of Korean Medicine, Dong‑Eui University, Busan 614‑851, Republic of Korea
| |
Collapse
|
182
|
Li X, Tran KM, Aziz KE, Sorokin AV, Chen J, Wang W. Defining the Protein-Protein Interaction Network of the Human Protein Tyrosine Phosphatase Family. Mol Cell Proteomics 2016; 15:3030-44. [PMID: 27432908 DOI: 10.1074/mcp.m116.060277] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Indexed: 12/25/2022] Open
Abstract
Protein tyrosine phosphorylation, which plays a vital role in a variety of human cellular processes, is coordinated by protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Genomic studies provide compelling evidence that PTPs are frequently mutated in various human cancers, suggesting that they have important roles in tumor suppression. However, the cellular functions and regulatory machineries of most PTPs are still largely unknown. To gain a comprehensive understanding of the protein-protein interaction network of the human PTP family, we performed a global proteomic study. Using a Minkowski distance-based unified scoring environment (MUSE) for the data analysis, we identified 940 high confidence candidate-interacting proteins that comprise the interaction landscape of the human PTP family. Through a gene ontology analysis and functional validations, we connected the PTP family with several key signaling pathways or cellular functions whose associations were previously unclear, such as the RAS-RAF-MEK pathway, the Hippo-YAP pathway, and cytokinesis. Our study provides the first glimpse of a protein interaction network for the human PTP family, linking it to a number of crucial signaling events, and generating a useful resource for future studies of PTPs.
Collapse
Affiliation(s)
- Xu Li
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Kim My Tran
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Kathryn E Aziz
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Alexey V Sorokin
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | - Junjie Chen
- From the ‡Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030;
| | - Wenqi Wang
- §Department of Developmental and Cell Biology, University of California, Irvine, California 92697
| |
Collapse
|
183
|
Goshen-Lago T, Goldberg-Carp A, Melamed D, Darlyuk-Saadon I, Bai C, Ahn NG, Admon A, Engelberg D. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 2016; 27:2771-83. [PMID: 27413009 PMCID: PMC5007096 DOI: 10.1091/mbc.e16-03-0167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
MAPKs are catalytically and biologically active only when dually phosphorylated on a TEY motif. Mutations in the yeast MAPK Mpk1 are described that render it fully functional when mutated in its TEY motif and even when it carries a kinase-dead mutation. MAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop’s TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity. Cells lacking MPK1, or the genes encoding the relevant MEKs, MKK1 and MKK2, do not proliferate under cell wall stress, imposed, for example, by caffeine. Mutants of Mpk1, Mpk1(Y268C) and Mpk1(Y268A), function independently of Mkk1 and Mkk2. We show that these variants are phosphorylated at their activation loop in mkk1∆mkk2∆ and mkk1∆mkk2∆pbs2∆ste7∆ cells, suggesting that they autophosphorylate. However, strikingly, when Y268C/A mutations were combined with the kinase-dead mutation, K54R, or mutations at the TEY motif, T190A+Y192F, the resulting proteins still allowed mkk1∆mkk2∆ cells to proliferate under caffeine stress. Mutating the equivalent residue, Tyr-280/Tyr-261, in Erk1/Erk2 significantly impaired Erk1/2’s catalytic activity. This study describes the first case in which a MAPK, Erk/Mpk1, imposes a phenotype via a mechanism that is independent of TEY phosphorylation and an unusual case in which an equivalent mutation in a highly conserved domain of yeast and mammalian Erks causes an opposite effect.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Anat Goldberg-Carp
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Chen Bai
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| |
Collapse
|
184
|
Terakawa J, Rocchi A, Serna VA, Bottinger EP, Graff JM, Kurita T. FGFR2IIIb-MAPK Activity Is Required for Epithelial Cell Fate Decision in the Lower Müllerian Duct. Mol Endocrinol 2016; 30:783-95. [PMID: 27164167 DOI: 10.1210/me.2016-1027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell fate of lower Müllerian duct epithelium (MDE), to become uterine or vaginal epithelium, is determined by the absence or presence of ΔNp63 expression, respectively. Previously, we showed that SMAD4 and runt-related transcription factor 1 (RUNX1) were independently required for MDE to express ΔNp63. Here, we report that vaginal mesenchyme directs vaginal epithelial cell fate in MDE through paracrine activation of fibroblast growth factor (FGF) receptor-MAPK pathway. In the developing reproductive tract, FGF7 and FGF10 were enriched in vaginal mesenchyme, whereas FGF receptor 2IIIb was expressed in epithelia of both the uterus and vagina. When Fgfr2 was inactivated, vaginal MDE underwent uterine cell fate, and this differentiation defect was corrected by activation of MEK-ERK pathway. In vitro, FGF10 in combination with bone morphogenetic protein 4 and activin A (ActA) was sufficient to induce ΔNp63 in MDE, and ActA was essential for induction of RUNX1 through SMAD-independent pathways. Accordingly, inhibition of type 1 receptors for activin in neonatal mice induced uterine differentiation in vaginal epithelium by down-regulating RUNX1, whereas conditional deletion of Smad2 and Smad3 had no effect on vaginal epithelial differentiation. In conclusion, vaginal epithelial cell fate in MDE is induced by FGF7/10-MAPK, bone morphogenetic protein 4-SMAD, and ActA-RUNX1 pathway activities, and the disruption in any one of these pathways results in conversion from vaginal to uterine epithelial cell fate.
Collapse
Affiliation(s)
- Jumpei Terakawa
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Altea Rocchi
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Vanida A Serna
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Erwin P Bottinger
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jonathan M Graff
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Takeshi Kurita
- Department of Molecular Virology Immunology and Medical Genetics (J.T., V.A.S., T.K.), The Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210; Department of Cell and Molecular Biology (A.R.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611; The Charles Bronfman Institute for Personalized Medicine (E.P.B.), Icahn School of Medicine at Mt Sinai, New York, New York 10029; and Developmental Biology (J.M.G.), Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
185
|
Hytti M, Tokarz P, Määttä E, Piippo N, Korhonen E, Suuronen T, Honkakoski P, Kaarniranta K, Lahtela-Kakkonen M, Kauppinen A. Inhibition of BET bromodomains alleviates inflammation in human RPE cells. Biochem Pharmacol 2016; 110-111:71-9. [PMID: 27106081 DOI: 10.1016/j.bcp.2016.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bromodomain-containing proteins are vital for controlling the expression of many pro-inflammatory genes. Consequently, compounds capable of inhibiting specific bromodomain-facilitated protein-protein interactions would be predicted to alleviate inflammation, making them valuable agents in the treatment of diseases caused by dysregulated inflammation, such as age-related macular degeneration. Here, we assessed the ability of known inhibitors JQ-1, PFI-1, and IBET-151 to protect from the inflammation and cell death caused by etoposide exposure in the human retinal pigment epithelial cell line, ARPE-19. The potential anti-inflammatory effects of the bromodomain inhibitors were assessed by ELISA (enzyme-linked immunosorbent assay) profiling. The involvement of NF-κB and SIRT1 in inflammatory signaling was monitored by ELISA and western blotting. Furthermore, SIRT1 was knocked down using a specific siRNA or inhibited by EX-527 to elucidate its role in the inflammatory reaction. The bromodomain inhibitors effectively decreased etoposide-induced release of IL-6 and IL-8. This anti-inflammatory effect was not related to SIRT1 activity, although all bromodomain inhibitors decreased the extent of acetylation of p53 at the SIRT1 deacetylation site. Overall, since bromodomain inhibitors display anti-inflammatory properties in human retinal pigment epithelial cells, these compounds may represent a new way of alleviating the inflammation underlying the onset of age-related macular degeneration.
Collapse
Affiliation(s)
- M Hytti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - P Tokarz
- Department of Molecular Genetics, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - E Määttä
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - N Piippo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - E Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - T Suuronen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - P Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - K Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Puijonlaaksontie 2, 70210 Kuopio, Finland
| | - M Lahtela-Kakkonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland
| | - A Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, 70210 Kuopio, Finland.
| |
Collapse
|
186
|
Johnson MD, Reeder JE, O'Connell M. p38MAPK activation and DUSP10 expression in meningiomas. J Clin Neurosci 2016; 30:110-114. [PMID: 27050915 DOI: 10.1016/j.jocn.2015.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
The mitogen activated protein kinase (MAPK) p38MAPK has been implicated in regulation of cell proliferation and apoptosis. However, expression, activation and regulation has not been studied in meningiomas, to our knowledge. p38MAPK is regulated, in part, by dual specificity phosphatases (DUSP) that inactivate signaling by dephosphorylation. DUSP10 is also a likely participant in regulating meningioma proliferation. Five fetal and an adult human leptomeninges and 37 meningioma cultures (MC) were evaluated for DUSP10 as well as phosphorylation of its substrates p38MAPK and p44/42MAPK by western blot and DUSP10 expression by polymerase chain reaction. Platelet derived growth factor-BB (PDGF-BB), transforming growth factor B1 (TGFB1) and cerebrospinal fluid effects on DUSP10 and signaling were also studied in vitro. DUSP10 and phospho-p38MAPK and phospho-p44/42MAPK were detected in all six leptomeninges. DUSP10 was detected in 13 of 17 World Health Organization grade I, 11 of 14 grade II and four of six grade III meningiomas. Phospho-p38MAPK was detected in nine of 17 grade I, two of six grade II, and four of six grade III meningiomas. In the majority of meningiomas DUSP10 expression correlated inversely with phosphorylation of p38MAPK. PDGF-BB increased DUSP10 in MC2 and MC4 and weakly in MC3. TGFB1 increased phosphorylation of p38MAPK and caspase 3 activation. Thus p38MAPK and DUSP10 likely participate in the pathogenesis of meningiomas.
Collapse
Affiliation(s)
- Mahlon D Johnson
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA.
| | - Jay E Reeder
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mary O'Connell
- Department of Pathology, Division of Neuropathology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 626, Rochester, NY 14623, USA
| |
Collapse
|
187
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
188
|
Padovani M, Cheng R. Gene expression profiling of mammary glands at an early stage of DMBA-induced carcinogenesis in the female Sprague-Dawley rat. EUROPEAN JOURNAL OF ONCOLOGY = GIORNALE EUROPEO DI ONCOLOGIA 2016; 21:21-37. [PMID: 36213255 PMCID: PMC9543070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
BACKGROUND Breast cancer is the most common cause of cancer death among women worldwide and the second leading cause of tumor-related death for women in westernized countries. Most research efforts to find a breast cancer biomarker have focused on the stage after the cancer is diagnosed. To investigate more deeply into mammary cancer prevention, a study of precancerous lesion development seems a priority. Experimentally-induced mammary tumors in rats constitute a powerful tool for studying the pathogenesis of this cancer and the molecular mechanisms involved in neoplastic progression. Furthermore, in vivo experimental animal models provide information not otherwise available in human populations. 7,12-dimethylbenz[a] anthracene (DMBA) induced rat mammary carcinomas have several similarities with human breast cancers including: histopathology, origination in the ductal epithelial cells, and hormone dependence. To better understand the molecular events associated with mammary carcinogenesis, we used a time-course high throughput gene expression approach on a DMBA-induced mammary cancer model to identify the early precancerous events as well as new potential diagnostic biomarkers. MATERIALS AND METHODS Twelve 7 wk-old virgin female Sprague-Dawley rats were randomized into 2 experimental groups: 1) DMBA-treated (40 mg/kg b.w. by intragastric administration (i.g.) in corn oil as the vehicle and 2) treated with corn oil (vehicle) by ig. At 2 and 4 weeks after DMBA administration, 3 animals randomly chosen from each experimental group were sacrificed and necropsied. Total RNA was extracted and the global gene expression patterns from the mammary gland and liver samples collected were used to identify the molecular profile of the precancerous stage genome. Significantly altered genes as evinced by multivariate data analysis were further confirmed by quantitative real time PCR and siRNA knockdown assays. RESULTS AND DISCUSSION Genes involved in cancer progression, migration, proliferation and oxidative stress were identified in this study. MARK, Wnt and Jak-STAT pathway signaling, known to play a major role at the precancerous stage, were also identified. Two novel less known cancer progression/proliferation related genes, Pcbd1 and Ppil1, upregulated in both liver and mammary glands, were also identified.
Collapse
Affiliation(s)
- Michela Padovani
- Previously Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; now Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Robert Cheng
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
189
|
Cong L, Chen W. Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats. Basic Clin Pharmacol Toxicol 2016; 119:193-201. [PMID: 26833867 DOI: 10.1111/bcpt.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
In this study, the neuroprotective effects of ginsenoside Rd (GS Rd) were evaluated in a rat model of spinal cord injury (SCI). Rats in SCI groups received a T8 laminectomy and a spinal contusion injury. GS Rd 12.5, 25 and 50 mg/kg were administered intraperitoneally 1 hr before the surgery and once daily for 14 days. Dexamethasone 1 mg/kg was administered as a positive control. Locomotor function was evaluated using the BBB score system. H&E staining and Nissl staining were performed to observe the histological changes in the spinal cord. The levels of MDA and GSH and the activity of SOD were assessed to reflect the oxidative stress state. The production of TNF-α, IL-1β and IL-1 was assessed using ELISA kits to examine the inflammatory responses in the spinal cord. TUNEL staining was used to detect the cell apoptosis in the spinal cord. Western blot analysis was used to examine the expression of apoptosis-associated proteins and MAPK proteins. The results demonstrated that GS Rd 25 and 50 mg/kg significantly improved the locomotor function of rats after SCI, reduced tissue injury and increased neuron survival in the spinal cord. Mechanically, GS Rd decreased MDA level, increased GSH level and SOD activity, reduced the production of pro-inflammatory cytokines and prevented cell apoptosis. The effects were equivalent to those of dexamethasone. In addition, GS Rd effectively inhibited the activation of MAPK signalling pathway induced by SCI, which might be involved in the protective effects of GS Rd against SCI. In conclusion, GS Rd attenuates SCI-induced secondary injury through reversing the redox-state imbalance, inhibiting the inflammatory response and apoptosis in the spinal cord tissue.
Collapse
Affiliation(s)
- Lin Cong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenting Chen
- Disease Control and Prevention Center of Shenyang Railway Bureau, Shenyang, China
| |
Collapse
|
190
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016; 7:183. [PMID: 26941717 PMCID: PMC4764696 DOI: 10.3389/fmicb.2016.00183] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
191
|
Volkamer A, Eid S, Turk S, Rippmann F, Fulle S. Identification and Visualization of Kinase-Specific Subpockets. J Chem Inf Model 2016; 56:335-46. [PMID: 26735903 DOI: 10.1021/acs.jcim.5b00627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The identification and design of selective compounds is important for the reduction of unwanted side effects as well as for the development of tool compounds for target validation studies. This is, in particular, true for therapeutically important protein families that possess conserved folds and have numerous members such as kinases. To support the design of selective kinase inhibitors, we developed a novel approach that allows identification of specificity determining subpockets between closely related kinases solely based on their three-dimensional structures. To account for the intrinsic flexibility of the proteins, multiple X-ray structures of the target protein of interest as well as of unwanted off-target(s) are taken into account. The binding pockets of these protein structures are calculated and fused to a combined target and off-target pocket, respectively. Subsequently, shape differences between these two combined pockets are identified via fusion rules. The approach provides a user-friendly visualization of target-specific areas in a binding pocket which should be explored when designing selective compounds. Furthermore, the approach can be easily combined with in silico alanine mutation studies to identify selectivity determining residues. The potential impact of the approach is demonstrated in four retrospective experiments on closely related kinases, i.e., p38α vs Erk2, PAK1 vs PAK4, ITK vs AurA, and BRAF vs VEGFR2. Overall, the presented approach does not require any profiling data for training purposes, provides an intuitive visualization of a large number of protein structures at once, and could also be applied to other target classes.
Collapse
Affiliation(s)
- Andrea Volkamer
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Sameh Eid
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Samo Turk
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | - Friedrich Rippmann
- Global Computational Chemistry, Merck KGaA , Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Simone Fulle
- BioMed X Innovation Center , Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| |
Collapse
|
192
|
Li Q, Chen J, Chen Y, Cong X, Chen Z. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia. Mol Med Rep 2016; 13:2393-400. [PMID: 26820076 PMCID: PMC4768999 DOI: 10.3892/mmr.2016.4810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobin Cong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
193
|
Joo H, Lee HJ, Shin EA, Kim H, Seo KH, Baek NI, Kim B, Kim SH. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells. Phytother Res 2016; 30:596-603. [PMID: 26787261 DOI: 10.1002/ptr.5563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/30/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022]
Abstract
Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC.
Collapse
Affiliation(s)
- HyeEun Joo
- Department of East West Medical Science, Graduate School of East West Medical Science, Kyung Hee University, Suwon, South Korea
| | - Hyun Joo Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Hangil Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Kyeong-Hwa Seo
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, 446-701, South Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 130-701, South Korea
| |
Collapse
|
194
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016. [PMID: 26941717 DOI: 10.3389/fmicb.2016.00183/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
195
|
Söveges B, Imre T, Szende T, Póti ÁL, Cserép GB, Hegedűs T, Kele P, Németh K. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags. Org Biomol Chem 2016; 14:6071-8. [DOI: 10.1039/c6ob00810k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein labeling by cycloocytynylated vinyl sulfone linkers is fast and thiol-selective, and subsequent click reaction with fluorogenic azides generates intensive fluorescence.
Collapse
Affiliation(s)
- B. Söveges
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Imre
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- MS Metabolomics Research Group
- Hungary
| | - T. Szende
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - Á. L. Póti
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Enzymology
- Protein Research Group
- Hungary
| | - G. B. Cserép
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - T. Hegedűs
- MTA-SE Molecular Biophysics Research Group
- Department of Biophysics and Radiation Biology
- Semmelweis University
- Tuzolto u. 37-47
- H-1094 Budapest
| | - P. Kele
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| | - K. Németh
- Research Centre for Natural Sciences of Hungarian Academy of Sciences
- Institute of Organic Chemistry
- Chemical Biology Research Group
- Hungary
| |
Collapse
|
196
|
Kim SY, Oh M, Lee KS, Kim WK, Oh KJ, Lee SC, Bae KH, Han BS. Profiling analysis of protein tyrosine phosphatases during neuronal differentiation. Neurosci Lett 2015; 612:219-224. [PMID: 26704437 DOI: 10.1016/j.neulet.2015.12.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/07/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
During neuronal differentiation, it is generally accepted that many kinases and phosphatases fulfill different roles. In this study, phospho-tyrosine phosphatases were focused on and their expression profiling was evaluated during neuronal differentiation of mouse J1 embryonic stem cells. Among 83 phospho-tyrosine phosphatases, expressions of 21 PTPs were increased but mRNA expressions of 10 PTPs decreased depending on the differentiation. We checked the protein expression patterns for the cases where PTPs mRNA expressions changed. Some of them showed consistent results with the mRNA expressions. In particular, it was found that dual-specific phosphatase23 (DUSP23) affected neuronal differentiation. The knock-down of DUSP23 decreased neuronal differentiation in terms of neuronal outgrowth and the expression of neuronal marker proteins and mRNAs. Taken together, the obtained results show that many PTPs play specific roles during neuronal differentiation and manipulating their activities by activators or inhibitors could adjust neuronal differentiation.
Collapse
Affiliation(s)
- Sun Young Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Mihee Oh
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Kyu-Suk Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Won-Kon Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Baek-Soo Han
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea.
| |
Collapse
|
197
|
Costa-Silva DG, Nunes MEM, Wallau GL, Martins IK, Zemolin APP, Cruz LC, Rodrigues NR, Lopes AR, Posser T, Franco JL. Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15526-15535. [PMID: 26006076 DOI: 10.1007/s11356-015-4737-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Aquatic ecosystems are under constant risk due to industrial, agricultural, and urban activities, compromising water quality and preservation of aquatic biota. The assessment of toxicological impacts caused by pollutants to aquatic environment using biomarker measurements in fish can provide reliable data to estimate sublethal effects posed by chemicals in contaminated areas. In this study, fish (Astyanax sp. and Danio rerio) exposed to agricultural and urban effluents at the Vacacaí River, Brazil, were tested for potential signs of aquatic contamination. This river comprehends one of the main watercourses of the Brazilian Pampa, a biome with a large biodiversity that has been neglected in terms of environmental and social-economic development. Sites S1 and S2 were chosen by their proximity to crops and wastewater discharge points, while reference site was located upstream of S1 and S2, in an apparently non-degraded area. Fish muscle and brain tissues were processed for determination of acetylcholinesterase as well as oxidative stress-related biomarkers. The results showed signs of environmental contamination, hallmarked by significant changes in cholinesterase activity, expression of metallothionein, antioxidant enzymes, glutathione levels, and activation of antioxidant/cell stress response signaling pathways in fish exposed to contaminated sites when compared to reference. Based on these results, it is evidenced that urban and agricultural activities are posing risk to the environmental quality of water resources at the studied area. It is also demonstrated that cell stress biomarkers may serve as important tools for biomonitoring and development of risk assessment protocols in the Pampa biome.
Collapse
Affiliation(s)
- D G Costa-Silva
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - M E M Nunes
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - G L Wallau
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - I K Martins
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - A P P Zemolin
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - L C Cruz
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - N R Rodrigues
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - A R Lopes
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - T Posser
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000
| | - J L Franco
- Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, RS, Brazil, 97.300-000.
| |
Collapse
|
198
|
Bardwell AJ, Bardwell L. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. J Biol Chem 2015; 290:26661-74. [PMID: 26370088 DOI: 10.1074/jbc.m115.691436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
199
|
Amano M, Hamaguchi T, Shohag MH, Kozawa K, Kato K, Zhang X, Yura Y, Matsuura Y, Kataoka C, Nishioka T, Kaibuchi K. Kinase-interacting substrate screening is a novel method to identify kinase substrates. J Cell Biol 2015; 209:895-912. [PMID: 26101221 PMCID: PMC4477863 DOI: 10.1083/jcb.201412008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Tomonari Hamaguchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Md Hasanuzzaman Shohag
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kei Kozawa
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Katsuhiro Kato
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Xinjian Zhang
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yoshimitsu Yura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Chikako Kataoka
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
200
|
Woo SM, Seong KJ, Oh SJ, Park HJ, Kim SH, Kim WJ, Jung JY. 17β-Estradiol induces odontoblastic differentiation via activation of the c-Src/MAPK pathway in human dental pulp cells. Biochem Cell Biol 2015; 93:587-95. [PMID: 26393498 DOI: 10.1139/bcb-2015-0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present study is aimed at investigating the effects of the exogenous estrogen 17β-estradiol (E2) on odontoblastic differentiation in human dental pulp cells (HDPCs) immotalized with hTERT gene and their molecular mechanism. Proliferation was detected by BrdU assay, and odontoblast differentiation induction was evaluated by the expression of dentin sialophosphoprotein (DSPP), dentin sialoprotein (DSP) and dentin matrix protein1 (DMP1), and alkaline phosphatase (ALP) activity and mineralization. Estrogen receptor-α (ER-α), c-Src, and mitogen-activated protein kinases (MAPKs) were examined and their inhibitors were used to determine the roles on odontogenic induction. E2 significantly promoted the HDPC proliferation, which was mediated by extracellular signal-related kinase 1/2. E2 upregulated DSPP, DSP, and DMP1 as the odontogenic differentiation markers and enhanced ALP activity and mineralization. E2 increased phosphorylation of ER-α and fulvestrant, an ER downregulator, significantly downregulated DSPP, DMP1, and DSP induced by E2. Moreover, E2 treatment activated c-Src and MAPKs upon odontogenic induction, whereas chemical inhibition of c-Src and MAPKs decreased expression of DSPP, DMP1, and DSP and mineralization augmented by E2. Moreover, fulvestrant reduced E2-induced phosphorylation of c-Src and MAPK and inhibition of c-Src by PP2 attenuated activation of MAPKs during E2-induced odontoblastic differentiation. Taken together, these results indicated that E2 stimulates odontoblastic differentiation of HDPCs via coordinated regulation of ER-α, c-Src, and MAPK signaling pathways, which may play a key role in the regeneration of dentin.
Collapse
Affiliation(s)
- Su Mi Woo
- a Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju 61186, South Korea
| | - Kyung Joo Seong
- a Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju 61186, South Korea
| | - Sang Jin Oh
- b School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, South Korea
| | - Hong Ju Park
- c Department of Oral and Maxillofacial Surgery, School of Dentistry, Dental Science Research Institute, Chonnam National University, Gwangju 61186, South Korea
| | - Sun Hun Kim
- d Department of Oral Anatomy, School of Dentistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju 61186, South Korea
| | - Won Jae Kim
- a Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju 61186, South Korea
| | - Ji Yeon Jung
- a Department of Oral Physiology, School of Dentistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|