151
|
Huang S, Ji X, Jackson KK, Lubman DM, Ard MB, Bruce TF, Marcus RK. Rapid separation of blood plasma exosomes from low-density lipoproteins via a hydrophobic interaction chromatography method on a polyester capillary-channeled polymer fiber phase. Anal Chim Acta 2021; 1167:338578. [PMID: 34049630 DOI: 10.1016/j.aca.2021.338578] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.
Collapse
Affiliation(s)
- Sisi Huang
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - Xiaohui Ji
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaylan K Jackson
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA
| | - David M Lubman
- Department of Surgery, Medical Science Research Building I, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mary B Ard
- Georgia Electron Microscopy Core Facility, University of Georgia Athens, GA, 30602, USA
| | - Terri F Bruce
- Department of Bioengineering, Life Sciences Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
152
|
Allen NR, Taylor-Mew AR, Wilkinson TJ, Huws S, Phillips H, Morphew RM, Brophy PM. Modulation of Rumen Microbes Through Extracellular Vesicle Released by the Rumen Fluke Calicophoron daubneyi. Front Cell Infect Microbiol 2021; 11:661830. [PMID: 33959516 PMCID: PMC8096352 DOI: 10.3389/fcimb.2021.661830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.
Collapse
Affiliation(s)
- Nathan R Allen
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Aspen R Taylor-Mew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Toby J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sharon Huws
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Helen Phillips
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
153
|
Kim JK, Youn YJ, Lee YB, Kim SH, Song DK, Shin M, Jin HK, Bae JS, Shrestha S, Hong CW. Extracellular vesicles from dHL-60 cells as delivery vehicles for diverse therapeutics. Sci Rep 2021; 11:8289. [PMID: 33859336 PMCID: PMC8050327 DOI: 10.1038/s41598-021-87891-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived heterogeneous vesicles that mediate intercellular communications. They have recently been considered as ideal vehicles for drug-delivery systems, and immune cells are suggested as a potential source for drug-loaded EVs. In this study, we investigated the possibility of neutrophils as a source for drug-loaded EVs. Neutrophil-like differentiated human promyelocytic leukemia cells (dHL-60) produced massive amounts of EVs within 1 h. The dHL-60 cells are also easily loaded with various cargoes such as antibiotics (penicillin), anticancer drug (paclitaxel), chemoattractant (MCP-1), miRNA, and Cas9. The EVs derived from the dHL-60 cells showed efficient incorporation of these cargoes and significant effector functions, such as bactericidal activity, monocyte chemotaxis, and macrophage polarization. Our results suggest that neutrophils or neutrophil-like promyelocytic cells could be an attractive source for drug-delivery EVs.
Collapse
Affiliation(s)
- Jun-Kyu Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Young-Jin Youn
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Yu-Bin Lee
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Sun-Hwa Kim
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea
| | - Dong-Keun Song
- Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.,KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sanjeeb Shrestha
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Daegu, 41944, Republic of Korea.
| |
Collapse
|
154
|
Adams SD, Csere J, D'angelo G, Carter EP, Romao M, Arnandis T, Dodel M, Kocher HM, Grose R, Raposo G, Mardakheh F, Godinho SA. Centrosome amplification mediates small extracellular vesicle secretion via lysosome disruption. Curr Biol 2021; 31:1403-1416.e7. [PMID: 33592190 PMCID: PMC8047808 DOI: 10.1016/j.cub.2021.01.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/01/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
Bidirectional communication between cells and their surrounding environment is critical in both normal and pathological settings. Extracellular vesicles (EVs), which facilitate the horizontal transfer of molecules between cells, are recognized as an important constituent of cell-cell communication. In cancer, alterations in EV secretion contribute to the growth and metastasis of tumor cells. However, the mechanisms underlying these changes remain largely unknown. Here, we show that centrosome amplification is associated with and sufficient to promote small extracellular vesicle (SEV) secretion in pancreatic cancer cells. This is a direct result of lysosomal dysfunction, caused by increased reactive oxygen species (ROS) downstream of extra centrosomes. We propose that defects in lysosome function could promote multivesicular body fusion with the plasma membrane, thereby enhancing SEV secretion. Furthermore, we find that SEVs secreted in response to amplified centrosomes are functionally distinct and activate pancreatic stellate cells (PSCs). These activated PSCs promote the invasion of pancreatic cancer cells in heterotypic 3D cultures. We propose that SEVs secreted by cancer cells with amplified centrosomes influence the bidirectional communication between the tumor cells and the surrounding stroma to promote malignancy.
Collapse
Affiliation(s)
- Sophie D Adams
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Judit Csere
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Gisela D'angelo
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Maryse Romao
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Teresa Arnandis
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Graça Raposo
- Structure and Membrane Compartments, Institute Curie, Paris Sciences & Lettres Research University, Centre for National de la Recherche Scientifique, UMR144, Paris, France
| | - Faraz Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Susana A Godinho
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
155
|
Salmond N, Williams KC. Isolation and characterization of extracellular vesicles for clinical applications in cancer - time for standardization? NANOSCALE ADVANCES 2021; 3:1830-1852. [PMID: 36133088 PMCID: PMC9419267 DOI: 10.1039/d0na00676a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/13/2021] [Indexed: 05/08/2023]
Abstract
Extracellular vesicles (EVs) are nanometer sized lipid enclosed particles released by all cell types into the extracellular space and biological fluids in vivo, and into cell culture media in vitro. An important physiological role of EVs is cell-cell communication. EVs interact with, and deliver, their contents to recipient cells in a functional capacity; this makes EVs desirable vehicles for the delivery of therapeutic cargoes. In addition, as EVs contain proteins, lipids, glycans, and nucleic acids that reflect their cell of origin, their potential utility in disease diagnosis and prognostication is of great interest. The number of published studies analyzing EVs and their contents in the pre-clinical and clinical setting is rapidly expanding. However, there is little standardization as to what techniques should be used to isolate, purify and characterize EVs. Here we provide a comprehensive literature review encompassing the use of EVs as diagnostic and prognostic biomarkers in cancer. We also detail their use as therapeutic delivery vehicles to treat cancer in pre-clinical and clinical settings and assess the EV isolation and characterization strategies currently being employed. Our report details diverse isolation strategies which are often dependent upon multiple factors such as biofluid type, sample volume, and desired purity of EVs. As isolation strategies vary greatly between studies, thorough EV characterization would be of great importance. However, to date, EV characterization in pre-clinical and clinical studies is not consistently or routinely adhered to. Standardization of EV characterization so that all studies image EVs, quantitate protein concentration, identify the presence of EV protein markers and contaminants, and measure EV particle size and concentration is suggested. Additionally, the use of RNase, DNase and protease EV membrane protection control experiments is recommended to ensure that the cargo being investigated is truly EV associated. Overall, diverse methodology for EV isolation is advantageous as it can support different sample types and volumes. Nevertheless, EV characterization is crucial and should be performed in a rigorous manor.
Collapse
Affiliation(s)
- Nikki Salmond
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| | - Karla C Williams
- University of British Columbia, Faculty of Pharmaceutical Sciences Vancouver V6T 1Z3 Canada
| |
Collapse
|
156
|
Neuberger EWI, Hillen B, Mayr K, Simon P, Krämer-Albers EM, Brahmer A. Kinetics and Topology of DNA Associated with Circulating Extracellular Vesicles Released during Exercise. Genes (Basel) 2021; 12:522. [PMID: 33918465 PMCID: PMC8065814 DOI: 10.3390/genes12040522] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/22/2022] Open
Abstract
Although it is widely accepted that cancer-derived extracellular vesicles (EVs) carry DNA cargo, the association of cell-free circulating DNA (cfDNA) and EVs in plasma of healthy humans remains elusive. Using a physiological exercise model, where EVs and cfDNA are synchronously released, we aimed to characterize the kinetics and localization of DNA associated with EVs. EVs were separated from human plasma using size exclusion chromatography or immuno-affinity capture for CD9+, CD63+, and CD81+ EVs. DNA was quantified with an ultra-sensitive qPCR assay targeting repetitive LINE elements, with or without DNase digestion. This model shows that a minute part of circulating cell-free DNA is associated with EVs. During rest and following exercise, only 0.12% of the total cfDNA occurs in association with CD9+/CD63+/CD81+EVs. DNase digestion experiments indicate that the largest part of EV associated DNA is sensitive to DNase digestion and only ~20% are protected within the lumen of the separated EVs. A single bout of running or cycling exercise increases the levels of EVs, cfDNA, and EV-associated DNA. While EV surface DNA is increasing, DNAse-resistant DNA remains at resting levels, indicating that EVs released during exercise (ExerVs) do not contain DNA. Consequently, DNA is largely associated with the outer surface of circulating EVs. ExerVs recruit cfDNA to their corona, but do not carry DNA in their lumen.
Collapse
Affiliation(s)
- Elmo W. I. Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (B.H.); (P.S.)
| | - Barlo Hillen
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (B.H.); (P.S.)
| | - Katharina Mayr
- Institute of Developmental Biology and Neurobiology, Extracellular Vesicles Research Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (K.M.); (E.-M.K.-A.)
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (B.H.); (P.S.)
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Extracellular Vesicles Research Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (K.M.); (E.-M.K.-A.)
| | - Alexandra Brahmer
- Department of Sports Medicine, Rehabilitation and Disease Prevention, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (B.H.); (P.S.)
- Institute of Developmental Biology and Neurobiology, Extracellular Vesicles Research Group, Johannes Gutenberg University Mainz, 55099 Mainz, Germany; (K.M.); (E.-M.K.-A.)
| |
Collapse
|
157
|
Fan L, Dong J, He X, Zhang C, Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum Exp Toxicol 2021; 40:1612-1623. [PMID: 33779331 DOI: 10.1177/09603271211003311] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Liying Fan
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jun Dong
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chun Zhang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ting Zhang
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
158
|
Abstract
Extracellular vesicles (EVs) are increasingly being recognised as players in intercellular communication within the human body. EVs are nano-sized vesicles that are secreted by virtually all cells, primarily arising from either the plasma membrane or the endocytic system. They contain a wide range of proteins and nucleic acids in their lumen, as well as cell surface proteins on their exterior. The proteins and nucleic acids within are the 'cargo' that EVs deliver into the cytosol of recipient cells to elicit a response or phenotypic change. For delivery to occur, the cargo needs to cross two lipid bilayers; one that makes up the vesicle itself, and the other of the recipient cell. Exactly how this process works is a topic that is poorly understood, despite being pivotal for their function. Furthermore, extracellular vesicles have therapeutic potential as drug delivery vehicles. Therefore, understanding their delivery mechanism and harnessing its action for drug delivery is of great importance. This chapter will focus on the proposed mechanisms for cargo delivery and discuss existing evidence for cargo delivery from EVs into the cytosol of recipient cells.
Collapse
|
159
|
Perissinotto F, Rondelli V, Senigagliesi B, Brocca P, Almásy L, Bottyán L, Merkel DG, Amenitsch H, Sartori B, Pachler K, Mayr M, Gimona M, Rohde E, Casalis L, Parisse P. Structural insights into fusion mechanisms of small extracellular vesicles with model plasma membranes. NANOSCALE 2021; 13:5224-5233. [PMID: 33687046 DOI: 10.1039/d0nr09075a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are a potent intercellular communication system. Such small vesicles transport biomolecules between cells and throughout the body, strongly influencing the fate of recipient cells. Due to their specific biological functions they have been proposed as biomarkers for various diseases and as optimal candidates for therapeutic applications. Despite their extreme biological relevance, their mechanisms of interaction with the membranes of recipient cells are still hotly debated. Here, we propose a multiscale investigation based on atomic force microscopy, small angle X-ray scattering, small angle neutron scattering and neutron reflectometry to reveal structure-function correlations of purified EVs in interaction with model membrane systems of variable complex compositions and to spot the role of different membrane phases on the vesicle internalization routes. Our analysis reveals strong interactions of EVs with the model membranes and preferentially with the borders of protruding phase domains. Moreover, we found that upon vesicle breaking on the model membrane surface, the biomolecules carried by/on EVs diffuse with different kinetics rates, in a process distinct from simple fusion. The biophysical platform proposed here has clear implications on the modulation of EV internalization routes by targeting specific domains at the plasma cell membrane and, as a consequence, on EV-based therapies.
Collapse
Affiliation(s)
- Fabio Perissinotto
- Elettra Sincrotrone Trieste, Trieste, Italy. and Center for Infection and Immunity of Lille, INSERM U1019, Institut Pasteur de Lille, Lille, France
| | - Valeria Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | | | - Paola Brocca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy
| | | | - László Bottyán
- Centre for Energy Research, Budapest, Hungary and Wigner Research Centre for Physics, Budapest, Hungary
| | - Dániel Géza Merkel
- Centre for Energy Research, Budapest, Hungary and Wigner Research Centre for Physics, Budapest, Hungary
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Karin Pachler
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria and Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - Magdalena Mayr
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria and Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria
| | - Eva Rohde
- Research Program "Nanovesicular Therapies", Paracelsus Medical University, Salzburg, Austria and Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken, Austria
| | | | - Pietro Parisse
- Elettra Sincrotrone Trieste, Trieste, Italy. and CNR-IOM, Trieste, Italy
| |
Collapse
|
160
|
Yunusova NV, Zambalova EA, Patysheva MR, Kolegova ES, Afanas'ev SG, Cheremisina OV, Grigor'eva AE, Tamkovich SN, Kondakova IV. Exosomal Protease Cargo as Prognostic Biomarker in Colorectal Cancer. Asian Pac J Cancer Prev 2021; 22:861-869. [PMID: 33773551 PMCID: PMC8286660 DOI: 10.31557/apjcp.2021.22.3.861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of the study was to develop a model for predicting cancer risk in colorectal polyps’ patients (CPPs), as well as to reveal additional prognosis factors for Stage III colorectal cancer based on differences in subpopulations of tetraspanins, tetraspanin-associated and tetraspanin-non-associated proteases in blood plasma exosomes of CPPs and colorectal cancer patients (CRCPs). Methods: The subpopulations of CD151- and Tspan8-positive exosomes, the subpopulations of metalloproteinase at the surface of СD9-positive exosomes and the level of 20S proteasomes in plasma exosomes in 15 CPPs (tubulovillous adenomas) and 60 CRCPs were evaluated using flow cytometry and Western blotting. Logistic regression analysis was performed to predict cancer risk of CPPs. Results: The levels of 20S proteasomes in exosomes, MMP9+, MMP9+/MMP2+/EMMPRIN+ in CD9-positive blood plasma exosomes are associated with the risk of malignant transformation of colorectal tubulovillous adenomas. In patients with Stage III CRC, the levels of 20S proteasomes (less than 2 units) and MMP9+ subpopulations (more than 61%) in plasma exosomes are unfavorable prognostic factors for overall survival. The levels of 20S proteasomes and ADAM10+/ADAM17- subpopulations in CD9-positive blood plasma exosomes are the most significant values for predicting relapse-free survival. Conclusion: Protease cargo in CD9-positive blood plasma exosomes is prognostic biomarker for colorectal polyps and colorectal cancer.
Collapse
Affiliation(s)
- Natalia V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.,Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Elena A Zambalova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Marina R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena S Kolegova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey G Afanas'ev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Olga V Cheremisina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alina E Grigor'eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana N Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Clinical Biochemistry, V. Zelman Institute for the Medicine, Novosibirsk, Russia
| | - Irina V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
161
|
Lu M, DiBernardo E, Parks E, Fox H, Zheng SY, Wayne E. The Role of Extracellular Vesicles in the Pathogenesis and Treatment of Autoimmune Disorders. Front Immunol 2021; 12:566299. [PMID: 33732229 PMCID: PMC7959789 DOI: 10.3389/fimmu.2021.566299] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are important players in autoimmune diseases, both in disease pathogenesis and as potential treatments. EVs can transport autoimmune triggers throughout the body, facilitating the process of antigen presentation. Understanding the link between cellular stress and EV biogenesis and intercellular trafficking will advance our understanding of autoimmune diseases. In addition, EVs can also be effective treatments for autoimmune diseases. The diversity of cell types that produce EVs leads to a wide range of molecules to be present in EVs, and thus EVs have a wide range of physiological effects. EVs derived from dendritic cells or mesenchymal stem cells have been shown to reduce inflammation. Since many autoimmune treatments are focused only on symptom management, EVs present a promising avenue for potential treatments. This review looks at the different roles EVs can play in autoimmune diseases, from disease pathology to diagnosis and treatment. We also overview various methodologies in isolating or generating EVs and look to the future for possible applications of EVs in autoimmune diseases.
Collapse
Affiliation(s)
- Mengrou Lu
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Emma DiBernardo
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Emily Parks
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hannah Fox
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Si-Yang Zheng
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Elizabeth Wayne
- Department of Electrical and Computer Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
162
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
163
|
Cañas JA, Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Exosomes: A Key Piece in Asthmatic Inflammation. Int J Mol Sci 2021; 22:963. [PMID: 33478047 PMCID: PMC7835850 DOI: 10.3390/ijms22020963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma is a chronic disease of the airways that has an important inflammatory component. Multiple cells are implicated in asthma pathogenesis (lymphocytes, eosinophils, mast cells, basophils, neutrophils), releasing a wide variety of cytokines. These cells can exert their inflammatory functions throughout extracellular vesicles (EVs), which are small vesicles released by donor cells into the extracellular microenvironment that can be taken up by recipient cells. Depending on their size, EVs can be classified as microvesicles, exosomes, or apoptotic bodies. EVs are heterogeneous spherical structures secreted by almost all cell types. One of their main functions is to act as transporters of a wide range of molecules, such as proteins, lipids, and microRNAs (miRNAs), which are single-stranded RNAs of approximately 22 nucleotides in length. Therefore, exosomes could influence several physiological and pathological processes, including those involved in asthma. They can be detected in multiple cell types and biofluids, providing a wealth of information about the processes that take account in a pathological scenario. This review thus summarizes the most recent insights concerning the role of exosomes from different sources (several cell populations and biofluids) in one of the most prevalent respiratory diseases, asthma.
Collapse
Affiliation(s)
- José A. Cañas
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 2, 28040 Madrid, Spain; (J.A.C.); (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
164
|
Marie AL, Ray S, Lu S, Jones J, Ghiran I, Ivanov AR. High-Sensitivity Glycan Profiling of Blood-Derived Immunoglobulin G, Plasma, and Extracellular Vesicle Isolates with Capillary Zone Electrophoresis-Mass Spectrometry. Anal Chem 2021; 93:1991-2002. [PMID: 33433994 DOI: 10.1021/acs.analchem.0c03102] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We developed a highly sensitive method for profiling of N-glycans released from proteins based on capillary zone electrophoresis coupled to electrospray ionization mass spectrometry (CZE-ESI-MS) and applied the technique to glycan analysis of plasma and blood-derived isolates. The combination of dopant-enriched nitrogen (DEN)-gas introduced into the nanoelectrospray microenvironment with optimized ionization, desolvation, and CZE-MS conditions improved the detection sensitivity up to ∼100-fold, as directly compared to the conventional mode of instrument operation through peak intensity measurements. Analyses without supplemental pressure increased the resolution ∼7-fold in the separation of closely related and isobaric glycans. The developed method was evaluated for qualitative and quantitative glycan profiling of three types of blood isolates: plasma, total serum immunoglobulin G (IgG), and total plasma extracellular vesicles (EVs). The comparative glycan analysis of IgG and EV isolates and total plasma was conducted for the first time and resulted in detection of >200, >400, and >500 N-glycans for injected sample amounts equivalent to <500 nL of blood. Structural CZE-MS2 analysis resulted in the identification of highly diverse glycans, assignment of α-2,6-linked sialic acids, and differentiation of positional isomers. Unmatched depth of N-glycan profiling was achieved compared to previously reported methods for the analysis of minute amounts of similar complexity blood isolates.
Collapse
Affiliation(s)
- Anne-Lise Marie
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Somak Ray
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Jennifer Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Ionita Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
165
|
Montaño KJ, Loukas A, Sotillo J. Proteomic approaches to drive advances in helminth extracellular vesicle research. Mol Immunol 2021; 131:1-5. [PMID: 33440289 DOI: 10.1016/j.molimm.2020.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
Helminths can interact with their hosts in many different ways, including through the secretion of soluble molecules (such as lipids, glycans and proteins) and extracellular vesicles (EVs). The field of helminth secreted EVs has significantly advanced in recent years, mainly due to the molecular characterisation of EV proteomes and research highlighting the potential of EVs and their constituent molecules in the diagnosis and control of parasitic infections. Despite these advancements, the lack of appropriate isolation and purification methods is impeding the discovery of suitable biomarkers for the differentiation of helminth EV populations. In the present review we offer our viewpoint on the different proteomic techniques and approaches that have been developed, as well as solutions to common pitfalls and challenges that could be applied to advance the study of helminth EVs.
Collapse
Affiliation(s)
- Karen J Montaño
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Javier Sotillo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
166
|
Janković T, Danilović Luković J, Miler I, Mitić N, Hajduković L, Janković M. Assembly of tetraspanins, galectin-3, and distinct N-glycans defines the solubilization signature of seminal prostasomes from normozoospermic and oligozoospermic men. Ups J Med Sci 2021; 126:7673. [PMID: 34540145 PMCID: PMC8431989 DOI: 10.48101/ujms.v126.7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Prostasomes, extracellular vesicles (EVs) abundantly present in seminal plasma, express distinct tetraspanins (TS) and galectin-3 (gal-3), which are supposed to shape their surface by an assembly of different molecular complexes. In this study, detergent-sensitivity patterns of membrane-associated prostasomal proteins were determined aiming at the solubilization signature as an intrinsic multimolecular marker and a new parameter suitable as a reference for the comparison of EVs populations in health and disease. METHODS Prostasomes were disrupted by Triton X-100 and analyzed by gel filtration under conditions that maintained complete solubilization. Redistribution of TS (CD63, CD9, and CD81), gal-3, gamma-glutamyltransferase (GGT), and distinct N-glycans was monitored using solid-phase lectin-binding assays, transmission electron microscopy, electrophoresis, and lectin blot. RESULTS Comparative data on prostasomes under normal physiology and conditions of low sperm count revealed similarity regarding the redistribution of distinct N-glycans and GGT, all presumed to be mainly part of the vesicle coat. In contrast to this, a greater difference was found in the redistribution of integral membrane proteins, exemplified by TS and gal-3. Accordingly, they were grouped into two molecular patterns mainly consisting of overlapped CD9/gal-3/wheat germ agglutinin-reactive glycoproteins and CD63/GGT/concanavalin A-reactive glycoproteins. CONCLUSIONS Solubilization signature can be considered as an all-inclusive distinction factor regarding the surface properties of a particular vesicle since it reflects the status of the parent cell and the extracellular environment, both of which contribute to the composition of spatial membrane arrangements.
Collapse
Affiliation(s)
- Tamara Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | | | - Irena Miler
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
- University of Belgrade, Institute of Nuclear Sciences, VINČA, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ninoslav Mitić
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Ljiljana Hajduković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| | - Miroslava Janković
- University of Belgrade, Institute for the Application of Nuclear Energy, INEP, Belgrade, Serbia
| |
Collapse
|
167
|
Tutanov OS, Proskura KV, Grigor’eva AE, Tsentalovich YP, Tamkovich SN. Identification of Tumor Dissemination Facilitating Proteins in Exosomes Associated with Blood Cells of Breast Cancer Patients. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
168
|
Droste M, Thakur BK, Eliceiri BP. Tumor-Derived Extracellular Vesicles and the Immune System-Lessons From Immune-Competent Mouse-Tumor Models. Front Immunol 2020; 11:606859. [PMID: 33391275 PMCID: PMC7772428 DOI: 10.3389/fimmu.2020.606859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor-derived extracellular vesicles (TEVs) are important regulators of the immune response in cancer; however, most research so far has been carried out using cell culture systems. Immune-competent murine tumor models currently provide the best platform to assess proposed roles of TEVs using in vivo animal models and therefore are important for examining interactions between TEVs and the immune system. In this review, we present the current knowledge on TEVs using in vivo tumor-bearing animal models, with a focus on the role of TEVs in mediating crosstalk between tumor cells and both adaptive and innate immune cells. In particular, we address the question how animal models can clarify the reported heterogeneity of TEV effects in both anti-tumor responses and evasion of immune surveillance. The potential of TEVs in mediating direct antigen-presenting functions supports their potential as cancer vaccine therapeutics, therefore, we provide an overview of key findings of TEV trials that have the potential as novel immunotherapies, and shed light on challenges in the path toward the first in-human trials. We also highlight the important updates on the methods that continue to enhance the rigor and reproducibility of EV studies, particularly in functional animal models.
Collapse
Affiliation(s)
- Marvin Droste
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States.,Department of Pediatrics II (Pediatric Nephrology), University Hospital Essen, Essen, Germany
| | - Basant K Thakur
- Cancer Exosomes Laboratory, Department of Pediatrics III, University Hospital Essen, Essen, Germany
| | - Brian P Eliceiri
- Department of Surgery, Division of Trauma, Surgical Critical Care and Burns, UC San Diego School of Medicine, San Diego, CA, United States
| |
Collapse
|
169
|
Martins-Marques T, Ribeiro-Rodrigues T, de Jager SC, Zuzarte M, Ferreira C, Cruz P, Reis L, Baptista R, Gonçalves L, Sluijter JP, Girao H. Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Sci Alliance 2020; 3:e202000821. [PMID: 33097557 PMCID: PMC7652393 DOI: 10.26508/lsa.202000821] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic heart disease has been associated with an impairment on intercellular communication mediated by both gap junctions and extracellular vesicles. We have previously shown that connexin 43 (Cx43), the main ventricular gap junction protein, assembles into channels at the extracellular vesicle surface, mediating the release of vesicle content into target cells. Here, using a comprehensive strategy that included cell-based approaches, animal models and human patients, we demonstrate that myocardial ischemia impairs the secretion of Cx43 into circulating, intracardiac and cardiomyocyte-derived vesicles. In addition, we show that ubiquitin signals Cx43 release in basal conditions but appears to be dispensable during ischemia, suggesting an interplay between ischemia-induced Cx43 degradation and secretion. Overall, this study constitutes a step forward for the characterization of the signals and molecular players underlying vesicle protein sorting, with strong implications on long-range intercellular communication, paving the way towards the development of innovative diagnostic and therapeutic strategies for cardiovascular disorders.
Collapse
Affiliation(s)
- Tania Martins-Marques
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Saskia C de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Monica Zuzarte
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Cátia Ferreira
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Pedro Cruz
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Liliana Reis
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rui Baptista
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Cardiology Department, Centro Hospitalar Entre Douro e Vouga, Santa Maria da Feira, Portugal
| | - Lino Gonçalves
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Cardiology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Joost Pg Sluijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
170
|
Petrera A, von Toerne C, Behler J, Huth C, Thorand B, Hilgendorff A, Hauck SM. Multiplatform Approach for Plasma Proteomics: Complementarity of Olink Proximity Extension Assay Technology to Mass Spectrometry-Based Protein Profiling. J Proteome Res 2020; 20:751-762. [PMID: 33253581 DOI: 10.1021/acs.jproteome.0c00641] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The plasma proteome is the ultimate target for biomarker discovery. It stores an endless amount of information on the pathophysiological status of a living organism, which is, however, still difficult to comprehensively access. The high complexity of the plasma proteome can be addressed by either a system-wide and unbiased tool such as mass spectrometry (LC-MS/MS) or a highly sensitive targeted immunoassay such as the proximity extension assay (PEA). To address relevant differences and important shared characteristics, we tested the performance of LC-MS/MS in the data-dependent and data-independent acquisition modes and Olink PEA to measure circulating plasma proteins in 173 human plasma samples from a Southern German population-based cohort. We demonstrated the measurement of more than 300 proteins with both LC-MS/MS approaches applied, mainly including high-abundance plasma proteins. By the use of the PEA technology, we measured 728 plasma proteins, covering a broad dynamic range with high sensitivity down to pg/mL concentrations. Then, we quantified 35 overlapping proteins with all three analytical platforms, verifying the reproducibility of data distributions, measurement correlation, and gender-based differential expression. Our work highlights the limitations and the advantages of both targeted and untargeted approaches and proves their complementary strengths. We demonstrated a significant gain in proteome coverage depth and subsequent biological insight by a combination of platforms-a promising approach for future biomarker and mechanistic studies.
Collapse
Affiliation(s)
- Agnese Petrera
- Research Unit Protein Science and Core Facility Proteomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Christine von Toerne
- Research Unit Protein Science and Core Facility Proteomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Jennifer Behler
- Research Unit Protein Science and Core Facility Proteomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Cornelia Huth
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Anne Hilgendorff
- Institute for Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Core Facility Proteomics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| |
Collapse
|
171
|
de Boer C, Calder B, Blackhurst D, Marais D, Blackburn J, Steinmaurer M, Woudberg NJ, Lecour S, Lovett J, Myburgh K, Bezuidenhout D, Human P, Davies NH. Analysis of the regenerative capacity of human serum exosomes after a simple multistep separation from lipoproteins. J Tissue Eng Regen Med 2020; 15:63-77. [PMID: 33175463 DOI: 10.1002/term.3155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023]
Abstract
Due to the abundance of lipoproteins in blood, it is challenging to characterize the biological functions and components of blood-derived extracellular vesicles. The aim of this study was to develop a multiple-step purification protocol to separate serum exosomes from serum proteins and lipoproteins and assess their regenerative potential. Exosomes were isolated by concentrating them in human serum using ultracentrifugation (UC), followed sequentially by density gradient (DG) UC and size exclusion chromatography (SEC). Purity and characterization were assessed by western blots, Lipoprint®, enzyme-linked immunosorbent assay, electron microscopy, mass spectrometry, and nanoparticle tracking analysis. Functionality was assessed by cell proliferation analysis and with an in vivo subcutaneous angiogenesis model. SEC alone isolated nano-sized vesicles possessing vesicle markers TSG101 and CD9, but there was a substantial presence of apolipoprotein B, predominantly derived from very-low- and intermediate-density lipoprotein particles. This was reduced to an undetectable level using the combined UC DG SEC approach. Mass spectrometry identified 224 proteins in UC DG SEC isolates relative to the 135 from SEC, with considerable increases in exosome-related proteins and reductions in lipoproteins. A consistent but limited increase in human dermal fibroblast proliferation and evidence of neovascularization enhancement were observed after exposure to UC DG SEC exosomes. An UC DG SEC purification protocol considerably improved the removal of lipoproteins during isolation of serum exosomes. The purified exosomes stimulated cell proliferation and potentially increased an in vivo angiogenic response. This multistep purification allows for more accurate identification of serum exosome functional activity and composition.
Collapse
Affiliation(s)
- Candice de Boer
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Observatory, South Africa
| | - Bridget Calder
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Dee Blackhurst
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - David Marais
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Jonathan Blackburn
- Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease & Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Martina Steinmaurer
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Observatory, South Africa
| | - Nicholas J Woudberg
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Observatory, South Africa
| | - Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Observatory, South Africa
| | - Jason Lovett
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Kathy Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Observatory, South Africa
| | - Paul Human
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Observatory, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, Department of Surgery, University of Cape Town, Observatory, South Africa
| |
Collapse
|
172
|
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-Omics Data Integration in Extracellular Vesicle Biology-Utopia or Future Reality? Int J Mol Sci 2020; 21:ijms21228550. [PMID: 33202771 PMCID: PMC7697477 DOI: 10.3390/ijms21228550] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures derived from the endosomal system or generated by plasma membrane shedding. Due to their composition of DNA, RNA, proteins, and lipids, EVs have garnered a lot of attention as an essential mechanism of cell-to-cell communication, with various implications in physiological and pathological processes. EVs are not only a highly heterogeneous population by means of size and biogenesis, but they are also a source of diverse, functionally rich biomolecules. Recent advances in high-throughput processing of biological samples have facilitated the development of databases comprised of characteristic genomic, transcriptomic, proteomic, metabolomic, and lipidomic profiles for EV cargo. Despite the in-depth approach used to map functional molecules in EV-mediated cellular cross-talk, few integrative methods have been applied to analyze the molecular interplay in these targeted delivery systems. New perspectives arise from the field of systems biology, where accounting for heterogeneity may lead to finding patterns in an apparently random pool of data. In this review, we map the biological and methodological causes of heterogeneity in EV multi-omics data and present current applications or possible statistical methods for integrating such data while keeping track of the current bottlenecks in the field.
Collapse
Affiliation(s)
- Leona Chitoiu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
| | - Alexandra Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
| | - Mihaela Gherghiceanu
- Ultrastructural Pathology and Bioimaging Laboratory, ‘Victor Babeș’ National Institute of Pathology, Bucharest 050096, Romania; (L.C.); (M.G.)
- Department of Cellular, Molecular Biology and Histology, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest 050474, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest 050095, Romania; (A.D.); (M.C.)
- Research Institute of the University of Bucharest, University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
173
|
Capra E, Lange-Consiglio A. The Biological Function of Extracellular Vesicles during Fertilization, Early Embryo-Maternal Crosstalk and Their Involvement in Reproduction: Review and Overview. Biomolecules 2020; 10:E1510. [PMID: 33158009 PMCID: PMC7693816 DOI: 10.3390/biom10111510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Secretory extracellular vesicles (EVs) are membrane-enclosed microparticles that mediate cell to cell communication in proximity to, or distant from, the cell of origin. Cells release a heterogeneous spectrum of EVs depending on their physiologic and metabolic state. Extracellular vesicles are generally classified as either exosomes or microvesicles depending on their size and biogenesis. Extracellular vesicles mediate temporal and spatial interaction during many events in sexual reproduction and supporting embryo-maternal dialogue. Although many omic technologies provide detailed understanding of the molecular cargo of EVs, the difficulty in obtaining populations of homogeneous EVs makes difficult to interpret the molecular profile of the molecules derived from a miscellaneous EV population. Notwithstanding, molecular characterization of EVs isolated in physiological and pathological conditions may increase our understanding of reproductive and obstetric diseases and assist the search for potential non-invasive biomarkers. Moreover, a more precise vision of the cocktail of biomolecules inside the EVs mediating communication between the embryo and mother could provide new insights to optimize the therapeutic action and safety of EV use.
Collapse
Affiliation(s)
- Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche IBBA CNR, 26900 Lodi, Italy;
| | - Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università degli Studi di Milano, 26900 Lodi, Italy
| |
Collapse
|
174
|
DNA Associated with Circulating Exosomes as a Biomarker for Glioma. Genes (Basel) 2020; 11:genes11111276. [PMID: 33137926 PMCID: PMC7692052 DOI: 10.3390/genes11111276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cancerous and non-cancerous cells secrete exosomes, a type of nanovesicle known to carry the molecular signature of the parent for intercellular communications. Exosomes secreted by tumor cells carry abnormal DNA, RNA, and protein molecules that reflect the cancerous status. DNA is the master molecule that ultimately affects the function of RNA and proteins. Aberrations in DNA can potentially lead a cell to malignancy. Deviant quantities and the differential sequences of exosomal DNA are useful characteristics as cancer biomarkers. Since these alterations are either associated with specific stages of cancer or caused due to a clinical treatment, exosomal DNA is valuable as a diagnostic, prognostic, predictive, and therapeutic-intervention response biomarker. Notably, the exosomes can cross an intact blood–brain barrier and anatomical compartments by transcytosis. As such, the cancer-specific trademark molecules can be detected in systemic blood circulation and other body fluids, including cerebrospinal fluid, with non-invasive or minimally invasive procedures. This comprehensive review highlights the cancer-specific modulations of DNA associated with circulating exosomes that are beneficial as glioma biomarkers.
Collapse
|
175
|
Size-Exclusion Chromatography as a Technique for the Investigation of Novel Extracellular Vesicles in Cancer. Cancers (Basel) 2020; 12:cancers12113156. [PMID: 33121160 PMCID: PMC7693800 DOI: 10.3390/cancers12113156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/06/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Extracellular vesicles (EVs) are small particles that are released by cancer cells, and they may hold vital information for researchers looking for early markers for diagnosis. Size-exclusion chromatography (SEC) is a classical technique that has become increasingly popular and can be used for rapid isolation and investigation of both their cargo and functionality. This systematic review highlights its main technical aspects, the type of materials involved and by covering the findings of the identified papers hopes to demonstrate the utility of this method in cancer research to date. Abstract Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.
Collapse
|
176
|
Parvanian S, Yan F, Su D, Coelho-Rato LS, Venu AP, Yang P, Zou X, Jiu Y, Chen H, Eriksson JE, Cheng F. Exosomal vimentin from adipocyte progenitors accelerates wound healing. Cytoskeleton (Hoboken) 2020; 77:399-413. [PMID: 32978896 DOI: 10.1002/cm.21634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Adipose stem cell-derived exosomes have great potential in accelerating cutaneous wound healing by optimizing fibroblast activities. Recent studies have demonstrated that exosomes play an active role in the transport of functional cytoskeletal proteins such as vimentin. Previously we showed that vimentin serves as a coordinator of the healing process. Therefore, we hypothesized that vimentin incorporated into the exosomes may contribute to mediate fibroblast activities in wound healing. Our results revealed that exosomal vimentin from adipocyte progenitor cells acts as a promoter of fibroblast proliferation, migration, and ECM secretion. Furthermore, our in vitro and in vivo experiments provide evidence that exosomal vimentin shortens the healing time and reduces scar formation. These findings suggest the reciprocal roles of exosomes and vimentin in accelerating wound healing. Exosomes can serve as an efficient transportation system to deliver and internalize vimentin into target cells, while vimentin could have an impact on exosome transportation, internalization, and cell communication.
Collapse
Affiliation(s)
- Sepideh Parvanian
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.,Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Fuxia Yan
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Dandan Su
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Leila S Coelho-Rato
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Arun P Venu
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Peiru Yang
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Xiaoheng Zou
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yaming Jiu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Chen
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - John E Eriksson
- Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| | - Fang Cheng
- School of pharmaceutical sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China.,Faculty of Science and Engineering, Åbo Akademi University & Turku Bioscience Centre, Turku, Finland
| |
Collapse
|
177
|
Schubert D. A Brief History of Adherons: The Discovery of Brain Exosomes. Int J Mol Sci 2020; 21:ijms21207673. [PMID: 33081326 PMCID: PMC7590140 DOI: 10.3390/ijms21207673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Although exosomes were first described in reticulocytes in 1983, many people do not realize that similar vesicles had been studied in the context of muscle and nerve, beginning in 1980. At the time of their discovery, these vesicles were named adherons, and they were found to play an important role in both cell–substrate and cell–cell adhesion. My laboratory described several molecules that are present in adherons, including heparan sulfate proteoglycans (HSPGs) and purpurin. HSPGs have since been shown to play a variety of key roles in brain physiology. Purpurin has a number of important functions in the retina, including a role in nerve cell differentiation and regeneration. In this review, I discuss the discovery of adherons and how that led to continuing studies on their role in the brain with a particular focus on HSPGs.
Collapse
Affiliation(s)
- David Schubert
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
178
|
Konoshenko M, Sagaradze G, Orlova E, Shtam T, Proskura K, Kamyshinsky R, Yunusova N, Alexandrova A, Efimenko A, Tamkovich S. Total Blood Exosomes in Breast Cancer: Potential Role in Crucial Steps of Tumorigenesis. Int J Mol Sci 2020; 21:E7341. [PMID: 33027894 PMCID: PMC7582945 DOI: 10.3390/ijms21197341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are crucial players in cell-to-cell communication and are involved in tumorigenesis. There are two fractions of blood circulating exosomes: free and cell-surface-associated. Here, we compared the effect of total blood exosomes (contain plasma exosomes and blood cell-surface-associated exosomes) and plasma exosomes from breast cancer patients (BCPs, n = 43) and healthy females (HFs, n = 35) on crucial steps of tumor progression. Exosomes were isolated by ultrafiltration, followed by ultracentrifugation, and characterized by cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis, and flow cytometry. Cryo-EM revealed a wider spectrum of exosome morphology with lipid bilayers and vesicular internal structures in the HF total blood in comparison with plasma. No differences in the morphology of both exosomes fractions were detected in BCP blood. The plasma exosomes and total blood exosomes of BCPs had different expression levels of tumor-associated miR-92a and miR-25-3p, induced angiogenesis and epithelial-to-mesenchymal transition (EMT), and increased the number of migrating pseudo-normal breast cells and the total migration path length of cancer cells. The multidirectional effects of HF total blood exosomes on tumor dissemination were revealed; they suppress the angiogenesis and total migration path length of MCF10A, but stimulate EMT and increase the number of migrating MCF10A and the total path length of SKBR3 cells. In addition, HF plasma exosomes enhance the metastasis-promoting properties of SKBR3 cells and stimulate angiogenesis. Both cell-free and blood cell-surface-associated exosomes are involved in the crucial stages of carcinogenesis: the initiation of EMT and the stimulation of proliferation, cell migration, and angiogenesis. Thus, for the estimation of the diagnostic/prognostic significance of circulating exosomes in the blood of cancer patients more correctly, the total blood exosomes, which consist of plasma exosomes and blood cell-surface-associated exosomes should be used.
Collapse
Affiliation(s)
- Maria Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
| | - Georgy Sagaradze
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Evgeniya Orlova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia;
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
| | - Ksenia Proskura
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Roman Kamyshinsky
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia;
- Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow region, Russia
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre, “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, 634050 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Antonina Alexandrova
- N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Anastasia Efimenko
- Medical Research and Education Center, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (A.E.)
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (M.K.); (K.P.)
- Department of Molecular Biology and Biotechnology, Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
179
|
Kaddour H, Panzner TD, Welch JL, Shouman N, Mohan M, Stapleton JT, Okeoma CM. Electrostatic Surface Properties of Blood and Semen Extracellular Vesicles: Implications of Sialylation and HIV-Induced Changes on EV Internalization. Viruses 2020; 12:E1117. [PMID: 33019624 PMCID: PMC7601085 DOI: 10.3390/v12101117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although extracellular vesicle (EV) surface electrostatic properties (measured as zeta potential, ζ-potential) have been reported by many investigators, the biophysical implications of charge and EV origin remains uncertain. Here, we compared the ζ-potential of human blood EVs (BEVs) and semen EVs (SEVs) from 26 donors that were HIV-infected (HIV+, n = 13) or HIV uninfected (HIV-, n = 13). We found that, compared to BEVs that bear neutral surface charge, SEVs were significantly more negatively charged, even when BEVs and SEVs were from the same individual. Comparison of BEVs and SEVs from HIV- and HIV+ groups revealed subtle HIV-induced alteration in the ζ-potential of EVs, with the effect being more significant in SEVs (∆ζ-potential = -8.82 mV, p-value = 0.0062) than BEVs (∆ζ-potential = -1.4 mV, p-value = 0.0462). These observations were validated by differences in the isoelectric point (IEP) of EVs, which was in the order of HIV + SEV ≤ HIV-SEV ≪ HIV + BEV ≤ HIV-BEV. Functionally, the rate and efficiency of SEV internalization by the human cervical epithelial cell line, primary peripheral blood lymphocytes, and primary blood-derived monocytes were significantly higher than those of BEVs. Mechanistically, removal of sialic acids from the surface of EVs using neuraminidase treatment significantly decreased SEV's surface charge, concomitant with a substantial reduction in SEV's internalization. The neuraminidase effect was independent of HIV infection and insignificant for BEVs. Finally, these results were corroborated by enrichment of glycoproteins in SEVs versus BEVs. Taken together, these findings uncover fundamental tissue-specific differences in surface electrostatic properties of EVs and highlight the critical role of surface charge in EV/target cell interactions.
Collapse
Affiliation(s)
- Hussein Kaddour
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Tyler D. Panzner
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.W.); (J.T.S.)
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nadia Shouman
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| | - Mahesh Mohan
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (J.L.W.); (J.T.S.)
- Medical Service, Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chioma M. Okeoma
- Department of Pharmacology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA; (H.K.); (T.D.P.); (N.S.)
| |
Collapse
|
180
|
Wang X, Thomsen P. Mesenchymal stem cell-derived small extracellular vesicles and bone regeneration. Basic Clin Pharmacol Toxicol 2020; 128:18-36. [PMID: 32780530 PMCID: PMC7820981 DOI: 10.1111/bcpt.13478] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) and MSC‐derived small extracellular vesicles (sEVs) are promising candidates for cell‐based and cell‐free regenerative medicine, respectively. By virtue of their multiple lineage differentiation capacity, MSCs have been implicated as an ideal tool for bone and cartilage regeneration. However, later observations attributed such regenerative effects to MSC‐secreted paracrine factors. Exosomes, endosomal originated sEVs carrying lipid, protein and nucleic acid cargoes, were identified as components of the MSC secretome and propagated the key regenerative and immunoregulatory characteristics of parental MSCs. Here, exosome biogenesis, the molecular composition of exosomes, sEV‐cell interactions and the effects on key bone homeostasis cells are reviewed. MSC‐derived sEVs show to promote neovascularization and bone and cartilage regeneration in preclinical disease models. The mechanisms include the transfer of molecules, including microRNAs, mRNAs and proteins, to other key cells. MSC‐derived sEVs are interesting candidates as biopharmaceuticals for drug delivery and for the engineering of biologically functionalized materials. Although major exploratory efforts have been made for therapeutic development, the secretion, distribution and biological effects of MSC‐derived sEVs in bone and cartilage regeneration are not fully understood. Moreover, techniques for high‐yield production, purity and storage need to be optimized before effective and safe MSC‐derived sEVs therapies are realized.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
181
|
Kanchanapally R, Khan MA, Deshmukh SK, Srivastava SK, Khushman M, Singh S, Singh AP. Exosomal Formulation Escalates Cellular Uptake of Honokiol Leading to the Enhancement of Its Antitumor Efficacy. ACS OMEGA 2020; 5:23299-23307. [PMID: 32954181 PMCID: PMC7495913 DOI: 10.1021/acsomega.0c03136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/17/2020] [Indexed: 05/23/2023]
Abstract
Honokiol is a phytochemical isolated from the Magnolia plant. It exhibits significant antitumor activity against a variety of cancer cell types via targeting of critical mediators of tumor progression, stromal remodeling, and chemoresistance. However, poor bioavailability and inefficient tumor uptake remain some of the hurdles in its translation as a therapeutically useful drug. Here, we developed a nanoformulation of honokiol using mesenchymal stem cell-derived exosomes, which are nonimmunogenic and express surface markers to support their tumor-targeted delivery. Maximum entrapment of honokiol occurred when it was mixed in a 1:4 weight ratio with exosomes and subjected to six cycles of sonication. Dynamic light scattering analysis demonstrated that the average size (∼175.3 nm), polydispersity (∼0.11), and integrity (∼12.9 mV) of exosomes remained in the desirable range post honokiol encapsulation. Exosome-encapsulated honokiol exhibited significantly higher therapeutic efficacy over the free honokiol in WST-1 growth and long-term clonogenicity assays. Flow cytometry-based cell cycle and live/dead cell assay, respectively, confirmed the enhanced effect of exosomal honokiol formulation on cell cycle arrest and apoptosis induction. More significant alterations in the expression of cell cycle- and survival-associated proteins were also observed in cancer cells treated with exosomal honokiol over free honokiol. Higher intracellular accumulation of honokiol was recorded in cancer cells treated with equivalent doses of honokiol as compared to the free honokiol. Together, our work is the first demonstration of exosomal encapsulation of honokiol and its improved antitumor efficacy resulting from improved cellular uptake.
Collapse
Affiliation(s)
- Rajashekhar Kanchanapally
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Mohammad Aslam Khan
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Sachin Kumar Deshmukh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Sanjeev Kumar Srivastava
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Moh’d Khushman
- Department
of Medical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
| | - Seema Singh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, United States
| | - Ajay Pratap Singh
- Department
of Pathology, College of Medicine, University
of South Alabama, Mobile, Alabama 36617, United States
- Mitchell
Cancer Institute, University of South Alabama, Mobile, Alabama 36604, United States
- Department
of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, United States
| |
Collapse
|
182
|
Grigoryeva ES, Savelieva OE, Popova NO, Cherdyntseva NV, Perelmuter VM. Do tumor exosome integrins alone determine organotropic metastasis? Mol Biol Rep 2020; 47:8145-8157. [PMID: 32929649 DOI: 10.1007/s11033-020-05826-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022]
Abstract
Metastasis is the most life-threatening event in cancer patients, so the key strategy to treat cancer should be preventing tumor spread. Predicting the site of probable hematogenous metastasis is important for determining the therapeutic algorithm that could prevent the spread of tumor cells. Certain hopes for solving this problem appeared owing to study showing the association between specific integrins on tumor exosomes surface and the site of future metastasis. Numerous experimental data indicate the ability of exosomes to transfer various phlogogenic factors to the target organ, which can lead to the formation of inflammatory foci. Studies of T-lymphocytes homing show that expression of various adhesion molecules including ligands for integrins highly increases on the endothelium during inflammation. Such a mechanism underlies not only in leukocyte transvasation, but, apparently, in the accumulation of bone marrow precursor cells and the formation of a premetastatic niche. This review summarizes the most significant data on the role exosomes to induce inflammation, which leads to the recruiting of bone marrow precursors and the establishment of premetastatic niches.
Collapse
Affiliation(s)
- E S Grigoryeva
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634050, Russian Federation.
| | - O E Savelieva
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Savinyh Str. 12/1, Tomsk, 634028, Russian Federation
| | - N O Popova
- Department of Chemotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634050, Russian Federation
| | - N V Cherdyntseva
- Department of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634050, Russian Federation
| | - V M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Savinyh Str. 12/1, Tomsk, 634028, Russian Federation
| |
Collapse
|
183
|
Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21176319. [PMID: 32878277 PMCID: PMC7504548 DOI: 10.3390/ijms21176319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EV) can carry proteins, RNA and DNA, thus serving as communication tools between cells. Tumor cells secrete EV, which can be taken up by surrounding cells in the tumor microenvironment as well as by cells in distant organs. Tumor-derived EV (TEV) contain factors induced by tumor-associated hypoxia such as heat shock proteins or a variety of microRNA (miRNA). The interaction of TEV with tumor and host cells can promote cancer angiogenesis, invasion and metastasis. Myeloid cells are widely presented in tissues, comprise the majority of immune cells and play an essential role in immune reactions and tissue remodeling. However, in cancer, the differentiation of myeloid cells and their functions are impaired, resulting in tumor promotion. Such alterations are due to chronic inflammatory conditions associated with cancer and are mediated by the tumor secretome, including TEV. A high capacity of myeloid cells to clear EV from circulation put them in the central position in EV-mediated formation of pre-metastatic niches. The exposure of myeloid cells to TEV could trigger numerous signaling pathways. Progenitors of myeloid cells alter their differentiation upon the contact with TEV, resulting in the generation of myeloid-derived suppressor cells (MDSC), inhibiting anti-tumor function of T and natural killer (NK) cells and promoting thereby tumor progression. Furthermore, TEV can augment MDSC immunosuppressive capacity. Different subsets of mature myeloid cells such as monocytes, macrophages, dendritic cells (DC) and granulocytes take up TEV and acquire a protumorigenic phenotype. However, the delivery of tumor antigens to DC by TEV was shown to enhance their immunostimulatory capacity. The present review will discuss a diverse and complex EV-mediated crosstalk between tumor and myeloid cells in the context of the tumor type, TEV-associated cargo molecules and type of recipient cells.
Collapse
|
184
|
Villata S, Canta M, Cauda V. EVs and Bioengineering: From Cellular Products to Engineered Nanomachines. Int J Mol Sci 2020; 21:ijms21176048. [PMID: 32842627 PMCID: PMC7504061 DOI: 10.3390/ijms21176048] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are natural carriers produced by many different cell types that have a plethora of functions and roles that are still under discovery. This review aims to be a compendium on the current advancement in terms of EV modifications and re-engineering, as well as their potential use in nanomedicine. In particular, the latest advancements on artificial EVs are discussed, with these being the frontier of nanomedicine-based therapeutics. The first part of this review gives an overview of the EVs naturally produced by cells and their extraction methods, focusing on the possibility to use them to carry desired cargo. The main issues for the production of the EV-based carriers are addressed, and several examples of the techniques used to upload the cargo are provided. The second part focuses on the engineered EVs, obtained through surface modification, both using direct and indirect methods, i.e., engineering of the parental cells. Several examples of the current literature are proposed to show the broad variety of engineered EVs produced thus far. In particular, we also report the possibility to engineer the parental cells to produce cargo-loaded EVs or EVs displaying specific surface markers. The third and last part focuses on the most recent advancements based on synthetic and chimeric EVs and the methods for their production. Both top-down or bottom-up techniques are analyzed, with many examples of applications.
Collapse
|
185
|
Singh P, Szigyártó IC, Ricci M, Zsila F, Juhász T, Mihály J, Bősze S, Bulyáki É, Kardos J, Kitka D, Varga Z, Beke-Somfai T. Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Front Chem 2020; 8:703. [PMID: 32850685 PMCID: PMC7432246 DOI: 10.3389/fchem.2020.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 μM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD). Further on, the significant change on the vesicle surfaces was confirmed by transmission electron microscopy (TEM). Since membrane active peptides, such as melittin have the affinity to disrupt vesicles, a combination of techniques, fluorescent antibody labeling, microfluidic resistive pulse sensing, and flow-LD were employed to distinguish between membrane destruction and surface protein detachment. The removal of protein corona members is a newly identified role for the investigated peptides, which indicates complexity of their in vivo function, but may also be exploited in synthetic and natural nanoparticle engineering. Furthermore, results also promote that EVs can be used as improved model systems for biophysical studies providing insight to areas with so far limited knowledge.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Kitka
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
186
|
Sharma S, LeClaire M, Wohlschlegel J, Gimzewski J. Impact of isolation methods on the biophysical heterogeneity of single extracellular vesicles. Sci Rep 2020; 10:13327. [PMID: 32770003 PMCID: PMC7414114 DOI: 10.1038/s41598-020-70245-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) have raised high expectations as a novel class of diagnostics and therapeutics. However, variabilities in EV isolation methods and the unresolved structural complexity of these biological-nanoparticles (sub-100 nm) necessitate rigorous biophysical characterization of single EVs. Here, using atomic force microscopy (AFM) in conjunction with direct stochastic optical reconstruction microscopy (dSTORM), micro-fluidic resistive pore sizing (MRPS), and multi-angle light scattering (MALS) techniques, we compared the size, structure and unique surface properties of breast cancer cell-derived small EVs (sEV) obtained using four different isolation methods. AFM and dSTORM particle size distributions showed coherent unimodal and bimodal particle size populations isolated via centrifugation and immune-affinity methods respectively. More importantly, AFM imaging revealed striking differences in sEV nanoscale morphology, surface nano-roughness, and relative abundance of non-vesicles among different isolation methods. Precipitation-based isolation method exhibited the highest particle counts, yet nanoscale imaging revealed the additional presence of aggregates and polymeric residues. Together, our findings demonstrate the significance of orthogonal label-free surface characteristics of single sEVs, not discernable via conventional particle sizing and counts alone. Quantifying key nanoscale structural characteristics of sEVs, collectively termed ‘EV-nano-metrics’ enhances the understanding of the complexity and heterogeneity of sEV isolates, with broad implications for EV-analyte based research and clinical use.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, USA. .,California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Michael LeClaire
- Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - James Gimzewski
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, USA.,Department of Chemistry & Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
187
|
Maisano D, Mimmi S, Russo R, Fioravanti A, Fiume G, Vecchio E, Nisticò N, Quinto I, Iaccino E. Uncovering the Exosomes Diversity: A Window of Opportunity for Tumor Progression Monitoring. Pharmaceuticals (Basel) 2020; 13:ph13080180. [PMID: 32759810 PMCID: PMC7464894 DOI: 10.3390/ph13080180] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Cells can communicate through special “messages in the bottle”, which are recorded in the bloodstream inside vesicles, namely exosomes. The exosomes are nanovesicles of 30–100 nm in diameter that carry functionally active biological material, such as proteins, messanger RNA (mRNAs), and micro RNA (miRNAs). Therefore, they are able to transfer specific signals from a parental cell of origin to the surrounding cells in the microenvironment and to distant organs through the circulatory and lymphatic stream. More and more interest is rising for the pathological role of exosomes produced by cancer cells and for their potential use in tumor monitoring and patient follow up. In particular, the exosomes could be an appropriate index of proliferation and cancer cell communication for monitoring the minimal residual disease, which cannot be easily detectable by common diagnostic and monitoring techniques. The lack of unequivocal markers for tumor-derived exosomes calls for new strategies for exosomes profile characterization aimed at the adoption of exosomes as an official tumor biomarker for tumor progression monitoring.
Collapse
Affiliation(s)
- Domenico Maisano
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, 87100 Cosenza, Italy;
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit, 1050 Brussels, Belgium
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Nancy Nisticò
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (S.M.); (G.F.); (E.V.); (N.N.); (I.Q.)
- Correspondence: (D.M.); (E.I.)
| |
Collapse
|
188
|
Drurey C, Coakley G, Maizels RM. Extracellular vesicles: new targets for vaccines against helminth parasites. Int J Parasitol 2020; 50:623-633. [PMID: 32659278 PMCID: PMC8313431 DOI: 10.1016/j.ijpara.2020.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
The hunt for effective vaccines against the major helminth diseases of humans has yet to bear fruit despite much effort over several decades. No individual parasite antigen has proved to elicit full protective immunity, suggesting that combinatorial strategies may be required. Recently it has been discovered that extracellular vesicles released by parasitic helminths contain multiple potential immune modulators, which could together be targeted by a future vaccine. Increasing knowledge of helminth extracellular vesicle components, both enclosed by and exposed on the membrane, will open up a new field of targets for an effective vaccine. This review discusses the interactions between helminth extracellular vesicles and the immune system discovered thus far, and the advantages of targeting these lipid-bound packages with a vaccine. In addition, we also comment upon specific antigens that may be the best targets for an anti-helminth vaccine. In the future, extensive knowledge of the parasites' full arsenal in controlling their host may finally provide us with the ideal target for a fully effective vaccine.
Collapse
Affiliation(s)
- Claire Drurey
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, Monash University, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rick M Maizels
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
189
|
Biomaterials and extracellular vesicles in cell-free therapy for bone repair and regeneration: Future line of treatment in regenerative medicine. MATERIALIA 2020. [DOI: 10.1016/j.mtla.2020.100736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
190
|
Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis 2020; 11:584. [PMID: 32719324 PMCID: PMC7385258 DOI: 10.1038/s41419-020-02803-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) and particles (EPs) have recently emerged as active carriers of molecular biomarkers and mediators of intercellular communication. While most investigations have focused exclusively on the protein, lipid and RNA constituents of these extracellular entities, EV/EP DNA remains poorly understood, despite DNA being found in association with virtually all EV/EP populations. The functional potential of EV/EP DNA has been proposed in a number of pathological states, including malignancies and autoimmune diseases. Moreover, the effectiveness of cell-free DNA as the biomarker of choice in emerging liquid biopsy applications highlights the role that EV/EP DNA may play as a novel disease biomarker. In this review, we provide a comprehensive overview of EV/EP DNA studies conducted to date, with a particular focus on the roles of EV/EP DNA as a functional mediator and molecular biomarker in various pathologic states. We also review what is currently known about the origins, structure, localisation and distribution of EV/EP DNA, highlighting current controversies as well as opportunities for future investigation.
Collapse
Affiliation(s)
- Ethan Z Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada.
- Princess Margaret Cancer Centre, Toronto, ON, Canada.
| |
Collapse
|
191
|
Zheng D, Zhang J, Zhang Z, Kuang L, Zhu Y, Wu Y, Xue M, Zhao H, Duan C, Liu L, Li T. Endothelial Microvesicles Induce Pulmonary Vascular Leakage and Lung Injury During Sepsis. Front Cell Dev Biol 2020; 8:643. [PMID: 32766250 PMCID: PMC7379030 DOI: 10.3389/fcell.2020.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Sepsis is a prevalent severe syndrome in clinic. Vascular leakage and lung injury are important pathophysiological processes during sepsis, but the mechanism remains obscure. Microvesicles (MVs) play an essential role in many diseases, while whether MVs participate in vascular leakage and lung injury during sepsis is unknown. Using cecal ligation and puncture induced sepsis rats and lipopolysaccharide stimulated vascular endothelial cells (VECs), the role and the underlying mechanism of endothelial microvesicles (EMVs) in pulmonary vascular leakage and lung injury were observed. The role of MVs from sepsis patients was verified. The results showed that the concentration of MVs in blood was significantly increased after sepsis. MVs from sepsis rats and patients induced apparent pulmonary vascular leakage and lung injury, among which EMVs played the dominant role, in which miR-23b was the key inducing factor in vascular leakage. Furthermore, downregulation and upregulation of miR-23b in EMVs showed that miR-23b mainly targeted on ZO-1 to induce vascular leakage. MVs from sepsis patients induced pulmonary vascular leakage and lung injury in normal rats. Application of classic antidepressants amitriptyline reduced the secretion of EMVs, and alleviated vascular leakage and lung injury. The study suggests that EMVs play an important role in pulmonary vascular leakage and lung injury during sepsis by transferring functional miR-23b. Antagonizing the secretion of EMVs and the miR-23b might be a potential target for the treatment of severe sepsis.
Collapse
Affiliation(s)
- Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongliang Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
192
|
Shiga Toxin Uptake and Sequestration in Extracellular Vesicles Is Mediated by Its B-Subunit. Toxins (Basel) 2020; 12:toxins12070449. [PMID: 32664382 PMCID: PMC7404996 DOI: 10.3390/toxins12070449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 01/03/2023] Open
Abstract
Shiga toxin (Stx)-stimulated blood cells shed extracellular vesicles (EVs) which can transfer the toxin to the kidneys and lead to hemolytic uremic syndrome. The toxin can be taken up by renal cells within EVs wherein the toxin is released, ultimately leading to cell death. The mechanism by which Stx is taken up, translocated, and sequestered in EVs was addressed in this study utilizing the B-subunit that binds to the globotriaosylceramide (Gb3) receptor. We found that Stx1B was released in EVs within minutes after stimulation of HeLa cells or red blood cells, detected by live cell imaging and flow cytometry. In the presence of Retro-2.1, an inhibitor of intracellular retrograde trafficking, a continuous release of Stx-positive EVs occurred. EVs from HeLa cells possess the Gb3 receptor on their membrane, and EVs from cells that were treated with a glycosylceramide synthase inhibitor, to reduce Gb3, bound significantly less Stx1B. Stx1B was detected both on the membrane and within the shed EVs. Stx1B was incubated with EVs derived from blood cells, in the absence of cells, and was shown to bind to, and be taken up by, these EVs, as demonstrated by electron microscopy. Using a membrane translocation assay we demonstrated that Stx1B was taken up by blood cell- and HeLa-derived EVs, an effect enhanced by chloropromazine or methyl-ß-cyclodextrin, suggesting toxin transfer within the membrane. This is a novel mechanism by which EVs derived from blood cells can sequester their toxic content, possibly to evade the host response.
Collapse
|
193
|
Ridolfi A, Brucale M, Montis C, Caselli L, Paolini L, Borup A, Boysen AT, Loria F, van Herwijnen MJC, Kleinjan M, Nejsum P, Zarovni N, Wauben MHM, Berti D, Bergese P, Valle F. AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Anal Chem 2020; 92:10274-10282. [DOI: 10.1021/acs.analchem.9b05716] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Ridolfi
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Marco Brucale
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Costanza Montis
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucrezia Caselli
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Lucia Paolini
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Anne Borup
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Anders T. Boysen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Francesca Loria
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Martijn J. C. van Herwijnen
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Marije Kleinjan
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, P. Juul-Jensens Boulevard 45, 8200 Aarhus, Denmark
| | - Natasa Zarovni
- HansaBiomed Life Sciences, Mäealuse 2/1, 12618 Tallinn, Estonia
| | - Marca H. M. Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM Utrecht, The Netherlands
| | - Debora Berti
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Chimica “Ugo Schiff”, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Bergese
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Francesco Valle
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, 50019 Firenze, Italy
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
194
|
Popowski K, Lutz H, Hu S, George A, Dinh PU, Cheng K. Exosome therapeutics for lung regenerative medicine. J Extracell Vesicles 2020; 9:1785161. [PMID: 32944172 PMCID: PMC7480570 DOI: 10.1080/20013078.2020.1785161] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are 30 to 100 nm extracellular vesicles that are secreted by many cell types. Initially viewed as cellular garbage with no biological functions, exosomes are now recognized for their therapeutic potential and used in regenerative medicine. Cell-derived exosomes are released into almost all biological fluids, making them abundant and accessible vesicles for a variety of diseases. These naturally occurring nanoparticles have a wide range of applications including drug delivery and regenerative medicine. Exosomes sourced from a specific tissue have been proven to provide greater therapeutic effects to their native tissue, expanding exosome sources beyond traditional cell lines such as mesenchymal stem cells. However, standardizing production and passing regulations remain obstacles, due to variations in methods and quantification techniques across studies. Additionally, obtaining pure exosomes at sufficient quantities remains difficult due to the heterogeneity of exosomes. In this review, we will underline the uses of exosomes as a therapy and their roles in lung regenerative medicine, as well as current challenges in exosome therapies.
Collapse
Affiliation(s)
- Kristen Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Arianna George
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State
University, NC, USA
- Division of Pharmacoengineering and Molecular
Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA
| |
Collapse
|
195
|
Hao D, Swindell HS, Ramasubramanian L, Liu R, Lam KS, Farmer DL, Wang A. Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Front Bioeng Biotechnol 2020; 8:633. [PMID: 32671037 PMCID: PMC7329993 DOI: 10.3389/fbioe.2020.00633] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
The network structure and biological components of natural extracellular matrix (ECM) are indispensable for promoting tissue regeneration. Electrospun nanofibrous scaffolds have been widely used in regenerative medicine to provide structural support for cell growth and tissue regeneration due to their natural ECM mimicking architecture, however, they lack biological functions. Extracellular vesicles (EVs) are potent vehicles of intercellular communication due to their ability to transfer RNAs, proteins, and lipids, thereby mediating significant biological functions in different biological systems. Matrix-bound nanovesicles (MBVs) are identified as an integral and functional component of ECM bioscaffolds mediating significant regenerative functions. Therefore, to engineer EVs modified electrospun scaffolds, mimicking the structure of the natural EV-ECM complex and the physiological interactions between the ECM and EVs, will be attractive and promising in tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LLP2A, an integrin α4β1 ligand, which had a strong binding to human placenta-derived mesenchymal stem cells (PMSCs). In this study, we isolated PMSCs derived EVs (PMSC-EVs) and demonstrated they expressed integrin α4β1 and could improve endothelial cell (EC) migration and vascular sprouting in an ex vivo rat aortic ring assay. LLP2A treated culture surface significantly improved PMSC-EV attachment, and the PMSC-EV treated culture surface significantly enhanced the expression of angiogenic genes and suppressed apoptotic activity. We then developed an approach to enable "Click chemistry" to immobilize LLP2A onto the surface of electrospun scaffolds as a linker to immobilize PMSC-EVs onto the scaffold. The PMSC-EV modified electrospun scaffolds significantly promoted EC survival and angiogenic gene expression, such as KDR and TIE2, and suppressed the expression of apoptotic markers, such as caspase 9 and caspase 3. Thus, PMSC-EVs hold promising potential to functionalize biomaterial constructs and improve the vascularization and regenerative potential. The EVs modified biomaterial scaffolds can be widely used for different tissue engineering applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Hila Shimshi Swindell
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
196
|
Oh JG, Lee P, Gordon RE, Sahoo S, Kho C, Jeong D. Analysis of extracellular vesicle miRNA profiles in heart failure. J Cell Mol Med 2020; 24:7214-7227. [PMID: 32485073 PMCID: PMC7339231 DOI: 10.1111/jcmm.15251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as an important carrier for various genetic materials including microRNAs (miRs). Growing evidences suggested that several miRs transported by EVs were particularly involved in modulating cardiac function. However, it has remained unclear what miRs are enriched in EVs and play an important role in the pathological condition. Therefore, we established the miR expression profiles in EVs from murine normal and failing hearts and consecutively identified substantially altered miRs. In addition, we have performed bioinformatics approach to predict potential cardiac outcomes through the identification of miR targets. Conclusively, we observed approximately 63% of predicted targets were validated with previous reports. Notably, the predicted targets by this approach were often involved in both beneficial and malicious signalling pathways, which may reflect heterogeneous cellular origins of EVs in tissues. Lastly, there has been an active debate on U6 whether it is a proper control. Through further analysis of EV miR profiles, miR‐676 was identified as a superior reference control due to its consistent and abundant expressions. In summary, our results contribute to identifying specific EV miRs for the potential therapeutic targets in heart failure and suggest that miR‐676 as a new reference control for the EV miR studies.
Collapse
Affiliation(s)
- Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald E Gordon
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Republic of Korea
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
197
|
Lam KCK, Lam MKN, Chim CS, Chan GCF, Li JCB. The functional role of surface molecules on extracellular vesicles in cancer, autoimmune diseases, and coagulopathy. J Leukoc Biol 2020; 108:1565-1573. [PMID: 32480430 DOI: 10.1002/jlb.3mr0420-067r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that have emerged as mediators for intercellular communication in physiologic and pathologic conditions. EVs carry signaling information on their bilipid membrane as well as cargo within, allowing them to perform a wide range of biologic processes and contribute to pathophysiologic roles in a wide range of diseases, including cancer, autoimmune diseases and coagulopathy. This review will specifically address the function of surface molecules on EVs under normal and diseased conditions, as well as their potential to emerge as therapeutic targets in clinical settings, and the importance of further research on the surface topography of EVs.
Collapse
Affiliation(s)
- Katy C K Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Moses K N Lam
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C S Chim
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Godfrey C F Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - James C B Li
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
198
|
Liaw K, Zhang F, Mangraviti A, Kannan S, Tyler B, Kannan RM. Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration. Bioeng Transl Med 2020; 5:e10160. [PMID: 32440565 PMCID: PMC7237147 DOI: 10.1002/btm2.10160] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant gliomas are the most common and aggressive form of primary brain tumors, with a median survival of 15-20 months for patients receiving maximal interventions. Advances in nanomedicine have provided tumor-specific delivery of chemotherapeutics to potentially overcome their off-target toxicities. Recent advances in dendrimer-based nanomedicines have established that hydroxyl-terminated poly(amidoamine) dendrimers can intrinsically target neuroinflammation and brain tumors from systemic administration without the need for targeting moieties. The size of nanocarriers is a critical parameter that determines their tumor-targeting efficiency, intratumor distribution, and clearance mechanism. In this study, we explore the dendrimer size effects on brain tumor targeting capability in two clinically relevant orthotopic brain tumor models, the 9L rat and GL261 mouse models, which capture differing aspects of gliomas. We show that increasing dendrimers from Generation 4 to Generation 6 significantly enhances their tumor accumulation (~10-fold greater at 24 hr), tumor specificity (~2-3 fold higher), and tumor retention. The superior tumor targeting effect of G6 dendrimers is associated with its reduced renal clearance rate, resulting in longer circulation time compared to G4 dendrimers. Additionally, the increase in dendrimer generation does not compromise its homogeneous tumor distribution and intrinsic targeting of tumor-associated macrophages. These results validate the potential for these dendrimers as an effective, clinically translatable platform for effectively targeting tumor-associated macrophages in malignant gliomas.
Collapse
Affiliation(s)
- Kevin Liaw
- Center for NanomedicineWilmer Eye Institute, Johns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Fan Zhang
- Center for NanomedicineWilmer Eye Institute, Johns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Sujatha Kannan
- Department of Anesthesiology and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Betty Tyler
- Department of NeurosurgeryJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Rangaramanujam M. Kannan
- Center for NanomedicineWilmer Eye Institute, Johns Hopkins School of MedicineBaltimoreMarylandUSA
- Department of Chemical and Biomolecular EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Materials Science and EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
199
|
Tutanov O, Orlova E, Proskura K, Grigor’eva A, Yunusova N, Tsentalovich Y, Alexandrova A, Tamkovich S. Proteomic Analysis of Blood Exosomes from Healthy Females and Breast Cancer Patients Reveals an Association between Different Exosomal Bioactivity on Non-tumorigenic Epithelial Cell and Breast Cancer Cell Migration in Vitro. Biomolecules 2020; 10:biom10040495. [PMID: 32218180 PMCID: PMC7226042 DOI: 10.3390/biom10040495] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are important intercellular communication vehicles, secreted into body fluids by multiple cell types, including tumor cells. They contribute to the metastatic progression of tumor cells through paracrine signalling. It has been recently discovered that blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. We evaluated the influence of protein cargoes from exosomes from plasma, and exosomes from the total blood of healthy females (HFs) and breast cancer patients (BCPs), on cell motility. We conducted a mass spectrometric analysis of exosomal contents isolated from samples using ultrafiltration and ultracentrifugation approaches and verified their nature using transmission electron microscopy, nanoparticle tracking analysis and flow cytometry. We observed that malignant neoplasm-associated proteins in exosomes from BCP total blood were detected more often than in plasma (66% vs. 59%). FunRich analysis to assess Gene Ontology (GO) enrichment revealed that proteins with catalytic activities, transporter functions and protein metabolism activities were increased in exosomes from BCP blood. Finally, GO analysis revealed that proteomic profiles of exosomes from HF total blood were enriched with proteins inhibiting cell migration and invasion, which explains the low stimulating activity of exosomes from HF total blood on SKBR-3 cancer cell migration velocity. This allows exosomes to act as intermediaries providing intercellular communications through horizontal transfer of RNA and functionally active proteins, potentially affecting the development of both primary neoplasms and distant metastases.
Collapse
Affiliation(s)
- Oleg Tutanov
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Evgeniya Orlova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Ksenia Proskura
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Mammology, Novosibirsk Regional Clinical Oncological Dispensary, 630108 Novosibirsk, Russia
| | - Alina Grigor’eva
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
| | - Natalia Yunusova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Тomsk National Research Medical Center, Russian Academy of Science, 634028 Tomsk, Russia;
- Department of Biochemistry and Molecular Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Yuri Tsentalovich
- Laboratory of Proteomics and Metabolomics, International Tomography Center SB RAS, 630090 Novosibirsk, Russia;
| | - Antonina Alexandrova
- Laboratory of Carcinogenesis Mechanisms, “N.N. Blokhin Cancer Research Center” of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (E.O.); (A.A.)
| | - Svetlana Tamkovich
- Laboratory of Molecular Medicine, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (O.T.); (K.P.); (A.G.)
- Department of Molecular Biology and Biotechnology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
200
|
Pisetsky DS, Spencer DM, Mobarrez F, Fuzzi E, Gunnarsson I, Svenungsson E. The binding of SLE autoantibodies to mitochondria. Clin Immunol 2020; 212:108349. [PMID: 31982644 PMCID: PMC10538439 DOI: 10.1016/j.clim.2020.108349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by immune complexes. Because these complexes contain mitochondrial components, we assessed the presence of antibodies to whole mitochondria (wMITO) using an ELISA in which mitochondria from mouse liver are bound to microtiter plates pre-coated with poly-l-lysine. Studies with this ELISA demonstrated that SLE plasmas contain abundant anti-wMITO activity. While digestion with DNase 1 did not affect anti-wMITO activity, adsorption of plasma on DNA affinity columns could reduce binding activity. Assay for anti-mitochondrial antibodies (AMA) by immunofluorescence and an ELISA with the M2 antigen (2-oxo-acid dehydrogenase protein complex) showed a low frequency of positivity, indicating that AMA and anti-wMITO are distinct specificities. In the study of 204 patients with SLE, the levels of anti-wMITO were higher in active SLE and correlated with levels of anti-DNA. These findings suggest that anti-wMITO can form immune complexes with mitochondria which may drive pathogenesis.
Collapse
Affiliation(s)
- David S Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America; Medical Research Service, VA Medical Center, Durham, NC, United States of America.
| | - Diane M Spencer
- Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC, United States of America
| | - Fariborz Mobarrez
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Enrico Fuzzi
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Division of Rheumatology, Department of Medicine, University of Padua, Padua, Italy
| | - Iva Gunnarsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabet Svenungsson
- Unit of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|