151
|
Patil NP, Gómez-Hernández A, Zhang F, Cancel L, Feng X, Yan L, Xia K, Takematsu E, Yang EY, Le V, Fisher ME, Gonzalez-Rodriguez A, Garcia-Monzon C, Tunnell J, Tarbell J, Linhardt RJ, Baker AB. Rhamnan sulfate reduces atherosclerotic plaque formation and vascular inflammation. Biomaterials 2022; 291:121865. [DOI: 10.1016/j.biomaterials.2022.121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
|
152
|
Tang J, Zhao X, Wei W, Liu W, Fan H, Liu XP, Li Y, Wang L, Guo J. METTL16-mediated translation of CIDEA promotes non-alcoholic fatty liver disease progression via m6A-dependent manner. PeerJ 2022; 10:e14379. [PMID: 36518278 PMCID: PMC9744165 DOI: 10.7717/peerj.14379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
Background As the most prevalent chemical modifications on eukaryotic mRNAs, N6-methyladenosine (m6A) methylation was reported to participate in the regulation of various metabolic diseases. This study aimed to investigate the roles of m6A methylation and methyltransferase-like16 (METTL16) in non-alcoholic fatty liver disease (NAFLD). Methods In this study, we used a model of diet-induced NAFLD, maintaining six male C57BL/6J mice on high-fat diet (HFD) to generate hepatic steatosis. The high-throughput sequencing and RNA sequencing were performed to identify the m6A methylation patterns and differentially expressed mRNAs in HFD mice livers. Furthermore, we detected the expression levels of m6A modify enzymes by qRT-PCR in liver tissues, and further investigated the potential role of METTL16 in NAFLD through constructing overexpression and a knockdown model of METTL16 in HepG2 cells. Results In total, we confirmed 15,999 m6A recurrent peaks in HFD mice and 12,322 in the control. Genes with differentially methylated m6A peaks were significantly associated with the dysregulated glucolipid metabolism and aggravated hepatic inflammatory response. In addition, we identified five genes (CIDEA, THRSP, OSBPL3, GDF15 and LGALS1) that played important roles in NAFLD progression after analyzing the differentially expressed genes containing differentially methylated m6A peaks. Intriguingly, we found that the expression levels of METTL16 were substantially increased in the NAFLD model in vivo and in vitro, and further confirmed that METTL16 upregulated the expression level of lipogenic genes CIDEA in HepG2 cells. Conclusions These results indicate the critical roles of m6A methylation and METTL16 in HFD-induced mice and cell NAFLD models, which broaden people's perspectives on potential m6A-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jinhong Tang
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China,Current Affiliation: Endoscopy Center, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Xiangyun Zhao
- Digestive Endoscopic Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Wei
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Weiwei Liu
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Huining Fan
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiu ping Liu
- Department of Gastroenterology, Shanghai Fudan University Affiliated Fifth People’s Hospital, Shanghai, China
| | - Yungai Li
- Department of Clinical Laboratory, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Long Wang
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jinghui Guo
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
153
|
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, Chen S, Liu X, Pan W, Zhang F. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo. Front Pharmacol 2022; 13:1016745. [PMID: 36506575 PMCID: PMC9727266 DOI: 10.3389/fphar.2022.1016745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. Our previous studies have found that Shuangyu Tiaozhi Decoction (SYTZD) could produce an improvement in NAFLD-related indicators, but the underlying mechanism associated with this improvement remains unclear. The study aimed to investigate the potential mechanism of SYTZD against NAFLD through network pharmacology and experimental verification. The components of SYTZD and SYTZD drug containing serum were analyzed using ultra-performance liquid chromatography to quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). Active components and targets of SYTZD were screened by the traditional Chinese medical systems pharmacology (TCMSP) and encyclopedia of traditional Chinese medicine (ETCM) databases. NAFLD-related targets were collected from the GeneCards and DisGeNET databases. The component-disease targets were mapped to identify the common targets of SYTZD against NAFLD. Protein-protein interaction (PPI) network of the common targets was constructed for selecting the core targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the core targets was performed using the database for annotation, visualization, and integrated discovery (DAVID) database. Furthermore, animal and cell models were constructed for validating the predictions of network pharmacology. Lipid accumulation, liver histopathology, insulin resistance, and core gene expression were measured by oil red O staining, hematoxylin and eosin staining, insulin tolerance test, real-time quantitative polymerase chain reaction, and Western blotting, respectively. Two components and 22 targets of SYTZD against NAFLD were identified by UPLC-Q/TOF-MS and relevant databases. PPI analysis found that ESR1, FASN, mTOR, HIF-1α, VEGFA, and GSK-3β might be the core targets of SYTZD against NAFLD, which were mainly enriched in the thyroid hormone pathway, insulin resistance pathway, HIF-1 pathway, mTOR pathway, and AMPK pathway. Experimental results revealed that SYTZD might exert multiple anti-NAFLD mechanisms, including improvements in lipid deposition, inflammation, and insulin resistance. SYTZD treatment led to decreases in the lipid profiles, hepatic enzyme levels, inflammatory cytokines, and homeostatic model assessment for insulin resistance (HOMA-IR). SYTZD treatment affected relative mRNA and protein levels associated with various pathways. Our findings reveal that SYTZD could alleviate NAFLD through a multi-component, multi-target, and multi-pathway mechanism of action.
Collapse
Affiliation(s)
- Guoliang Yin
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongyi Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxiu Sun
- Department of Nursing, Taishan Vocational College of Nursing, Taian, China
| | - Shizhao Zhang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Feng
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengpeng Liang
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Suwen Chen
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyi Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenchao Pan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Fengxia Zhang,
| |
Collapse
|
154
|
He Z, Bin Y, Chen G, Li Q, Fan W, Ma Y, Yi J, Luo X, Tan Z, Li J. Identification of MAP3K4 as a novel regulation factor of hepatic lipid metabolism in non-alcoholic fatty liver disease. J Transl Med 2022; 20:529. [PMID: 36376950 PMCID: PMC9664664 DOI: 10.1186/s12967-022-03734-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder with abnormal lipid metabolism. The present study was to identify regulatory genes related to lipid droplets (LDs) abnormal accumulation in NAFLD. Methods transcriptomic analysis and bioinformatics analysis (GEO database) were used to identify potential genes in abnormal lipid metabolism of NAFLD. A candidate gene MAP3K4 expression were detected by immunohistochemistry staining in NAFLD and controls. RNA interference and immunoblotting were used to verify the roles of MAP3K4 in the formation of hepatic LDs. Results A total of 134 candidate genes were screened, including 44 up-regulated genes and 90 down-regulated genes. 29 genes in the protein–protein interaction (PPI) were selected as hub genes, including MAP3K4. The expression levels of MAP3K4 were positively correlated with NAFLD activity score (r = 0.702, p = 0.002). Furthermore, we found a positive correlation of MAP3K4 expression with serum total cholesterol (r = 0.564, p = 0.023), uric acid levels (r = 0.520, p = 0.039), and body mass index (r = 0.574, p = 0.020). Downregulation of MAP3K4 decreased LDs accumulation in HepG2 cells and reduced the expression of CGI-58 and Plin-2 by imbibition of JNK and group IVA cytosolic phospholipase A2 (cPLA2) activation. Conclusion The study revealed a number of regulatory genes related to hepatic lipid metabolism of NAFLD, and demonstrated that MAP3K4 played a pivotal role in the hepatic lipogenesis of NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03734-8.
Collapse
|
155
|
Liu ZS, Li PL, Ku YW, Chen PW. Oral Administration of Recombinant Lactoferrin-Expressing Probiotics Ameliorates Diet-Induced Lipid Accumulation and Inflammation in Non-Alcoholic Fatty Liver Disease in Mice. Microorganisms 2022; 10:2215. [PMID: 36363807 PMCID: PMC9694622 DOI: 10.3390/microorganisms10112215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 07/22/2023] Open
Abstract
We have recently developed probiotics that can express bovine, human, or porcine lactoferrin (LF), and the present study evaluated the effect of these probiotics in improving non-alcoholic fatty liver disease (NAFLD). Three kinds of probiotic supplements, including lactic acid bacteria (LAB), LAB/LF, and inactivated LAB/LF, were prepared. The LAB supplement was prepared from 10 viable LAB without recombinant LF-expression, the LAB/LF supplement was prepared from 10 viable probiotics expressing LF, and the inactivated LAB/LF supplement was prepared from 10 inactivated probiotics expressing LF. A model of obese/NAFLD mice induced by a high-fat diet was established, and the mice were randomly divided into four groups and fed with a placebo, LAB, LAB/LF, or inactivated LAB daily for four weeks via oral gavage. The body weight, food intake, organ weight, biochemistry, and hepatic histopathological alterations and severity scoring were measured. The results revealed that the obese mice fed with any one of the three probiotic mixtures prepared from recombinant probiotics for four weeks exhibited considerably improved hepatic steatosis. These findings confirmed the assumption that specific probiotic strains or LF supplements could help to control NAFLD, as suggested in previous reports. Our data also suggest that the probiotics and LFs in probiotic mixtures contribute differently to improving the efficacy against NAFLD, and the expressed LF content in probiotics may help to boost their efficacy in comparison with the original probiotic mixtures. Moreover, when these LF-expressing probiotics were further inactivated by sonication, they displayed better efficacies than the viable probiotics against NAFLD. This study has provided intriguing data supporting the potential of recombinant probiotics in improving hepatic steatosis.
Collapse
Affiliation(s)
- Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
| | - Pei-Lin Li
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| | - Yu-We Ku
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
- Animal and Plant Disease Control Center Yilan County, Wujie Township, Yilan County 268015, Taiwan
| | - Po-Wen Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40249, Taiwan
| |
Collapse
|
156
|
Nagumalli SK, Willett RA, de Conti A, Tryndyak VP, Avigan MI, da Costa GG, Beland FA, Rusyn I, Pogribny IP. Lipidomic profiling of the hepatic esterified fatty acid composition in diet-induced nonalcoholic fatty liver disease in genetically diverse Collaborative Cross mice. J Nutr Biochem 2022; 109:109108. [PMID: 35858665 PMCID: PMC10103579 DOI: 10.1016/j.jnutbio.2022.109108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 01/24/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), one of the most common forms of chronic liver disease, is characterized by the excessive accumulation of lipid species in hepatocytes. Recent studies have indicated that in addition to the total lipid quantities, changes in lipid composition are a determining factor in hepatic lipotoxicity. Using ultra-high performance liquid chromatography coupled with electrospray tandem mass spectrometry, we analyzed the esterified fatty acid composition in 24 strains of male and female Collaborative Cross (CC) mice fed a high fat/high sucrose (HF/HS) diet for 12 weeks. Changes in lipid composition were found in all strains after the HF/HS diet, most notably characterized by increases in monounsaturated fatty acids (MUFA) and decreases in polyunsaturated fatty acids (PUFA). Similar changes in MUFA and PUFA were observed in a choline- and folate-deficient (CFD) mouse model of NAFLD, as well as in hepatocytes treated in vitro with free fatty acids. Analysis of fatty acid composition revealed that alterations were accompanied by an increase in the estimated activity of MUFA generating SCD1 enzyme and an estimated decrease in the activity of PUFA generating FADS1 and FADS2 enzymes. PUFA/MUFA ratios were inversely correlated with lipid accumulation in male and female CC mice fed the HF/HS diet and with morphological markers of hepatic injury in CFD diet-fed mouse model of NAFLD. These results demonstrate that different models of NAFLD are characterized by similar changes in the esterified fatty acid composition and that alterations in PUFA/MUFA ratios may serve as a diagnostic marker for NAFLD severity.
Collapse
Affiliation(s)
- Suresh K Nagumalli
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Rose A Willett
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Mark I Avigan
- Office of Pharmacovigilance and Epidemiology, FDA-Center for Drug Evaluation and Research, Silver Spring, Maryland, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA.
| |
Collapse
|
157
|
Asaoka R, Obana A, Murata H, Fujino Y, Omoto T, Aoki S, Muto S, Takayanagi Y, Inoue T, Tanito M. The Association Between Age and Systemic Variables and the Longitudinal Trend of Intraocular Pressure in a Large-Scale Health Examination Cohort. Invest Ophthalmol Vis Sci 2022; 63:22. [PMID: 36301531 PMCID: PMC9624273 DOI: 10.1167/iovs.63.11.22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The detailed effects of age and systemic factors on intraocular pressure (IOP) have not been fully understood because of the lack of a large-scale longitudinal investigation. This study aimed to investigate the effect of various systemic factors on the longitudinal change of IOP. Methods There were a total of 20,909 eyes of 10,471 subjects from a health checkup cohort that were followed up for systemic factors: (i) age at baseline, (ii) sex, (iii) time series body mass index (BMI), (iv) time series smoking habits, (v) time series systolic and diastolic blood pressures (SBP and DBP), and (vi) time series 19 blood examinations (all of the time series data was acquired at each annual visit), along with IOP annually for at least 8 years. Then the longitudinal effect of the systemic factors on the change of IOP was investigated. Results IOP significantly decreased by −0.084 mm Hg/year. BMI, SBP, DBP, smoking habits, total triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and glycosylated hemoglobin A1c were not significantly associated with the change of IOP. Higher values of age, aspartate aminotransferase, hemoglobin, platelet, and calcium were suggested to be significantly associated with the decrease of IOP, whereas higher alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and female gender were significantly associated with the increase of IOP. Conclusions Age, aspartate aminotransferase, hemoglobin, platelet, calcium, alanine aminotransferase, guanosine triphosphate, white blood cell count, red blood cell count, and gender were the systemic variables significantly associated with the change of IOP.
Collapse
Affiliation(s)
- Ryo Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Seirei Christopher University, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka Japan
| | - Akira Obana
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Hamamatsu BioPhotonics Innovation Chair, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yuri Fujino
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Takashi Omoto
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Shuichiro Aoki
- Department of Ophthalmology, Sapporo City General Hospital, Sapporo, Japan
| | - Shigetaka Muto
- Seirei Center for Health Promotion and Preventive Medicine, Shizuoka, Hamamatsu, Japan
| | - Yuji Takayanagi
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Hamamatsu, Japan
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Tatsuya Inoue
- Department of Ophthalmology and Micro-Technology, Yokohama City University, Kanagawa, Japan
| | - Masaki Tanito
- Department of Ophthalmology, Shimane University Faculty of Medicine, Izumo, Japan
| |
Collapse
|
158
|
Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu C, Li B, Dong S, Li L, Zhu J, Zhong M, Zhang G. Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis. Front Pharmacol 2022; 13:1016635. [PMID: 36339532 PMCID: PMC9634081 DOI: 10.3389/fphar.2022.1016635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 07/29/2024] Open
Abstract
Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.
Collapse
Affiliation(s)
- Huanxin Ding
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Chuxuan Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
159
|
Vachher M, Bansal S, Kumar B, Yadav S, Burman A. Deciphering the role of aberrant DNA methylation in NAFLD and NASH. Heliyon 2022; 8:e11119. [PMID: 36299516 PMCID: PMC9589178 DOI: 10.1016/j.heliyon.2022.e11119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is mounting incessantly, and it is emerging as the most frequent cause of chronic and end stage liver disorders. It is the starting point for a range of conditions from simple steatosis to more progressive nonalcoholic steatohepatitis (NASH) and associated hepatocellular carcinoma (HCC). Dysregulation of insulin secretion and dyslipidemia due to obesity and other lifestyle variables are the primary contributors to establishment of NAFLD. Onset and progression of NAFLD is orchestrated by an interplay of metabolic environment with genetic and epigenetic factors. An incompletely understood mechanism of NAFLD progression has greatly hampered the progress in identification of novel prognostic and therapeutic strategies. Emerging evidence suggests altered DNA methylation pattern as a key determinant of NAFLD pathogenesis. Environmental and lifestyle factors can manipulate DNA methylation patterns in a reversible manner, which manifests as changes in gene expression. In this review we attempt to highlight the importance of DNA methylation in establishment and progression of NAFLD. Development of novel diagnostic, prognostic and therapeutic strategies centered around DNA methylation signatures and modifiers has also been explored.
Collapse
|
160
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
161
|
Zheng J, Zhao L, Dong J, Chen H, Li D, Zhang X, Hassan MM, Steck SE, Li X, Xiang YB, Wang H. The role of dietary factors in nonalcoholic fatty liver disease to hepatocellular carcinoma progression: A systematic review. Clin Nutr 2022; 41:2295-2307. [PMID: 36096063 DOI: 10.1016/j.clnu.2022.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Dietary factors play an important role in promoting nonalcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC) development through regulation of metabolism and inflammation. However, so far there was no evidence regarding how dietary factors may influence different disease outcomes in the NAFLD to HCC progression. Our study aimed to comprehensively evaluate the role of dietary factors on the risk of progression from NAFLD to HCC. METHODS A comprehensive literature research was conducted in PubMed, Web of Science and Embase databases to identify case-control and cohort studies published up to March 15, 2022 in English. We included studies investigating associations of food and beverage items (excluding alcohol), food groups, dietary patterns, and dietary habits with incidence risk of four main chronic liver diseases involved in the NAFLD-to-HCC progression (i.e., NAFLD, liver fibrosis, liver cirrhosis, and HCC). Three researchers independently performed the literature search, selected eligible articles, performed data abstraction and evaluated study quality. After evaluating adequacy and credibility of the associations reported for each dietary factor and each liver disease outcome, we summarized and evaluated the consistency of associations based on a priori determined criteria considering study design and the proportion of significant associations. RESULTS There were 109 studies included in this review (47 on NAFLD, 1 on liver fibrosis, 6 on liver cirrhosis, and 55 on HCC). Consistent evidence suggested that higher dietary inflammatory potential was associated with increased risk of both NAFLD and HCC whereas Mediterranean diet was associated with lower risk of both diseases. Additionally, greater conformity to the Healthy Eating Index, Dietary Approaches to Stop Hypertension score, and Mediterranean Diet Score, and dietary patterns with high dietary antioxidant capacity reduced NAFLD risk. Some specific foods including soft drinks and red and/or processed meat were associated with increased NAFLD risk while total vegetables and spinach were associated with reduced NAFLD risk. Coffee and white meat consumption were inversely related to HCC risk. CONCLUSIONS Dietary patterns or individual foods representing a more anti-inflammatory potential were associated with reduced risk of both NAFLD and HCC, which implied diet-induced inflammation may impact NAFLD progression towards HCC.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, No.227 South Chongqing Road, Rm 415, China
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Jingwen Dong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, No.227 South Chongqing Road, Rm 415, China
| | - Huiyi Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, No.227 South Chongqing Road, Rm 415, China
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Manal M Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Susan E Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, USA
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, No.227 South Chongqing Road, Rm 415, China.
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, No. 25, Lane 2200, Xie Tu Road, China.
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, No.227 South Chongqing Road, Rm 415, China.
| |
Collapse
|
162
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
163
|
Munakarmi S, Gurau Y, Shrestha J, Risal P, Park HS, Shin HB, Jeong YJ. Hepatoprotective Effects of a Natural Flavanol 3,3'-Diindolylmethane against CCl 4-Induced Chronic Liver Injury in Mice and TGFβ1-Induced EMT in Mouse Hepatocytes via Activation of Nrf2 Cascade. Int J Mol Sci 2022; 23:ijms231911407. [PMID: 36232707 PMCID: PMC9569868 DOI: 10.3390/ijms231911407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a form of irregular wound-healing response with acute and chronic injury triggered by the deposition of excessive extracellular matrix. Epithelial-mesenchymal transition (EMT) is a dynamic process that plays a crucial role in the fibrogenic response and pathogenesis of liver fibrosis. In the present study, we postulated a protective role of 3,3'-diindolylmethane (DIM) against TGF-β1 mediated epithelial-mesenchymal transition (EMT) in vitro and carbon tetrachloride (CCl4)-induced liver fibrosis in mice. TGF-β1-induced AML-12 hepatocyte injury was evaluated by monitoring cell morphology, measuring reactive oxygen species (ROS) and mitochondrial membrane potential, and quantifying apoptosis, inflammatory, and EMT-related proteins. Furthermore, CCl4-induced liver fibrosis in mice was evaluated by performing liver function tests, including serum ALT and AST, total bilirubin, and albumin to assess liver injury and by performing H&E and Sirius red staining to determine the degree of liver fibrosis. Immunoblotting was performed to determine the expression levels of inflammation, apoptosis, and Nrf2/HO-1 signaling-related proteins. DIM treatment significantly restored TGF-β1-induced morphological changes, inhibited the expression of mesenchymal markers by activating E-cadherin, decreased mitochondrial membrane potential, reduced ROS intensity, and upregulated levels of Nrf2-responsive antioxidant genes. In the mouse model of CCl4-induced liver fibrosis, DIM remarkably attenuated liver injury and liver fibrosis, as reflected by the reduced ALT and AST parameters with increased serum Alb activity and fewer lesions in H&E staining. It also mitigated the fibrosis area in Sirius red and Masson staining. Taken together, our results suggest a possible molecular mechanism of DIM by suppressing TGF-β1-induced EMT in mouse hepatocytes and CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yamuna Gurau
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Juna Shrestha
- Alka Hospital Private Limited, Jwalakhel, Kathmandu 446010, Nepal
| | - Prabodh Risal
- Department of Biochemistry, School of Medical Sciences, Kathmandu University, Dhulikhel 45200, Nepal
| | - Ho Sung Park
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Pathology, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Beak Shin
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Yeon Jun Jeong
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Department of Surgery, Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence:
| |
Collapse
|
164
|
Exploring the Protective Effects and Mechanism of Huaji Jianpi Decoction against Nonalcoholic Fatty Liver Disease by Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5440347. [PMID: 36199550 PMCID: PMC9529445 DOI: 10.1155/2022/5440347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
This paper was designed to predict the mechanisms of the active components of Huaji Jianpi Decoction (HJJPD) against nonalcoholic fatty liver disease (NAFLD) based on network pharmacology-combined animal experiments. The candidate compounds of HJJPD and its relative targets were obtained from TCMSP and PharmMapper web server, and the intersection genes for NAFLD were discerned using OMIM, GeneCards, and DisGeNET. Then, the target protein-protein interaction (PPI) and component-target-pathway networks were constructed. Moreover, gene function annotation (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to study the potential signaling pathways associated with HJJPD’s effect on NAFLD. Molecular docking simulation was preformed to validate the binding affinity between potential core components and key targets. Eventually, the candidate targets, the possible pathway, and the mechanism of HJJPD were predicted by the network pharmacology-based strategy, followed by experimental validation in the NAFLD mice model treated with HJJPD. A total of 55 candidate compounds and 36 corresponding genes were identified from HJJPD that are associated with activity against NAFLD, and then the network of them was constructed. Inflammatory response and lipid metabolism-related signaling pathways were identified as the critical signaling pathways mediating the therapeutic effect of the active bioactive ingredients on NAFLD. Compared with the model group, the liver wet weight, liver/body ratio, the levels of total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and high-density lipoprotein (HDL) in serum in the HJJPD low-dose (17.52 g/kg·d), medium-dose (35.04 g/kg·d), and high-dose (70.07 g/kg·d) groups significantly decreased (
). Light microscope observation shows that HJJPD could control the degree of lipid denaturation of the mouse liver tissue to a great extent. RT-qPCR results show that the mRNA expression levels of peroxisome proliferative activated receptor gamma (PPARG), tumor necrosis factor-α (TNF-α), antiserine/threonine protein kinase 1 (AKT1), and prostaglandin-endoperoxide synthase (PTGS2) in the liver tissues of the three HJJPD groups (17.52 g/kg·d, 35.04 g/kg·d, and 70.07 g/kg·d) were significantly lower than those in the model group (
). HJJPD can exert its effect by inhibiting hepatic steatosis and related mRNA expression and decreasing the levels of other liver-related indexes. This study suggested that HJJPD exerted its effect on NAFLD by modulating multitargets with multicompounds through multipathways. It also demonstrated that the network pharmacology-based approach might provide insights for understanding the interrelationship between complex diseases and interventions of HJJPD.
Collapse
|
165
|
Maksymchuk O, Shysh A, Stroy D. Treatment with omega-3 PUFAs does not increase the risk of CYP2E1-dependent oxidative stress and diabetic liver pathology. Front Endocrinol (Lausanne) 2022; 13:1004564. [PMID: 36225205 PMCID: PMC9550212 DOI: 10.3389/fendo.2022.1004564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
An increase in CYP2E1 expression is a key factor in the development of diabetic oxidative liver damage. Long-term treatment with omega-3 PUFAs, which are CYP2E1 substrates, may affect CYP2E1 expression in the liver. In this work, we performed Western blot analysis, biochemical methods, and microscopic ultrastructural studies of the liver in a streptozotocin-induced rat model of type 1 diabetes to investigate whether long-term treatment with omega-3 PUFAs could induce CYP2E1-dependent oxidative stress and diabetic liver pathology. Significant hyperglycemia and lack of natural weight gain were observed in the diabetic rats compared to non-diabetic controls. A 2.5-fold increase in CYP2E1 expression (protein content and activity) was also observed in the diabetic rats. In addition, signs of oxidative stress were found in the liver of the diabetic rats. A significant increase in transaminases and GGT level in blood serum was also observed, which could indicate marked destruction of liver tissue. Diabetic dyslipidemia (increased triacylglycerol levels and decreased HDL-C levels) was found. Treatment of the diabetic animals with an omega-3-enriched pharmaceutical composition of PUFAs had no effect on CYP2E1 levels but contributed to a two-fold decrease in enzyme activity. The intensity of lipid peroxidation also remained close to the diabetic group. However, at the same time, antioxidant protection was provided by induction of antioxidant enzyme activity. Examination of the liver ultrastructure revealed no characteristic signs of diabetic pathology. However, omega-3 PUFAs did not normalize blood glucose levels and serum lipid profile. Thus, long-term treatment of diabetic rats with omega-3 PUFAs does not increase the risk of CYP2E1-dependent oxidative stress and development of liver pathology but prevents some diabetic ultrastructural damage to hepatocytes.
Collapse
Affiliation(s)
- Oksana Maksymchuk
- Department of Molecular Oncogenetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Angela Shysh
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Dmytro Stroy
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
166
|
Delangre E, Oppliger E, Berkcan S, Gjorgjieva M, Correia de Sousa M, Foti M. S100 Proteins in Fatty Liver Disease and Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms231911030. [PMID: 36232334 PMCID: PMC9570375 DOI: 10.3390/ijms231911030] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent and slow progressing hepatic pathology characterized by different stages of increasing severity which can ultimately give rise to the development of hepatocellular carcinoma (HCC). Besides drastic lifestyle changes, few drugs are effective to some extent alleviate NAFLD and HCC remains a poorly curable cancer. Among the deregulated molecular mechanisms promoting NAFLD and HCC, several members of the S100 proteins family appear to play an important role in the development of hepatic steatosis, non-alcoholic steatohepatitis (NASH) and HCC. Specific members of this Ca2+-binding protein family are indeed significantly overexpressed in either parenchymal or non-parenchymal liver cells, where they exert pleiotropic pathological functions driving NAFLD/NASH to severe stages and/or cancer development. The aberrant activity of S100 specific isoforms has also been reported to drive malignancy in liver cancers. Herein, we discuss the implication of several key members of this family, e.g., S100A4, S100A6, S100A8, S100A9 and S100A11, in NAFLD and HCC, with a particular focus on their intracellular versus extracellular functions in different hepatic cell types. Their clinical relevance as non-invasive diagnostic/prognostic biomarkers for the different stages of NAFLD and HCC, or their pharmacological targeting for therapeutic purpose, is further debated.
Collapse
|
167
|
Hu T, Sun Y, An Z. Dose- and time-dependent manners of moxifloxacin induced liver injury by targeted metabolomics study. Front Pharmacol 2022; 13:994821. [PMID: 36188611 PMCID: PMC9525095 DOI: 10.3389/fphar.2022.994821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Moxifloxacin is the most widely prescribed antibiotics due to its excellent oral bioavailability and broad-spectrum antibacterial effect. Despite of its popularity, the rare and severe liver injury induced by moxifloxacin is a big concern that cannot be ignored in clinical practice. However, the early warning and related metabolic disturbances of moxifloxacin induced hepatoxicity were rarely reported. In this study, the dose- and time-dependent manners of moxifloxacin induced liver injury were investigated by a targeted metabolomics method. In dose-dependent experiment, three different dosages of moxifloxacin were administered to the rats, including 36 mg kg−1 d−1, 72 mg kg−1 d−1, and 108 mg kg−1 d−1. In time-dependent experiment, moxifloxacin was orally administered to the rats for 3, 7 or 14 consecutive days. Pathological analysis showed that moxifloxacin caused obvious transient hepatotoxicity, with the most serious liver injury occurred in the 7 days continuous administration group. The transient liver injury can be automatically restored over time. Serum levels of liver function related biochemical indicators, including ALT, AST, TBIL, alkaline phosphatase, superoxide dismutase, and malondialdehyde, were also measured for the evaluation of liver injury. However, these indicators can hardly be used for the early warning of hepatotoxicity caused by moxifloxacin due to their limited sensitivity and significant hysteresis. Targeted metabolomics study demonstrated that serum concentrations of fatty acyl carnitines, fatty acids and dehydroepiandrosterone can change dynamically with the severity of moxifloxacin related liver injury. The elevated serum levels of fatty acyl carnitine, fatty acid and dehydroepiandrosterone were promising in predicting the hepatotoxicity induced by moxifloxacin.
Collapse
Affiliation(s)
- Ting Hu
- *Correspondence: Ting Hu, ; Zhuoling An,
| | | | | |
Collapse
|
168
|
Moreira GV, Araujo LCC, Murata GM, Matos SL, Carvalho CRO. Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomed Pharmacother 2022; 155:113660. [PMID: 36095960 DOI: 10.1016/j.biopha.2022.113660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.
Collapse
Affiliation(s)
- Gabriela V Moreira
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Layanne C C Araujo
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Gilson M Murata
- University of São Paulo, Department of Medicine, School of Medicine, São Paulo 01246-903, Brazil
| | - Sandro L Matos
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Carla R O Carvalho
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil.
| |
Collapse
|
169
|
Lee CG, Lee SJ, Park S, Choi SE, Song MW, Lee HW, Kim HJ, Kang Y, Lee KW, Kim HM, Kwak JY, Lee IJ, Jeon JY. In Vivo Two-Photon Imaging Analysis of Dynamic Degradation of Hepatic Lipid Droplets in MS-275-Treated Mouse Liver. Int J Mol Sci 2022; 23:ijms23179978. [PMID: 36077368 PMCID: PMC9456374 DOI: 10.3390/ijms23179978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
The accumulation of hepatic lipid droplets (LDs) is a hallmark of non-alcoholic fatty liver disease (NAFLD). Appropriate degradation of hepatic LDs and oxidation of complete free fatty acids (FFAs) are important for preventing the development of NAFLD. Histone deacetylase (HDAC) is involved in the impaired lipid metabolism seen in high-fat diet (HFD)-induced obese mice. Here, we evaluated the effect of MS-275, an inhibitor of HDAC1/3, on the degradation of hepatic LDs and FFA oxidation in HFD-induced NAFLD mice. To assess the dynamic degradation of hepatic LDs and FFA oxidation in fatty livers of MS-275-treated HFD C57BL/6J mice, an intravital two-photon imaging system was used and biochemical analysis was performed. The MS-275 improved hepatic metabolic alterations in HFD-induced fatty liver by increasing the dynamic degradation of hepatic LDs and the interaction between LDs and lysozyme in the fatty liver. Numerous peri-droplet mitochondria, lipolysis, and lipophagy were observed in the MS-275-treated mouse fatty liver. Biochemical analysis revealed that the lipolysis and autophagy pathways were activated in MS-275 treated mouse liver. In addition, MS-275 reduced the de novo lipogenesis, but increased the mitochondrial oxidation and the expression levels of oxidation-related genes, such as PPARa, MCAD, CPT1b, and FGF21. Taken together, these results suggest that MS-275 stimulates the degradation of hepatic LDs and mitochondrial free fatty acid oxidation, thus protecting against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Chang-Gun Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Soo-Jin Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hyo Won Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Chemistry, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Jong-Young Kwak
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Gyeonggi-do, Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 16499, Gyeonggi-do, Korea
- Correspondence: (J.-Y.K.); (J.Y.J.); Tel.: +82-31-219-4487 (J.-Y.K.); +82-31-219-7459 (J.Y.J.); Fax: +82-31-219-5069 (J.-Y.K.); +82-31-219-4497 (J.Y.J.)
| |
Collapse
|
170
|
Latorre J, Díaz-Trelles R, Comas F, Gavaldà-Navarro A, Milbank E, Dragano N, Morón-Ros S, Mukthavaram R, Ortega F, Castells-Nobau A, Oliveras-Cañellas N, Ricart W, Karmali PP, Tachikawa K, Chivukula P, Villarroya F, López M, Giralt M, Fernández-Real JM, Moreno-Navarrete JM. Downregulation of hepatic lipopolysaccharide binding protein improves lipogenesis-induced liver lipid accumulation. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:599-613. [PMID: 36090751 PMCID: PMC9418749 DOI: 10.1016/j.omtn.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | - Ferran Comas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Aleix Gavaldà-Navarro
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Edward Milbank
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Nathalia Dragano
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Samantha Morón-Ros
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | | | - Francisco Ortega
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Núria Oliveras-Cañellas
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
| | | | | | | | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain
| | - Marta Giralt
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, CIBEROBN (CB06/03/025), 08028 Barcelona, Catalonia, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Department of Medicine, University of Girona, 17003 Girona, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029, Madrid, Spain
- Corresponding author José María Moreno-Navarrete, PhD, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), 17007 Girona, Spain.
| |
Collapse
|
171
|
Yan M, Man S, Ma L, Gao W. Comprehensive molecular mechanisms and clinical therapy in nonalcoholic steatohepatitis: An overview and current perspectives. Metabolism 2022; 134:155264. [PMID: 35810782 DOI: 10.1016/j.metabol.2022.155264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Our understanding of nonalcoholic steatohepatitis (NASH) pathophysiology continues to advance rapidly. Given the complexity of the pathogenesis of NASH, the field has moved from describing the single pathogenesis of NASH to deeply phenotyping with a description of the multi-mechanism and multi-target pathogenesis that includes glucose, lipid and cholesterol metabolism, fibrotic progression, inflammation, immune reaction and apoptosis. To make the picture more complex, the pathogenesis of NASH involves pathological connections between the liver and several organs such as the adipose, pancreas, kidney and gut. Numerous pharmacologic candidates have been tested in clinical trials and have generated some positive results. Importantly, PPAR as triglyceride synthesis inhibitor and FXR as bile acids synthesis inhibitor have displayed beneficial effects on candidates for lipid and cholesterol metabolism. Although the efficacy of these drugs has been affirmed, serious side effects hinder their further development. It is a particularly important task to carry out the in-depth long-term research. Additionally, drug combination increases response rate and reduces side effects of a single drug. Mastering the advantages and limitations of clinical candidate drugs and continuous improvement and innovation are necessary to formulate a new strategy for the future treatment of NASH.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin 300072, China.
| |
Collapse
|
172
|
Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
173
|
Du Z, Lin L, Li Y, Sun M, Liang Q, Sun Z, Duan J. Combined exposure to PM 2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free Radic Biol Med 2022; 190:16-27. [PMID: 35940515 DOI: 10.1016/j.freeradbiomed.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
Abstract
Environmental fine particulate matter (PM2.5), which has attracted worldwide attention, is associated with the progression of metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether dietary habit exacerbate liver damage caused by PM2.5. The current study aimed to investigate the combined negative effects of PM2.5 and high-fat diet (HFD) on liver lipid metabolism in C57BL/6J mice. Histopathological and Oil-Red O staining analysis illustrated that PM2.5 exposure resulted in increased liver fat content in HFD-fed C57BL/6J mice, but not in standard chow diet (STD)-fed mice. And there was a synergistic effect between PM2.5 and HFD on hepatic lipotoxicity. The increased ROS levels and augmented oxidative damage were evaluated in liver tissue of mice treated with PM2.5 and HFD together. In addition, excessive ROS production could activate the miR-155/peroxisome proliferator-activated receptor gamma (PPARγ) pathway, including up-regulation of lipid accumulation-related protein expressions of recombinant liver X receptor alpha (LXRα), sterol regulatory element binding protein-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1).The use of miR-155 inhibitors demonstrated the indispensable role of miR-155 in the activation of lipid-regulated proteins by PM2.5 and palmitic acid (PA). Collectively, altering high-fat dietary habits could protect against MAFLD motivated by air pollution, and miR-155 might be an effective preventive and therapeutic target for this process.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
174
|
Lugarà R, Renner S, Wolf E, Liesegang A, Bruckmaier R, Giller K. Crossbred Sows Fed a Western Diet during Pre-Gestation, Gestation, Lactation, and Post-Lactation Periods Develop Signs of Lean Metabolic Syndrome That Are Partially Attenuated by Spirulina Supplementation. Nutrients 2022; 14:nu14173574. [PMID: 36079836 PMCID: PMC9460909 DOI: 10.3390/nu14173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Excessive dietary intake of fats and sugars (“Western diet”, WD) is one of the leading causes of obesity. The consumption of the microalga Arthrospira platensis (spirulina, Sp) is increasing due to its presumed health benefits. Both WD and Sp are also consumed by pregnant and breastfeeding women. This study investigated if gestating and lactating domestic pigs are an appropriate model for WD-induced metabolic disturbances similar to those observed in humans and if Sp supplementation may attenuate any of these adverse effects. Pigs were fed a WD high in fat, sugars, and cholesterol or a control diet. Half of the animals per diet group were supplemented with 20 g Sp per day. The WD did not increase body weight or adipose tissue accumulation but led to metabolic impairments such as higher cholesterol concentration in plasma, lower IGF1 plasma levels, and signs of hepatic damage compared to the control group. Spirulina supplementation could not reduce all the metabolic impairments observed in WD-fed animals. These findings indicate limited suitability of gestating and lactating domestic pigs as a model for WD but a certain potential of low-dose Sp supplementation to partially attenuate negative WD effects.
Collapse
Affiliation(s)
- Rosamaria Lugarà
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
| | - Simone Renner
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Molecular Animal Breeding and Biotechnology, Department of Veterinary Sciences, Ludwig-Maximilian University Munich, Gene Center, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Annette Liesegang
- Animal Nutrition, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057 Zurich, Switzerland
| | - Rupert Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Katrin Giller
- Animal Nutrition, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland
- Correspondence: ; Tel.: +41-52-3549209
| |
Collapse
|
175
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
176
|
Protein Profiling of a Cellular Model of NAFLD by Advanced Bioanalytical Approaches. Int J Mol Sci 2022; 23:ijms23169025. [PMID: 36012291 PMCID: PMC9408868 DOI: 10.3390/ijms23169025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced quantitative bioanalytical approaches in combination with network analyses allow us to answer complex biological questions, such as the description of changes in protein profiles under disease conditions or upon treatment with drugs. In the present work, three quantitative proteomic approaches-either based on labelling or not-in combination with network analyses were applied to a new in vitro cellular model of nonalcoholic fatty liver disease (NAFLD) for the first time. This disease is characterized by the accumulation of lipids, inflammation, fibrosis, and insulin resistance. Hepatic G2 cells were used as model, and NAFLD was induced by a complex of oleic acid and bovine albumin. The development of the disease was verified by lipid vesicle staining and by the increase in the expression of perilipin-2-a protein constitutively present in the vesicles during NAFLD. The nLC-MS/MS analyses of peptide samples obtained from three different proteomic approaches resulted in accurate and reproducible quantitative data of protein fold-change expressed in NAFLD versus control cells. The differentially regulated proteins were used to evaluate the involved and statistically enriched pathways. Network analyses highlighted several functional and disease modules affected by NAFLD, such as inflammation, oxidative stress defense, cell proliferation, and ferroptosis. Each quantitative approach allowed the identification of similar modulated pathways. The combination of the three approaches improved the power of statistical network analyses by increasing the number of involved proteins and their fold-change. In conclusion, the application of advanced bioanalytical approaches in combination with pathway analyses allows the in-depth and accurate description of the protein profile of an in vitro cellular model of NAFLD by using high-resolution quantitative mass spectrometry data. This model could be extremely useful in the discovery of new drugs to modulate the equilibrium NAFLD health state.
Collapse
|
177
|
Cheng Q, Zhang J, Fang J, Ding H, Xu Y, Lu X, Zhang W. Untargeted metabolomics reveals the role of AQP9 in nonalcoholic fatty liver disease in a mice model. Int J Biol Macromol 2022; 219:864-875. [PMID: 35961555 DOI: 10.1016/j.ijbiomac.2022.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that AQP9 plays an important role in energy metabolism in nonalcoholic fatty liver disease (NAFLD). Recently, metabolomic analyses were used to determine the slight changes in metabolic profiles and helped to understand the disease progression, therapeutic intervention of NAFLD. A mouse model of NAFLD was established with a high-fat diet (HFD), and Aqp9 knockout mice were constructed. Untargeted metabolomics techniques were used to evaluate the potential mechanism of the effect of AQP9 in NAFLD. The results indicated that AQP9 plays a regulatory role in the occurrence of NAFLD. Moreover, a total of 220 candidate biomarkers were screened and identified. Cluster analysis and enrichment analysis of differential metabolites indicated that fatty acid biosynthesis was mainly disturbed when compared against the control group, which was mitigated by knockout of Aqp9. These results show that untargeted metabolomics help to understand the effects of AQP9 in NAFLD.
Collapse
Affiliation(s)
- Quancheng Cheng
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Junwei Zhang
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jinyu Fang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Huiru Ding
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yiyao Xu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Xin Lu
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Weiguang Zhang
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
178
|
Insight into Potential Interactions of Thyroid Hormones, Sex Hormones and Their Stimulating Hormones in the Development of Non-Alcoholic Fatty Liver Disease. Metabolites 2022; 12:metabo12080718. [PMID: 36005590 PMCID: PMC9414490 DOI: 10.3390/metabo12080718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common manifestation of metabolic syndrome. In addition to lifestyle, endocrine hormones play a role in the dysregulation of hepatic metabolism. The most common endocrine hormones contributing to metabolic syndrome are alterations in the levels of thyroid hormones (THs, predominantly in subclinical hypothyroidism) and of sex hormones (in menopause). These hormonal changes influence hepatic lipid and glucose metabolism and may increase hepatic fat accumulation. This review compares the effects of sex hormones, THs and the respective stimulating hormones, Thyroid-Stimulating Hormone (TSH) and Follicle-Stimulating Hormone (FSH), on the development of hepatosteatosis. TSH and FSH may be more relevant to the dysregulation of hepatic metabolism than the peripheral hormones because metabolic changes were identified when only levels of the stimulating hormones were abnormal and the peripheral hormones were still in the reference range. Increased TSH and FSH levels appear to have additive effects on the development of NAFLD and to act independently from each other.
Collapse
|
179
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
180
|
Correlation between T-Lymphocyte Subsets, Regulatory T Cells, and Hepatic Fibrosis in Patients with Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6250751. [PMID: 35958908 PMCID: PMC9357701 DOI: 10.1155/2022/6250751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 01/11/2023]
Abstract
Objective The aim of this study is to assess the relationship between T-lymphocyte subsets, regulatory T cells (Treg), and hepatic fibrosis in patients with a nonalcoholic fatty liver disease (NAFLD). Methods A retrospective analysis was conducted on 64 NAFLD patients (research group) and 73 healthy subjects (control group) in our hospital from January 2020 to December 2021. T-lymphocyte subsets (Th17) and Treg, liver function (alanine aminotransferase (ALT), aspartate aminotransferase (AST)), hepatic fibrosis indexes (type III procollagen (PCIII), type IV collagen (CIV), laminin (LN), hyaluronic acid (HA)), inflammatory factors (high-sensitivity C-reactive protein (hs-CRP), interleukin 6 (IL-6), interleukin-8 (IL-8)), and oxidative stress (OS) response ((superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA)) were tested. The relationship between Th17/Treg and the abovementioned indexes in NAFLD patients was analyzed. Results In comparison to the control group, Th17 and Th17/Treg were higher in the research group (P < 0.05). In addition, liver function, liver fibrosis markers, inflammatory factors, and MDA were elevated, while SOD and GSH-PX decreased (P < 0.05). Subsequently, NAFLD patients were divided into groups A (Th17/Treg <1.15, n = 33) and B (Th17/Treg ≥1.15, n = 31) based on their median Th17/Treg levels. It was seen that liver injury, hepatic fibrosis, inflammation, and OS in group A were more severe (P < 0.05). The Pearson correlation coefficient revealed that Th17/Treg was positively correlated with AST, ALT, PCIII, MDA, and inflammatory factors but negatively correlated with SOD and GSH-PX (P < 0.05).
Collapse
|
181
|
Tong Y, Zhu W, Wen T, Mukhamejanova Z, Xu F, Xiang Q, Pang J. Xyloketal B Reverses Nutritional Hepatic Steatosis, Steatohepatitis, and Liver Fibrosis through Activation of the PPARα/PGC1α Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:1738-1750. [PMID: 35749236 DOI: 10.1021/acs.jnatprod.2c00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a class of disorders including hepatic steatosis, steatohepatitis, and liver fibrosis. Previous research suggested that xyloketal B (Xyl-B), a marine-derived natural product, could attenuate the NAFLD-related lipid accumulation. Herein, we investigated the protective mechanism of Xyl-B in a high-fat diet (HFD) mice fatty liver model by combining a quantitative proteomic approach with experimental methods. The results showed that the administration of Xyl-B (20 and 40 mg·kg-1·day-1, ip) ameliorated the hepatic steatosis in HFD mice. Proteomic profiling together with bioinformatics analysis highlighted the upregulation of a cluster of peroxisome proliferator-activated receptor-α (PPARα) downstream enzymes mainly related to fatty acid oxidation (FAO) as key changes after the treatment. These changes were subsequently confirmed by bioassays. Moreover, further results showed that the expression levels of PPARα and PPARγ coactivator-1α (PGC1α) were increased after the treatment. The related mode-of-action was confirmed by PPARα inhibition. Furthermore, we evaluated the PPARα-mediated anti-inflammatory and antifibrosis effect of Xyl-B in methionine-choline-deficient (MCD) mice hepatitis and liver fibrosis models. According to the results, the histological features were improved, and the levels of inflammatory factors, adhesion molecules, as well as fibrosis markers were decreased after the treatment. Collectively, these results indicated that Xyl-B ameliorated different phases of NAFLD through activation of the PPARα/PGC1α signaling pathway. Our findings revealed the possible metabolism-regulating mechanism of Xyl-B, broadened the application of xyloketal family compounds, and may provide a new strategy to curb the development of NAFLD.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Tianzhi Wen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | | | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qi Xiang
- Institute of Biomedicine & Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
182
|
Yang A, Zhu X, Zhang L, Zhang Y, Zhang D, Jin M, Niu J, Zhang H, Ding Y, Lv G. Non-invasive evaluation of NAFLD and the contribution of genes: an MRI-PDFF-based cross-sectional study. Hepatol Int 2022; 16:1035-1051. [PMID: 35829866 DOI: 10.1007/s12072-022-10355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the clinical, laboratory and genetic features of NAFLD patients based on MRI-PDFF in China. DESIGN Patients with high ALT and with a diagnosis of fatty liver were included in this cross-sectional study. Fasting blood was collected to test biomarkers and SNPs. A total of 266 patients underwent MRI-PDFF and FibroScan examinations, and 38 underwent liver biopsy. Diagnostic models (decision tree, LASSO, and elastic net) were developed based on the diagnosis from MRI-PDFF reports. RESULTS Approximately, 1/3 of the patients were found to have NASH and fibrosis. After quantifying liver steatosis by MRI-PDFF (healthy: n = 47; mild NAFLD: n = 136; moderate/severe NAFLD: n = 83; liver fat content (LFC): 3.6% vs. 8.7% vs. 19.0%), most biomarkers showed significant differences among the three groups, and patients without obesity were found to have a similar LFC as those with obesity (11.1% vs. 12.3%). Models including biomarkers showed strong diagnostic ability (accuracy: 0.80-0.91). Variant alleles of PNPLA3, HSD17B13 and MBOAT7 were identified as genetic risk factors causing higher LFC (8.7% vs. 12.3%; 11.0% vs. 14.5%; 8.5% vs. 10.2%, p < 0.05); those with the UQCC1 rs878639 variant allele showed lower LFC (10.4% vs. 8.4%; OR = 0.58, p < 0.05). Patients with more risk alleles had higher LFCs (8.1% vs. 10.7% vs. 11.6% vs. 14.5%). CONCLUSIONS Based on MRI-PDFF, a combination of several specific biomarkers can accurately predict disease status. When the effects of genes on liver steatosis were first quantified by MRI-PDFF, the UQCC1 rs878639 G allele was identified as a protective factor, and the MBOAT7 T allele was identified as a risk only among nonobese individuals.
Collapse
Affiliation(s)
- Aruhan Yang
- Phase I Clinical Trial Unit, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lei Zhang
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Yingwen Zhang
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Dezhi Zhang
- Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Meishan Jin
- Department of Pathology, First Hospital of Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun, China
| | - Huimao Zhang
- Department of Radiology, First Hospital of Jilin University, Changchun, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
183
|
Zhang C, Zhao Y, Yu M, Qin J, Ye B, Wang Q. Mitochondrial Dysfunction and Chronic Liver Disease. Curr Issues Mol Biol 2022; 44:3156-3165. [PMID: 35877442 PMCID: PMC9319137 DOI: 10.3390/cimb44070218] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengli Yu
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianru Qin
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| |
Collapse
|
184
|
Xue W, Zhang J, Zhu Y, Huang W. Identify Functional lncRNAs in Nonalcoholic Fatty Liver Disease by Constructing a ceRNA Network. ACS OMEGA 2022; 7:22522-22530. [PMID: 35811919 PMCID: PMC9260751 DOI: 10.1021/acsomega.2c01801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Aim: To identify functional long noncoding RNAs (lncRNAs) by constructing a NAFLD-related lncRNA-miRNA-mRNA network (NLMMN) based on the hypothesis that lncRNAs, as competitive endogenous RNAs (ceRNAs), are able to regulate mRNA functions by competitive binding to shared miRNAs. Methods: The "Limma R package" was used to identify differentially expressed lncRNAs and mRNAs (DElncRNAs and DEmRNAs). The "miRcode online tool" was used to predict the potential interactions between DElncRNAs or DEmRNAs using Perl, and "multiMiR R package" was used to predict the potential interactions between DElncRNAs and miRNAs. The NLMMN was viewed by Cytoscape. The DEmRNAs were further analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to identify functional lncRNAs in human liver tissue and FFAs-induced fat-overloading HepG2 cells. The role of functional lncRNA was explored in the HepG2 cell line. Results: A total of 336 DElncRNAs (154 upregulated and 182 downregulated, |log 2 (fold change) |>0.655 and P < 0.05) and 399 DEmRNAs (152 upregulated and 247 downregulated, |log 2 (fold change) |>0.608 and P < 0.05) were identified. A total of 142 DElncRNA-miRNA interaction pairs and 643 miRNA-DEmRNA interaction pairs were retained to construct the NLMMN, which contained 19 lncRNAs, 47 miRNAs, and 228 mRNAs. The results of GO and KEGG enrichment analyses were related to an extracellular matrix (ECM). Two upregulated lncRNAs (LINC00240 and RBMS3-AS3) and one downregulated lncRNA (ALG9-IT1) were identified by qRT-PCR in liver tissues. But only LINC00240 was significantly upregulated in fat-overloading HepG2 cells. Overexpression of LINC00240 did not affect lipid accumulation but increased the reactive oxygen species (ROS) content in HepG2 cells. Conclusion: LINC00240, RBMS3-AS3, and ALG9-IT1 might be novel functional lncRNAs that attenuate liver fibrosis in NAFLD by influencing the ECM through the ceRNA network. Among them, LINC00240 might have a key role.
Collapse
Affiliation(s)
- Wei Xue
- Chongqing
Key Laboratory of Infectious Diseases and Parasitic Diseases, Department
of Infectious Diseases, The First Affiliated
Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Jia Zhang
- Chongqing
Key Laboratory of Infectious Diseases and Parasitic Diseases, Department
of Infectious Diseases, The First Affiliated
Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yali Zhu
- Chongqing
Key Laboratory of Infectious Diseases and Parasitic Diseases, Department
of Infectious Diseases, The First Affiliated
Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Wenxiang Huang
- Department
of Geriatrics, The First Affiliated Hospital
of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| |
Collapse
|
185
|
MFG-E8 Knockout Aggravated Nonalcoholic Steatohepatitis by Promoting the Activation of TLR4/NF- κB Signaling in Mice. Mediators Inflamm 2022; 2022:5791915. [PMID: 35769208 PMCID: PMC9236848 DOI: 10.1155/2022/5791915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the common liver disease characterized by hepatic steatosis, inflammation, and fibrosis; there are no approved drugs to treat this disease because of incomplete understanding of pathophysiological mechanisms of NASH. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a multifunctional glycoprotein, has shown anti-inflammation and antifibrosis. Here, MFG-E8 was shown to play a key role in NASH progression. Using methionine and choline deficient (MCD) diet-fed mice, we found MFG-E8 knockout exacerbated hepatic damage and steatosis as indicated by increased plasma transaminases activities and hepatic histopathologic change, higher hepatic triglycerides (TGs), and lipid accumulation. Moreover, liver fibrosis and inflammation elicited by MCD were aggravated in MFG-E8 knockout mice. Mechanistically, MFG-E8 knockout facilitated activation of hepatic toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway in MCD-fed mice. In vitro experiment, the TLR4 specific antagonist TAK-242 rescued palmitic acid- (PA-) primed lipid formation and inflammation in MFG-E8 knockout primary murine hepatocytes. These findings indicated that MFG-E8 is involved in the progression of NASH and the possible mechanism by which MFG-E8 knockout exacerbated NASH in mice is associated with activation of the TLR4/NF-κB signaling pathway.
Collapse
|
186
|
Lian B, Cai L, Zhang Z, Lin F, Li Z, Zhang XK, Jiang F. The anti-inflammatory effect of Pien Tze Huang in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 151:113076. [PMID: 35550529 DOI: 10.1016/j.biopha.2022.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease that may progress to nonalcoholic steatohepatitis (NASH), hepatic tissue fibrosis, liver cirrhosis, and hepatocellular carcinoma. In this study, we investigated the effects of Pien Tze Huang (PTH), a well-known traditional Chinese herbal formula with liver protective effect, in methionine-choline deficient diet (MCD)- and high-fat diet (HFD)-induced NASH mouse models. Our results showed that PTH could exert hepatoprotective effects by improving liver weight and steatosis and reducing the fibrosis and serum levels of alanine transaminase (ALT) and aspartate transaminase (AST) in both animal models. The effects of PTH was accompanied with the reduction of infiltrated macrophages, the inhibition of the expression of cytokines, and the induction of adiponectin expression. Mechanistically, we found that PTH could inhibit the activation of proinflammatory transcription factor nuclear factor-κB (NF-κB) by preventing the degradation of inhibitor of κBα (IκBα). These results demonstrate that PTH can improve NAFLD largely due to its suppression of the NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Baohuan Lian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.; NucMito Pharmaceuticals Co. Ltd., Xiamen, 361101, China
| | - Lijun Cai
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zhaoqiang Zhang
- Xiamen University Affiliated Xiamen Eye Center, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fen Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Zongxi Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiao-Kun Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| | - Fuquan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China..
| |
Collapse
|
187
|
Sabir U, Irfan HM, Alamgeer, Umer I, Niazi ZR, Asjad HMM. Phytochemicals targeting NAFLD through modulating the dual function of forkhead box O1 (FOXO1) transcription factor signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:741-755. [PMID: 35357518 DOI: 10.1007/s00210-022-02234-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Literature evidence reveals that natural compounds are potential candidates for ameliorating obesity-associated non-alcoholic fatty liver disease (NAFLD) by targeting forkhead box O1 (FOXO1) transcription factor. FOXO1 has a dual and complex role in regulating both increase and decrease in lipid accumulation in hepatocytes and adipose tissues (AT) at different stages of NAFLD. In insulin resistance (IR), it is constitutively expressed, resulting in increased hepatic glucose output and lipid metabolism irregularity. The studies on different phytochemicals indicate that dysregulation of FOXO1 causes disturbance in cellular nutrients homeostasis, and the natural entities have an enduring impact on the mitigation of these abnormalities. The current review communicates and evaluates certain phytochemicals through different search engines, targeting FOXO1 and its downstream cellular pathways to find lead compounds as potential therapeutic agents for treating NAFLD and related metabolic disorders. The findings of this review confirm that polyphenols, flavonoids, alkaloids, terpenoids, and anthocyanins are capable of modulating FOXO1 and associated signaling pathways, and they are potential therapeutic agents for NAFLD and related complications. HIGHLIGHTS: • FOXO1 has the potential to be targeted by novel drugs from natural sources for the treatment of NAFLD and obesity. • FOXO1 regulates cellular autophagy, inflammation, oxidative stress, and lipogenesis through alternative mechanisms. • Phytochemicals treat NAFLD by acting on FOXO1 or SREBP1c and PPARγ transcription factor signaling pathways.
Collapse
Affiliation(s)
- Usman Sabir
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Muhammad Irfan
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan.
| | - Alamgeer
- Punjab University College of Pharmacy, University of the Punjab Lahore, Lahore, Pakistan
| | - Ihtisham Umer
- Pharmacy Department, Comsat International University Lahore Campus, Lahore, Pakistan
| | | | | |
Collapse
|
188
|
Wu J, Chen P, Ju L, Gao R, Li S, Huang Z, Cheng Y, Gui S, Qiu Z, Cheng J, Huang F. Corydalis saxicola Bunting Total Alkaloids ameliorate diet-induced non-alcoholic steatohepatitis by regulating hepatic PI3K/Akt and TLR4/NF-κB pathways in mice. Biomed Pharmacother 2022; 151:113132. [PMID: 35623174 DOI: 10.1016/j.biopha.2022.113132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Corydalis saxicola Bunting (Yanhuanglian), distributed in Southwest China, is mainly used for treatment of hepatitis, oral mucosal erosion, conjunctivitis, dysentery, acute abdominal pain and hemorrhoids in the folk. Corydalis saxicola Bunting Total Alkaloids (CSBTA) are the active ingredients extracted from the root of C. saxicola bunting. Non-alcoholic steatohepatitis (NASH) is the hinge between steatosis and cirrhosis in the spectrum of Non-alcoholic fatty liver disease (NAFLD), which has become one of the most common chronic liver diseases in the world. CSBTA can reduce tumors and brain diseases through anti-inflammatory and antioxidant pathways. Our study was designed to clarify the effects of CSBTA on the HFHC (High fat and high carbohydrate drinking) diet induced mice. In our research, A HFHC diet induced NASH mice model was applied to investigate the effects of CSBTA in vivo and obeticholic acid (OA) was set as positive control. Moreover, the underlying mechanisms were explored by palmitic acid (PA) and lipopolysaccharide (LPS) stimulated HepG2 cells in vitro. The in vivo study illustrated that CSBTA could alleviate mice away from the onset of NASH, and reduce intrahepatocellular lipid accumulation and hepatocyte inflammation under high fat condition. Further in vitro analysis confirmed that CSBTA attenuated inflammation and hepatic lipid accumulation by improving hepatic PI3K/Akt and suppressing hepatic TLR4/NF-κB pathways. In summary, this study demonstrated that CSBTA might be a promising compound for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiejie Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ping Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Linjie Ju
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Renhao Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Silu Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ziqian Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Yiqiu Cheng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Shuqi Gui
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China; Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China.
| |
Collapse
|
189
|
Pettinelli P, Arendt BM, Schwenger KJ, Sivaraj S, Bhat M, Comelli EM, Lou W, Allard JP. Relationship Between Hepatic Gene Expression, Intestinal Microbiota, and Inferred Functional Metagenomic Analysis in NAFLD. Clin Transl Gastroenterol 2022; 13:e00466. [PMID: 35166723 PMCID: PMC10476782 DOI: 10.14309/ctg.0000000000000466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION We previously reported a lower fecal abundance of Ruminococcus spp., Faecalibacterium prausnitzii , and Coprococcus spp. in nonalcoholic fatty liver disease (NAFLD). In this article, we assess the associations between hepatic gene expression, the specific taxa, and bacterial pathways. METHODS The relationships between hepatic genes that were differentially expressed in patients with NAFLD vs healthy controls (HC) and the abundance of these specific taxa were studied. Inferred functional metagenomic analysis using Piphillin was also performed to investigate associations with bacterial pathways. RESULTS Fifteen patients with NAFLD and 6 HC participated. Of 728 hepatic genes examined, 176 correlated with the abundance of Ruminococcus spp., 138 with F. prausnitzii , and 92 with Coprococcus spp. For Ruminococcus spp., genes were enriched in gene ontology (GO) terms related to apoptotic process, response to external and cytokine stimuli, and regulation of signaling. Several genes related to the Kyoto Encyclopedia of Genes and Genomes pathway insulin resistance were correlated with F. prausnitzii . The hepatic genes associated with F. prausnitzii were enriched in GO terms related to cellular response to different stimuli, apoptotic process, and regulation of metabolic pathways. For Coprococcus spp., only the GO term response to external stimulus was enriched. There was a distinct pattern of associations between hepatic genes and bacterial taxa in NAFLD vs HC. For bacterial pathways, 65 and 18 hepatic genes correlated with bacterial metabolic functions in NAFLD and HC, respectively. DISCUSSION Hepatic gene expression related to insulin resistance, inflammation, external stimuli, and apoptosis correlated with bacterial taxa. Patients with NAFLD showed a higher presence of bacterial pathways associated with lipid metabolism.
Collapse
Affiliation(s)
- Paulina Pettinelli
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Facultad de Medicina, Pontificia Universidad Católica de Chile, Región Metropolitana, Chile
| | - Bianca M. Arendt
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
| | | | - Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elena M. Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Joannah and Brian Lawson Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada;
| | - Wendy Lou
- Dalla Lana School of Public Health, Health Sciences Building, University of Toronto, Toronto, Ontario, Canada.
| | - Johane P. Allard
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada;
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
190
|
Melatonin Alleviates PM 2.5-Induced Hepatic Steatosis and Metabolic-Associated Fatty Liver Disease in ApoE -/- Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8688643. [PMID: 35720187 PMCID: PMC9200552 DOI: 10.1155/2022/8688643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Background Exposure to fine particulate matter (PM2.5) is associated with the risk of developing metabolic-associated fatty liver disease (MAFLD). Melatonin is the main secreted product of the pineal gland and has been reported to prevent hepatic lipid metabolism disorders. However, it remains uncertain whether melatonin could protect against PM2.5-induced MAFLD. Methods and Results The purpose of our study was to investigate the mitigating effects of melatonin on hepatic fatty degeneration accelerated by PM2.5 in vivo and in vitro. Histopathological analysis and ultrastructural images showed that PM2.5 induced hepatic steatosis and lipid vacuolation in ApoE−/− mice, which could be effectively alleviated by melatonin administration. Increased ROS production and decreased expression of antioxidant enzymes were detected in the PM2.5-treated group, whereas melatonin showed recovery effects after PM2.5-induced oxidative damage in both the liver and L02 cells. Further investigation revealed that PM2.5 induced oxidative stress to activate PTP1B, which in turn had a positive feedback regulation effect on ROS release. When a PTP1B inhibitor or melatonin was administered, SP1/SREBP-1 signalling was effectively suppressed, while Nrf2/Keap1 signalling was activated in the PM2.5-treated groups. Conclusion Our study is the first to show that melatonin alleviates the disturbance of PM2.5-triggered hepatic steatosis and liver damage by regulating the ROS-mediated PTP1B and Nrf2 signalling pathways in ApoE−/− mice. These results suggest that melatonin administration might be a prospective therapy for the prevention and treatment of MAFLD associated with air pollution.
Collapse
|
191
|
Qin Y, Zhao B, Deng H, Zhang M, Qiao Y, Liu Q, Shi C, Li Y. Isolation and Quantification of the Hepatoprotective Flavonoids From Scleromitron diffusum (Willd.) R. J. Wang With Bio-Enzymatic Method Against NAFLD by UPLC-MS/MS. Front Pharmacol 2022; 13:890148. [PMID: 35770080 PMCID: PMC9234865 DOI: 10.3389/fphar.2022.890148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Flavonoids were the major phytochemicals against hepatic peroxidative injury in Scleromitron diffusum (Willd.) R. J. Wang with an inventive bio-enzymatic method by our group (LU500041). Firstly, the total flavonoids from Scleromitron diffusum (Willd.) R. J. Wang were extracted by reflux, ultrasonic, ultrasound-assisted enzymatic methods (TFH), and the bio-enzymatic method (Ey-TFH). Then 24 flavonoid compounds were isolated and quantified in the extracts by UPLC-MS/MS. Next, six representative differential compounds in Ey-TFH were further screened out by multivariate statistical analysis compared with those in TFH. In a further step, Ey-TFH presented a higher protective rate (59.30 ± 0.81%) against H2O2-damaged HL-02 hepatocytes than TFH. And six representative differential compounds at 8 and 16 μmol/L all exerted significant hepatoprotective effects (p < 0.05 or p < 0.01). Finally, the therapeutic action of Ey-TFH for nonalcoholic fatty liver disease (NAFLD) was processed by a rat's model induced with a high-fat diet. Ey-TFH (90, 120 mg/kg) significantly ameliorated the lipid accumulation in the rat model (p < 0.05). Meanwhile, Ey-TFH relieved liver damage. The levels of ALT, ALP, AST, LDH, and γ-GT in rats' serum were also significantly reduced (p < 0.05 or p < 0.01). In addition to this, the body's antioxidant capacity was improved with elevated SOD and GSH levels (p < 0.05) and down-regulated MDA content (p < 0.01) after Ey-TFH administration. Histopathological observations of staining confirmed the hepatic-protective effect of Ey-TFH.
Collapse
Affiliation(s)
- Yuxi Qin
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Baojin Zhao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Huifang Deng
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Mengjiao Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Yanan Qiao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Chuandao Shi
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
| | - Yunlan Li
- School of Public Health, Shaanxi University of Chinese medicine, Xi’an, China
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
192
|
Cai Q, Zhu J, Cui X, Xia Y, Gao H, Wang X, Cheng M. S100A9 promotes inflammatory response in diabetic nonalcoholic fatty liver disease. Biochem Biophys Res Commun 2022; 618:127-132. [PMID: 35717907 DOI: 10.1016/j.bbrc.2022.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been previously shown to be associated with diabetes mellitus (DM) which is one of the most decisive risk factors for the faster progression of NAFLD to nonalcoholic steatohepatitis (NASH), fibrosis or advanced cirrhosis. However, the critical molecular pathway involved in the development of diabetic-induced liver injury is unclear. By the proteomic study of liver from high-fat diet (HFD)/streptozotocin(STZ)-induced diabetic mice, we revealed that the upregulation of S100A9 was involved in the development of NAFLD with DM. Moreover, we found that S100A9 silencing decreased proinflammatory response and inhibited the TLR4-NF-κB signaling in in-vitro study. Our findings provide new perspectives into the pivotal role of S100A9 for development of diabetic NAFLD and revealed that S100A9 is a critical molecule that links liver injury to inflammation of NAFLD with DM.
Collapse
Affiliation(s)
- Qian Cai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jiang Zhu
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiaopei Cui
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yong Xia
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China; Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
193
|
Wang C, Wang P, Chen W, Bai Y. Mechanisms of Gynostemma pentaphyllum against non-alcoholic fibre liver disease based on network pharmacology and molecular docking. J Cell Mol Med 2022; 26:3760-3771. [PMID: 35665440 PMCID: PMC9258700 DOI: 10.1111/jcmm.17410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/14/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
As a progressive chronic disease, the effective treatment for non‐alcoholic fibre liver disease (NAFLD) has not yet been thoroughly explored at the moment. The widespread use of Gynostemma pentaphyllum (Thunb) for its anti‐insulin resistance effect indicates that potential therapeutic value may be found in Thunb for NAFLD. Hence, this research aims to discover the latent mechanism of Thunb for NAFLD treatment. To achieve the goal of discovering the latent mechanism of Thunb for NAFLD treatment, molecular docking strategy integrated a network phamacology was adopted in the exploration. We acquire Thunb compounds with activeness from TCMSP database. We collect the putative targets of Thunb and NAFLD to generate the network. Key targets and mechanism are screened by PPI analysis, GO and KEGG pathway enrichment analyses. Molecular docking simulation is introduced into the study as assessment method. Through network analysis and virtual screening based on molecular docking, 2 targets (AKT 1 and GSK3B) are identified as key therapeutic targets with satisfying binding affinity. Main mechanism is believed to be the biological process and pathway related to insulin resistance according to the enrichment analyses outcomes. Particularly, the P13K–AKT signalling pathway is recognized as a key pathway of the mechanism. In conclusion, the study shows that Thunb could be a potential treatment against NAFLD and may suppress insulin resistance through the P13K–AKT signalling pathway. The result of the exploration provides a novel perspective for approaching experimental exploration.
Collapse
Affiliation(s)
- Cunzhi Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Pengrui Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Wenbin Chen
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yanyan Bai
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.,Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
194
|
Nickel S, Christ M, Schmidt S, Kosacka J, Kühne H, Roderfeld M, Longerich T, Tietze L, Bosse I, Hsu MJ, Stock P, Roeb E, Christ B. Human Mesenchymal Stromal Cells Resolve Lipid Load in High Fat Diet-Induced Non-Alcoholic Steatohepatitis in Mice by Mitochondria Donation. Cells 2022; 11:cells11111829. [PMID: 35681524 PMCID: PMC9180625 DOI: 10.3390/cells11111829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/27/2022] Open
Abstract
Mesenchymal stromal cells (MSC) increasingly emerge as an option to ameliorate non-alcoholic steatohepatitis (NASH), a serious disease, which untreated may progress to liver cirrhosis and cancer. Before clinical translation, the mode of action of MSC needs to be established. Here, we established NASH in an immune-deficient mouse model by feeding a high fat diet. Human bone-marrow-derived MSC were delivered to the liver via intrasplenic transplantation. As verified by biochemical and image analyses, human mesenchymal stromal cells improved high-fat-diet-induced NASH in the mouse liver by decreasing hepatic lipid content and inflammation, as well as by restoring tissue homeostasis. MSC-mediated changes in gene expression indicated the switch from lipid storage to lipid utilization. It was obvious that host mouse hepatocytes harbored human mitochondria. Thus, it is feasible that resolution of NASH in mouse livers involved the donation of human mitochondria to the mouse hepatocytes. Therefore, human MSC might provide oxidative capacity for lipid breakdown followed by restoration of metabolic and tissue homeostasis.
Collapse
Affiliation(s)
- Sandra Nickel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Division of General, Visceral and Vascular Surgery, University Hospital Jena, 07747 Jena, Germany
| | - Madlen Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Sandra Schmidt
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Joanna Kosacka
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Hagen Kühne
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Thomas Longerich
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Lysann Tietze
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Ina Bosse
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Mei-Ju Hsu
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Peggy Stock
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, 35392 Giessen, Germany; (M.R.); (E.R.)
| | - Bruno Christ
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, 04103 Leipzig, Germany; (S.N.); (M.C.); (S.S.); (J.K.); (H.K.); (L.T.); (I.B.); (M.-J.H.); (P.S.)
- Correspondence: ; Tel.: +49-(0)341-9713552
| |
Collapse
|
195
|
Downregulation of hepatic fat accumulation, inflammation and fibrosis by nerolidol in purpose built western-diet-induced multiple-hit pathogenesis of NASH animal model. Biomed Pharmacother 2022; 150:112956. [PMID: 35447548 DOI: 10.1016/j.biopha.2022.112956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Western diet style (fast food), which includes fatty frozen junk food, lard, processed meats, whole-fat dairy foods, cream, mayonnaise, butter, snacks, and fructose, is a primary etiological determinant for developing nonalcoholic steatohepatitis (NASH) worldwide. Here the primary focus is to see the impact of naturally identified essential oil on disease mechanisms developed in an animal model using the same ingredients. Currently, symptomatic therapies are recommended for the management of NASH due to non-availability of specific treatments. Therefore, the present study was designed to evaluate the potential anti-NASH effect of nerolidol in a rat model fed with a purpose-built diet. The diet substantially induced insulin resistance, hepatic steatosis, dyslipidemia, and elevation of liver enzymes in the experimental animals. The levels of liver oxidative stress markers, nitrites (NO2-), serum pro-inflammatory cytokine (TNF-α) and hepatic collagen were increased in disease control rats. Nerolidol oral treatment in ascending dose order of 250 and 500 mg/kg substantially reduced the steatosis (macrovesicular and microvesicular), degeneration of hepatocytes, and inflammatory cells infiltration. The amounts of circulatory TNF-α and tissue collagen were also reduced at 500 mg/kg dose of nerolidol, expressing its anti-fibrotic effect. The current study described the multiple-hit pathophysiology of NASH as enhanced steatosis, pro-inflammatory markers, and oxidative stress in rats, which resulted in the development of vicious insulin resistance. Nerolidol treatment significantly reduced hepatic lipid accumulation and halted disease progression induced by a hypercaloric diet.
Collapse
|
196
|
Galatou E, Mourelatou E, Hatziantoniou S, Vizirianakis IS. Nonalcoholic Steatohepatitis (NASH) and Atherosclerosis: Explaining Their Pathophysiology, Association and the Role of Incretin-Based Drugs. Antioxidants (Basel) 2022; 11:1060. [PMID: 35739957 PMCID: PMC9220192 DOI: 10.3390/antiox11061060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the most severe manifestation of nonalcoholic fatty liver disease (NAFLD), a common complication of type 2 diabetes, and may lead to cirrhosis and hepatocellular carcinoma. Oxidative stress and liver cell damage are the major triggers of the severe hepatic inflammation that characterizes NASH, which is highly correlated with atherosclerosis and coronary artery disease. Regarding drug therapy, research on the role of GLP-1 analogues and DPP4 inhibitors, novel classes of antidiabetic drugs, is growing. In this review, we outline the association between NASH and atherosclerosis, the underlying molecular mechanisms, and the effects of incretin-based drugs, especially GLP-1 RAs, for the therapeutic management of these conditions.
Collapse
Affiliation(s)
- Eleftheria Galatou
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Elena Mourelatou
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Ioannis S. Vizirianakis
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, 2417 Nicosia, Cyprus;
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
197
|
Increased PD-L1 Restricts Liver Injury in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5954437. [PMID: 35615575 PMCID: PMC9126662 DOI: 10.1155/2022/5954437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
PD-L1 is a critical checkpoint that protects tissues from autoimmune injury. Nevertheless, the role of PD-L1 in nonalcoholic fatty liver disease- (NAFLD-) induced liver damage is still unclear. In this study, we examined the role and mechanism of PD-L1 expression on NAFLD-induced liver damage in vitro and in vivo. PD-L1 expression in the livers from patients with NAFLD, and LO2 cells treated by FFA, was significantly increased. FFA triggers a large amount of ROS (generated from NOX4 and damaged mitochondria), promoting the ZNF24 expression and suppressing ZN24 sumoylation, both of which enhance the PD-L1 transcription and expression. The knockdown of PD-L1 increases CD8 + T cells' damage to FFA-treated LO2 cells, while its upregulation limits the liver injury in NAFLD models. Collectively, we demonstrate that FFA promotes PD-L1 expression through the ROS/ZNF24 pathway and suppresses UBE2I-mediated ZNF24 sumoylation to enhance its transcriptional activity of PD-L1. PD-L1 upregulation limits FFA-induced injury of hepatocytes in vitro and in vivo.
Collapse
|
198
|
Song YP, Lv JW, Zhao Y, Chen X, Zhang ZC, Fan YJ, Zhang C, Gao L, Huang Y, Wang H, Xu DX. DNA hydroxymethylation reprogramming of β-oxidation genes mediates early-life arsenic-evoked hepatic lipid accumulation in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128511. [PMID: 35739688 DOI: 10.1016/j.jhazmat.2022.128511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The metabolic disorders are becoming an epidemic disease endangering public health in countries. Environmental factors are mainly reason for the growth of metabolic disorders. Previous research suggests that DNA methylation is a potential mechanism. Recently, it has been reported that DNA hydroxymethylation is also a stable marker of epigenetic reprogramming. Hence, the study aims to investigate whether DNA hydroxymehylation mediates early-life environmental stress-evoked metabolic disorder in adulthood. Mice were orally administered with arsenic (As), an environmental stressor, throughout pregnancy. We show that early-life As exposure induces glucose intolerance and hepatic lipid accumulation in adulthood. Early-life As exposure alters epigenetic reprogramming and expression of lipid metabolism-related genes including β-oxidation-specific genes in adulthood. Of interest, early-life As exposure alters epigenetic reprogramming of hepatic lipid metabolism partially through reducing DNA hydroxymethylation modification of β-oxidation-related genes in developing liver. Mechanistically, early-life As exposure suppresses ten-eleven translocation (TET) activity through downregulating isocitrate dehydrogenases (Idh) and reducing alpha-ketoglutarate (α-KG) content in the developing liver. In addition, early-life As exposure inhibits TET1 binding to CpG-rich fragments of β-oxidation-related genes in developing liver. This study provide novel evidence that early-life environmental stress leads to later life metabolic disorders by altering hepatic DNA hydroxymethylation reprogramming.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ying Zhao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
199
|
Duan Y, Pan X, Luo J, Xiao X, Li J, Bestman PL, Luo M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front Immunol 2022; 13:880298. [PMID: 35603224 PMCID: PMC9122097 DOI: 10.3389/fimmu.2022.880298] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory cytokines have been considered to be significant factors contributing to the development and progression of non-alcoholic fatty liver disease (NAFLD). However, the role of inflammatory cytokines in NAFLD remains inconclusive. Objective This study aimed to evaluate the association between inflammatory cytokines and NAFLD. Methods PubMed, Web of Science, the Cochrane Library, and EMBASE databases were searched until 31 December 2021 to identify eligible studies that reported the association of inflammatory cytokine with NAFLD and its subtypes. We pooled odds ratios (ORs) and hazard risk (HRs) with 95% confidence intervals (CIs) and conducted heterogeneity tests. Sensitivity analysis and analysis for publication bias were also carried out. Results The search in the databases identified 51 relevant studies that investigated the association between 19 different inflammatory cytokines and NAFLD based on 36,074 patients and 47,052 controls. The results of the meta-analysis showed significant associations for C-reactive protein (CRP), interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and intercellular adhesion molecule-1 (ICAM-1) with NAFLD (ORs of 1.41, 1.08, 1.50, 1.15 and 2.17, respectively). In contrast, we observed non-significant associations for interferon-γ (IFN-γ), insulin-like growth factor (IGF-II), interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-7 (IL-7), interleukin-8 (IL-8), interleukin-10 (IL-10), interleukin-12 (IL-12), monocyte chemoattractant protein-1(MCP-1), and transforming growth factor-β (TGF-β) with NAFLD. Our results also showed that CRP, IL-1β, and TNF-α were significantly associated with non-alcoholic steatohepatitis (NASH) and hepatic fibrosis. Conclusions Our results indicated that increased CRP, IL‐1β, IL-6, TNF‐α, and ICAM-1 concentrations were significantly associated with increased risks of NAFLD. These inflammatory mediators may serve as biomarkers for NAFLD subjects and expect to provide new insights into the aetiology of NAFLD as well as early diagnosis and intervention.
Collapse
Affiliation(s)
- Yamei Duan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiongfeng Pan
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jiayou Luo
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiang Xiao
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jingya Li
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Prince L. Bestman
- Department of Maternal and Child Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Miyang Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- *Correspondence: Miyang Luo,
| |
Collapse
|
200
|
Wasta Esmail VA, Al-Nimer MS, Mohammed MO. Effects of Orlistat or Telmisartan on the Serum Free Fatty Acids in Non-alcoholic Fatty Liver Disease Patients: An Open-Labeled Randomized Controlled Study. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2022; 33:421-426. [PMID: 35678800 PMCID: PMC11157823 DOI: 10.5152/tjg.2020.19365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 06/15/2023]
Abstract
BACKGROUND One of the important inducers of inflammatory responses and accumulation of fat in hepatocytes is free fatty acids which ultimately lead to the development of non-alcoholic fatty liver disease. Patients with non-alcoholic fatty liver disease have high levels of plasma free fatty acids which are usually associated with type 2 diabetes and components of metabolic syndrome including dyslipidemia. Objective of this research is to investigate the effects of orlistat (a lipase enzyme inhibitor) or telmisartan (an angiotensin receptor blocker) on the serum free fatty acids in non-alcoholic fatty liver disease patients taking into consideration the baseline lipid profile. METHODS This open-label clinical trial was carried out in the Department of Pharmacology, College of Medicine at the University of Sulaimani in cooperation with Shar Teaching Hospital in Sulaimani city-Kurdistan Region of Iraq. A total number of 74 non-alcoholic fatty liver disease patients were recruited and grouped randomly into group I (n = 25) treated with orlistat (120 mg/day orally) for 12 weeks, group II (n = 24) treated with telmisartan (20 mg/day orally) for 8 weeks, and group III (n = 25) treated with placebo (carboxy- methyl cellulose) once daily. Fasting serum level of free fatty acid and lipid profile including total cholesterol, triglyceride, high-density lipoprotein, and non-high-density lipoproteins were determined. RESULTS Orlistat and telmisartan significantly reduced the triglyceride-glucose index and free fatty acid levels (P < .001) in patients with non-alcoholic fatty liver diseases. CONCLUSION Short-term treatment with orlistat or telmisartan produce effective and significant reductions in FFAs in patients with non-alcoholic fatty liver disease compared to placebo. Orlistat effectively reduces the free fatty acid irrespective of the baseline lipid profile.
Collapse
Affiliation(s)
- Vian Ahmed Wasta Esmail
- Department of Clinical Pharmacy, University of Sulaimani Faculty of Pharmacy, Sulaimani, Iraq
| | - Marwan S.M. Al-Nimer
- Department of Pharmacology and Toxicology, Hawler Medical University Faculty of Pharmacy, Erbil, Iraq
| | | |
Collapse
|