151
|
Liu Y, Zhou F, Zhang R, Feng T. The para-hippocampal-medial frontal gyrus functional connectivity mediates the relationship between dispositional optimism and procrastination. Behav Brain Res 2023; 448:114463. [PMID: 37127062 DOI: 10.1016/j.bbr.2023.114463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Procrastination is a prevalent phenomenon throughout the world, which can lead to worse consequences across life domains, such as academic performance, mental health, and even public policy. Despite the evidence for the association between dispositional optimism and procrastination, the neural mechanisms underlying this link remain unexplored. To address this issue, we employed voxel-based morphometry (VBM) and resting-state functional connectivity (RSFC) methods to explore the underlying links between dispositional optimism and procrastination in a large sample (N=408). The self-report results showed that dispositional optimism was negatively associated with procrastination (r= -.30, p<.001). The VBM analysis indicated that dispositional optimism was positively correlated with gray matter volumes (GMV) in the right para-hippocampal (rPHC), and negatively correlated with GMV in the left cerebellum. Moreover, the functional connectivity analysis with the rPHC as a seed region revealed that rPHC-rMFC (right medial frontal gyrus) functional connectivity was negatively associated with dispositional optimism. Furthermore, the mediation analysis showed that the rPHC-rMFC connectivity partially mediated the relationship between dispositional optimism and procrastination. These results suggested that the rPHC-rMFC connectivity engaged in less task aversiveness by episodic prospection may underlie the association between dispositional optimism and procrastination, which provides a new perspective to understand the relationship between dispositional optimism and procrastination. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Ye Liu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Feng Zhou
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China
| | - Rong Zhang
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China; Key Laboratory of Cognition and Personality, Ministry of Education, China.
| |
Collapse
|
152
|
Schnell PM. Controlling the false-discovery rate when identifying the subgroup benefiting from treatment. Clin Trials 2023:17407745231169300. [PMID: 37122134 DOI: 10.1177/17407745231169300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One common goal of subgroup analyses is to determine which (if any) types of patients-sets of patients sharing a vector of baseline covariates-benefit from a particular treatment. Many approaches involve testing, implicitly or explicitly, hypotheses about many patient types which are nonexchangeable. Methods of controlling family-wise Type I error rate inflation in such approaches are available. Such methods are designed to control the rate of erroneously declaring at least one type of patient as benefiting and are, therefore, quite conservative. We present a method for instead controlling a weighted false discovery rate in the sense of controlling the expected proportion of patient types declared benefiting, weighted by their population prevalence, which do not in fact benefit from treatment. Such population-weighted false discovery rate control is analogous to maintaining the positive predictive value of a diagnostic test for expected benefit. We minimize power loss by using a resampling approach that accounts for correlation among test statistics corresponding to similar patient types. Simulation studies demonstrate successful control of the weighted false discovery rate by the proposed method, as well as anti-conservativeness in the absence of multiplicity corrections and conservativeness by methods controlling the false discovery rate without accounting for dependent test statistics or controlling the family-wise error rate. An analysis of a clinical trial of an Alzheimer's disease treatment illustrates the approach on real data. Resampling-based methods allow weighted false discovery rate control without unnecessarily sacrificing power when treatment effect estimates are correlated among patient types, and admit useful interpretations in terms of bounding sets and positive predictive value.
Collapse
Affiliation(s)
- Patrick M Schnell
- College of Public Health, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
153
|
Wang YW, Chen X, Yan CG. Comprehensive evaluation of harmonization on functional brain imaging for multisite data-fusion. Neuroimage 2023; 274:120089. [PMID: 37086875 DOI: 10.1016/j.neuroimage.2023.120089] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023] Open
Abstract
To embrace big-data neuroimaging, harmonizing the site effect in resting-state functional magnetic resonance imaging (R-fMRI) data fusion is a fundamental challenge. A comprehensive evaluation of potentially effective harmonization strategies, particularly with specifically collected data, has been scarce, especially for R-fMRI metrics. Here, we comprehensively assess harmonization strategies from multiple perspectives, including tests on residual site effect, individual identification, test-retest reliability, and replicability of group-level statistical results, on widely used R-fMRI metrics across various datasets, including data obtained from participants with repetitive measures at different scanners. For individual identifiability (i.e., whether the same subject could be identified across R-fMRI data scanned across different sites), we found that, while most methods decreased site effects, the Subsampling Maximum-mean-distance based distribution shift correction Algorithm (SMA) and parametric unadjusted CovBat outperformed linear regression models, linear mixed models, ComBat series and invariant conditional variational auto-encoder in clustering accuracy. Test-retest reliability was better for SMA and parametric adjusted CovBat than unadjusted ComBat series and parametric unadjusted CovBat in the number of overlapped voxels. At the same time, SMA was superior to the latter in replicability in terms of the Dice coefficient and the scale of brain areas showing sex differences reproducibly observed across datasets. Furthermore, SMA better detected reproducible sex differences of ALFF under the site-sex confounded situation. Moreover, we designed experiments to identify the best target site features to optimize SMA identifiability, test-retest reliability, and stability. We noted both sample size and distribution of the target site matter and introduced a heuristic formula for selecting the target site. In addition to providing practical guidelines, this work can inform continuing improvements and innovations in harmonizing methodologies for big R-fMRI data.
Collapse
Affiliation(s)
- Yu-Wei Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; International Big-Data Center for Depression Research, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China..
| |
Collapse
|
154
|
West SL, Gerhart ML, Ebner TJ. Wide-field calcium imaging of cortical activation and functional connectivity in externally- and internally-driven locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536261. [PMID: 37090567 PMCID: PMC10120686 DOI: 10.1101/2023.04.10.536261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The neural dynamics underlying self-initiated versus sensory driven movements is central to understanding volitional action. Upstream motor cortices are associated with the generation of internally-driven movements over externally-driven. Here we directly compare cortical dynamics during internally- versus externally-driven locomotion using wide-field Ca2+ imaging. We find that secondary motor cortex (M2) plays a larger role in internally-driven spontaneous locomotion transitions, with increased M2 functional connectivity during starting and stopping than in the externally-driven, motorized treadmill locomotion. This is not the case in steady-state walk. In addition, motorized treadmill and spontaneous locomotion are characterized by markedly different patterns of cortical activation and functional connectivity at the different behavior periods. Furthermore, the patterns of fluorescence activation and connectivity are uncorrelated. These experiments reveal widespread and striking differences in the cortical control of internally- and externally-driven locomotion, with M2 playing a major role in the preparation and execution of the self-initiated state.
Collapse
Affiliation(s)
- Sarah L. West
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Morgan L. Gerhart
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
155
|
Dai J, Scherf KS. The Privileged Status of Peer Faces: Subordinate-level Neural Representations of Faces in Emerging Adults. J Cogn Neurosci 2023; 35:715-735. [PMID: 36638228 DOI: 10.1162/jocn_a_01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Faces can be represented at a variety of different subordinate levels (e.g., race) that can become "privileged" for visual recognition in perceivers and is reflected as patterns of biases (e.g., own-race bias). The mechanisms encoding privileged status are likely varied, making it difficult to predict how neural systems represent subordinate-level biases in face processing. Here, we investigate the neural basis of subordinate-level representations of human faces in the ventral visual pathway, by leveraging recent behavioral findings indicating the privileged nature of peer faces in identity recognition for adolescents and emerging adults (i.e., ages 18-25 years). We tested 166 emerging adults in a face recognition paradigm and a subset of 31 of these participants in two fMRI task paradigms. We showed that emerging adults exhibit a peer bias in face recognition behavior, which indicates a privileged status for a subordinate-level category of faces that is not predicted based on experience alone. This privileged status of peer faces is supported by multiple neural mechanisms within the ventral visual pathway, including enhanced neural magnitude and neural size in the neural size in the fusiform area (FFA1), which is a critical part of the face-processing network that fundamentally supports the representations of subordinate-level categories of faces. These findings demonstrate organizational principles that the human ventral visual pathway uses to privilege relevant social information in face representations, which is essential for navigating human social interactions. It will be important to understand whether similar mechanisms support representations of other subordinate-level categories like race and gender.
Collapse
|
156
|
Cherry J, Kamel S, Elfil M, Aravala SS, Bayoumi A, Patel A, Sinha R, Tinaz S. Mental imagery content is associated with disease severity and specific brain functional connectivity changes in patients with Parkinson's disease. Brain Imaging Behav 2023; 17:161-171. [PMID: 36434490 PMCID: PMC10050121 DOI: 10.1007/s11682-022-00749-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Mental imagery is the mental re-creation of perceptual experiences, events and scenarios, and motor acts. In our previous study, we assessed whether motor imagery (MI) training combined with functional magnetic resonance imaging-based neurofeedback could improve the motor function of nondemented subjects with mild Parkinson's disease (PD) (N = 22). We used visual imagery (VI) (e.g., of scenes or events, but not of self-movements) training without neurofeedback for the control group (N = 22). Notably, both groups showed significant and comparable improvement in motor function after four weeks of daily imagery practice. In this study, we further examined the neural correlates of the motor enhancement as a result of the VI training by analyzing the self-reported VI content during daily practice and relating its quality to the functional connectivity characteristics of the same subjects. We demonstrated that the VI practice encompassed multisensory, spatial, affective, and executive processes all of which are also important for motor function in real life. Subjects with worse global disease severity also showed poorer quality of the VI content. Finally, the quality of the VI content showed significant positive correlations with the functional connectivity changes during the VI tasks in brain areas supporting visuospatial and sensorimotor processes. Our findings suggest that mental imagery training combining VI and MI may enhance motor function in patients with mild PD, and more broadly, underline the importance of incorporating self-reports of thoughts and experiences in neuroimaging studies that examine the brain mechanisms of complex cognitive processes especially in neuropsychiatric patient populations.
Collapse
Affiliation(s)
- Jared Cherry
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Serageldin Kamel
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mohamed Elfil
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Sai S Aravala
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ahmed Bayoumi
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA
| | - Amar Patel
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA
| | - Rajita Sinha
- Yale Stress Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sule Tinaz
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, New Haven, CT, USA.
- Clinical Neurosciences Imaging Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
157
|
Emsley R, du Plessis S, Phahladira L, Luckhoff HK, Scheffler F, Kilian S, Smit R, Buckle C, Chiliza B, Asmal L. Antipsychotic treatment effects and structural MRI brain changes in schizophrenia. Psychol Med 2023; 53:2050-2059. [PMID: 35441587 PMCID: PMC10106303 DOI: 10.1017/s0033291721003809] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/21/2021] [Accepted: 09/01/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Progressive brain structural MRI changes are described in schizophrenia and have been ascribed to both illness progression and antipsychotic treatment. We investigated treatment effects, in terms of total cumulative antipsychotic dose, efficacy and tolerability, on brain structural changes over the first 24 months of treatment in schizophrenia. METHODS A prospective, 24-month, single-site cohort study in 99 minimally treated patients with first-episode schizophrenia, schizophreniform and schizoaffective disorder, and 98 matched healthy controls. We treated the patients according to a fixed protocol with flupenthixol decanoate, a long-acting injectable antipsychotic. We assessed psychopathology, cognition, extrapyramidal symptoms and BMI, and acquired MRI scans at months 0, 12 and 24. We selected global cortical thickness, white matter volume and basal ganglia volume as the regions of interest. RESULTS The only significant group × time interaction was for basal ganglia volumes. However, patients, but not controls, displayed cortical thickness reductions and increases in white matter and basal ganglia volumes. Cortical thickness reductions were unrelated to treatment. White matter volume increases were associated with lower cumulative antipsychotic dose, greater improvements in psychopathology and cognition, and more extrapyramidal symptoms. Basal ganglia volume increases were associated with greater improvements in psychopathology, greater increases in BMI and more extrapyramidal symptoms. CONCLUSIONS We provide evidence for plasticity in white matter and basal ganglia associated with antipsychotic treatment in schizophrenia, most likely linked to the dopamine blocking actions of these agents. Cortical changes may be more closely related to the neurodevelopmental, non-dopaminergic aspects of the illness.
Collapse
Affiliation(s)
- Robin Emsley
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Lebogang Phahladira
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Hilmar K. Luckhoff
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Frederika Scheffler
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Sanja Kilian
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Retha Smit
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Chanelle Buckle
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| | - Bonginkosi Chiliza
- Department of Psychiatry, Nelson R Mandela School of Medicine, University of Kwazulu-Natal, Durban, South Africa
| | - Laila Asmal
- Department of Psychiatry, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa
| |
Collapse
|
158
|
Xu S, Zhang Z, Li L, Zhou Y, Lin D, Zhang M, Zhang L, Huang G, Liu X, Becker B, Liang Z. Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience. Neuroimage 2023; 269:119941. [PMID: 36791897 DOI: 10.1016/j.neuroimage.2023.119941] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Determining and decoding emotional brain processes under ecologically valid conditions remains a key challenge in affective neuroscience. The current functional Magnetic Resonance Imaging (fMRI) based emotion decoding studies are mainly based on brief and isolated episodes of emotion induction, while sustained emotional experience in naturalistic environments that mirror daily life experiences are scarce. Here we used 12 different 10-minute movie clips as ecologically valid emotion-evoking procedures in n = 52 individuals to explore emotion-specific fMRI functional connectivity (FC) profiles on the whole-brain level at high spatial resolution (432 parcellations including cortical and subcortical structures). Employing machine-learning based decoding and cross validation procedures allowed to investigate FC profiles contributing to classification that can accurately distinguish sustained happiness and sadness and that generalize across subjects, movie clips, and parcellations. Both functional brain network-based and subnetwork-based emotion classification results suggested that emotion manifests as distributed representation of multiple networks, rather than a single functional network or subnetwork. Further, the results showed that the Visual Network (VN) and Default Mode Network (DMN) associated functional networks, especially VN-DMN, exhibited a strong contribution to emotion classification. To further estimate the temporal accumulative effect of naturalistic long-term movie-based video-evoking emotions, we divided the 10-min episode into three stages: early stimulation (1∼200 s), middle stimulation (201∼400 s), and late stimulation (401∼600 s) and examined the emotion classification performance at different stimulation stages. We found that the late stimulation contributes most to the classification (accuracy=85.32%, F1-score=85.62%) compared to early and middle stimulation stages, implying that continuous exposure to emotional stimulation can lead to more intense emotions and further enhance emotion-specific distinguishable representations. The present work demonstrated that sustained happiness and sadness under naturalistic conditions are presented in emotion-specific network profiles and these expressions may play different roles in the generation and modulation of emotions. These findings elucidated the importance of network level adaptations for sustained emotional experiences during naturalistic contexts and open new venues for imaging network level contributions under naturalistic conditions.
Collapse
Affiliation(s)
- Shuyue Xu
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Zhiguo Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China; Peng Cheng Laboratory, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China
| | - Linling Li
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, China
| | - Danyi Lin
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Min Zhang
- Institute of Computing and Intelligence, Harbin Institute of Technology, Shenzhen, China
| | - Li Zhang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Gan Huang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, MOE Key Laboratory for Neuroinformation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Zhen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen 518060, China; Marshall Laboratory of Biomedical Engineering, Shenzhen 518060, China.
| |
Collapse
|
159
|
Jiang J, Bruss J, Lee WT, Tranel D, Boes AD. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control. Nat Commun 2023; 14:1740. [PMID: 36990985 PMCID: PMC10060223 DOI: 10.1038/s41467-023-37330-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.
Collapse
Affiliation(s)
- Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA.
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Joel Bruss
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Woo-Tek Lee
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52242, USA
- Behavioral-biomedical Interface Training Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Aaron D Boes
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Psychiatry, Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Pediatrics, Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
160
|
Anderson SR, Gianola M, Medina NA, Perry JM, Wager TD, Losin EAR. Doctor trustworthiness influences pain and its neural correlates in virtual medical interactions. Cereb Cortex 2023; 33:3421-3436. [PMID: 36001114 PMCID: PMC10068271 DOI: 10.1093/cercor/bhac281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trust is an important component of the doctor-patient relationship and is associated with improved patient satisfaction and health outcomes. Previously, we reported that patient feelings of trust and similarity toward their clinician predicted reductions in evoked pain in response to painful heat stimulations. In the present study, we investigated the brain mechanisms underlying this effect. We used face stimuli previously developed using a data-driven computational modeling approach that differ in perceived trustworthiness and superimposed them on bodies dressed in doctors' attire. During functional magnetic resonance imaging, participants (n = 42) underwent a series of virtual medical interactions with these doctors during which they received painful heat stimulation as an analogue of a painful diagnostic procedure. Participants reported increased pain when receiving painful heat stimulations from low-trust doctors, which was accompanied by increased activity in pain-related brain regions and a multivariate pain-predictive neuromarker. Findings suggest that patient trust in their doctor may have tangible impacts on pain and point to a potential brain basis for trust-related reductions in pain through the modulation of brain circuitry associated with the sensory-discriminative and affective-motivational dimensions of pain.
Collapse
Affiliation(s)
- Steven R Anderson
- Department of Psychology, University of Miami, 5665 Ponce de Leon Boulevard, Coral Gables, FL 33146-0751, USA
| | - Morgan Gianola
- Department of Psychology, University of Miami, 5665 Ponce de Leon Boulevard, Coral Gables, FL 33146-0751, USA
| | - Natalia A Medina
- Department of Psychology, University of Miami, 5665 Ponce de Leon Boulevard, Coral Gables, FL 33146-0751, USA
| | - Jenna M Perry
- Department of Psychology, University of Miami, 5665 Ponce de Leon Boulevard, Coral Gables, FL 33146-0751, USA
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, 3 Maynard St, Hanover, NH 03755-3565, USA
| | - Elizabeth A Reynolds Losin
- Department of Psychology, University of Miami, 5665 Ponce de Leon Boulevard, Coral Gables, FL 33146-0751, USA
| |
Collapse
|
161
|
Rawlings-Mortimer F, Lazari A, Tisca C, Tachrount M, Martins-Bach AB, Miller KL, Lerch JP, Johansen-Berg H. 7,8-dihydroxyflavone enhances long-term spatial memory and alters brain volume in wildtype mice. Front Syst Neurosci 2023; 17:1134594. [PMID: 37008453 PMCID: PMC10057119 DOI: 10.3389/fnsys.2023.1134594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: 7,8-dihydroxyflavone (7,8-DHF) is a low molecular weight compound that can cross the blood brain barrier and has been implicated in numerous functions and behaviours. It is thought to have neuroprotective capability and has been shown to alleviate symptoms in a wide range of diseases.Methods: 7,8-DHF was administered systemically to wildtype mice during Morris water maze training. Long-term spatial memory was assessed 28 days later. Ex-vivo T2-weighted (T2w) imaging was undertaken on a subset of these mice to assess brain-wide changes in volume.Results: We found that systemic 7,8-DHF administration during the training period enhanced spatial memory 28 days later. Volumetric changes were observed in numerous brain regions associated with a broad range of functions including cognition, sensory, and motor processing.Discussion: Our findings give the first whole brain overview of long-term anatomical changes following 7,8-DHF administration providing valuable information for assessing and understanding the widespread effects this drug has been shown to have in behaviour and disease.
Collapse
|
162
|
Guma E, Andrýsková L, Brázdil M, Chakravarty MM, Marečková K. Perinatal maternal mental health and amygdala morphology in young adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110676. [PMID: 36372293 DOI: 10.1016/j.pnpbp.2022.110676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
The pre- and perinatal environment is thought to play a critical role in shaping brain development. Specifically, maternal mental health and maternal care have been shown to influence offspring brain development in regions implicated in emotional regulation such as the amygdala. In this study, we used data from a neuroimaging follow-up of a prenatal birth-cohort, the European Longitudinal Study of Pregnancy and Childhood, to investigate the impact of early postnatal maternal anxiety/co-dependence, and prenatal and early-postnatal depression and dysregulated mood on amygdala volume and morphology in young adulthood (n = 103). We observed that in typically developing young adults, greater maternal anxiety/co-dependence after birth was significantly associated with lower volume (right: t = -2.913, p = 0.0045, β = -0.523; left: t = -1.471, p = 0.144, β = -0.248) and non-significantly associated with surface area (right: t = -3.502, q = 0.069, <10%FDR, β = -0.090, left: t = -3.137, q = 0.117, <10%FDR, = -0.088) of the amygdala in young adulthood. Conversely, prenatal maternal depression and mood dysregulation in the early postnatal period was not associated with any volumetric or morphological changes in the amygdala in young adulthood. Our findings provide evidence for subtle but long-lasting alterations to amygdala morphology associated with differences in maternal anxiety/co-dependence in early development.
Collapse
Affiliation(s)
- Elisa Guma
- Computational Brain Anatomy Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Lenka Andrýsková
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | - Klára Marečková
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
163
|
Helwegen K, Libedinsky I, van den Heuvel MP. Statistical power in network neuroscience. Trends Cogn Sci 2023; 27:282-301. [PMID: 36725422 DOI: 10.1016/j.tics.2022.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/31/2023]
Abstract
Network neuroscience has emerged as a leading method to study brain connectivity. The success of these investigations is dependent not only on approaches to accurately map connectivity but also on the ability to detect real effects in the data - that is, statistical power. We review the state of statistical power in the field and discuss sample size, effect size, measurement error, and network topology as key factors that influence the power of brain connectivity investigations. We use the term 'differential power' to describe how power can vary between nodes, edges, and graph metrics, leaving traces in both positive and negative connectome findings. We conclude with strategies for working with, rather than around, power in connectivity studies.
Collapse
Affiliation(s)
- Koen Helwegen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ilan Libedinsky
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
164
|
Kochs S, Franssen S, Pimpini L, van den Hurk J, Valente G, Roebroeck A, Jansen A, Roefs A. IT IS A MATTER OF PERSPECTIVE: ATTENTIONAL FOCUS RATHER THAN DIETARY RESTRAINT DRIVES BRAIN RESPONSES TO FOOD STIMULI. Neuroimage 2023; 273:120076. [PMID: 37004828 DOI: 10.1016/j.neuroimage.2023.120076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Brain responses to food are thought to reflect food's rewarding value and to fluctuate with dietary restraint. We propose that brain responses to food are dynamic and depend on attentional focus. Food pictures (high-caloric/low-caloric, palatable/unpalatable) were presented during fMRI-scanning, while attentional focus (hedonic/health/neutral) was induced in 52 female participants varying in dietary restraint. The level of brain activity was hardly different between palatable versus unpalatable foods or high-caloric versus low-caloric foods. Activity in several brain regions was higher in hedonic than in health or neutral attentional focus (p < 0.05, FWE-corrected). Palatability and calorie content could be decoded from multi-voxel activity patterns (p < 0.05, FDR-corrected). Dietary restraint did not significantly influence brain responses to food. So, level of brain activity in response to food stimuli depends on attentional focus, and may reflect salience, not reward value. Palatability and calorie content are reflected in patterns of brain activity.
Collapse
|
165
|
Rijsketic DR, Casey AB, Barbosa DA, Zhang X, Hietamies TM, Ramirez-Ovalle G, Pomrenze M, Halpern CH, Williams LM, Malenka RC, Heifets BD. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.19.528997. [PMID: 36865251 PMCID: PMC9980055 DOI: 10.1101/2023.02.19.528997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of context on the subjective experience of serotonergic psychedelics have not been fully examined in human neuroimaging studies, partly due to limitations of the imaging environment. Here, we administered saline or psilocybin to mice in their home cage or an enriched environment, immunofluorescently-labeled brain-wide c-Fos, and imaged cleared tissue with light sheet microscopy to examine the impact of context on psilocybin-elicited neural activity at cellular resolution. Voxel-wise analysis of c-Fos-immunofluorescence revealed differential neural activity, which we validated with c-Fos + cell density measurements. Psilocybin increased c-Fos expression in the neocortex, caudoputamen, central amygdala, and parasubthalamic nucleus and decreased c-Fos in the hypothalamus, cortical amygdala, striatum, and pallidum. Main effects of context and psilocybin-treatment were robust, widespread, and spatially distinct, whereas interactions were surprisingly sparse.
Collapse
Affiliation(s)
- Daniel Ryskamp Rijsketic
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austen B. Casey
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel A.N. Barbosa
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Tuuli M. Hietamies
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grecia Ramirez-Ovalle
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Casey H. Halpern
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC) Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Robert C. Malenka
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Nancy Pritzker Laboratory, Stanford University, Stanford, CA 94305, USA
| | - Boris D. Heifets
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
166
|
Yang J, Deng Y, Liu D, Tan Y, Lin M, Zhou X, Zhang J, Yu H, Hu Y, Tang Y, Jiang S, Zhang J. Brain network deficits in breast cancer patients after early neoadjuvant chemotherapy: A longitudinal MRI study. J Neurosci Res 2023; 101:1138-1153. [PMID: 36791216 DOI: 10.1002/jnr.25178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) patients who undergo chemotherapy are likely to develop chemotherapy-related cognitive impairment (CRCI). Recent studies of BC patients after chemotherapy have used graph theory to investigate the topological properties of the brain functional connectome. However, little is known about structural morphological networks in BC patients after early neoadjuvant chemotherapy (NAC). Brain morphological network organization in 47 female participants with BC was investigated before and after NAC. Topological properties of brain networks were ascertained based on morphological similarities in regional gray matter using a graph theory approach based on 3D T1-weighted MRI data. Nonparametric permutation testing was used to assess longitudinal-group differences in topological metrics. Compared with BC patients before NAC, BC patients after early NAC showed significantly increased global efficiency (p = .048), decreased path length (p = .033), and abnormal nodal properties and connectivity, mainly located in the central executive network (CEN). The change in the network efficiency of the right caudate was negatively correlated with the change in the Self-Rating Anxiety Scale score (r = -.435, p = .008), and the change in the nodal degree of the left superior frontal gyrus (dorsolateral part) was positively correlated with the change in the Functional Assessment of Cancer Therapy score (r = .547, p = .002). BC participants showed randomization in global properties and dysconnectivity in the CEN after early NAC. NAC may disrupt the cognitive balance of the brain morphological network in individuals with BC.
Collapse
Affiliation(s)
- Jing Yang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongchun Deng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, School of Medicine, Chongqing, China.,Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, School of Medicine, Chongqing, China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Meng Lin
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jing Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yixin Hu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yu Tang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shixi Jiang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
167
|
Arioli M, Basso G, Baud-Bovy G, Mattioni L, Poggi P, Canessa N. Neural bases of loss aversion when choosing for oneself versus known or unknown others. Cereb Cortex 2023:7030624. [PMID: 36748997 DOI: 10.1093/cercor/bhad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Despite the ubiquitous interdependence between one's own decisions and others' welfare, and the controversial evidence on the behavioral effect of choosing for others, the neural bases of making decisions for another versus oneself remain unexplored. We investigated whether loss aversion (LA; the tendency to avoid losses over approaching equivalent gains) is modulated by (i) choosing for oneself, other individuals, or both; (ii) knowing or not knowing the other recipients; or (iii) an interaction between these factors. We used fMRI to assess the brain activations associated with choosing whether to accept or reject mixed gambles, either for oneself, for another player, or both, in 2 groups of 28 participants who had or had not briefly interacted with the other players before scanning. Participants displayed higher LA for choices involving their payoff compared with those affecting only the payoff of other, known, players. This "social" modulation of decision-making was found to engage the dorsomedial prefrontal cortex and its inhibitory connectivity to the middle cingulate cortex. This pattern might underpin decision-making for known others via self-other distinction processes associated with dorsomedial prefrontal areas, with this in turn promoting the inhibition of socially oriented responses through the downregulation of the midcingulate node of the empathy network.
Collapse
Affiliation(s)
- Maria Arioli
- Department of Human and Social Sciences, University of Bergamo, Piazzale Sant'Agostino 2, Bergamo 24129, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza (MB) 20900, Italy
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Sciences Unit, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, Milan 20132, Italy
| | - Lorenzo Mattioni
- Scuola Universitaria Superiore IUSS, IUSS Cognitive Neuroscience (ICoN) Center, Piazza della Vittoria 15, Pavia 27100, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Radiology Unit of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| | - Nicola Canessa
- Scuola Universitaria Superiore IUSS, IUSS Cognitive Neuroscience (ICoN) Center, Piazza della Vittoria 15, Pavia 27100, Italy.,Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, Via Maugeri 10, Pavia 27100, Italy
| |
Collapse
|
168
|
Allen CH, Shold J, Michael Maurer J, Reynolds BL, Anderson NE, Harenski CL, Harenski KA, Calhoun VD, Kiehl KA. Aberrant resting-state functional connectivity associated with childhood trauma among juvenile offenders. Neuroimage Clin 2023; 37:103343. [PMID: 36764058 PMCID: PMC9929859 DOI: 10.1016/j.nicl.2023.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Individuals with history of childhood trauma are characterized by aberrant resting-state limbic and paralimbic functional network connectivity. However, it is unclear whether specific subtypes of trauma (i.e., experienced vs observed or community) showcase differential effects. This study examined whether subtypes of childhood trauma (assessed via the Trauma Checklist [TCL] 2.0) were associated with aberrant intra-network amplitude of fluctuations and connectivity (i.e., functional coherence within a network), and inter-network connectivity across resting-state networks among incarcerated juvenile males (n = 179). Subtypes of trauma were established via principal component analysis of the TCL 2.0 and resting-state networks were identified by applying group independent component analysis to resting-state fMRI scans. We tested the association of subtypes of childhood trauma (i.e., TCL Factor 1 measuring experienced trauma and TCL Factor 2 assessing community trauma), and TCL Total scores to the aforementioned functional connectivity measures. TCL Factor 2 scores were associated with increased high-frequency fluctuations and increased intra-network connectivity in cognitive control, auditory, and sensorimotor networks, occurring primarily in paralimbic regions. TCL Total scores exhibited similar neurobiological patterns to TCL Factor 2 scores (with the addition of aberrant intra-network connectivity in visual networks), and no significant associations were found for TCL Factor 1. Consistent with previous analyses of community samples, our results suggest that childhood trauma among incarcerated juvenile males is associated with aberrant intra-network amplitude of fluctuations and connectivity across multiple networks including predominately paralimbic regions. Our results highlight the importance of accounting for traumatic loss, observed trauma, and community trauma in assessing neurobiological aberrances associated with adverse experiences in childhood, as well as the value of trained-rater trauma assessments compared to self-report.
Collapse
Affiliation(s)
- Corey H Allen
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA.
| | - Jenna Shold
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - J Michael Maurer
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Brooke L Reynolds
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; School of Graduate Psychology, Pacific University, Hillsboro, OR, USA
| | | | - Carla L Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Keith A Harenski
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA
| | - Vince D Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, 55 Park Place NE, 18th Floor, Atlanta, GA 30303, USA; Department of Computer Science, Georgia State University, Atlanta, USA
| | - Kent A Kiehl
- The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106-4188, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
169
|
Prondzinsky P, Toyoda S, McGlynn SE. The methanogen core and pangenome: conservation and variability across biology's growth temperature extremes. DNA Res 2023; 30:dsac048. [PMID: 36454681 PMCID: PMC9886072 DOI: 10.1093/dnares/dsac048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.
Collapse
Affiliation(s)
- Paula Prondzinsky
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Shawn Erin McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| |
Collapse
|
170
|
Galineau L, Arlicot N, Dupont AC, Briend F, Houy-Durand E, Tauber C, Gomot M, Gissot V, Barantin L, Lefevre A, Vercouillie J, Roussel C, Roux S, Nadal L, Mavel S, Laumonnier F, Belzung C, Chalon S, Emond P, Santiago-Ribeiro MJ, Bonnet-Brilhault F. Glutamatergic synapse in autism: a complex story for a complex disorder. Mol Psychiatry 2023; 28:801-809. [PMID: 36434055 DOI: 10.1038/s41380-022-01860-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose pathophysiological mechanisms are still unclear. Hypotheses suggest a role for glutamate dysfunctions in ASD development, but clinical studies investigating brain and peripheral glutamate levels showed heterogenous results leading to hypo- and hyper-glutamatergic hypotheses of ASD. Recently, studies proposed the implication of elevated mGluR5 densities in brain areas in the pathophysiology of ASD. Thus, our objective was to characterize glutamate dysfunctions in adult subjects with ASD by quantifying (1) glutamate levels in the cingulate cortex and periphery using proton magnetic resonance spectroscopy and metabolomics, and (2) mGluR5 brain density in this population and in a validated animal model of ASD (prenatal exposure to valproate) at developmental stages corresponding to childhood and adolescence in humans using positron emission tomography. No modifications in cingulate Glu levels were observed between individuals with ASD and controls further supporting the difficulty to evaluate modifications in excitatory transmission using spectroscopy in this population, and the complexity of its glutamate-related changes. Our imaging results showed an overall increased density in mGluR5 in adults with ASD, that was only observed mostly subcortically in adolescent male rats prenatally exposed to valproic acid, and not detected in the stage corresponding to childhood in the same animals. This suggest that clinical changes in mGluR5 density could reflect the adaptation of the glutamatergic dysfunctions occurring earlier rather than being key to the pathophysiology of ASD.
Collapse
Affiliation(s)
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France
| | - Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Unité de Radiopharmacie, CHRU de Tours, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frederic Briend
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Emmanuelle Houy-Durand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Clovis Tauber
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Gomot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | | | | | - Antoine Lefevre
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Roux
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France
| | - Lydie Nadal
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Sylvie Mavel
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | | | | | - Sylvie Chalon
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Patrick Emond
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Maria-Joao Santiago-Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.,Service de Médecine Nucléaire, CHRU de Tours, Tours, France
| | - Frédérique Bonnet-Brilhault
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France. .,Excellence Center for Autism and Neurodevelopmental Disorders, CHRU de Tours, Tours, France.
| |
Collapse
|
171
|
Llosa-Vite C, Maitra R. Reduced-Rank Tensor-on-Tensor Regression and Tensor-Variate Analysis of Variance. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:2282-2296. [PMID: 35380954 DOI: 10.1109/tpami.2022.3164836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fitting regression models with many multivariate responses and covariates can be challenging, but such responses and covariates sometimes have tensor-variate structure. We extend the classical multivariate regression model to exploit such structure in two ways: first, we impose four types of low-rank tensor formats on the regression coefficients. Second, we model the errors using the tensor-variate normal distribution that imposes a Kronecker separable format on the covariance matrix. We obtain maximum likelihood estimators via block-relaxation algorithms and derive their computational complexity and asymptotic distributions. Our regression framework enables us to formulate tensor-variate analysis of variance (TANOVA) methodology. This methodology, when applied in a one-way TANOVA layout, enables us to identify cerebral regions significantly associated with the interaction of suicide attempters or non-attemptor ideators and positive-, negative- or death-connoting words in a functional Magnetic Resonance Imaging study. Another application uses three-way TANOVA on the Labeled Faces in the Wild image dataset to distinguish facial characteristics related to ethnic origin, age group and gender. A R package totr implements the methodology.
Collapse
|
172
|
Saltoun K, Adolphs R, Paul LK, Sharma V, Diedrichsen J, Yeo BTT, Bzdok D. Dissociable brain structural asymmetry patterns reveal unique phenome-wide profiles. Nat Hum Behav 2023; 7:251-268. [PMID: 36344655 DOI: 10.1038/s41562-022-01461-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Broca reported ~150 years ago that particular lesions of the left hemisphere impair speech. Since then, other brain regions have been reported to show lateralized structure and function. Yet, studies of brain asymmetry have limited their focus to pairwise comparisons between homologous regions. Here, we characterized separable whole-brain asymmetry patterns in grey and white matter structure from n = 37,441 UK Biobank participants. By pooling information on left-right shifts underlying whole-brain structure, we deconvolved signatures of brain asymmetry that are spatially distributed rather than locally constrained. Classically asymmetric regions turned out to belong to more than one asymmetry pattern. Instead of a single dominant signature, we discovered complementary asymmetry patterns that contributed similarly to whole-brain asymmetry at the population level. These asymmetry patterns were associated with unique collections of phenotypes, ranging from early lifestyle factors to demographic status to mental health indicators.
Collapse
Affiliation(s)
- Karin Saltoun
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,School of Computer Science, McGill University, Quebec, Canada
| | - Ralph Adolphs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lynn K Paul
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,International Research Consortium for the Corpus Callosum and Cerebral Connectivity (IRC5), Pasadena, CA, USA.,Fuller Graduate School of Psychology, Travis Research Institute, Pasadena, CA, USA
| | - Vaibhav Sharma
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada.,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Joern Diedrichsen
- The Brain and Mind Institute, Western University, London, Ontario, Canada.,Department of Computer Science, Western University, London, Ontario, Canada.,Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.,Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada. .,Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
173
|
Feng N, Palaniyappan L, Robbins TW, Cao L, Fang S, Luo X, Wang X, Luo Q. Working memory processing deficit associated with a nonlinear response pattern of the anterior cingulate cortex in first-episode and drug-naïve schizophrenia. Neuropsychopharmacology 2023; 48:552-559. [PMID: 36376466 PMCID: PMC9852448 DOI: 10.1038/s41386-022-01499-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Impaired working memory (WM) is a core neuropsychological dysfunction of schizophrenia, however complex interactions among the information storage, information processing and attentional aspects of WM tasks make it difficult to uncover the psychophysiological mechanisms of this deficit. Thirty-six first-episode and drug-naïve schizophrenia and 29 healthy controls (HCs) were enrolled in this study. Here, we modified a WM task to isolate components of WM storage and WM processing, while also varying the difficulty level (load) of the task to study regional differences in load-specific activation using mixed effects models, and its relationship to distributed gene expression. Comparing patients with HCs, we found both attentional deficits and WM deficits, with WM processing being more impaired than WM storage in patients. In patients, but not controls, a linear modulation of brain activation was observed mainly in the frontoparietal and dorsal attention networks. In controls, an inverted U-shaped response pattern was identified in the left anterior cingulate cortex. The vertex of this inverted U-shape was lower in patients than controls, and a left-shifting axis of symmetry was associated with better WM performance in patients. Both the above linear and U-shaped modulation effects were associated with the expressions of the genes enriched in the dopamine neurotransmitter system across all cortical brain regions. These findings indicate that a WM processing deficit is evident in schizophrenia from an early stage before antipsychotic treatment, and associated with a dopamine pathway related aberration in nonlinear response pattern at the cingulate cortex when processing WM load.
Collapse
Affiliation(s)
- Nana Feng
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Robarts Research Institute, London, ON, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Trevor W Robbins
- Department Psychology and the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200032, PR China
| | - Luolong Cao
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China
| | - Shuanfeng Fang
- Department of Children Health Care, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, PR China
| | - Xingwei Luo
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, PR China.
- China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
174
|
Li Y, Zhu H, Chen Q, Yang L, Chen F, Ma H, Xu H, Chen K, Bu J, Zhang R. Immediate Effects of Vagal Nerve Stimulation in Drug-Resistant Epilepsy Revealed by Magnetoencephalographic Recordings. Brain Connect 2023; 13:51-59. [PMID: 35974665 DOI: 10.1089/brain.2022.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Vagus nerve stimulation (VNS) has been a neuromodulatory option for treating drug-resistant epilepsy (DRE), but its mechanism remains unclear. To obtain insight into the mechanism by which VNS reduces epileptic seizures, the immediate effects of VNS in brain networks of DRE patients were investigated when the patients' vagal nerve stimulators were turned on. Methods: The brain network properties of 14 DRE patients with a vagal nerve stimulator and 14 healthy controls were evaluated using magnetoencephalography recordings for 6 main frequency bands. Results: Compared with healthy controls, DRE patients exhibited significant increases in functional connectivity in the theta, alpha, beta, and gamma bands and significant reductions in the small-world measure in the theta and beta bands. During periods when patients' vagal nerve stimulators were turned on, DRE patients showed significant reductions in functional connectivity in the theta and alpha bands and a significant increase in the small-world measure in the theta band when compared with periods when patients' vagal nerve stimulators were turned off. Conclusions: Our results indicate that the brain networks of DRE patients were pathologically hypersynchronous and instantaneous VNS can decrease the synchronization of brain networks of epileptic patients, which might play a key role in the mechanism by which VNS reduces epileptic seizures. In the theta band, instantaneous VNS can increase the network efficiency of DRE patients, and the increment in network efficiency may be helpful for improving brain cognitive function in epileptic patients. Impact statement For the first time, we investigated the immediate effects of vagus nerve stimulation (VNS) in the brain networks of drug-resistant epilepsy patients using magnetoencephalography. Our results show that instantaneous VNS can decrease the hypersynchronization of epileptic networks and increase the network efficiency of epileptic patients. Our results are helpful in understanding the mechanism of action by which VNS reduces epileptic seizures and improves the cognitive function in epileptic patients and the brain network reorganization caused by long-term VNS.
Collapse
Affiliation(s)
- Yuejun Li
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Magnetoencephalography, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Haitao Zhu
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Magnetoencephalography, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Yang
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Fangqing Chen
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Haiyan Ma
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Honghao Xu
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Kefan Chen
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jinxin Bu
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Zhang
- Department of Functional Neurosurgery and Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
175
|
Oltra J, Habich A, Schwarz CG, Nedelska Z, Przybelski SA, Inguanzo A, Diaz-Galvan P, Lowe VJ, Oppedal K, Blanc F, Lemstra AW, Hort J, Padovani A, Rektorova I, Bonanni L, Massa F, Kramberge MG, Taylor JP, Snædal J, Walker Z, Antonini A, Segura B, Junque C, Westman E, Boeve BF, Aarsland D, Kantarci K, Ferreira D. Sex differences in brain atrophy in dementia with Lewy bodies. RESEARCH SQUARE 2023:rs.3.rs-2516427. [PMID: 36747755 PMCID: PMC9901042 DOI: 10.21203/rs.3.rs-2516427/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Background and objectives Sex is an important contributing factor to neuroimaging phenotypes in brain disorders. However, little is known about the contribution of sex differences to the neurodegeneration in dementia with Lewy bodies (DLB). We investigated sex differences in probable DLB patients by using both visual rating scales of lobar atrophy and automated estimations of regional atrophy. Methods We included 442 probable DLB patients from the European-DLB consortium and the Mayo Clinic who have magnetic resonance imaging (MRI) data available. We assessed sex differences and the sex-by-age interaction in two largely independent samples through visual rating scales of lobar atrophy (n = 333; mean age 73 ± 8 years, 62% males) and automated regional estimations of gray matter (GM) volume and mean cortical thickness (CTh) (n = 165; mean age 69 ± 9 years, 72% males). We used binary logistic regression and ANOVA for statistical analysis. Results We found a statistically significantly higher likelihood of frontal atrophy measured by the global cortical atrophy-frontal subscale (GCA-F) in males (40% of males had an abnormal GCA-F score versus 29% of females, P-value = 0.006). Using automated estimations, we found smaller GM volumes in 6 cortical regions in males compared with females, as well as smaller GM volume in the entorhinal cortex and thinner olfactory cortices in females, compared with males. The sex-by-age interaction showed statistically significant results in 6 cortical volumes and 7 mean CTh estimations (P-value ≤ 0.05), accentuated in the right middle frontal gyrus (FDR-adjusted P-value = 0.047). These cross-sectional interactions indicated that while females have statistically significantly less atrophy than males at younger ages, differences become non-significant at older ages, with females showing the same level of atrophy than males around the age of 75. Conclusions This study demonstrates sex differences on brain atrophy in probable DLB. While male DLB patients have a more widespread pattern of cortical atrophy at younger ages, these sex differences tend to disappear with increasing age. Longitudinal studies will help establish these cross-sectional findings and inform on sex and age considerations to the use of MRI in clinical routine, as the field moves towards precision medicine.
Collapse
|
176
|
Li J, Wu B, Huang Z, Zhao Y, Zhao S, Guo S, Xu S, Wang X, Tian T, Wang Z, Zhou J. Whole-lesion histogram analysis of multiple diffusion metrics for differentiating lung cancer from inflammatory lesions. Front Oncol 2023; 12:1082454. [PMID: 36741699 PMCID: PMC9890049 DOI: 10.3389/fonc.2022.1082454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Background Whole-lesion histogram analysis can provide comprehensive assessment of tissues by calculating additional quantitative metrics such as skewness and kurtosis; however, few studies have evaluated its value in the differential diagnosis of lung lesions. Purpose To compare the diagnostic performance of conventional diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) and diffusion kurtosis imaging (DKI) in differentiating lung cancer from focal inflammatory lesions, based on whole-lesion volume histogram analysis. Methods Fifty-nine patients with solitary pulmonary lesions underwent multiple b-values DWIs, which were then postprocessed using mono-exponential, bi-exponential and DKI models. Histogram parameters of the apparent diffusion coefficient (ADC), true diffusivity (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f), apparent diffusional kurtosis (Kapp) and kurtosis-corrected diffusion coefficient (Dapp) were calculated and compared between the lung cancer and inflammatory lesion groups. Receiver operating characteristic (ROC) curves were constructed to evaluate the diagnostic performance. Results The ADCmean, ADCmedian, D mean and D median values of lung cancer were significantly lower than those of inflammatory lesions, while the ADCskewness, Kapp mean, Kapp median, Kapp SD, Kapp kurtosis and Dapp skewness values of lung cancer were significantly higher than those of inflammatory lesions (all p < 0.05). ADCskewness (p = 0.019) and D median (p = 0.031) were identified as independent predictors of lung cancer. D median showed the best performance for differentiating lung cancer from inflammatory lesions, with an area under the ROC curve of 0.777. Using a D median of 1.091 × 10-3 mm2/s as the optimal cut-off value, the sensitivity, specificity, positive predictive value and negative predictive value were 69.23%, 85.00%, 90.00% and 58.62%, respectively. Conclusions Whole-lesion histogram analysis of DWI, IVIM and DKI parameters is a promising approach for differentiating lung cancer from inflammatory lesions, and D median shows the best performance in the differential diagnosis of solitary pulmonary lesions.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhun Huang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yixiang Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Sen Zhao
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shuaikang Guo
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shufei Xu
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Xiaolei Wang
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Tiantian Tian
- Department of Radiology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhixue Wang
- Department of Radiology, The First Affiliated Hospital of Henan University, Kaifeng, China,*Correspondence: Zhixue Wang, ; Jun Zhou,
| | - Jun Zhou
- Interventional Diagnostic and Therapeutic Center, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Zhixue Wang, ; Jun Zhou,
| |
Collapse
|
177
|
Robles Aguirre FA, Marrufo-Meléndez ÓR, Carrillo Mezo R, Torres Agustín R, Nuñez Soria M, Arias-Trejo N, Lara Galindo WF, Silva-Pereyra J, Rodríguez-Camacho MA. Neural correlates of semantic matching in indirect priming. COGN SYST RES 2023. [DOI: 10.1016/j.cogsys.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
178
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
179
|
Isler JR, Pini N, Lucchini M, Shuffrey LC, Morales S, Bowers ME, Leach SC, Sania A, Wang L, Condon C, Nugent JD, Elliott AJ, Friedrich C, Andrew R, Fox NA, Myers MM, Fifer WP. Longitudinal characterization of EEG power spectra during eyes open and eyes closed conditions in children. Psychophysiology 2023; 60:e14158. [PMID: 35968705 PMCID: PMC9729391 DOI: 10.1111/psyp.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 11/28/2022]
Abstract
This study is the first to examine spectrum-wide (1 to 250 Hz) differences in electroencephalogram (EEG) power between eyes open (EO) and eyes closed (EC) resting state conditions in 486 children. The results extend the findings of previous studies by characterizing EEG power differences from 30 to 250 Hz between EO and EC across childhood. Developmental changes in EEG power showed spatial and frequency band differences as a function of age and EO/EC condition. A 64-electrode system was used to record EEG at 4, 5, 7, 9, and 11 years of age. Specific findings were: (1) the alpha peak shifts from 8 Hz at 4 years to 9 Hz at 11 years, (2) EC results in increased EEG power (compared to EO) at lower frequencies but decreased EEG power at higher frequencies for all ages, (3) the EEG power difference between EO and EC changes from positive to negative within a narrow frequency band which shifts toward higher frequencies with age, from 9 to 12 Hz at 4 years to 32 Hz at 11 years, (4) at all ages EC is characterized by an increase in lower frequency EEG power most prominently over posterior regions, (5) at all ages, during EC, decreases in EEG power above 30 Hz are mostly over anterior regions of the scalp. This report demonstrates that the simple challenge of opening and closing the eyes offers the potential to provide quantitative biomarkers of phenotypic variation in brain maturation by employing a brief, minimally invasive protocol throughout childhood.
Collapse
Affiliation(s)
- J. R. Isler
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - N. Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - M. Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - L. C. Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - S. Morales
- Department of Psychology, University of Southern California, Los Angeles, CA 90089 USA
| | - M. E. Bowers
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742 USA
| | - S. C. Leach
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742 USA
| | - A. Sania
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - L. Wang
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
- Data Science Institute, Columbia University, New York, NY 10027 USA
| | - C. Condon
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - J. D. Nugent
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | | | - C. Friedrich
- Avera Research Institute, Sioux Falls, SD 57108 USA
| | - R. Andrew
- Avera Research Institute, Sioux Falls, SD 57108 USA
| | - N. A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD 20742 USA
| | - M. M. Myers
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| | - W. P. Fifer
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032 USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032 USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032 USA
| |
Collapse
|
180
|
Schmitt JE, DeBevits JJ, Roalf DR, Ruparel K, Gallagher RS, Gur RC, Alexander-Bloch A, Eom TY, Alam S, Steinberg J, Akers W, Khairy K, Crowley TB, Emanuel B, Zakharenko SS, McDonald-McGinn DM, Gur RE. A Comprehensive Analysis of Cerebellar Volumes in the 22q11.2 Deletion Syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:79-90. [PMID: 34848384 PMCID: PMC9162086 DOI: 10.1016/j.bpsc.2021.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/12/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.
Collapse
Affiliation(s)
- J Eric Schmitt
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - John J DeBevits
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Kosha Ruparel
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - R Sean Gallagher
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Aaron Alexander-Bloch
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania
| | - Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shahinur Alam
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jeffrey Steinberg
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter Akers
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Khaled Khairy
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Beverly Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, Philadelphia, Pennsylvania; Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
181
|
Sabatinelli D, Winker C, Farkas AH, Rehbein MA, Junghoefer M. A 5-min paradigm to evoke robust emotional reactivity in neuroimaging studies. Front Neurosci 2023; 17:1102213. [PMID: 36960173 PMCID: PMC10027927 DOI: 10.3389/fnins.2023.1102213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/06/2023] [Indexed: 03/09/2023] Open
Abstract
The advent of the Research Domain Criteria (RDoC) approach to funding translational neuroscience has highlighted a need for research that includes measures across multiple task types. However, the duration of any given experiment is quite limited, particularly in neuroimaging contexts, and therefore robust estimates of multiple behavioral domains are often difficult to achieve. Here we offer a "turn-key" emotion-evoking paradigm suitable for neuroimaging experiments that demonstrates strong effect sizes across widespread cortical and subcortical structures. This short series could be easily added to existing fMRI protocols, and yield a reliable estimate of emotional reactivity to complement research in other behavioral domains. This experimental adjunct could be used to enable an initial comparison of emotional modulation with the primary behavioral focus of an investigator's work, and potentially identify new relationships between domains of behavior that have not previously been recognized.
Collapse
Affiliation(s)
- Dean Sabatinelli
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, United States
- *Correspondence: Dean Sabatinelli,
| | - Constantin Winker
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Andrew H. Farkas
- Department of Psychology and Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, United States
| | - Maimu A. Rehbein
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Markus Junghoefer
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
182
|
Kong Z, Zhu X, Chang S, Bao Y, Ma Y, Yu W, Zhu R, Sun Q, Sun W, Deng J, Sun H. Somatic symptoms mediate the association between subclinical anxiety and depressive symptoms and its neuroimaging mechanisms. BMC Psychiatry 2022; 22:835. [PMID: 36581819 PMCID: PMC9798660 DOI: 10.1186/s12888-022-04488-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Subclinical anxiety, depressive and somatic symptoms appear closely related. However, it remains unclear whether somatic symptoms mediate the association between subclinical anxiety and depressive symptoms and what the underlying neuroimaging mechanisms are for the mediating effect. METHODS Data of healthy participants (n = 466) and participants in remission of major depressive disorder (n = 53) were obtained from the Human Connectome Project. The Achenbach Adult Self-Report was adopted to assess anxiety, depressive and somatic symptoms. All participants completed four runs of resting-state functional magnetic resonance imaging. Mediation analyses were utilized to explore the interactions among these symptoms and their neuroimaging mechanisms. RESULTS Somatic symptoms partially mediated the association between subclinical anxiety and depressive symptoms in healthy participants (anxiety→somatic→depression: effect: 0.2785, Boot 95% CI: 0.0958-0.3729; depression→somatic→anxiety: effect: 0.0753, Boot 95% CI: 0.0232-0.1314) and participants in remission of MDD (anxiety→somatic→depression: effect: 0.2948, Boot 95% CI: 0.0357-0.7382; depression→somatic→anxiety: effect: 0.0984, Boot 95% CI: 0.0007-0.2438). Resting-state functional connectivity (FC) between the right medial superior frontal gyrus and the left thalamus and somatic symptoms as chain mediators partially mediated the effect of subclinical depressive symptoms on subclinical anxiety symptoms in healthy participants (effect: 0.0020, Boot 95% CI: 0.0003-0.0043). The mean strength of common FCs of subclinical depressive and somatic symptoms, somatic symptoms, and the mean strength of common FCs of subclinical anxiety and somatic symptoms as chain mediators partially mediated the effect of subclinical depressive symptoms on subclinical anxiety symptoms in remission of MDD (effect: 0.0437, Boot 95% CI: 0.0024-0.1190). These common FCs mainly involved the insula, precentral gyri, postcentral gyri and cingulate gyri. Furthermore, FC between the triangular part of the left inferior frontal gyrus and the left postcentral gyrus was positively associated with subclinical anxiety, depressive and somatic symptoms in remission of MDD (FDR-corrected p < 0.01). CONCLUSIONS Somatic symptoms partially mediate the interaction between subclinical anxiety and depressive symptoms. FCs involving the right medial superior frontal gyrus, left thalamus, triangular part of left inferior frontal gyrus, bilateral insula, precentral gyri, postcentral gyri and cingulate gyri maybe underlie the mediating effect of somatic symptoms.
Collapse
Affiliation(s)
- Zhifei Kong
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Ximei Zhu
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Suhua Chang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Yanping Bao
- grid.11135.370000 0001 2256 9319National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191 China ,grid.11135.370000 0001 2256 9319School of Public Health, Peking University, Beijing, 100191 China
| | - Yundong Ma
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Wenwen Yu
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Ran Zhu
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Qiqing Sun
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Wei Sun
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
183
|
“Voodoo” Science in Neuroimaging: How a Controversy Transformed into a Crisis. SOCIAL SCIENCES 2022. [DOI: 10.3390/socsci12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since the 1990s, functional magnetic resonance imaging (fMRI) techniques have continued to advance, which has led researchers and non specialists alike to regard this technique as infallible. However, at the end of 2008, a scientific controversy and the related media coverage called functional neuroimaging practices into question and cast doubt on the capacity of fMRI studies to produce reliable results. The purpose of this article is to retrace the history of this contemporary controversy and its treatment in the media. Then, the study stands at the intersection of the history of science, the epistemology of statistics, and the epistemology of science. Arguments involving actors (researchers, the media) and the chronology of events are presented. Finally, the article reveals that three groups fought through different arguments (false positives, statistical power, sample size, etc.), reaffirming the current scientific norms that separate the true from the false. Replication, forming this boundary, takes the place of the most persuasive argument. This is how the voodoo controversy joined the replication crisis.
Collapse
|
184
|
Canessa N, Basso G, Manera M, Poggi P, Gianelli C. Functional Coherence in Intrinsic Frontal Executive Networks Predicts Cognitive Impairments in Alcohol Use Disorder. Brain Sci 2022; 13:45. [PMID: 36672027 PMCID: PMC9856140 DOI: 10.3390/brainsci13010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Growing evidence highlights the potential of innovative rehabilitative interventions such as cognitive remediation and neuromodulation, aimed at reducing relapses in Alcohol Use Disorder (AUD). Enhancing their effectiveness requires a thorough description of the neural correlates of cognitive alterations in AUD. Past related attempts, however, were limited by the focus on selected neuro-cognitive variables. We aimed to fill this gap by combining, in 22 AUD patients and 18 controls, an extensive neuro-cognitive evaluation and metrics of intrinsic connectivity as highlighted by resting-state brain activity. We addressed an inherent property of intrinsic activity such as intra-network coherence, the temporal correlation of the slow synchronous fluctuations within resting-state networks, representing an early biomarker of alterations in the functional brain architecture underlying cognitive functioning. AUD patients displayed executive impairments involving working-memory, attention and visuomotor speed, reflecting abnormal coherence of activity and grey matter atrophy within default mode, in addition to the attentional and the executive networks. The stronger relationship between fronto-lateral coherent activity and executive performance in patients than controls highlighted possible compensatory mechanisms counterbalancing the decreased functionality of networks driving the switch from automatic to controlled behavior. These results provide novel insights into AUD patients' cognitive impairments, their neural bases, and possible targets of rehabilitative interventions.
Collapse
Affiliation(s)
- Nicola Canessa
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Cognitive Neuroscience Laboratory of Pavia Institute, 27100 Pavia, Italy
| | - Gianpaolo Basso
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marina Manera
- Istituti Clinici Scientifici Maugeri IRCCS, Clinical Psychology Unit of Pavia Institute, 27100 Pavia, Italy
| | - Paolo Poggi
- Istituti Clinici Scientifici Maugeri IRCCS, Radiology Unit of Pavia Institute, 27100 Pavia, Italy
| | - Claudia Gianelli
- IUSS Cognitive Neuroscience (ICON) Center, Scuola Universitaria Superiore IUSS, 27100 Pavia, Italy
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
185
|
Zhao H, Zhang T, Cheng T, Chen C, Zhai Y, Liang X, Cheng N, Long Y, Li Y, Wang Z, Lu C. Neurocomputational mechanisms of young children's observational learning of delayed gratification. Cereb Cortex 2022; 33:6063-6076. [PMID: 36562999 DOI: 10.1093/cercor/bhac484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ability to delay gratification is crucial for a successful and healthy life. An effective way for young children to learn this ability is to observe the action of adult models. However, the underlying neurocomputational mechanism remains unknown. Here, we tested the hypotheses that children employed either the simple imitation strategy or the goal-inference strategy when learning from adult models in a high-uncertainty context. Results of computational modeling indicated that children used the goal-inference strategy regardless of whether the adult model was their mother or a stranger. At the neural level, results showed that successful learning of delayed gratification was associated with enhanced interpersonal neural synchronization (INS) between children and the adult models in the dorsal lateral prefrontal cortex but was not associated with children's own single-brain activity. Moreover, the discounting of future reward's value obtained from computational modeling of the goal-inference strategy was positively correlated with the strength of INS. These findings from our exploratory study suggest that, even for 3-year-olds, the goal-inference strategy is used to learn delayed gratification from adult models, and the learning strategy is associated with neural interaction between the brains of children and adult models.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tengfei Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Tong Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, CA 92697, United States
| | - Yu Zhai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Xi Liang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Nanhua Cheng
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Yuhang Long
- Institute of Developmental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Ying Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| | - Zhengyan Wang
- Research Center for Child Development, School of Psychology, Capital Normal University, Beijing 100048, P.R. China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, P.R. China
| |
Collapse
|
186
|
Sonkusare S, Qiong D, Zhao Y, Liu W, Yang R, Mandali A, Manssuer L, Zhang C, Cao C, Sun B, Zhan S, Voon V. Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings. Mol Psychiatry 2022; 28:1636-1646. [PMID: 36460724 DOI: 10.1038/s41380-022-01883-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
The amygdala, orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) form a crucial part of the emotion circuit, yet their emotion induced responses and interactions have been poorly investigated with direct intracranial recordings. Such high-fidelity signals can uncover precise spectral dynamics and frequency differences in valence processing allowing novel insights on neuromodulation. Here, leveraging the unique spatio-temporal advantages of intracranial electroencephalography (iEEG) from a cohort of 35 patients with intractable epilepsy (with 71 contacts in amygdala, 31 in OFC and 43 in mPFC), we assessed the spectral dynamics and interactions between the amygdala, OFC and mPFC during an emotional picture viewing task. Task induced activity showed greater broadband gamma activity in the negative condition compared to positive condition in all the three regions. Similarly, beta activity was increased in the negative condition in the amygdala and OFC while decreased in mPFC. Furthermore, beta activity of amygdala showed significant negative association with valence ratings. Critically, model-based computational analyses revealed unidirectional connectivity from mPFC to the amygdala and bidirectional communication between OFC-amygdala and OFC-mPFC. Our findings provide direct neurophysiological evidence for a much-posited model of top-down influence of mPFC over amygdala and a bidirectional influence between OFC and the amygdala. Altogether, in a relatively large sample size with human intracranial neuronal recordings, we highlight valence-dependent spectral dynamics and dyadic coupling within the amygdala-mPFC-OFC network with implications for potential targeted neuromodulation in emotion processing.
Collapse
Affiliation(s)
- Saurabh Sonkusare
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ding Qiong
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yijie Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoqi Yang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Luis Manssuer
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Cao
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
187
|
Whiteman AS, Bartsch AJ, Kang J, Johnson TD. Bayesian inference for brain activity from functional magnetic resonance imaging collected at two spatial resolutions. Ann Appl Stat 2022; 16:2626-2647. [DOI: 10.1214/22-aoas1606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Andrew S. Whiteman
- Department of Biostatistics, University of Michigan School of Public Health
| | - Andreas J. Bartsch
- Radiologie Bamberg and Department of Neuroradiology, University of Heidelberg
| | - Jian Kang
- Department of Biostatistics, University of Michigan School of Public Health
| | - Timothy D. Johnson
- Department of Biostatistics, University of Michigan School of Public Health
| |
Collapse
|
188
|
Warren EB, Briano JA, Ellegood J, DeYoung T, Lerch JP, Morrow EM. 17q12 deletion syndrome mouse model shows defects in craniofacial, brain and kidney development, and glucose homeostasis. Dis Model Mech 2022; 15:dmm049752. [PMID: 36373506 PMCID: PMC10655816 DOI: 10.1242/dmm.049752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
17q12 deletion (17q12Del) syndrome is a copy number variant (CNV) disorder associated with neurodevelopmental disorders and renal cysts and diabetes syndrome (RCAD). Using CRISPR/Cas9 genome editing, we generated a mouse model of 17q12Del syndrome on both inbred (C57BL/6N) and outbred (CD-1) genetic backgrounds. On C57BL/6N, the 17q12Del mice had severe head development defects, potentially mediated by haploinsufficiency of Lhx1, a gene within the interval that controls head development. Phenotypes included brain malformations, particularly disruption of the telencephalon and craniofacial defects. On the CD-1 background, the 17q12Del mice survived to adulthood and showed milder craniofacial and brain abnormalities. We report postnatal brain defects using automated magnetic resonance imaging-based morphometry. In addition, we demonstrate renal and blood glucose abnormalities relevant to RCAD. On both genetic backgrounds, we found sex-specific presentations, with male 17q12Del mice exhibiting higher penetrance and more severe phenotypes. Results from these experiments pinpoint specific developmental defects and pathways that guide clinical studies and a mechanistic understanding of the human 17q12Del syndrome. This mouse mutant represents the first and only experimental model to date for the 17q12 CNV disorder. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Emily B. Warren
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Juan A. Briano
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Taylor DeYoung
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford OX3 9DU, UK
| | - Eric M. Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
189
|
Kawazoe K, McGlynn R, Felix W, Sevilla R, Liao S, Kulkarni P, Ferris CF. Dose-dependent effects of esketamine on brain activity in awake mice: A BOLD phMRI study. Pharmacol Res Perspect 2022; 10:e01035. [PMID: 36504448 PMCID: PMC9743060 DOI: 10.1002/prp2.1035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
Pharmacological magnetic resonance imaging (phMRI) is a noninvasive method used to evaluate neural circuitry involved in the behavioral effects of drugs like ketamine, independent of their specific biochemical mechanism. The study was designed to evaluate the immediate effect of esketamine, the S-isomer of (±) ketamine on brain activity in awake mice using blood oxygenation level dependent (BOLD) imaging. It was hypothesized the prefrontal cortex, hippocampus, and brain areas associated with reward and motivation would show a dose-dependent increase in brain activity. Mice were given vehicle, 1.0, 3.3, or 10 mg/kg esketamine I.P. and imaged for 10 min post-treatment. Data for each treatment were registered to a 3D MRI mouse brain atlas providing site-specific information on 134 different brain areas. There was a global change in brain activity for both positive and negative BOLD signal affecting over 50 brain areas. Many areas showed a dose-dependent decrease in positive BOLD signal, for example, cortex, hippocampus, and thalamus. The most common profile when comparing the three doses was a U-shape with the 3.3 dose having the lowest change in signal. At 1.0 mg/kg there was a significant increase in positive BOLD in forebrain areas and hippocampus. The anticipated dose-dependent increase in BOLD was not realized; instead, the lowest dose of 1.0 mg/kg had the greatest effect on brain activity. The prefrontal cortex and hippocampus were significantly activated corroborating previous imaging studies in humans and animals. The unexpected sensitivity to the 1.0 mg/kg dose of esketamine could be explained by imaging in fully awake mice without the confound of anesthesia and/or its greater affinity for the N-methyl-d-aspartate receptor (NMDAR) receptor than (±) ketamine.
Collapse
Affiliation(s)
- Kyrsten Kawazoe
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Ryan McGlynn
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Wilder Felix
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Raquel Sevilla
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Siyang Liao
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
| | - Praveen Kulkarni
- Center for Translational NeuroimagingNortheastern UniversityMassachusettsBostonUSA
| | - Craig F. Ferris
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMassachusettsUSA
- Center for Translational NeuroimagingNortheastern UniversityMassachusettsBostonUSA
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
190
|
Savignac C, Villeneuve S, Badhwar A, Saltoun K, Shafighi K, Zajner C, Sharma V, Gagliano Taliun SA, Farhan S, Poirier J, Bzdok D. APOE alleles are associated with sex-specific structural differences in brain regions affected in Alzheimer's disease and related dementia. PLoS Biol 2022; 20:e3001863. [PMID: 36512526 PMCID: PMC9747055 DOI: 10.1371/journal.pbio.3001863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/30/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease is marked by intracellular tau aggregates in the medial temporal lobe (MTL) and extracellular amyloid aggregates in the default network (DN). Here, we examined codependent structural variations between the MTL's most vulnerable structure, the hippocampus (HC), and the DN at subregion resolution in individuals with Alzheimer's disease and related dementia (ADRD). By leveraging the power of the approximately 40,000 participants of the UK Biobank cohort, we assessed impacts from the protective APOE ɛ2 and the deleterious APOE ɛ4 Alzheimer's disease alleles on these structural relationships. We demonstrate ɛ2 and ɛ4 genotype effects on the inter-individual expression of HC-DN co-variation structural patterns at the population level. Across these HC-DN signatures, recurrent deviations in the CA1, CA2/3, molecular layer, fornix's fimbria, and their cortical partners related to ADRD risk. Analyses of the rich phenotypic profiles in the UK Biobank cohort further revealed male-specific HC-DN associations with air pollution and female-specific associations with cardiovascular traits. We also showed that APOE ɛ2/2 interacts preferentially with HC-DN co-variation patterns in estimating social lifestyle in males and physical activity in females. Our structural, genetic, and phenotypic analyses in this large epidemiological cohort reinvigorate the often-neglected interplay between APOE ɛ2 dosage and sex and link APOE alleles to inter-individual brain structural differences indicative of ADRD familial risk.
Collapse
Affiliation(s)
- Chloé Savignac
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Centre de recherche de l’Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Chris Zajner
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sarah A. Gagliano Taliun
- Department of Neurosciences & Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montréal, Quebec, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Judes Poirier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
191
|
Wang G, Song Y, Su J, Fan Z, Xu L, Fang P, Liu C, Long H, Hu C, Zhou L, Huang S, Zhou P, Wang K, Pang N, Shen H, Li S, Hu D, Xiao B, Zeng LL, Long L. Altered cerebellar-motor loop in benign adult familial myoclonic epilepsy type 1: The structural basis of cortical tremor. Epilepsia 2022; 63:3192-3203. [PMID: 36196770 DOI: 10.1111/epi.17430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Cortical tremor/myoclonus is the hallmark feature of benign adult familial myoclonic epilepsy (BAFME), the mechanism of which remains elusive. A hypothesis is that a defective control in the preexisting cerebellar-motor loop drives cortical tremor. Meanwhile, the basal ganglia system might also participate in BAFME. This study aimed to discover the structural basis of cortical tremor/myoclonus in BAFME. METHODS Nineteen patients with BAFME type 1 (BAFME1) and 30 matched healthy controls underwent T1-weighted and diffusion tensor imaging scans. FreeSurfer and spatially unbiased infratentorial template (SUIT) toolboxes were utilized to assess the motor cortex and the cerebellum. Probabilistic tractography was generated for two fibers to test the hypothesis: the dentato-thalamo-(M1) (primary motor cortex) and globus pallidus internus (GPi)-thalamic projections. Average fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD) of each tract were extracted. RESULTS Cerebellar atrophy and dentate nucleus alteration were observed in the patients. In addition, patients with BAFME1 exhibited reduced AD and FA in the left and right dentato-thalamo-M1 nondecussating fibers, respectively false discovery rate (FDR) correction q < .05. Cerebellar projections showed negative correlations with somatosensory-evoked potential P25-N33 amplitude and were independent of disease duration and medication. BAFME1 patients also had increased FA and decreased MD in the left GPi-thalamic projection. Higher FA and lower RD in the right GPi-thalamic projection were also observed (FDR q < .05). SIGNIFICANCE The present findings support the hypothesis that the cerebello-thalamo-M1 loop might be the structural basis of cortical tremor in BAFME1. The basal ganglia system also participates in BAFME1 and probably serves a regulatory role.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Yanmin Song
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Jianpo Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Zhipeng Fan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lin Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Fang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China.,Department of Military Medical Psychology, Air Force Medical University, Xian, China
| | - Chaorong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Hongyu Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People's Hospital, Changsha, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Pinting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Kangrun Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Nan Pang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatric, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Shuyu Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Dewen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| |
Collapse
|
192
|
George H, Mercer GV, Stapleton D, Dawson L, MacCallum PE, Spring S, Sled JG, Blundell J, Cahill LS. Structural brain abnormalities in endothelial nitric oxide synthase-deficient mice revealed by high-resolution magnetic resonance imaging. Brain Behav 2022; 12:e2801. [PMID: 36259950 PMCID: PMC9660425 DOI: 10.1002/brb3.2801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 10/08/2022] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Endothelial nitric oxide synthase (eNOS) produces nitric oxide, which is essential for a variety of physiological functions in the brain. Previous work has demonstrated the detrimental effects of eNOS deficiency on brain function in male eNOS knockout (eNOS KO) mice. However, the effect of eNOS deficiency on brain structure and any association between these effects and sex is unknown. METHODS This study used three-dimensional high-resolution ex vivo magnetic resonance imaging and behavioral tests of anxiety and cognitive performance to investigate structure-function relationships in the brain of female and male eNOS KO mice in young adulthood. RESULTS While there were no differences in anxiety-like behavior or locomotion, there was a sex-specific deficit in contextual fear memory retention in male, but not in female, eNOS mice compared to wild-type controls. Moreover, we found that eNOS deficiency induced changes in multiple brain regions that are involved in learning and fear memory including the hippocampus, amygdala, hypothalamus, and areas of the cortex. Several of these MRI-detectable neuroanatomical changes were dependent on sex. CONCLUSION The observation that eNOS deficiency impacts brain structure at an early age demonstrates the importance of eNOS for healthy brain development.
Collapse
Affiliation(s)
- Hannah George
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Darcie Stapleton
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Shoshana Spring
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,Translational Medicine, Hospital for Sick Children, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Canada.,Discipline of Radiology, Memorial University of Newfoundland, St. John's, Canada
| |
Collapse
|
193
|
Liu Y, Sánchez Hernández F, Ting F, Hyde DC. Comparing fixed-array and functionally-defined channel of interest approaches to infant functional near-infrared spectroscopy data. Neuroimage 2022; 261:119520. [PMID: 35901918 PMCID: PMC9480621 DOI: 10.1016/j.neuroimage.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/08/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly used to study brain function in infants, but the development and standardization of analysis techniques for use with infant fNIRS data have not paced other technical advances. Here we quantify and compare the effects of different methods of analysis of infant fNIRS data on two independent fNIRS datasets involving 6-9-month-old infants and a third simulated infant fNIRS dataset. With each, we contrast results from a traditional, fixed-array analysis with several functional channel of interest (fCOI) analysis approaches. In addition, we tested the effects of varying the number and anatomical location of potential data channels to be included in the fCOI definition. Over three studies we find that fCOI approaches are more sensitive than fixed-array analyses, especially when channels of interests were defined within-subjects. Applying anatomical restriction and/or including multiple channels in the fCOI definition does not decrease and in some cases increases sensitivity of fCOI methods. Based on these results, we recommend that researchers consider employing fCOI approaches to the analysis of infant fNIRS data and provide some guidelines for choosing between particular fCOI approaches and settings for the study of infant brain function and development.
Collapse
Affiliation(s)
- Yiyu Liu
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States
| | | | - Fransisca Ting
- Boston University, Department of Psychological and Brain Sciences, Boston, United States
| | - Daniel C Hyde
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States; University of Illinois at Urbana-Champaign, Neuroscience Program, Urbana, United States.
| |
Collapse
|
194
|
Altered gamma oscillations and beta-gamma coupling in drug-naive first-episode major depressive disorder: Association with sleep and cognitive disturbance. J Affect Disord 2022; 316:99-108. [PMID: 35973509 DOI: 10.1016/j.jad.2022.08.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Gamma oscillations contribute to the pathogenesis mechanisms of major depressive disorder (MDD) have been proposed, but gamma activity is not well characterized. This study is the first attempt to investigate the altered gamma oscillations in first-episode MDD, particularly the beta-gamma coupling, and to determine the potential symptomatic relationship with the identified gamma dysregulation. METHODS Resting electroencephalography was recorded for 43 drug-naive first-episode MDD and 57 healthy control (HC) subjects. Integrated analysis of relative spectral power, weighted phase lag index, and phase-amplitude coupling (PAC) were utilized to reveal the alterations of gamma activities. Pearson's correlation was implemented to identify the relationship between altered gamma activities and the clinical depressive symptoms, which were categorized into four factors: anxiety somatization, retardation, cognitive disturbance, and sleep disturbance. RESULTS Compared with HC subjects, MDD patients showed not only significantly decreased gamma powers in the left temporal and the bilateral occipital regions but also weakened gamma connectivity between the left hemisphere and the right frontal region. Furthermore, attenuated beta-gamma PAC of MDD patients was observed in the left temporal regions. Importantly, the suppression of left occipital mid- and high gamma oscillations were negatively correlated with sleep disturbance, while the deficits in left temporal beta-mid-gamma PAC and beta-high gamma PAC showed negative correlations with cognitive disturbance. LIMITATIONS Important limitations are the small sample size and the possible inclusion of bipolar depression in the MDD group. CONCLUSIONS Our findings provide the first evidence that in first-episode MDD, aberrant gamma powers and beta-gamma coupling are associated with sleep and cognitive impairments, respectively, deepening our understanding of the physiological mechanisms underlying sleep and cognitive symptoms in first-episode MDD. Altered gamma oscillations emerge as promising biomarkers for diagnosing MDD.
Collapse
|
195
|
Liu Z, Song R, Zhang D, Wu R, Liu T, Wu Z, Zhang J, Hu D. Synthesis, insecticidal activity, and mode of action of novel imidazopyridine mesoionic derivatives containing an amido group. PEST MANAGEMENT SCIENCE 2022; 78:4983-4993. [PMID: 36054072 DOI: 10.1002/ps.7121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In our previous work, we applied a new synthetic strategy to design and synthesize a series of imidazopyridine mesoionic derivatives with an ester group. The newly synthesized compounds had excellent insecticidal activity against aphids; however, insecticidal activity against planthoppers was less than satisfactory. In the present study, we designed and synthesized a series of novel imidazopyridine mesoionic compounds, containing an amido group, and these compounds were found to have improved insecticidal activity against planthoppers. RESULTS The bioassay results demonstrated that most of the target compounds had moderate-to-good insecticidal activity against Sogatella furcifera, and some exhibited good-to-excellent insecticidal activity against Aphis craccivora. Among them, compound C6 had the highest insecticidal activity against S. furcifera and A. craccivora, with LC50 values of 10.5 and 2.09 μg mL-1 , respectively. Proteomic results suggested that the differentially expressed proteins mainly were enriched in the nervous system-related pathways after compound C6 treatment. Enzymatic assay results showed that compound C6 and triflumezopyrim had a certain inhibitory effect on acetylcholinesterase. Molecular docking and real-time quantitative PCR results indicated that compound C6 not only may act on the nicotinic acetylcholine receptor, but also may interact with the α4 and β1 subunits of this receptor. CONCLUSION The results reported here contribute to the development of new mesoionic insecticides and further our understanding of the mode-of-action of imidazopyridine mesoionic derivatives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Desheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
196
|
Stoyanov D, Khorev V, Paunova R, Kandilarova S, Simeonova D, Badarin A, Hramov A, Kurkin S. Resting-State Functional Connectivity Impairment in Patients with Major Depressive Episode. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14045. [PMID: 36360924 PMCID: PMC9656256 DOI: 10.3390/ijerph192114045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
AIM This study aims to develop new approaches to characterize brain networks to potentially contribute to a better understanding of mechanisms involved in depression. METHOD AND SUBJECTS We recruited 90 subjects: 49 healthy controls (HC) and 41 patients with a major depressive episode (MDE). All subjects underwent clinical evaluation and functional resting-state MRI. The data were processed investigating functional connectivity network measures across the two groups using Brain Connectivity Toolbox. The statistical inferences were developed at a functional network level, using a false discovery rate method. Linear discriminant analysis was used to differentiate between the two groups. RESULTS AND DISCUSSION Significant differences in functional connectivity (FC) between depressed patients vs. healthy controls was demonstrated, with brain regions including the lingual gyrus, cerebellum, midcingulate cortex and thalamus more prominent in healthy subjects as compared to depression where the orbitofrontal cortex emerged as a key node. Linear discriminant analysis demonstrated that full-connectivity matrices were the most precise in differentiating between depression vs. health subjects. CONCLUSION The study provides supportive evidence for impaired functional connectivity networks in MDE patients.
Collapse
Affiliation(s)
- Drozdstoy Stoyanov
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vladimir Khorev
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Rositsa Paunova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Sevdalina Kandilarova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Denitsa Simeonova
- Department of Psychiatry and Medical Psychology, Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Artem Badarin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Alexander Hramov
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| | - Semen Kurkin
- Baltic Center for Artificial Intelligence and Neurotechnology, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Neuroscience Research Institute, Samara State Medical University, 443001 Samara, Russia
| |
Collapse
|
197
|
Hsieh TY, Hung PL, Su TY, Peng SJ. Graph Theory-Based Electroencephalographic Connectivity via Phase-Locking Value and Its Association with Ketogenic Diet Responsiveness in Patients with Focal Onset Seizures. Nutrients 2022; 14:nu14214457. [PMID: 36364720 PMCID: PMC9659238 DOI: 10.3390/nu14214457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Ketogenic diets (KDs) are a promising alternative therapy for pediatric refractory epilepsy. Several predictors of KD responsiveness have been identified, including biochemical parameters, seizure types, and electroencephalography (EEG) examinations. We hypothesized that graph theory-based EEG functional connectivity could explain KD responses in patients presenting focal onset seizure (FOS). A total of 17 patients aged 0-30 years old with focal onset seizures (FOS) were recruited as a study group between January 2015 and July 2021. Twenty age-matched children presenting headache with no intracranial complications nor other medical issues were enrolled as a control group. Data were obtained at baseline and at 12 months after initiating KD therapy (KDT) using the child behavior checklist (CBCL) and brain functional connectivity parameters based on phase-locking value from 19 scalp EEG signals, including nodal strength, global efficiency, clustering coefficient, and betweenness centrality. Compared with age-matched controls, patients presenting FOS with right or bilateral EEG lateralization presented higher baseline functional connectivity, including parameters such as global efficiency, mean cluster coefficient and mean nodal strength in the delta and beta frequency bands. In patients presenting FOS with right or bilateral EEG lateralization, the global efficiency of functional connectivity parameters in the delta and theta frequency bands was significantly lower at 12 months after KDT treatment than before KDT. Those patients also presented a significantly lower mean clustering coefficient and mean nodal strength in the theta frequency band at 12 months after KDT treatment. Changes in brain functional connectivity were positively correlated with social problems, attention, and behavioral scores based on CBCL assessments completed by parents. This study provides evidence that KDT might be beneficial in the treatment of patients with FOS. Graph theoretic analysis revealed that the observed effects were related to decreased functional connectivity, particularly in terms of global efficiency. Our findings related to brain connectivity revealed lateralization to the right (non-dominant) hemisphere; however, we were unable to define the underlying mechanism. Our data revealed that in addition to altered brain connectivity, KDT improved the patient's behavior and emotional state.
Collapse
Affiliation(s)
- Tzu-Yun Hsieh
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Pi-Lien Hung
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Correspondence: (P.-L.H.); (S.-J.P.); Tel.: +886-7-731-7123 (ext. 8707) (P.-L.H.); +886-2-6638-2736 (ext. 1993) (S.-J.P.); Fax: +886-7-731-8762 (P.-L.H.); +886-2-2732-1956 (S.-J.P.)
| | - Ting-Yu Su
- Division of Pediatric Neurology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Syu-Jyun Peng
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei 10675, Taiwan
- Correspondence: (P.-L.H.); (S.-J.P.); Tel.: +886-7-731-7123 (ext. 8707) (P.-L.H.); +886-2-6638-2736 (ext. 1993) (S.-J.P.); Fax: +886-7-731-8762 (P.-L.H.); +886-2-2732-1956 (S.-J.P.)
| |
Collapse
|
198
|
Haller S, Montandon ML, Rodriguez C, Giannakopoulos P. Wearing a KN95/FFP2 facemask induces subtle yet significant brain functional connectivity modifications restricted to the salience network. Eur Radiol Exp 2022; 6:50. [PMID: 36210391 PMCID: PMC9548384 DOI: 10.1186/s41747-022-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The use of facemasks is one of the consequences of the coronavirus disease 2019 (COVID-19) pandemic. We used resting-state functional magnetic resonance imaging (fMRI) to search for subtle changes in brain functional connectivity, expected notably related to the high-level salience network (SN) and default mode network (DMN).
Methods
Prospective crossover design resting 3-T fMRI study with/without wearing a tight FFP2/KN95 facemask, including 23 community-dwelling male healthy controls aged 29.9 ± 6.9 years (mean ± standard deviation). Physiological parameters, respiration frequency, and heart rate were monitored. The data analysis was performed using the CONN toolbox.
Results
Wearing an FFP2/KN95 facemask did not impact respiration or heart rate but resulted in a significant reduction in functional connectivity between the SN as the seed region and the left middle frontal and precentral gyrus. No difference was found when the DMN, sensorimotor, visual, dorsal attention, or language networks were used as seed regions. In the absence of significant changes of physiological parameter respiration and heart rate, and in the absence of changes in lower-level functional networks, we assume that those subtle modifications are cognitive consequence of wearing facemasks.
Conclusions
The effect of wearing a tight FFP2/KN95 facemask in men is limited to high-level functional networks. Using the SN as seed network, we observed subtle yet significant decreases between the SN and the left middle frontal and precentral gyrus. Our observations suggest that wearing a facemask may change the patterns of functional connectivity with the SN known to be involved in communication, social behavior, and self-awareness.
Collapse
|
199
|
Allen CH, Maurer JM, Edwards BG, Gullapalli AR, Harenski CL, Harenski KA, Calhoun VD, Kiehl KA. Aberrant resting-state functional connectivity in incarcerated women with elevated psychopathic traits. FRONTIERS IN NEUROIMAGING 2022; 1:971201. [PMID: 37555166 PMCID: PMC10406317 DOI: 10.3389/fnimg.2022.971201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 08/10/2023]
Abstract
Previous work in incarcerated men suggests that individuals scoring high on psychopathy exhibit aberrant resting-state paralimbic functional network connectivity (FNC). However, it is unclear whether similar results extend to women scoring high on psychopathy. This study examined whether psychopathic traits [assessed via the Hare Psychopathy Checklist - Revised (PCL-R)] were associated with aberrant inter-network connectivity, intra-network connectivity (i.e., functional coherence within a network), and amplitude of fluctuations across limbic and surrounding paralimbic regions among incarcerated women (n = 297). Resting-state networks were identified by applying group Independent Component Analysis to resting-state fMRI scans. We tested the association of psychopathic traits (PCL-R Factor 1 measuring interpersonal/affective psychopathic traits and PCL-R Factor 2 assessing lifestyle/antisocial psychopathic traits) to the three FNC measures. PCL-R Factor 1 scores were associated with increased low-frequency fluctuations in executive control and attentional networks, decreased high-frequency fluctuations in executive control and visual networks, and decreased intra-network FNC in default mode network. PCL-R Factor 2 scores were associated with decreased high-frequency fluctuations and default mode networks, and both increased and decreased intra-network functional connectivity in visual networks. Similar to previous analyses in incarcerated men, our results suggest that psychopathic traits among incarcerated women are associated with aberrant intra-network amplitude fluctuations and connectivity across multiple networks including limbic and surrounding paralimbic regions.
Collapse
Affiliation(s)
- Corey H. Allen
- The Mind Research Network, Albuquerque, NM, United States
| | | | - Bethany G. Edwards
- The Mind Research Network, Albuquerque, NM, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | | | | | | | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Institute of Technology, Georgia State University, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Kent A. Kiehl
- The Mind Research Network, Albuquerque, NM, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
200
|
White BR, Chan C, Vandekar S, Shinohara RT. Statistical approaches to temporal and spatial autocorrelation in resting-state functional connectivity in mice measured with optical intrinsic signal imaging. NEUROPHOTONICS 2022; 9:041405. [PMID: 35295407 PMCID: PMC8920489 DOI: 10.1117/1.nph.9.4.041405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 05/11/2023]
Abstract
Significance: Resting-state functional connectivity imaging in mice with optical intrinsic signal (OIS) imaging could provide a powerful translational tool for developing imaging biomarkers in preclinical disease models. However, statistical interpretation of correlation coefficients is hampered by autocorrelations in the data. Aim: We sought to better understand temporal and spatial autocorrelations in optical resting-state data. We then adapted statistical methods from functional magnetic resonance imaging to improve statistical inference. Approach: Resting-state data were obtained from mice using a custom-built OSI system. The autocorrelation time was calculated at each pixel, and z scores for correlation coefficients were calculated using Fisher transforms and variance derived from either Bartlett's method or xDF. The significance of each correlation coefficient was determined through control of the false discovery rate (FDR). Results: Autocorrelation was generally even across the cortex and parcellation reduced variance. Correcting variance with Bartlett's method resulted in a uniform reduction in z scores, with xDF preserving high z scores for highly correlated data. Control of the FDR resulted in reasonable thresholding of the correlation coefficient matrices. The use of Bartlett's method compared with xDF results in more conservative thresholding and fewer false positives under null hypothesis conditions. Conclusions: We developed streamlined methods for control of autocorrelation in OIS functional connectivity data in mice, and Bartlett's method is a reasonable compromise and simplification that allows for accurate autocorrelation correction. These results improve the rigor and reproducibility of functional neuroimaging in mice.
Collapse
Affiliation(s)
- Brian R. White
- University of Pennsylvania, Children’s Hospital of Philadelphia, Perelman School of Medicine, Division of Cardiology, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Claudia Chan
- University of Pennsylvania, Children’s Hospital of Philadelphia, Perelman School of Medicine, Division of Cardiology, Department of Pediatrics, Philadelphia, Pennsylvania, United States
| | - Simon Vandekar
- Vanderbilt University, Department of Biostatistics, Nashville, Tennessee, United States
| | - Russell T. Shinohara
- University of Pennsylvania, Perelman School of Medicine, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Center for Biomedical Image Computing and Analysis, Department of Radiology, Philadelphia, Pennsylvania, United States
- University of Pennsylvania, Penn Statistics in Imaging and Visualization Endeavor, Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania, United States
| |
Collapse
|