151
|
Andrade S, Ramalho MJ, Pereira MDC, Loureiro JA. Resveratrol Brain Delivery for Neurological Disorders Prevention and Treatment. Front Pharmacol 2018; 9:1261. [PMID: 30524273 PMCID: PMC6262174 DOI: 10.3389/fphar.2018.01261] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Resveratrol (RES) is a natural polyphenolic non-flavonoid compound present in grapes, mulberries, peanuts, rhubarb and in several other plants. Numerous health effects have been related with its intake, such as anti-carcinogenic, anti-inflammatory and brain protective effects. The neuroprotective effects of RES in neurological diseases, such as Alzheimer's (AD) and Parkinson's (PD) diseases, are related to the protection of neurons against oxidative damage and toxicity, and to the prevention of apoptotic neuronal death. In brain cancer, RES induces cell apoptotic death and inhibits angiogenesis and tumor invasion. Despite its great potential as therapeutic agent for the treatment of several diseases, RES exhibits some limitations. It has poor water solubility and it is chemically instable, being degraded by isomerization once exposed to high temperatures, pH changes, UV light, or certain types of enzymes. Thus, RES has low bioavailability, limiting its biological and pharmacological benefits. To overcome these limitations, RES can be delivered by nanocarriers. This field of nanomedicine studies how the drug administration, pharmacokinetics, and pharmacodynamics are affected by the use of nanosized materials. The role of nanotechnology, in the prevention and treatment of neurological diseases, arises from the necessity to mask the physicochemical properties of therapeutic drugs to prolong the half-life and to be able to cross the blood-brain barrier (BBB). This can be achieved by encapsulating the drug in a nanoparticle (NP), which can be made of different kinds of materials. An increasing trend to encapsulate and direct RES to the brain has been observed. RES has been encapsulated in many different types of nanosystems, as liposomes, lipid and polymeric NPs. Furthermore, some of these nanocarriers have been modified with targeting molecules able to recognize the brain areas. Then, this article aims to overview the RES benefits and limitations in the treatment of neurological diseases, as the different nanotechnology strategies to overcome these limitations.
Collapse
Affiliation(s)
| | | | | | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
| |
Collapse
|
152
|
Li S, Jin M, Liu L, Dang Y, Ostaszewski BL, Selkoe DJ. Decoding the synaptic dysfunction of bioactive human AD brain soluble Aβ to inspire novel therapeutic avenues for Alzheimer's disease. Acta Neuropathol Commun 2018; 6:121. [PMID: 30409172 PMCID: PMC6225562 DOI: 10.1186/s40478-018-0626-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Pathologic, biochemical and genetic evidence indicates that accumulation and aggregation of amyloid β-proteins (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Several therapeutic interventions attempting to lower Aβ have failed to ameliorate cognitive decline in patients with clinical AD significantly, but most such approaches target only one or two facets of Aβ production/clearance/toxicity and do not consider the heterogeneity of human Aβ species. As synaptic dysfunction may be among the earliest deficits in AD, we used hippocampal long-term potentiation (LTP) as a sensitive indicator of the early neurotoxic effects of Aβ species. Here we confirmed prior findings that soluble Aβ oligomers, much more than fibrillar amyloid plaque cores or Aβ monomers, disrupt synaptic function. Interestingly, not all (84%) human AD brain extracts are able to inhibit LTP and the degree of LTP impairment by AD brain extracts does not correlate with Aβ levels detected by standard ELISAs. Bioactive AD brain extracts also induce neurotoxicity in iPSC-derived human neurons. Shorter forms of Aβ (including Aβ1-37, Aβ1-38, Aβ1-39), pre-Aβ APP fragments (- 30 to - 1) and N-terminally extended Aβs (- 30 to + 40) each showed much less synaptotoxicity than longer Aβs (Aβ1-42 - Aβ1-46). We found that antibodies which target the N-terminus, not the C-terminus, efficiently rescued Aβ oligomer-impaired LTP and oligomer-facilitated LTD. Our data suggest that preventing soluble Aβ oligomer formation and targeting their N-terminal residues with antibodies could be an attractive combined therapeutic approach.
Collapse
|
153
|
Chi H, Chang HY, Sang TK. Neuronal Cell Death Mechanisms in Major Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E3082. [PMID: 30304824 PMCID: PMC6213751 DOI: 10.3390/ijms19103082] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
Neuronal cell death in the central nervous system has always been a challenging process to decipher. In normal physiological conditions, neuronal cell death is restricted in the adult brain, even in aged individuals. However, in the pathological conditions of various neurodegenerative diseases, cell death and shrinkage in a specific region of the brain represent a fundamental pathological feature across different neurodegenerative diseases. In this review, we will briefly go through the general pathways of cell death and describe evidence for cell death in the context of individual common neurodegenerative diseases, discussing our current understanding of cell death by connecting with renowned pathogenic proteins, including Tau, amyloid-beta, alpha-synuclein, huntingtin and TDP-43.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu City 30013, Taiwan.
| |
Collapse
|
154
|
Abstract
Cortical excitability modulation and neuroplasticity are considered essential mechanisms for improving clinical and cognitive abilities in neurodegenerative disorders (NDDs). In such context, transcranial direct current stimulation (tDCS) shows great promise for facilitating remodeling of neurosynaptic organization. The aim of this review was to provide an overview of how tDCS is currently used as a neurorehabilitation strategy in some NDDs. We describe results from studies in which tDCS was applied in mild cognitive impairment, Alzheimer's disease, and primary progressive aphasia. Currently, findings related to the ability of tDCS to restore cognitive dysfunctions and behavioral impairments in these NDDs do not seem to support the notion that tDCS shows clear therapeutic efficacy in patients with mild cognitive impairment, Alzheimer disease, and primary progressive aphasia. This is probably because tDCS research in this area is still in its early stages. Methodological concerns, such as differences in tDCS parameters (eg, intensity or duration), target sites, and study design (eg, the relationship between tDCS and the rehabilitation strategy), or the use of underpowered sample sizes may also contribute to these outcomes. Nevertheless, it is important to note that almost no studies have evaluated how the underlying neurophysiological state of patients should guide the application of tDCS. These results should not prevent the use of tDCS in these NDDs, but they should trigger a deeper evaluation of how tDCS should be used. Transcranial direct current stimulation cannot be considered a neurorehabilitation apparatus by itself but should be instead viewed as a method for weakly modulating existing brain excitability. Future studies should aim to improve our understanding of the neurophysiological mechanisms that underlie the clinical effects of tDCS with the final goal of designing and performing individualized stimulation protocols that can be tailored for each NDD patient and combined with other appropriate neurorehabilitation strategies.
Collapse
|
155
|
Zhang H, Therriault J, Kang MS, Ng KP, Pascoal TA, Rosa-Neto P, Gauthier S. Cerebrospinal fluid synaptosomal-associated protein 25 is a key player in synaptic degeneration in mild cognitive impairment and Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:80. [PMID: 30115118 PMCID: PMC6097333 DOI: 10.1186/s13195-018-0407-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/12/2018] [Indexed: 12/02/2022]
Abstract
Background There is accumulating evidence that synaptic loss precedes neuronal loss and correlates best with impaired memory formation in Alzheimer’s disease (AD). Cerebrospinal fluid (CSF) synaptosomal-associated protein 25 (SNAP-25) is a newly discovered marker indicating synaptic damage. We here test CSF SNAP-25 and SNAP-25/amyloid-β42 (Aβ42) ratio as a diagnostic marker for predicting cognitive decline and brain structural change in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Methods We stratified 139 participants from the ADNI database into cognitively normal (CN; n = 52), stable mild cognitive impairment (sMCI; n = 22), progressive MCI (pMCI; n = 47), and dementia due to AD (n = 18). Spearman correlation was performed to test the relationships between biomarkers. Overall diagnostic accuracy (area under the curve (AUC)) was obtained from receiver operating curve (ROC) analyses. Cox proportional hazard models tested the effect of CSF SNAP-25 and SNAP-25/Aβ42 measures on the conversion from MCI to AD. Relationships between the CSF SNAP-25 levels, SNAP-25/Aβ42 ratio, and diagnostic groups were tested with linear regressions. Linear mixed-effects models and linear regression models were used to evaluate CSF SNAP-25 and SNAP-25/Aβ42 as predictors of AD features, including cognition measured by the Mini-Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). Results CSF SNAP-25 and SNAP-25/Aβ42 were increased in patients with pMCI and AD compared with CN, and in pMCI and AD compared with sMCI. Cognitively normal subjects who progressed to MCI or AD during follow-up had increased SNAP-25/Aβ42 ratio compared with nonprogressors. CSF SNAP-25, especially SNAP-25/Aβ42, offers diagnostic utility for pMCI and AD. CSF SNAP-25 and SNAP-25/Aβ42 significantly predicted conversion from MCI to AD. In addition, elevated SNAP-25/Aβ42 ratio was associated with the rate of hippocampal atrophy in pMCI and the rate of change of cognitive impairment in CN over the follow-up period. Conclusions These data suggest that both CSF SNAP-25 and SNAP-25/Aβ42 ratio are already increased at the early clinical stage of AD, and indicate the promise of CSF SNAP-25 and SNAP-25/Aβ42 ratio as diagnostic and prognostic biomarkers for the earliest symptomatic stage of AD.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Joseph Therriault
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Min Su Kang
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Kok Pin Ng
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Tharick A Pascoal
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Serge Gauthier
- The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada.
| | | |
Collapse
|
156
|
Klein CP, Hoppe JB, Saccomori AB, Dos Santos BG, Sagini JP, Crestani MS, August PM, Hözer RM, Grings M, Parmeggiani B, Leipnitz G, Navas P, Salbego CG, Matté C. Physical Exercise During Pregnancy Prevents Cognitive Impairment Induced by Amyloid-β in Adult Offspring Rats. Mol Neurobiol 2018; 56:2022-2038. [PMID: 29982984 DOI: 10.1007/s12035-018-1210-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function. Maternal lifestyle, including regular exercise during pregnancy, has also been shown to influence fetal development and disease susceptibility in adulthood through fetal metabolism programming. Here, we investigated the potential neuroprotective role of regular maternal swimming, before and during pregnancy, against amyloid-β neurotoxicity in the adult offspring. Behavioral and neurochemical analyses were performed 14 days after male offspring received a single, bilateral, intracerebroventricular (icv) injection of amyloid-β oligomers (AβOs). AβOs-injected rats of the sedentary maternal group exhibited learning and memory deficits, along with reduced synaptophysin, brain-derived neurotrophic factor (BDNF) levels, and alterations of mitochondrial function. Strikingly, the offspring of the sedentary maternal group had AβOs-induced behavioral alterations that were prevented by maternal exercise. This effect was accompanied by preventing the alteration of synaptophysin levels in the offspring of exercised dams. Additionally, offspring of the maternal exercise group exhibited an augmentation of functional mitochondria, as indicated by increases in mitochondrial mass and membrane potential, α-ketoglutarate dehydrogenase, and cytochrome c oxidase enzymes activities. Moreover, maternal exercise during pregnancy induced long-lasting modulation of fusion and fission proteins, Mfn1 and Drp1, respectively. Overall, our data demonstrates a potential protective effect of exercise during pregnancy against AβOs-induced neurotoxicity in the adult offspring brain, by mitigating the neurodegenerative process triggered by Alzheimer-associated AβOs through programming the brain metabolism.
Collapse
Affiliation(s)
- Caroline Peres Klein
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Juliana Bender Hoppe
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Brum Saccomori
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bernardo Gindri Dos Santos
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - João Pedro Sagini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mariana Scortegagna Crestani
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pauline Maciel August
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Régis Mateus Hözer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, 41013, Sevilla, Spain
| | - Christianne Gazzana Salbego
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Cristiane Matté
- Programa de Pós-Graduação em Ciências Biológicas - Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
157
|
McLeod F, Salinas PC. Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 2018; 53:90-95. [PMID: 29975877 PMCID: PMC6246922 DOI: 10.1016/j.conb.2018.06.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
LTP induction promotes the localization of Wnt7a/b protein at dendritic spines. Wnt-Frizzled signaling is required for NMDA receptor-dependent LTP. Wnt7a specifically regulates rapid AMPA receptor trafficking at the synapse. Defects in Wnt signaling affect synaptic plasticity and integrity.
Dynamic changes in the structure and function of synapses in response to the environment, termed synaptic plasticity, are the cellular basis of learning and memory. At excitatory synapses, activation of NMDA receptors by glutamate leads to calcium influx triggering intracellular pathways that promote the trafficking of AMPA receptors to the post-synaptic membrane and actin remodeling. New evidence shows that Wnt secreted proteins, known for their role in synapse development, are essential for early stages of long-term potentiation, a form of plasticity that increases synaptic strength. Here, we review recent progress in this area and the significance of Wnt signaling to synaptic plasticity in health and disease.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
158
|
Benarroch EE. Glutamatergic synaptic plasticity and dysfunction in Alzheimer disease. Neurology 2018; 91:125-132. [DOI: 10.1212/wnl.0000000000005807] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
159
|
Dimitriadis SI, López ME, Bruña R, Cuesta P, Marcos A, Maestú F, Pereda E. How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters. Front Neurosci 2018; 12:306. [PMID: 29910704 PMCID: PMC5992286 DOI: 10.3389/fnins.2018.00306] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022] Open
Abstract
Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
| | - María E. López
- Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Ricardo Bruña
- Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Electrical Engineering and Bioengineering Group, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| | - Alberto Marcos
- Department of Neurology, San Carlos University Hospital, Madrid, Spain
| | - Fernando Maestú
- Department of Basic Psychology II, Complutense University of Madrid, Madrid, Spain
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Madrid, Spain
- Electrical Engineering and Bioengineering Group, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
160
|
Carr H, Alexander TC, Groves T, Kiffer F, Wang J, Price E, Boerma M, Allen AR. Early effects of 16O radiation on neuronal morphology and cognition in a murine model. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:63-73. [PMID: 29753415 DOI: 10.1016/j.lssr.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.
Collapse
Affiliation(s)
- Hannah Carr
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Tyler C Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Elvin Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
161
|
Cheng JX, Zhang HY, Peng ZK, Xu Y, Tang H, Wu JT, Xu J. Divergent topological networks in Alzheimer's disease: a diffusion kurtosis imaging analysis. Transl Neurodegener 2018; 7:10. [PMID: 29719719 PMCID: PMC5921324 DOI: 10.1186/s40035-018-0115-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Background Brain consists of plenty of complicated cytoarchitecture. Gaussian-model based diffusion tensor imaging (DTI) is far from satisfactory interpretation of the structural complexity. Diffusion kurtosis imaging (DKI) is a tool to determine brain non-Gaussian diffusion properties. We investigated the network properties of DKI parameters in the whole brain using graph theory and further detected the alterations of the DKI networks in Alzheimer’s disease (AD). Methods Magnetic resonance DKI scanning was performed on 21 AD patients and 19 controls. Brain networks were constructed by the correlation matrices of 90 regions and analyzed through graph theoretical approaches. Results We found small world characteristics of DKI networks not only in the normal subjects but also in the AD patients; Grey matter networks of AD patients tended to be a less optimized network. Moreover, the divergent small world network features were shown in the AD white matter networks, which demonstrated increased shortest paths and decreased global efficiency with fiber tractography but decreased shortest paths and increased global efficiency with other DKI metrics. In addition, AD patients showed reduced nodal centrality predominantly in the default mode network areas. Finally, the DKI networks were more closely associated with cognitive impairment than the DTI networks. Conclusions Our results suggest that DKI might be superior to DTI and could serve as a novel approach to understand the pathogenic mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jia-Xing Cheng
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Hong-Ying Zhang
- Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Zheng-Kun Peng
- Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Yao Xu
- Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Hui Tang
- Medical Experimental Center, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Jing-Tao Wu
- Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225001 China
| | - Jun Xu
- 4Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, 100050 China.,5Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, School of Medicine, Yangzhou University, Yangzhou, 225001 Jiangsu China
| |
Collapse
|
162
|
Epigenetic Modifications of the α-Synuclein Gene and Relative Protein Content Are Affected by Ageing and Physical Exercise in Blood from Healthy Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3740345. [PMID: 29849887 PMCID: PMC5924988 DOI: 10.1155/2018/3740345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Epigenetic regulation may contribute to the beneficial effects of physical activity against age-related neurodegeneration. For example, epigenetic alterations of the gene encoding for α-synuclein (SNCA) have been widely explored in both brain and peripheral tissues of Parkinson's disease samples. However, no data are currently available about the effects of physical exercise on SNCA epigenetic regulation in ageing healthy subjects. The present paper explored whether, in healthy individuals, age and physical activity are related to blood intron1-SNCA (SNCAI1) methylation, as well as further parameters linked to such epigenetic modification (total, oligomeric α-synuclein and DNA methyltransferase concentrations in the blood). Here, the SNCAI1 methylation status increased with ageing, and consistent with this result, low α-synuclein levels were found in the blood. The direct relationship between SNCAI1 methylation and α-synuclein levels was observed in samples characterized by blood α-synuclein concentrations of 76.3 ng/mg protein or lower (confidence interval (CI) = 95%). In this selected population, higher physical activity reduced the total and oligomeric α-synuclein levels. Taken together, our data shed light on ageing- and physical exercise-induced changes on the SNCA methylation status and protein levels of α-synuclein.
Collapse
|
163
|
Yu Q, Du F, Douglas JT, Yu H, Yan SS, Yan SF. Mitochondrial Dysfunction Triggers Synaptic Deficits via Activation of p38 MAP Kinase Signaling in Differentiated Alzheimer's Disease Trans-Mitochondrial Cybrid Cells. J Alzheimers Dis 2018; 59:223-239. [PMID: 28598851 DOI: 10.3233/jad-170283] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China.,Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Fang Du
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Justin T Douglas
- Nuclear Magnetic Resonance Laboratory, Molecular Structures group, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Cheng Du, China
| | - Shirley ShiDu Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shi Fang Yan
- Departments of Pharmacology and Toxicology, and Higuchi Bioscience Center, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
164
|
The Neurotoxic Role of Extracellular Tau Protein. Int J Mol Sci 2018; 19:ijms19040998. [PMID: 29584657 PMCID: PMC5979432 DOI: 10.3390/ijms19040998] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Tauopathies are a class of neurodegenerative diseases associated with the microtubule-associated protein tau, with Alzheimer’s disease (AD) being the most prevalent related disorder. Neurofibrillary tangles (NFTs) are one of the neuropathological hallmarks present in the brains of AD patients. Because NFTs are aberrant intracellular inclusions formed by hyperphosphorylated tau, it was initially proposed that phosphorylated and/or aggregated intracellular tau protein was causative of neuronal death. However, recent studies suggest a toxic role for non-phosphorylated and non-aggregated tau when it is located in the brain extracellular space. In this work, we will discuss the neurotoxic role of extracellular tau as well its involvement in the spreading of tau pathologies.
Collapse
|
165
|
Transgenic autoinhibition of p21-activated kinase exacerbates synaptic impairments and fronto-dependent behavioral deficits in an animal model of Alzheimer's disease. Aging (Albany NY) 2018; 9:1386-1403. [PMID: 28522792 PMCID: PMC5472739 DOI: 10.18632/aging.101239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/11/2017] [Indexed: 11/28/2022]
Abstract
Defects in p21-activated kinase (PAK) lead to dendritic spine abnormalities and are sufficient to cause cognition impairment. The decrease in PAK in the brain of Alzheimer's disease (AD) patients is suspected to underlie synaptic and dendritic disturbances associated with its clinical expression, particularly with symptoms related to frontal cortex dysfunction. To investigate the role of PAK combined with Aβ and tau pathologies (3xTg-AD mice) in the frontal cortex, we generated a transgenic model of AD with a deficit in PAK activity (3xTg-AD-dnPAK mice). PAK inactivation had no effect on Aβ40 and Aβ42 levels, but increased the phosphorylation ratio of tau in detergent-insoluble protein fractions in the frontal cortex of 18-month-old heterozygous 3xTg-AD mice. Morphometric analyses of layer II/III pyramidal neurons in the frontal cortex showed that 3xTg-AD-dnPAK neurons exhibited significant dendritic attrition, lower spine density and longer spines compared to NonTg and 3xTg-AD mice. Finally, behavioral assessments revealed that 3xTg-AD-dnPAK mice exhibited pronounced anxious traits and disturbances in social behaviors, reminiscent of fronto-dependent symptoms observed in AD. Our results substantiate a critical role for PAK in the genesis of neuronal abnormalities in the frontal cortex underlying the emergence of psychiatric-like symptoms in AD.
Collapse
|
166
|
Wang W, Yin J, Ma X, Zhao F, Siedlak SL, Wang Z, Torres S, Fujioka H, Xu Y, Perry G, Zhu X. Inhibition of mitochondrial fragmentation protects against Alzheimer's disease in rodent model. Hum Mol Genet 2018; 26:4118-4131. [PMID: 28973308 DOI: 10.1093/hmg/ddx299] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction is an early prominent feature in susceptible neurons in the brain of patients with Alzheimer's disease, which likely plays a critical role in the pathogenesis of disease. Increasing evidence suggests abnormal mitochondrial dynamics as important underlying mechanisms. In this study, we characterized marked mitochondrial fragmentation and abnormal mitochondrial distribution in the pyramidal neurons along with mitochondrial dysfunction in the brain of Alzheimer's disease mouse model CRND8 as early as 3 months of age before the accumulation of amyloid pathology. To establish the pathogenic significance of these abnormalities, we inhibited mitochondrial fragmentation by the treatment of mitochondrial division inhibitor 1 (mdivi-1), a mitochondrial fission inhibitor. Mdivi-1 treatment could rescue both mitochondrial fragmentation and distribution deficits and improve mitochondrial function in the CRND8 neurons both in vitro and in vivo. More importantly, the amelioration of mitochondrial dynamic deficits by mdivi-1 treatment markedly decreased extracellular amyloid deposition and Aβ1-42/Aβ1-40 ratio, prevented the development of cognitive deficits in Y-maze test and improved synaptic parameters. Our findings support the notion that abnormal mitochondrial dynamics plays an early and causal role in mitochondrial dysfunction and Alzheimer's disease-related pathological and cognitive impairments in vivo and indicate the potential value of restoration of mitochondrial dynamics as an innovative therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jun Yin
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhenlian Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,School of Pharmaceutical Engineering & Life Sciences, Changzhou University, Changzhou, Jiansu 213164, China
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14222, USA
| | - George Perry
- Department of Biology, College of Science, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
167
|
Mango D, Nisticò R. Role of ASIC1a in Aβ-induced synaptic alterations in the hippocampus. Pharmacol Res 2018; 131:61-65. [PMID: 29574226 DOI: 10.1016/j.phrs.2018.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in the mammalian central nervous system where they play a key role in synaptic transmission and in specific forms of memory. On the other hand, ASICs can be persistently active under pathological conditions contributing to neuronal damage in ischemic stroke, brain trauma, epilepsy and Parkinson's disease. However, to date no experimental evidence has linked ASICs to Alzheimer's disease (AD). Aim of the present work was to investigate, in CA1 pyramidal neurons, the possible involvement of ASIC1a in the Aβ-mediated effect on metabotropic glutamate (mGlu) receptor dependent transmission. We found that, in slices pretreated with Aβ, the pharmacological blockade of ASIC1a restored the increased intrinsic excitability following group I mGlu receptor activation. This suggests that, under certain conditions, ASIC1a might further contribute to the Aβ-related depolarizing response. We have recently demonstrated that ASIC1a is also involved long-term depression (LTD) induced either by low-frequency stimulation or by application of the group I mGlu receptor agonist DHPG. Here, we have shown that psalmotoxin-1, a selective blocker of ASIC1a, rescued the DHPG-LTD facilitation associated with genetic and non-genetic models of AD. Overall, these results suggest that a functional coupling between ASIC1a and mGlu receptors occurs and might contribute to the synaptic alterations associated with AD.
Collapse
Affiliation(s)
- D Mango
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy.
| | - R Nisticò
- Laboratory of Neuropharmacology, European Brain Research Institute, Rita Levi-Montalcini Foundation, Rome, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
168
|
Jin EJ, Kiral FR, Ozel MN, Burchardt LS, Osterland M, Epstein D, Wolfenberg H, Prohaska S, Hiesinger PR. Live Observation of Two Parallel Membrane Degradation Pathways at Axon Terminals. Curr Biol 2018; 28:1027-1038.e4. [PMID: 29551411 PMCID: PMC5944365 DOI: 10.1016/j.cub.2018.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/24/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Abstract
Neurons are highly polarized cells that require continuous turnover of membrane proteins at axon terminals to develop, function, and survive. Yet, it is still unclear whether membrane protein degradation requires transport back to the cell body or whether degradation also occurs locally at the axon terminal, where live observation of sorting and degradation has remained a challenge. Here, we report direct observation of two cargo-specific membrane protein degradation mechanisms at axon terminals based on a live-imaging approach in intact Drosophila brains. We show that different acidification-sensing cargo probes are sorted into distinct classes of degradative “hub” compartments for synaptic vesicle proteins and plasma membrane proteins at axon terminals. Sorting and degradation of the two cargoes in the separate hubs are molecularly distinct. Local sorting of synaptic vesicle proteins for degradation at the axon terminal is, surprisingly, Rab7 independent, whereas sorting of plasma membrane proteins is Rab7 dependent. The cathepsin-like protease CP1 is specific to synaptic vesicle hubs, and its delivery requires the vesicle SNARE neuronal synaptobrevin. Cargo separation only occurs at the axon terminal, whereas degradative compartments at the cell body are mixed. These data show that at least two local, molecularly distinct pathways sort membrane cargo for degradation specifically at the axon terminal, whereas degradation can occur both at the terminal and en route to the cell body.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany; Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ferdi Ridvan Kiral
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany
| | - Mehmet Neset Ozel
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany; Graduate School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lara Sophie Burchardt
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany
| | - Marc Osterland
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| | - Daniel Epstein
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany
| | - Heike Wolfenberg
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany
| | | | - Peter Robin Hiesinger
- Division of Neurobiology, Freie Universität Berlin, Königin Luise Straße 1-3, 14195 Berlin, Germany.
| |
Collapse
|
169
|
Domínguez-Álvaro M, Montero-Crespo M, Blazquez-Llorca L, Insausti R, DeFelipe J, Alonso-Nanclares L. Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer's disease patients. Acta Neuropathol Commun 2018; 6:20. [PMID: 29499755 PMCID: PMC5834884 DOI: 10.1186/s40478-018-0520-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022] Open
Abstract
Synaptic dysfunction or loss in early stages of Alzheimer’s disease (AD) is thought to be a major structural correlate of cognitive dysfunction. Early loss of episodic memory, which occurs at the early stage of AD, is closely associated with the progressive degeneration of medial temporal lobe (MTL) structures of which the transentorhinal cortex (TEC) is the first affected area. However, no ultrastructural studies have been performed in this region in human brain samples from AD patients. In the present study, we have performed a detailed three-dimensional (3D) ultrastructural analysis using focused ion beam/scanning electron microscopy (FIB/SEM) to investigate possible synaptic alterations in the TEC of patients with AD. Surprisingly, the analysis of the density, morphological features and spatial distribution of synapses in the neuropil showed no significant differences between AD and control samples. However, light microscopy studies showed that cortical thickness of the TEC was severely reduced in AD samples, but there were no changes in the volume occupied by neuronal and glial cell bodies, blood vessels, and neuropil. Thus, the present results indicate that there is a dramatic loss of absolute number of synapses, while the morphology of synaptic junctions and synaptic spatial distribution are maintained. How these changes affect cognitive impairment in AD remains to be elucidated.
Collapse
|
170
|
Ovsepian SV, O'Leary VB, Zaborszky L, Ntziachristos V, Dolly JO. Synaptic vesicle cycle and amyloid β: Biting the hand that feeds. Alzheimers Dement 2018; 14:502-513. [PMID: 29494806 DOI: 10.1016/j.jalz.2018.01.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/29/2022]
Abstract
The synaptic vesicle cycle (SVC) holds center stage in the biology of presynaptic terminals. Through recurrent exocytosis and endocytosis, it facilitates a sequence of events enabling chemical neurotransmission between functionally related neurons. As a fundamental process that links the interior of nerve cells with their environment, the SVC is also critical for signaling and provides an entry route for a range of pathogens and toxins, enabling detrimental effects. In Alzheimer's disease, the SVC is both the prime site of amyloid β production and toxicity. In this study, we discuss the emerging evidence for physiological and pathological effects of Aβ on various stages of the SVC, from postfusion membrane recovery to trafficking, docking, and priming of vesicles for fusion and transmitter release. Understanding of the mechanisms of Aβ interaction with the SVC within the unifying calcium hypothesis of aging and Alzheimer's disease should further elucidate the fundamental biology of the presynaptic terminal and reveal novel therapeutic targets for Alzheimer's disease and other age-related dementias.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany; International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
| | - Valerie B O'Leary
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany; Munich School of Bioengineering, Technical University Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| |
Collapse
|
171
|
Jin EJ, Kiral FR, Hiesinger PR. The where, what, and when of membrane protein degradation in neurons. Dev Neurobiol 2018; 78:283-297. [PMID: 28884504 PMCID: PMC5816708 DOI: 10.1002/dneu.22534] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022]
Abstract
Membrane protein turnover and degradation are required for the function and health of all cells. Neurons may live for the entire lifetime of an organism and are highly polarized cells with spatially segregated axonal and dendritic compartments. Both longevity and morphological complexity represent challenges for regulated membrane protein degradation. To investigate how neurons cope with these challenges, an increasing number of recent studies investigated local, cargo-specific protein sorting, and degradation at axon terminals and in dendritic processes. In this review, we explore the current answers to the ensuing questions of where, what, and when membrane proteins are degraded in neurons. © 2017 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 283-297, 2018.
Collapse
Affiliation(s)
- Eugene Jennifer Jin
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
- Graduate School of Biomedical SciencesUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Ferdi Ridvan Kiral
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| | - Peter Robin Hiesinger
- Division of NeurobiologyInstitute for Biology, Freie Universität Berlin14195 BerlinGermany
| |
Collapse
|
172
|
van der Ven AT, Pape JC, Hermann D, Schloesser R, Genius J, Fischer N, Mößner R, Scherbaum N, Wiltfang J, Rujescu D, Benninghoff J. Methylene Blue (Tetramethylthionine Chloride) Influences the Mobility of Adult Neural Stem Cells: A Potentially Novel Therapeutic Mechanism of a Therapeutic Approach in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2018; 57:531-540. [PMID: 28269766 DOI: 10.3233/jad-160755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An interest in neurogenesis in the adult human brain as a relevant and targetable process has emerged as a potential treatment option for Alzheimer's disease and other neurodegenerative conditions. The aim of this study was to investigate the effects of tetramethylthionine chloride (methylene blue, MB) on properties of adult murine neural stem cells. Based on recent clinical studies, MB has increasingly been discussed as a potential treatment for Alzheimer's disease. While no differences in the proliferative capacity were identified, a general potential of MB in modulating the migratory capacity of adult neural stem cells was indicated in a cell mobility assay. To our knowledge, this is the first time that MB could be associated with neural mobility. The results of this study add insight to the spectrum of features of MB within the central nervous system and may be helpful for understanding the molecular mechanisms underlying a potential therapeutic effect of MB.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany.,Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | | | - Dirk Hermann
- Department of Neurology, Chair of Vascular Neurology and Dementia, University Hospital of Essen, Germany
| | | | - Just Genius
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Nadine Fischer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Rainald Mößner
- Department of Psychiatry, University of Tübingen, Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry, University of Göttingen, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle (Saale), Germany
| | - Jens Benninghoff
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| |
Collapse
|
173
|
Li X, Westman E, Thordardottir S, Ståhlbom AK, Almkvist O, Blennow K, Wahlund LO, Graff C. The Effects of Gene Mutations on Default Mode Network in Familial Alzheimer's Disease. J Alzheimers Dis 2018; 56:327-334. [PMID: 27911308 DOI: 10.3233/jad-160730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Familial Alzheimer's disease (FAD) mutations have very high penetrance but age at onset and rate of disease progression differ. Neuroimaging and cerebrospinal fluid (CSF) examinations in mutation carriers (MCs) may provide an opportunity to identify early biomarkers that can be used to track disease progression from presymptomatic to the dementia stages of disease. The default mode network (DMN) is a resting state neuronal network composed of regions known to associate with amyloid deposition in AD. We hypothesized that functional connectivity in the DMN might change at pre-clinical stages in FAD MCs and correlate with changes in CSF biomarkers as a consequence of AD brain pathology. To test the hypothesis, we compared the functional connectivity in DMN between pre-MCs/MCs and non-carriers (NCs). No significant differences between pre-MCs and NCs were observed. When comparing all MCs with NCs, significant decreased functional connectivity in the right inferior parietal lobule, right precuneus, and left posterior cingulate cortex were found. We also found statistically significant correlations between CSF amyloid-β 42 and tau protein levels and average Z-score, a resting-state functional MRI measurement reflecting the degree of the correlation between a given voxel's time courses and the time courses corresponding to DMN, from the region with statistical difference. The observed disruption of DMN and pathological levels of AD CSF-biomarkers in FAD MCs are similar to the changes described in sporadic AD, which give further support that amyloid and tau pathology impairs neuronal and synaptic function.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Radiology, Dongzhimen Hospital affiliated to Beijing University of Chinese Medicine, Beijing, China.,Division of Clinical Geriatrics, Center for Alzheimer Disease Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Disease Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Steinunn Thordardottir
- Division of Neurogeriatrics, Center for Alzheimer Disease Research, Department of NVS, Karolinska nstitutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Anne Kinhult Ståhlbom
- Division of Neurogeriatrics, Center for Alzheimer Disease Research, Department of NVS, Karolinska nstitutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Ove Almkvist
- Division of Clinical Geriatrics, Center for Alzheimer Disease Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden.,Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Center for Alzheimer Disease Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Caroline Graff
- Division of Neurogeriatrics, Center for Alzheimer Disease Research, Department of NVS, Karolinska nstitutet, Huddinge, Sweden.,Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Huddinge, Sweden
| |
Collapse
|
174
|
Vulovic M, Divac N, Jakovcevski I. Confocal Synaptology: Synaptic Rearrangements in Neurodegenerative Disorders and upon Nervous System Injury. Front Neuroanat 2018; 12:11. [PMID: 29497366 PMCID: PMC5818405 DOI: 10.3389/fnana.2018.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 01/26/2023] Open
Abstract
The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system. In the past decade the development of antibodies specific to presynaptic terminals has enabled us to assess, at the optical, laser scanning microscopy level, these subcellular structures, and has provided a simple method for the quantification of various synapses. Indeed, excitatory (glutamatergic) and inhibitory synapses can be visualized using antibodies against the respective vesicular transporters, and choline-acetyl transferase (ChAT) immunoreactivity identifies cholinergic synapses throughout the central nervous system. Here we review the results of several studies in which these methods were used to estimate synaptic numbers as the structural equivalent of functional outcome measures in spinal cord and femoral nerve injuries, as well as in genetic mouse models of neurodegeneration, including Alzheimer's disease (AD). The results implicate disease- and brain region-specific changes in specific types of synapses, which correlate well with the degree of functional deficit caused by the disease process. Additionally, results are reproducible between various studies and experimental paradigms, supporting the reliability of the method. To conclude, this quantitative approach enables fast and reliable estimation of the degree of the progression of neurodegenerative changes and can be used as a parameter of recovery in experimental models.
Collapse
Affiliation(s)
- Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Divac
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Igor Jakovcevski
- Institute for Molecular and Behavioral Neuroscience, University Hospital Cologne, Center for Molecular Medicine Cologne, Cologne, Germany.,Experimental Neurophysiology, German Center for Neurodegenerative Diseases, Bonn, Germany
| |
Collapse
|
175
|
Krishnan B, Kayed R, Taglialatela G. Elevated phospholipase D isoform 1 in Alzheimer's disease patients' hippocampus: Relevance to synaptic dysfunction and memory deficits. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2018; 4:89-102. [PMID: 29560412 PMCID: PMC5857521 DOI: 10.1016/j.trci.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Phospholipase D (PLD), a lipolytic enzyme that breaks down membrane phospholipids, is also involved in signaling mechanisms downstream of seven transmembrane receptors. Abnormally elevated levels of PLD activity are well-established in Alzheimer's disease (AD), implicating the two isoforms of mammalian phosphatidylcholine cleaving PLD (PC-PLD1 and PC-PLD2). Therefore, we took a systematic approach of investigating isoform-specific expression in human synaptosomes and further investigated the possibility of therapeutic intervention using preclinical studies. Methods Synaptosomal Western blot analyses on the postmortem human hippocampus, temporal cortex, and frontal cortex of AD patient brains/age-matched controls and the 3XTg-AD mice hippocampus (mouse model with overexpression of human amyloid precursor protein, presenilin-1 gene, and microtubule-associated protein tau causing neuropathology progressing comparable to that in human AD patients) were used to detect the levels of neuronal PLD1 expression. Mouse hippocampal long-term potentiation of PLD1-dependent changes was studied using pharmacological approaches in ex vivo slice preparations from wild-type and transgenic mouse models. Finally, PLD1-dependent changes in novel object recognition memory were assessed following PLD1 inhibition. Results We observed elevated synaptosomal PLD1 in the hippocampus/temporal cortex from postmortem tissues of AD patients compared to age-matched controls and age-dependent hippocampal PLD1 increases in 3XTg-AD mice. PLD1 inhibition blocked effects of oligomeric amyloid β or toxic oligomeric tau species on high-frequency stimulation long-term potentiation and novel object recognition deficits in wild-type mice. Finally, PLD1 inhibition blocked long-term potentiation deficits normally observed in aging 3XTg-AD mice. Discussion Using human studies, we propose a novel role for PLD1-dependent signaling as a critical mechanism underlying oligomer-driven synaptic dysfunction and consequent memory disruption in AD. We, further, provide the first set of preclinical studies toward future therapeutics targeting PLD1 in slowing down/stopping the progression of AD-related memory deficits as a complementary approach to immunoscavenging clinical trials that are currently in progress.
Collapse
Affiliation(s)
- Balaji Krishnan
- Corresponding author. Tel.: 409 772 8069; Fax: 409 747 0015.
| | | | | |
Collapse
|
176
|
Bazazzadegan N, Dehghan Shasaltaneh M, Saliminejad K, Kamali K, Banan M, Nazari R, Riazi GH, Khorram Khorshid HR. Effects of Ectoine on Behavior and Candidate Genes Expression in ICV-STZ Rat Model of Sporadic Alzheimer's Disease. Adv Pharm Bull 2018; 7:629-636. [PMID: 29399553 PMCID: PMC5788218 DOI: 10.15171/apb.2017.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose: Alzheimer's disease (AD) is pathologically defined by the presence of amyloid plaques and tangles in the brain, therefore, any drug or compound with potential effect on lowering amyloid plaques, could be noticed for AD management especially in the primary phases of the disease. Ectoine constitutes a group of small molecule chaperones (SMCs). SMCs inhibit proteins and other changeable macromolecular structures misfolding from environmental stresses. Ectoine has been reported successfully prohibit insulin amyloid formation in vitro. Methods: We selected eight genes, DAXX, NFκβ, VEGF, PSEN1, MTAP2, SYP, MAPK3 and TNFα genes which had previously showed significant differential expression in Alzheimer human brain and STZ- rat model. We considered the neuroprotective efficacy by comparing the expression of candidate genes levels in the hippocampus of rat model of Sopradic Alzheimer's disease (SAD), using qPCR in compound-treated and control groups as well as therapeutic effects at learning and memory levels by using Morris Water Maze (MWM) test. Results: Our results showed significant down-regulation of Syp, Mapk3 and Tnfα and up-regulation of Vegf in rat's hippocampus after treatment with ectoine comparing to the STZ-induced group. In MWM, there was no significant change in swimming distance and time for finding the hidden platform in treated comparing to STZ-induced group. In addition, it wasn't seen significant change in compound-treated comparing to STZ-induced and control groups in memory level. Conclusion: It seems this compound may have significant effect on expression level of some AD- related genes but not on clinical levels.
Collapse
Affiliation(s)
- Niloofar Bazazzadegan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Dehghan Shasaltaneh
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Koorosh Kamali
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Banan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Nazari
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- Laboratory of Neuro-organic Chemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | |
Collapse
|
177
|
Yang X, Yao C, Tian T, Li X, Yan H, Wu J, Li H, Pei L, Liu D, Tian Q, Zhu LQ, Lu Y. A novel mechanism of memory loss in Alzheimer's disease mice via the degeneration of entorhinal-CA1 synapses. Mol Psychiatry 2018; 23:199-210. [PMID: 27671476 PMCID: PMC5794875 DOI: 10.1038/mp.2016.151] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/13/2022]
Abstract
The entorhinal cortex (EC) is one of the most vulnerable brain regions that is attacked during the early stage of Alzheimer's disease (AD). Here, we report that the synaptic terminals of pyramidal neurons in the EC layer II (ECIIPN) directly innervate CA1 parvalbumin (PV) neurons (CA1PV) and are selectively degenerated in AD mice, which exhibit amyloid-β plaques similar to those observed in AD patients. A loss of ECIIPN-CA1PV synapses disables the excitatory and inhibitory balance in the CA1 circuit and impairs spatial learning and memory. Optogenetic activation of ECIIPN using a theta burst paradigm rescues ECIIPN-CA1PV synaptic defects and intercepts the decline in spatial learning and memory. These data reveal a novel mechanism of memory loss in AD mice via the selective degeneration of the ECIIPN-CA1PV pathway.
Collapse
Affiliation(s)
- X Yang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - C Yao
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - T Tian
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - X Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - H Yan
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - J Wu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - H Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - L Pei
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China,Department of Neurobiology, Tongji School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - D Liu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China,Department of Genetics, Tongji School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Q Tian
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China,Department of Pathophysiology, Tongji School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - L-Q Zhu
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China,Department of Pathophysiology, Tongji School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. E-mail: or
| | - Y Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China,Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. E-mail: or
| |
Collapse
|
178
|
Jin L, Li YP, Feng Q, Ren L, Wang F, Bo GJ, Wang L. Cognitive deficits and Alzheimer-like neuropathological impairments during adolescence in a rat model of type 2 diabetes mellitus. Neural Regen Res 2018; 13:1995-2004. [PMID: 30233075 PMCID: PMC6183048 DOI: 10.4103/1673-5374.239448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have shown that many patients who suffer from type 2 diabetes mellitus exhibit cognitive dysfunction and neuronal synaptic impairments. Therefore, growing evidence suggests that type 2 diabetes mellitus has a close relationship with occurrence and progression of neurodegeneration and neural impairment in Alzheimer's disease. However, the relationship between metabolic disorders caused by type 2 diabetes mellitus and neurodegeneration and neural impairments in Alzheimer's disease is still not fully determined. Thus, in this study, we replicated a type 2 diabetic animal model by subcutaneous injection of newborn Sprague-Dawley rats with monosodium glutamate during the neonatal period. At 3 months old, the Barnes maze assay was performed to evaluate spatial memory function. Microelectrodes were used to measure electrophysiological function in the hippocampal CA1 region. Western blot assay was used to determine expression levels of glutamate ionotropic receptor NMDA type subunit 2A (GluN2A) and GluN2B in the hippocampus. Enzyme-linked immunosorbent assay was used to determine levels of interleukin-1β, tumor necrosis factor α, and interleukin-6 in the hippocampus and cerebral cortex, as well as hippocampal amyloid beta (Aβ)1–40 and Aβ1–42 levels. Our results showed that in the rat model of type 2 diabetes mellitus caused by monosodium glutamate exposure during the neonatal period, latency was prolonged and the number of errors increased in the Barnes maze. Further, latency was increased and time in the escape platform quadrant shortened. Number of times crossing the platform was also reduced in the Morris water maze. After high frequency stimulation of the hippocampus, synaptic transmission was inhibited, expression of GluN2A and GluN2B were decreased in the hippocampus, expression of interleukin 1β, interleukin 6, and tumor necrosis factor α was increased in the hippocampus and cortex, and levels of Aβ1–40 and Aβ1–42 were increased in the hippocampus. These findings confirm that type 2 diabetes mellitus induced by neonatal monosodium glutamate exposure results in Alzheimer-like neuropathological changes and further causes cognitive deficits and neurodegeneration in young adulthood.
Collapse
Affiliation(s)
- Li Jin
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| | - Yi-Pei Li
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| | - Qiong Feng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology; Department of Pathology, Wuhan Children's Hospital, Wuhan, Hubei Province, China
| | - Li Ren
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| | - Fang Wang
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| | - Guo-Jia Bo
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| | - Li Wang
- Department of Pathophysiology; Henan Key Laboratory of Degenerative Brain Disease, Henan Medical College, Zhengzhou, Henan Province, China
| |
Collapse
|
179
|
Xanthoceraside modulates NR2B-containing NMDA receptors at synapses and rescues learning-memory deficits in APP/PS1 transgenic mice. Psychopharmacology (Berl) 2018; 235:337-349. [PMID: 29124300 DOI: 10.1007/s00213-017-4775-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023]
Abstract
RATIONALE Alzheimer's disease (AD) is characterized by memory loss and synaptic damage. Previous studies suggested that xanthoceraside decreases glutamate-induced PC12 cell death, ameliorates memory deficits, and increases the number of dendritic spines in AD mice. These results indicated that xanthoceraside might have activities that protect synaptic plasticity. Herein, we detected the effect of xanthoceraside on synaptic function. MATERIALS AND METHODS Three-month-old APP/PS1 transgenic mice were orally treated with xanthoceraside (0.02, 0.08, or 0.32 mg/kg) once daily for 4 months and then behavioral tests were performed. LTP and Fluo-4/AM were carried out in vivo and in vitro, respectively. CaMKII-GluR1 and NR2B-associated proteins on synapses were measured. RESULTS Xanthoceraside administration alleviated learning-memory deficits and increased the LTP in APP/PS1 transgenic mice. Meanwhile, xanthoceraside increased the expression of pT286-CaMKII in synaptic and extrasynaptic pools and CaMKII, pS831-GluR1, and GluR1 in synaptic pools. In addition, xanthoceraside increased the total pY1472-NR2B and NR2B expression and increased the levels of pY1472-NR2B in synaptic and extrasynaptic pools and NR2B in synaptic pools. However, NR2B was decreased in extrasynaptic pools, which might be associated with decreased expression of STEP61 and pY531-Fyn. In vitro studies showed that xanthoceraside inhibited intracellular calcium overload and increased the number of and extended the length of dendrites in primary hippocampal neurons compared with the Aβ25-35 group. CONCLUSIONS The mechanism of xanthoceraside on ameliorating learning-memory deficits might be related to decrease intracellular calcium overload, increase CaMKII-GluR1 proteins, and up-regulate trafficking of pY1472-NR2B at synapse, thereby improving LTP in APP/PS1 transgenic mice.
Collapse
|
180
|
Bolós M, Pallas-Bazarra N, Terreros-Roncal J, Perea JR, Jurado-Arjona J, Ávila J, Llorens-Martín M. Soluble Tau has devastating effects on the structural plasticity of hippocampal granule neurons. Transl Psychiatry 2017; 7:1267. [PMID: 29217824 PMCID: PMC5802513 DOI: 10.1038/s41398-017-0013-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/30/2017] [Indexed: 12/26/2022] Open
Abstract
Tau is a neuronal microtubule-associated protein with countless physiological functions. Although the detrimental effects of insoluble aggregated Tau have been widely studied, recent evidence supports the notion that soluble Tau (composed mostly of monomers and dimers) is also toxic for neurons. Here we evaluated the long-term impact of a single stereotaxic injection of human soluble Tau on hippocampal granule neurons in mice. At the ultrastructural level, soluble Tau reduced the number of afferent synapses and caused a dramatic depletion of synaptic vesicles both in afferent and efferent synapses. Furthermore, the use of an RFP-expressing retrovirus revealed that soluble Tau altered the morphology of newborn granule neurons and reduced their afferent (dendritic spines) and efferent (mossy fiber terminals) connectivity. Finally, soluble Tau caused specific impairment of behavioral pattern separation capacity. Our results thus demonstrate for the first time that soluble Tau causes long-term detrimental effects on the morphology and connectivity of newborn granule neurons and that these effects correlate with impaired behavioral pattern separation skills. These data might be relevant for the field of neurodegenerative disorders, since they contribute to reinforcing the pathological roles played by distinct Tau species in vivo.
Collapse
Affiliation(s)
- M Bolós
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - N Pallas-Bazarra
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Terreros-Roncal
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - JR Perea
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Jurado-Arjona
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - J Ávila
- grid.465524.4Department of Molecular Neuropathology, Centro de Biología Molecular “Severo Ochoa”, CBMSO, CSICUAM, Madrid, Spain ,0000 0004 1762 4012grid.418264.dNetwork Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - M Llorens-Martín
- Department of Molecular Neuropathology, Centro de Biología Molecular "Severo Ochoa", CBMSO, CSICUAM, Madrid, Spain. .,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain. .,Department of Molecular Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
181
|
McLeod F, Marzo A, Podpolny M, Galli S, Salinas P. Evaluation of Synapse Density in Hippocampal Rodent Brain Slices. J Vis Exp 2017. [PMID: 29053699 PMCID: PMC5752395 DOI: 10.3791/56153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the brain, synapses are specialized junctions between neurons, determining the strength and spread of neuronal signaling. The number of synapses is tightly regulated during development and neuronal maturation. Importantly, deficits in synapse number can lead to cognitive dysfunction. Therefore, the evaluation of synapse number is an integral part of neurobiology. However, as synapses are small and highly compact in the intact brain, the assessment of absolute number is challenging. This protocol describes a method to easily identify and evaluate synapses in hippocampal rodent slices using immunofluorescence microscopy. It includes a three-step procedure to evaluate synapses in high-quality confocal microscopy images by analyzing the co-localization of pre- and postsynaptic proteins in hippocampal slices. It also explains how the analysis is performed and gives representative examples from both excitatory and inhibitory synapses. This protocol provides a solid foundation for the analysis of synapses and can be applied to any research investigating the structure and function of the brain.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London;
| | - Aude Marzo
- Department of Cell and Developmental Biology, University College London;
| | - Marina Podpolny
- Department of Cell and Developmental Biology, University College London
| | - Soledad Galli
- Department of Cell and Developmental Biology, University College London
| | - Patricia Salinas
- Department of Cell and Developmental Biology, University College London
| |
Collapse
|
182
|
Jeong S. Molecular and Cellular Basis of Neurodegeneration in Alzheimer's Disease. Mol Cells 2017; 40:613-620. [PMID: 28927263 PMCID: PMC5638769 DOI: 10.14348/molcells.2017.0096] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/06/2017] [Accepted: 08/16/2017] [Indexed: 12/25/2022] Open
Abstract
The most common form of senile dementia is Alzheimer's disease (AD), which is characterized by the extracellular deposition of amyloid β-peptide (Aβ) plaques and the intracellular formation of neurofibrillary tangles (NFTs) in the cerebral cortex. Tau abnormalities are commonly observed in many neurodegenerative diseases including AD, Parkinson's disease, and Pick's disease. Interestingly, tau-mediated formation of NFTs in AD brains shows better correlation with cognitive impairment than Aβ plaque accumulation; pathological tau alone is sufficient to elicit frontotemporal dementia, but it does not cause AD. A growing amount of evidence suggests that soluble Aβ oligomers in concert with hyperphosphorylated tau (pTau) serve as the major pathogenic drivers of neurodegeneration in AD. Increased Aβ oligomers trigger neuronal dysfunction and network alternations in learning and memory circuitry prior to clinical onset of AD, leading to cognitive decline. Furthermore, accumulated damage to mitochondria in the course of aging, which is the best-known nongenetic risk factor for AD, may collaborate with soluble Aβ and pTau to induce synapse loss and cognitive impairment in AD. In this review, I summarize and discuss the current knowledge of the molecular and cellular biology of AD and also the mechanisms that underlie Aβ-mediated neurodegeneration.
Collapse
Affiliation(s)
- Sangyun Jeong
- Department of Molecular Biology, Chonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
183
|
Theofilas P, Ehrenberg AJ, Nguy A, Thackrey JM, Dunlop S, Mejia MB, Alho AT, Paraizo Leite RE, Rodriguez RD, Suemoto CK, Nascimento CF, Chin M, Medina-Cleghorn D, Cuervo AM, Arkin M, Seeley WW, Miller BL, Nitrini R, Pasqualucci CA, Filho WJ, Rueb U, Neuhaus J, Heinsen H, Grinberg LT. Probing the correlation of neuronal loss, neurofibrillary tangles, and cell death markers across the Alzheimer's disease Braak stages: a quantitative study in humans. Neurobiol Aging 2017; 61:1-12. [PMID: 29031088 DOI: 10.1016/j.neurobiolaging.2017.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Clarifying the mechanisms connecting neurofibrillary tangle (NFT) neurotoxicity to neuronal dysfunction in humans is likely to be pivotal for developing effective treatments for Alzheimer's disease (AD). To model the temporal progression of AD in humans, we used a collection of brains with controls and individuals from each Braak stage to quantitatively investigate the correlation between intraneuronal caspase activation or macroautophagy markers, NFT burden, and neuronal loss, in the dorsal raphe nucleus and locus coeruleus, the earliest vulnerable areas to NFT accumulation. We fit linear regressions with each count as outcomes, with Braak score and age as the predictors. In progressive Braak stages, intraneuronal active caspase-6 positivity increases both alone and overlapping with NFTs. Likewise, the proportion of NFT-bearing neurons showing autophagosomes increases. Overall, caspases may be involved in upstream cascades in AD and are associated with higher NFTs. Macroautophagy changes correlate with increasing NFT burden from early AD stages.
Collapse
Affiliation(s)
- Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander J Ehrenberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Austin Nguy
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Julia M Thackrey
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Sara Dunlop
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Mejia
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ana T Alho
- Hospital Albert Einstein, São Paulo, Brazil; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Claudia K Suemoto
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Camila F Nascimento
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcus Chin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Medina-Cleghorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Ana Maria Cuervo
- Departments of Developmental and Molecular Biology, Anatomy and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michelle Arkin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Wilson Jacob Filho
- Division of Geriatrics, LIM-22, University of São Paulo Medical School, São Paulo, Brazil
| | - Udo Rueb
- Dr. Senckenbergisches Chronomedizinisches Institut, Department of Anatomy, J. W. Goethe University Frankfurt am Main, Frankfurt, Germany
| | - John Neuhaus
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Helmut Heinsen
- Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil; Department of Psychiatry, University of Wuerzburg, Wuerzburg, Germany
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, LIM-22, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
184
|
Jahn K, Wieltsch C, Blumer N, Mehlich M, Pathak H, Khan AQ, Hildebrandt H, Frieling H. A cell culture model for investigation of synapse influenceability: epigenetics, expression and function of gene targets important for synapse formation and preservation in SH-SY5Y neuroblastoma cells differentiated by retinoic acid. J Neural Transm (Vienna) 2017; 124:1341-1367. [DOI: 10.1007/s00702-017-1769-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/23/2017] [Indexed: 12/13/2022]
|
185
|
Ferrero H, Larrayoz IM, Martisova E, Solas M, Howlett DR, Francis PT, Gil-Bea FJ, Martínez A, Ramírez MJ. Increased Levels of Brain Adrenomedullin in the Neuropathology of Alzheimer’s Disease. Mol Neurobiol 2017; 55:5177-5183. [DOI: 10.1007/s12035-017-0700-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
|
186
|
Colin J, Allouche A, Chauveau F, Corbier C, Pauron-Gregory L, Lanhers MC, Claudepierre T, Yen FT, Oster T, Malaplate-Armand C. Improved Neuroprotection Provided by Drug Combination in Neurons Exposed to Cell-Derived Soluble Amyloid-β Peptide. J Alzheimers Dis 2017; 52:975-87. [PMID: 27163806 DOI: 10.3233/jad-151110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Oligomeric amyloid-β (Aβ) peptide contributes to impaired synaptic connections and neurodegenerative processes, and as such, represents a primary therapeutic target for Alzheimer's disease (AD)-modifying approaches. However, the lack of efficacy of drugs that inhibit production of Aβ demonstrates the need for a better characterization of its toxic effects, both on synaptic and neuronal function. Here, we used conditioned medium obtained from recombinant HEK-AβPP cells expressing the human amyloid-β protein precursor (Aβ-CM), to investigate Aβ-induced neurotoxic and synaptotoxic effects. Characterization of Aβ-CM revealed that it contained picomolar amounts of cell-secreted Aβ in its soluble form. Incubation of primary cortical neurons with Aβ-CM led to significant decreases in synaptic protein levels as compared to controls. This effect was no longer observed in neurons incubated with conditioned medium obtained from HEK-AβPP cells grown in presence of the γ-secretase inhibitor, Semagacestat or LY450139 (LY-CM). However, neurotoxic and pro-apoptotic effects of Aβ-CM were only partially prevented using LY-CM, which could be explained by other deleterious compounds related to chronic oxidative stress that were released by HEK-AβPP cells. Indeed, full neuroprotection was observed in cells exposed to LY-CM by additional treatment with the antioxidant resveratrol, or with the pluripotent n-3 polyunsaturated fatty acid docosahexaenoic acid. Inhibition of Aβ production appeared necessary but insufficient to prevent neurodegenerative effects associated with AD due to other neurotoxic compounds that could exert additional deleterious effects on neuronal function and survival. Therefore, association of various types of protective agents needs to be considered when developing strategies for AD treatment.
Collapse
Affiliation(s)
- Julie Colin
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Ahmad Allouche
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Fabien Chauveau
- Université de Lyon 1, Lyon Neuroscience Research Center; CNRS UMR5292; INSERM U1028; Lyon, France
| | - Catherine Corbier
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Lynn Pauron-Gregory
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | | | - Thomas Claudepierre
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Frances T Yen
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Thierry Oster
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France
| | - Catherine Malaplate-Armand
- Université de Lorraine, ENSAIA, UR AFPA, EA 3998, USC INRA 0340, Nancy, France.,Laboratoire de Biochimie, Hôpital Central, CHU de Nancy, CO n°34, Nancy, France
| |
Collapse
|
187
|
Esteves I, Lopes-Aguiar C, Rossignoli M, Ruggiero R, Broggini A, Bueno-Junior L, Kandratavicius L, Monteiro M, Romcy-Pereira R, Leite J. Chronic nicotine attenuates behavioral and synaptic plasticity impairments in a streptozotocin model of Alzheimer’s disease. Neuroscience 2017; 353:87-97. [DOI: 10.1016/j.neuroscience.2017.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023]
|
188
|
Xia Z, Wang F, Zhou S, Zhang R, Wang F, Huang JH, Wu E, Zhang Y, Hu Y. Catalpol protects synaptic proteins from beta-amyloid induced neuron injury and improves cognitive functions in aged rats. Oncotarget 2017; 8:69303-69315. [PMID: 29050205 PMCID: PMC5642480 DOI: 10.18632/oncotarget.17951] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022] Open
Abstract
Synapse loss is one of the common factors contributing to cognitive disorders, such as Alzheimer’s disease (AD), which is manifested by the impairment of basic cognitive functions including memory processing, perception, problem solving, and language. The current therapies for patients with cognitive disorders are mainly palliative; thus, regimens preventing and/or delaying dementia progression are urgently needed. In this study, we evaluated the effects of catalpol, isolated from traditional Chinese medicine Rehmannia glutinosa, on synaptic plasticity in aged rat models. We found that catalpol markedly improved the cognitive function of aged male Sprague-Dawley rats and simultaneously increased the expression of synaptic proteins (dynamin 1, PSD-95, and synaptophysin) in the cerebral cortex and hippocampus, respectively. In beta-amyloid (Aβ) injured primary rat’s cortical neuron, catalpol did not increase the viability of neuron but extended the length of microtubule-associated protein 2 (MAP-2) positive neurites and reversed the suppressive effects on expression of synaptic proteins induced by Aβ. Additionally, the effects of catalpol on stimulating the growth of MAP-2 positive neurites and the expression of synaptic proteins were diminished by a PKC inhibitor, bisindolylmaleimide I, suggesting that PKC may be implicated in catalpol’s function of preventing the neurodegeneration induced by Aβ. Altogether, our study indicates that catalpol could be a potential disease-modifying drug for cognitive disorders such as AD.
Collapse
Affiliation(s)
- Zhiming Xia
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China.,Current address: Department of Nuclear Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Fengfei Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Neurology, Baylor Scott & White Health, Temple, Texas 78508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Shuang Zhou
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA
| | - Rui Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Fushun Wang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Psychology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas 76508, USA.,Department of Surgery, Texas A & M University College of Medicine, Temple, Texas 76504, USA.,Department of Pharmaceutical Sciences, Texas A & M University College of Pharmacy, College Station, Texas 77843, USA
| | - Yongfang Zhang
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Yaer Hu
- Research Laboratory of Cell Regulation, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| |
Collapse
|
189
|
Li K, Wei Q, Liu FF, Hu F, Xie AJ, Zhu LQ, Liu D. Synaptic Dysfunction in Alzheimer's Disease: Aβ, Tau, and Epigenetic Alterations. Mol Neurobiol 2017; 55:3021-3032. [PMID: 28456942 DOI: 10.1007/s12035-017-0533-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized in the early stages by loss of learning and memory. However, the mechanism underlying these symptoms remains unclear. The best correlation between cognitive decline and pathological changes is in synaptic dysfunction. Histopathological hallmarks of AD are the abnormal aggregation of Aβ and Tau. Evidence suggests that Aβ and Tau oligomers contribute to synaptic loss in AD. Recently, direct links between epigenetic alterations, such as dysfunction in non-coding RNAs (ncRNAs), and synaptic pathologies have emerged, raising interest in exploring the potential roles of ncRNAs in the synaptic deficits in AD. In this paper, we summarize the potential roles of Aβ, Tau, and epigenetic alterations (especially by ncRNAs) in the synaptic dysfunction of AD and discuss the novel findings in this area.
Collapse
Affiliation(s)
- Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qing Wei
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fang Liu
- Department of Pathology, Central Hospital of Wuhan, Wuhan, 430014, People's Republic of China
| | - Fan Hu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ao-Ji Xie
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
190
|
López ME, Engels MMA, van Straaten ECW, Bajo R, Delgado ML, Scheltens P, Hillebrand A, Stam CJ, Maestú F. MEG Beamformer-Based Reconstructions of Functional Networks in Mild Cognitive Impairment. Front Aging Neurosci 2017; 9:107. [PMID: 28487647 PMCID: PMC5403893 DOI: 10.3389/fnagi.2017.00107] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
Subjects with mild cognitive impairment (MCI) have an increased risk of developing Alzheimer’s disease (AD), and their functional brain networks are presumably already altered. To test this hypothesis, we compared magnetoencephalography (MEG) eyes-closed resting-state recordings from 29 MCI subjects and 29 healthy elderly subjects in the present exploratory study. Functional connectivity in different frequency bands was assessed with the phase lag index (PLI) in source space. Normalized weighted clustering coefficient (normalized Cw) and path length (normalized Lw), as well as network measures derived from the minimum spanning tree [MST; i.e., betweenness centrality (BC) and node degree], were calculated. First, we found altered PLI values in the lower and upper alpha bands in MCI patients compared to controls. Thereafter, we explored network differences in these frequency bands. Normalized Cw and Lw did not differ between the groups, whereas BC and node degree of the MST differed, although these differences did not survive correction for multiple testing using the False Discovery Rate (FDR). As an exploratory study, we may conclude that: (1) the increases and decreases observed in PLI values in lower and upper alpha bands in MCI patients may be interpreted as a dual pattern of disconnection and aberrant functioning; (2) network measures are in line with connectivity findings, indicating a lower efficiency of the brain networks in MCI patients; (3) the MST centrality measures are more sensitive to detect subtle differences in the functional brain networks in MCI than traditional graph theoretical metrics.
Collapse
Affiliation(s)
- Maria E López
- Laboratory of Neuropsychology, Universitat de les Illes BalearsPalma de Mallorca, Spain.,Networking Research Center on Bioengineering, Biomaterials and NanomedicineMadrid, Spain
| | - Marjolein M A Engels
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical CenterAmsterdam, Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical CenterAmsterdam, Netherlands.,Nutricia Advanced Medical Nutrition, Nutricia ResearchUtrecht, Netherlands
| | - Ricardo Bajo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of MadridMadrid, Spain
| | - María L Delgado
- Seniors Center of the District of ChamartínMadrid, Spain.,Department of Basic Psychology II, Complutense University of MadridMadrid, Spain
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical CenterAmsterdam, Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical CenterAmsterdam, Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical CenterAmsterdam, Netherlands
| | - Fernando Maestú
- Networking Research Center on Bioengineering, Biomaterials and NanomedicineMadrid, Spain.,Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Complutense University of Madrid and Technical University of MadridMadrid, Spain.,Department of Basic Psychology II, Complutense University of MadridMadrid, Spain
| |
Collapse
|
191
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
192
|
Acebes A. Brain Mapping and Synapse Quantification In vivo: It's Time to Imaging. Front Neuroanat 2017; 11:17. [PMID: 28326022 PMCID: PMC5339251 DOI: 10.3389/fnana.2017.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Angel Acebes
- Department of Basic Medical Sciences, Centre for Biomedical Research of the Canary Islands, Institute of Biomedical Technologies, University of La Laguna La Laguna, Spain
| |
Collapse
|
193
|
Yu M, Engels MMA, Hillebrand A, van Straaten ECW, Gouw AA, Teunissen C, van der Flier WM, Scheltens P, Stam CJ. Selective impairment of hippocampus and posterior hub areas in Alzheimer’s disease: an MEG-based multiplex network study. Brain 2017; 140:1466-1485. [PMID: 28334883 DOI: 10.1093/brain/awx050] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Meichen Yu
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marjolein M A Engels
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Elisabeth C W van Straaten
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Nutricia Advanced Medical Nutrition, Nutricia Research, Utrecht, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry lab and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
194
|
Yin J, Zhao F, Chojnacki JE, Fulp J, Klein WL, Zhang S, Zhu X. NLRP3 Inflammasome Inhibitor Ameliorates Amyloid Pathology in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2017; 55:1977-1987. [PMID: 28255908 DOI: 10.1007/s12035-017-0467-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022]
Abstract
The activation of the NLRP3 inflammasome signaling pathway plays an important role in the neuroinflammation in Alzheimer's disease (AD). In this study, we investigated the effects of JC-124, a rationally designed NLRP3 inflammasome inhibitor, on AD-related deficits in CRND8 APP transgenic mice (TgCRND8). We first demonstrated increased formation and activation of NLRP3 inflammasome in TgCRND8 mice compared to non-transgenic littermate controls, which was inhibited by the treatment with JC-124. Importantly, JC-124 treatment led to decreased levels of Aβ deposition and decreased levels of soluble and insoluble Aβ1-42 in the brain of CRND8 mice which was accompanied by reduced β-cleavage of APP, reduced activation of microglia but enhanced astrocytosis. Oxidative stress was decreased and synaptophysin was increased in the CRND8 mice after JC-124 treatment, demonstrating a neuroprotective effect. Overall, these data demonstrated beneficial effects of JC-124 as a specific NLRP3 inflammasome inhibitor in AD mouse model and supported the further development of NLRP3 inflammasome inhibitors as a viable option for AD therapeutics.
Collapse
Affiliation(s)
- Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Jeremy E Chojnacki
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jacob Fulp
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - William L Klein
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
195
|
Buccarello L, Grignaschi G, Castaldo AM, Di Giancamillo A, Domeneghini C, Melcangi RC, Borsello T. Sex Impact on Tau-Aggregation and Postsynaptic Protein Levels in the P301L Mouse Model of Tauopathy. J Alzheimers Dis 2017; 56:1279-1292. [DOI: 10.3233/jad-161087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lucia Buccarello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Giuliano Grignaschi
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
| | - Anna Maria Castaldo
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Biomedical Sciences for Health, Universitá degli Studi di Milano, Italy
| | - Alessia Di Giancamillo
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Cinzia Domeneghini
- Department of Health, Animal Science and Food Safety, Universitá degli Studi di Milano, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, Universitá degli Studi di Milano, Italy
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Mario Negri Institute for Pharmacological Research, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Universitá degli Studi di Milano, Italy
| |
Collapse
|
196
|
Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchán-Pérez Á, Rodríguez JR, Dorostkar MM, DeFelipe J, Herms J. High plasticity of axonal pathology in Alzheimer's disease mouse models. Acta Neuropathol Commun 2017; 5:14. [PMID: 28173876 PMCID: PMC5296955 DOI: 10.1186/s40478-017-0415-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/26/2017] [Indexed: 02/05/2023] Open
Abstract
Axonal dystrophies (AxDs) are swollen and tortuous neuronal processes that are associated with extracellular depositions of amyloid β (Aβ) and have been observed to contribute to synaptic alterations occurring in Alzheimer's disease. Understanding the temporal course of this axonal pathology is of high relevance to comprehend the progression of the disease over time. We performed a long-term in vivo study (up to 210 days of two-photon imaging) with two transgenic mouse models (dE9xGFP-M and APP-PS1xGFP-M). Interestingly, AxDs were formed only in a quarter of GFP-expressing axons near Aβ-plaques, which indicates a selective vulnerability. AxDs, especially those reaching larger sizes, had long lifetimes and appeared as highly plastic structures with large variations in size and shape and axonal sprouting over time. In the case of the APP-PS1 mouse only, the formation of new long axonal segments in dystrophic axons (re-growth phenomenon) was observed. Moreover, new AxDs could appear at the same point of the axon where a previous AxD had been located before disappearance (re-formation phenomenon). In addition, we observed that most AxDs were formed and developed during the imaging period, and numerous AxDs had already disappeared by the end of this time. This work is the first in vivo study analyzing quantitatively the high plasticity of the axonal pathology around Aβ plaques. We hypothesized that a therapeutically early prevention of Aβ plaque formation or their growth might halt disease progression and promote functional axon regeneration and the recovery of neural circuits.
Collapse
|
197
|
Li Y, Zhao L, Gu B, Cai J, Lv Y, Yu L. Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats. PLoS One 2017; 12:e0171491. [PMID: 28152068 PMCID: PMC5289643 DOI: 10.1371/journal.pone.0171491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose The role of exercise to prevent or reverse aging-induced cognitive decline has been widely reported. This neuroprotection is associated with changes in the synaptic structure plasticity. However, the mechanisms of exercise-induced synaptic plasticity in the aging brain are still unclear. Thus, the aim of the present study is to investigate the aging-related alterations of Rho-GTPase and the modulatory influences of exercise training. Methods Young and old rats were used in this study. Old rats were subjected to different schedules of aerobic exercise (12 m/min, 60 min/d, 3d/w or 5d/w) or kept sedentary for 12 w. After 12 w of aerobic exercise, the synapse density in the cortex and hippocampus was detected with immunofluorescent staining using synaptophysin as a marker. The total protein levels of RhoA, Rac1, Cdc42 and cofilin in the cortex and hippocampus were detected with Western Blot. The activities of RhoA, Rac1 and Cdc42 were determined using a pull down assay. Results We found that synapse loss occurred in aging rats. However, the change of expression and activity of RhoA, Rac1 and Cdc42 was different in the cortex and hippocampus. In the cortex, the expression and activity of Rac1 and Cdc42 was greatly increased with aging, whereas there were no changes in the expression and activity of RhoA. In the hippocampus, the expression and activity of Rac1 and Cdc42 was greatly decreased and there were no changes in the expression and activity of RhoA. As a major downstream substrate of the Rho GTPase family, the increased expression of cofilin was only observed in the cortex. High frequency exercise ameliorated all aging-related changes in the cortex and hippocampus. Conclusions These data suggest that aerobic exercise reverses synapse loss in the cortex and hippocampus in aging rats, which might be related to the regulation of Rho GTPases.
Collapse
Affiliation(s)
- Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- * E-mail:
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
198
|
Hensley K, Kursula P. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer's Disease: Comparison and Contrast with Microtubule-Associated Protein Tau. J Alzheimers Dis 2017; 53:1-14. [PMID: 27079722 PMCID: PMC4942723 DOI: 10.3233/jad-160076] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit.
Collapse
Affiliation(s)
- Kenneth Hensley
- Department of Pathology, University of Toledo Health Science Campus, Toledo, OH, USA
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
199
|
Zhang W, Wu Q, Lu YL, Gong QH, Zhang F, Shi JS. Protective effects of Dendrobium nobile Lindl. alkaloids on amyloid beta (25-35)-induced neuronal injury. Neural Regen Res 2017; 12:1131-1136. [PMID: 28852396 PMCID: PMC5558493 DOI: 10.4103/1673-5374.211193] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA), the active ingredients of a traditional Chinese medicine Dendrobium, have been shown to have anti-oxidative effects, anti-inflammatory action, and protective effect on neurons against oxygen-glucose deprivation. However, it is not clear whether DNLA reduces amyloid-beta (Aβ)-induced neuronal injury. In this study, cortical neurons were treated with DNLA at different concentrations (0.025, 0.25, and 2.5 mg/L) for 24 hours, followed by administration of Aβ25-35 (10 μM). Aβ25-35 treatments increased cell injury as determined by the leakage of lactate dehydrogenase, which was accompanied by chromatin condensation and mitochondrial tumefaction. The damage caused by Aβ25-35 on these cellular properties was markedly attenuated when cells were pretreated with DNLA. Treatment with Aβ25-35 down-regulated the expressions of postsynaptic density-95 mRNA and decreased the protein expression of synaptophysin and postsynaptic density-95, all changes were significantly reduced by pretreatment of cells with DNLA. These findings suggest that DNLA reduces the cytotoxicity induced by Aβ25-35 in rat primary cultured neurons. The protective mechanism that DNLA confers on the synaptic integrity of cultured neurons might be mediated, at least in part, through the upregulation of neurogenesis related proteins synaptophysin and postsynaptic density-95.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou Province, China
| |
Collapse
|
200
|
Sølvsten CAE, de Paoli F, Christensen JH, Nielsen AL. Voluntary Physical Exercise Induces Expression and Epigenetic Remodeling of VegfA in the Rat Hippocampus. Mol Neurobiol 2016; 55:567-582. [DOI: 10.1007/s12035-016-0344-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
|