151
|
Varga V, Székely AD, Csillag A, Sharp T, Hajós M. Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 2002; 106:783-92. [PMID: 11682163 DOI: 10.1016/s0306-4522(01)00294-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent electrophysiological studies demonstrate that the ventral medial prefrontal cortex has a powerful inhibitory influence on 5-hydroxytryptamine (5-HT) neurones in the dorsal raphe nucleus. Here we utilised a combination of anatomical and electrophysiological methods to characterise the cellular substrate underlying this effect.Anterograde tracing (Phaseolus vulgaris leucoagglutinin) using electron microscopy demonstrated a pathway from the ventral medial prefrontal cortex that makes neuronal contacts throughout the dorsal raphe nucleus. These contacts were predominantly asymmetrical synapses adjoining GABA immunoreactive dendrites and spines. In vivo extracellular recordings were made in the dorsal raphe nucleus of the anaesthetised rat from a subpopulation of non-5-HT neurones. These neurones were fast-firing, irregular and with short spike width, properties strongly reminiscent of immunochemically identified GABA interneurones in other brain regions. Recordings of classical 5-HT neurones were also included. Electrical stimulation of the ventral medial prefrontal cortex elicited a rapid onset (16 ms latency), orthodromic excitation of the non-5-HT neurones (13/25 neurones). This stimulation also caused a pronounced inhibition of most 5-HT neurones tested, with a longer latency (30 ms), and this was partially blocked by locally applied bicuculline. These data provide the first evidence that the ventral medial prefrontal cortex influences the activity of large numbers of raphe 5-HT neurones by targeting a local network of GABA neurones. This circuitry predicts that physiological and pathological changes in the ventral medial prefrontal cortex will impact on significant parts of the forebrain 5-HT system.
Collapse
Affiliation(s)
- V Varga
- Department of Anatomy, Semmelweis University Budapest, Hungary
| | | | | | | | | |
Collapse
|
152
|
Vertes RP. Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens. J Comp Neurol 2002; 442:163-87. [PMID: 11754169 DOI: 10.1002/cne.10083] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The medial prefrontal cortex (mPFC) is involved in high-order cognitive processes, including, but not limited to, decision making, goal directed behavior, and working memory. Although previous reports have included descriptions of mPFC projections to the thalamus in overall examinations of mPFC projections throughout the brain, no previous study has comprehensively examined mPFC projections to the thalamus. The present report compares and contrasts projections from the four divisions of the mPFC, i.e., the infralimbic, prelimbic, anterior cingulate and medial agranular cortices, to the thalamus in the rat by using the anterograde anatomic tracer Phaseolus vulgaris-leucoagglutinin. We showed that (1) the infralimbic, prelimbic, anterior cingulate cortices distribute heavily and selectively to midline/medial structures of the thalamus, including the paratenial, paraventricular, interanteromedial, anteromedial, intermediodorsal, mediodorsal, reuniens, and the central medial nuclei; (2) the medial agranular cortex distributes strongly to the rostral intralaminar nuclei (central lateral, paracentral, central medial nuclei) as well as to the ventromedial and ventrolateral nuclei of thalamus; and (3) all four divisions of the mPFC project densely to the nucleus reuniens (RE) of the thalamus. The nucleus reuniens is the major source of thalamic afferents to the hippocampal formation. There are essentially no direct projections from the mPFC to the hippocampus. The present demonstration of pronounced mPFC projections to RE suggests that the nucleus reuniens is a critical relay in the transfer of information from the medial prefrontal cortex to the hippocampus. Our further demonstration of strong mPFC projections to several additional thalamic nuclei, particularly to the mediodorsal nucleus, suggests that these thalamic nuclei, like RE, represent important output stations (or gateways) for the actions of mPFC on diverse subcortical and cortical structures of the brain.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA.
| |
Collapse
|
153
|
Sullivan RM, Gratton A. Prefrontal cortical regulation of hypothalamic-pituitary-adrenal function in the rat and implications for psychopathology: side matters. Psychoneuroendocrinology 2002; 27:99-114. [PMID: 11750772 DOI: 10.1016/s0306-4530(01)00038-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In recent years, dysfunction of hypothalamic-pituitary-adrenal (HPA) axis function has been implicated in a wide variety of psychiatric conditions. The importance of this system in responding to and coping with stress is well documented, and the integrity of such systems is of obvious significance to good mental health. The prefrontal cortex (PFC) is also heavily implicated in numerous psychopathological conditions. There is thus a growing interest in the potential role the PFC might play in regulating HPA function, and whether abnormalities of these systems are linked. The present paper reviews a number of recent animal studies which have attempted to elucidate the role of the PFC in regulation of HPA axis function, and how these systems may interact. It is concluded that the PFC is involved both in activating HPA responses to stress and in the negative feedback regulation of this system. Cerebral laterality is an important feature of this regulation, with the right PFC being most directly linked to stress-regulatory systems. On this basis, a number of parallels are drawn to the human literature, where asymmetrical disturbances in PFC activity may help explain associated patterns of HPA dysfunction.
Collapse
Affiliation(s)
- Ron M Sullivan
- Douglas Hospital Research Centre, Dept. Psychiatry, McGill University, Québec, Montréal, Canada.
| | | |
Collapse
|
154
|
Wall PM, Messier C. The hippocampal formation--orbitomedial prefrontal cortex circuit in the attentional control of active memory. Behav Brain Res 2001; 127:99-117. [PMID: 11718887 DOI: 10.1016/s0166-4328(01)00355-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The long held view that the hippocampal formation is not only essential, but also solely responsible for declarative memory in humans (and by analogy non-human primates) has come into question. Based on extensive reciprocal connection patterns between the hippocampal formation and the orbitoventromedial prefrontal cortex in primates and rats, a central role for the hippocampal formation in the attentional control of behavior is emerging. In this paper, evidence is reviewed showing that the hippocampal-orbitomedial prefrontal cortex circuit may be involved in attentional monitoring of the internal sensorium. This attentional monitoring system, in a sense, is the working memory of viscero-emotional processing. The hippocampal formation can thus be viewed as a discrepancy detector with respect to the relative activational status of cognitive/emotional set in the orbitomedial prefrontal cortex. Discrepancies between the current representation of the internal milieu and the "just-prior" representation held "on-line" in orbitomedial prefrontal cortex associative working memory, are signaled from the hippocampus to the prefrontal cortex prospective attentional systems to activate, process, and reconcile internal (past) with external (present) environments, and finally to effectively alter active working emotional "sets" to exert cognitive-emotional control of behavior.
Collapse
Affiliation(s)
- P M Wall
- School of Psychology, Behavioral Neuroscience, University of Ottawa, Vanier: Room 202 (INTRA 108), Ottawa, Ontario, Canada K1N 6N5.
| | | |
Collapse
|
155
|
Dong HW, Petrovich GD, Swanson LW. Topography of projections from amygdala to bed nuclei of the stria terminalis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:192-246. [PMID: 11750933 DOI: 10.1016/s0165-0173(01)00079-0] [Citation(s) in RCA: 534] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A collection of 125 PHAL experiments in the rat has been analyzed to characterize the organization of projections from each amygdalar cell group (except the nucleus of the lateral olfactory tract) to the bed nuclei of the stria terminalis, which surround the crossing of the anterior commissure. The results suggest three organizing principles of these connections. First, the central nucleus, and certain other amygdalar cell groups associated with the main olfactory system, innervate preferentially various parts of the lateral and medial halves of the bed nuclear anterior division, and these projections travel via both the stria terminalis and ansa peduncularis (ventral pathway). Second, in contrast, the medial nucleus, and the rest of the amygdalar cell groups associated with the accessory and main olfactory systems innervate preferentially the posterior division, and the medial half of the anterior division, of the bed nuclei. And third, the lateral and anterior basolateral nuclei of the amygdala (associated with the frontotemporal association cortical system) do not project significantly to the bed nuclei. For comparison, inputs to the bed nuclei from the ventral subiculum, infralimbic area, and endopiriform nucleus are also described. The functional significance of these projections is discussed with reference to what is known about the output of the bed nuclei.
Collapse
Affiliation(s)
- H W Dong
- Neuroscience Program, University of Southern California, , Los Angeles, CA 90089-2520, USA
| | | | | |
Collapse
|
156
|
Petrovich GD, Canteras NS, Swanson LW. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:247-89. [PMID: 11750934 DOI: 10.1016/s0165-0173(01)00080-7] [Citation(s) in RCA: 457] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The expression of innate reproductive, defensive, and ingestive behaviors appears to be controlled by three sets of medial hypothalamic nuclei, which are modulated by cognitive influences from the cerebral hemispheres, including especially the amygdala and hippocampal formation. PHAL analysis of the rat amygdala indicates that a majority of its cell groups project topographically (a) to hypothalamic behavior systems via direct inputs, and (b) to partly overlapping sets of hypothalamic behavior control systems through inputs to ventral hippocampal functional domains that in turn project to the medial hypothalamus directly, and by way of the lateral septal nucleus. Amygdalar cell groups are in a position to help bias or prioritize the temporal order of instinctive behavior expression controlled by the medial hypothalamus, and the memory of associated events that include an emotional or affective component.
Collapse
Affiliation(s)
- G D Petrovich
- Department of Psychology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
157
|
Owens NC, Verberne AJ. Regional haemodynamic responses to activation of the medial prefrontal cortex depressor region. Brain Res 2001; 919:221-31. [PMID: 11701134 DOI: 10.1016/s0006-8993(01)03017-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrical or chemical stimulation of the medial prefrontal cortex (MPFC) produces depressor and sympathoinhibitory responses. To characterise the MPFC depressor response more fully, we determined the regional haemodynamic changes which occurred in response to stimulation of the MPFC. In halothane-anaesthetised rats, we recorded arterial blood pressure and renal, superior mesenteric, and iliac arterial vascular conductance using miniaturised Doppler flow probes. Electrical stimulation of the MPFC (50-100 microA) was used to map the location of the depressor region. Increases in vascular conductance (or increases in blood flow) were recorded from the renal (+2.3+/-0.5 kHz/mmHgx10(3)), mesenteric (+4.4+/-0.4 kHz/mmHgx10(3)), and iliac (+8.3+/-1.0 kHz/mmHgx10(3)) vascular beds in response to stimulation of the MPFC depressor region coinciding with the ventral infralimbic (IL) and dorsal peduncular (DP) cortical areas. Similar responses were obtained after microinjection of the chemical excitant L-glutamate (n=3, 100 nl, 100 mM), indicating that the responses were due to excitation of cell bodies and not due to axons traversing the area. Administration of the nitric oxide synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 25 micromol/kg, i.v., n=5) significantly reduced the MPFC depressor response (51%, 12.5+/-1.2 to 6.1+/-2.5 mmHg). The increases in conductance in the hindquarter and mesenteric vascular beds were significantly reduced after L-NAME treatment (mesenteric by 77%, iliac by 70%), but there was no significant reduction of renal flow (35%). These observations indicate that the depressor region of the MPFC is localised to ventral regions (IL and DP) and that the depressor response is mediated by increased conductance in the hindquarters and mesenteric vascular beds. Furthermore, the depressor response may be mediated, in part, by release of nitric oxide in these vascular beds.
Collapse
Affiliation(s)
- N C Owens
- Department of Medicine, Clinical Pharmacology and Therapeutics Unit, Austin and Repatriation Medical Centre, University of Melbourne, Heidelberg, Victoria, Australia
| | | |
Collapse
|
158
|
Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms? J Psychiatr Res 2001; 35:193-215. [PMID: 11578638 DOI: 10.1016/s0022-3956(01)00023-1] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Potential therapeutic properties of repetitive transcranial magnetic stimulation (rTMS) have been suggested in several psychiatric disorders such as depression, mania, obsessive-compulsive disorder, posttraumatic stress disorder and schizophrenia. By inducing electric currents in brain tissue via a time-varying strong magnetic field, rTMS has the potential to either directly or trans-synaptically modulate neuronal circuits thought to be dysfunctional in these psychiatric disorders. However, in order to optimize rTMS for therapeutic use, it is necessary to understand the neurobiological mechanisms involved, particularly the nature of the changes induced and the brain regions affected. Compared to the growing number of clinical studies on its putative therapeutic properties, the studies on the basic mechanisms of rTMS are surprisingly scarce. rTMS currently still awaits clinical routine administration although,there is compelling evidence that it causes changes in neuronal circuits as reflected by behavioural changes and decreases in the activity of the hypothalamic-pituitary-adrenocortical system. Both alterations suggest regional changes in neurotransmitter/neuromodulator release, transsynaptic efficiency, signaling pathways and in gene transcription. Together, these changes are, in part, reminiscent of those accompanying antidepressant drugs.
Collapse
Affiliation(s)
- A Post
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, D-80804 Munich, Germany
| | | |
Collapse
|
159
|
Burk JA, Mair RG. Effects of dorsal and ventral striatal lesions on delayed matching trained with retractable levers. Behav Brain Res 2001; 122:67-78. [PMID: 11287078 DOI: 10.1016/s0166-4328(01)00169-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recent evidence has suggested that thalamic amnesia results from damage to the intralaminar nuclei, an important source of input to striatum. To test the hypothesis that intralaminar damage disrupts functions mediated by striatum, we studied the effects of striatal lesions on a delayed matching task known to be affected by intralaminar lesions. Rats were trained to perform the task and given one of five treatments: sham surgery or a lesion of medial or lateral caudate/putamen, nucleus accumbens, or ventral striatum. Rats with ventral striatal lesions were impaired compared to all other groups. Rats with medial caudate/putamen or nucleus accumbens lesions were impaired compared to controls. The effects of ventral striatal lesions were sufficient to account for impairments in the accuracy and latency of delayed matching responses observed in previous studies of intralaminar and medial frontal cortical lesions. The ventral striatal lesions involved portions of ventral pallidum and thus it seems likely that they affected functions mediated by the nucleus accumbens as well as striatal areas of the tubercle. Serial reversal learning trained in the same apparatus with the same reinforcer was unaffected by all of the lesions. These results are discussed in terms of the roles of midline thalamic nuclei and of thalamo-cortico-striatal circuits in delayed conditional discrimination tasks.
Collapse
Affiliation(s)
- J A Burk
- Department of Psychology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
160
|
Martín-Ruiz R, Ugedo L. Electrophysiological evidence for postsynaptic 5-HT(1A) receptor control of dorsal raphe 5-HT neurones. Neuropharmacology 2001; 41:72-8. [PMID: 11445187 DOI: 10.1016/s0028-3908(01)00050-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Postsynaptic 5-hydroxytryptamine(1A) (5-HT(1A)) receptors have been proposed to participate in the control of dorsal raphe 5-HT neurone activity. To further investigate this hypothesis we performed single-unit extracellular recordings in anaesthetized rats. Pertussis toxin (2 microg/4 microl/day; 2 days, 24-72 h before the experiment) was applied close to the dorsal raphe nucleus to uncouple somatodendritic 5-HT(1A) autoreceptors from their effector system. After this treatment the spontaneous firing rate was higher (approximately +60% P<0.005) than in the vehicle-pretreated group. In addition, intravenous administration of 8-hydroxy-2-(di-n-propylamino)tetralin HBr (8-OH-DPAT) inhibited 5 out of 11 cells of the pertussis toxin-pretreated group (ED(50)=1.65+/-0.94 microg/kg), whereas in the vehicle-pretreated group, all tested cells were inhibited (ED(50)=1.87+/-0.39 microg/kg). Local administration of 8-OH-DPAT did not affect cells (n=12) in pertussis toxin-pretreated rats, even at doses much higher than those needed to completely inhibit 5-HT cells in vehicle-pretreated rats (ED(50)=3.34+/-0.62 fmol). These results confirm the involvement of distal postsynaptic 5-HT(1A) receptors in the control of 5-HT neurone activity in the dorsal raphe nucleus. However, this control does not appear to be exerted on all 5-HT neurones, but rather on a subpopulation of them.
Collapse
Affiliation(s)
- R Martín-Ruiz
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya, Spain
| | | |
Collapse
|
161
|
Abstract
The claustrum has been implicated in the kindling of generalized seizures from limbic sites. We examined the susceptibility of the anterior claustrum itself to kindling and correlated this with an anatomical investigation of its afferent and efferent connections. Electrical stimulation of the anterior claustrum resulted in a pattern of rapid kindling with two distinct phases. Early kindling involved extremely rapid progression to bilaterally generalized seizures of short duration. With repeated daily kindling stimulations, early-phase generalized seizures abruptly became more elaborate and prolonged, resembling limbic-type seizures as triggered from the amygdala. We suggest that the rapid rate of kindling from the anterior claustrum is an indication that the claustrum is functionally close to the mechanisms of seizure generalization. In support of our hypothesis, we found significant afferent, efferent, and often reciprocal connections between the anterior claustrum and areas that have been implicated in the generation of generalized seizures, including frontal and motor cortex, limbic cortex, amygdala, and endopiriform nucleus. Additional connections were found with various other structures, including olfactory areas, nucleus accumbens, midline thalamus, and brainstem nuclei including the substantia nigra and the dorsal raphe nucleus. The anatomical connections of the anterior claustrum are consistent with its very high susceptibility to kindling and support the view that the claustrum is part of a forebrain network of structures participating in the generalization of seizures.
Collapse
|
162
|
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to hypothalamus in the rat. J Comp Neurol 2001; 432:307-28. [PMID: 11246210 DOI: 10.1002/cne.1105] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A previous study in the rat revealed that distinct orbital and medial prefrontal cortical (OMPFC) areas projected to specific columns of the midbrain periaqueductal gray region (PAG). This study used anterograde tracing techniques to define projections to the hypothalamus arising from the same OMPFC regions. In addition, injections of anterograde and retrograde tracers were made into different PAG columns to examine connections between hypothalamic regions and PAG columns projected upon by the same OMPFC regions. The most extensive patterns of hypothalamic termination were seen after injection of anterograde tracer in prelimbic and infralimbic (PL/IL) and the ventral and medial orbital (VO/MO) cortices. Projections from rostral PL/IL and VO/MO targeted the rostrocaudal extent of the lateral hypothalamus, as well as lateral perifornical, and dorsal and posterior hypothalamic areas. Projections arising from caudal PL/IL terminated within the dorsal hypothalamus, including the dorsomedial nucleus and dorsal and posterior hypothalamic areas. There were also projections to medial perifornical and lateral hypothalamic areas. In contrast, it was found that anterior cingulate (AC), dorsolateral orbital (DLO), and agranular insular (AId) cortices projected to distinct and restricted hypothalamic regions. Projections arising from AC terminated within dorsal and posterior hypothalamic areas, whereas DLO and AId projected to the lateral hypothalamus. The same OMPFC regions also projected indirectly, by means of specific PAG columns, to many of the same hypothalamic fields. In the context of our previous findings, these data indicate that, in both rat and macaque, parallel but distinct circuits interconnect OMPFC areas with specific hypothalamic regions, as well as PAG columns.
Collapse
Affiliation(s)
- N S Floyd
- Department of Anatomy and Histology, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
163
|
Hedou G, Homberg J, Feldon J, Heidbreder CA. Expression of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 2001; 40:366-82. [PMID: 11166330 DOI: 10.1016/s0028-3908(00)00174-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study investigated the effect of acute and repeated administrations of amphetamine (AMPH) on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the two main cytoarchitectonic subterritories of the medial prefrontal cortex (mPFC) (anterior cingulate and dorsocaudal prelimbic cortices vs ventral prelimbic and rostral infralimbic cortices). Both the acute locomotor effects of AMPH and the expression of behavioral sensitization following its repeated administration were also simultaneously assessed. The repeated, intermittent administration of AMPH over five consecutive days led to a significant sensitized locomotor response to a subsequent challenge that occurred following a 48-h withdrawal period. Basal dialysate DA levels were higher in the ventral mPFC compared with its dorsal counterpart in naive animals, that is prior to the acute administration of AMPH. However, the inverse relationship was observed in animals that had developed sensitization: basal dialysate DA levels were significantly lower in the ventral mPFC compared with the dorsal mPFC. In naïve animals, AMPH produced a significant decrease in DA levels in both the ventral and dorsal subregions of the mPFC. However, the inverse relationship was observed in animals that had developed sensitization: dialysate DA levels in response to AMPH remained significantly decreased in the dorsal mPFC, whereas DA went back to baseline levels in the ventral mPFC. Given that a critical concentration of DA is required for normal function of the mPFC, our results suggest that AMPH-induced changes in DA levels in different subregions of the mPFC are critical for both the acute effects of the drug and the expression of behavioral sensitization to its repeated administration by producing either less or more selectivity or sharpening of stimuli to cortico-cortical dendrites and subcortical synaptic afferents to the pyramidal cells located in the dorso-ventral axis of the mPFC.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Zürich, Switzerland
| | | | | | | |
Collapse
|
164
|
Chiba T, Kayahara T, Nakano K. Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res 2001; 888:83-101. [PMID: 11146055 DOI: 10.1016/s0006-8993(00)03013-4] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The infralimbic area (IL) and prelimbic area (PL) have been postulated as an autonomic motor region in the medial prefrontal cortex. The present study was conducted to reveal the projection sites of IL and PL of the monkey, Macaca fuscata, using biotinylated dextran amine as an anterograde tracer. IL and PL projected densely to the ventromedial caudate nucleus, the core and shell of the nucleus accumbens (Acb), parvicellular lateral basal and magnocellular accessory basal nuclei of the amygdala, lateral preoptic area, ventromedial hypothalamic nucleus, tubero-mammillary nucleus (TM), medial part of the magnocellular and dorsal part of the parvicellular (MDpc) dorsomedial thalamic nuclei, reunience and medial part of the medial pulvinar nucleus, and dorso-lateral part of the periaqueductal gray (PAGdl) in the mesencephalon. Moderately to weakly projected areas were the intermediate and lateral parts of the agranular insular cortex, orbital part of area 12, agranular and dysgranular part of the temporal pole cortex (TPa-g), auditory temporal cortex, lateral and medial (MS) septal nuclei, bed nucleus of the stria terminalis, diagonal band of Broca, substantia innominata, and medial preoptic area, dorsomedial, lateral, and posterior hypothalamic nuclei, magnocellular lateral basal and lateral amygdaloid nuclei, paratenial, paraventricular (PV), inter-antero-medial (IAM), reticular, central medial (CeM), parafascicular (PF) and limitans nuclei of the thalamus, lateral habenular nucleus, pedunculo-pontine nucleus, dorsal part of the lateral lemniscal nucleus, ventral tegmental area (VTA), dorsal raphe, superior central nucleus, medial and lateral parabrachial nuclei (PBl) and nucleus locus coeruleus (LC). A few scattered terminals were observed in the perifornical nucleus of the hypothalamus and substantia nigra pars compacta. PL and area 24 were characterized by projections to the entorhinal (Ent) and piriform (Pir) cortex as well as to the magnocellular part of the ventral anterior thalamic nucleus (VAmc). The morphology of the terminal arborization in each nuclei was different in appearance, perhaps reflecting the synaptic interaction between the nerve terminals and postsynaptic dendrites. PL projected uniquely to Ent, Pir and VAmc and IL projected uniquely to TPa-g, MS, IAM, CeM, MDpc, PF, PBl and LC. IL projected more strongly than PL to the shell of Acb, amygdaloid nuclei, PV, TM, VTA and PAGdl. The present results support the hypothesis that IL is a major cortical autonomic motor area and PL integrates limbic and autonomic inputs in the primate.
Collapse
Affiliation(s)
- T Chiba
- Department of Anatomy and Neurobiology, Chiba University School of Medicine, Inohana 1-8-1, Chuo-Ku, 260-8670, Chiba, Japan.
| | | | | |
Collapse
|
165
|
Abstract
This review paper examines neurologic bases of links between balance control and anxiety based upon neural circuits that are shared by pathways that mediate autonomic control, vestibulo-autonomic interactions, and anxiety. The core of this circuitry is a parabrachial nucleus network, consisting of the parabrachial nucleus and its reciprocal relationships with the extended central amygdaloid nucleus, infralimbic cortex, and hypothalamus. Specifically, the parabrachial nucleus is a site of convergence of vestibular information processing and somatic and visceral sensory information processing in pathways that appear to be involved in avoidance conditioning, anxiety, and conditioned fear. Monoaminergic influences on these pathways are potential modulators of both effects of vigilance and anxiety on balance control and the development of anxiety and panic. This neurologic schema provides a unifying framework for investigating the neurologic bases for comorbidity of balance disorders and anxiety.
Collapse
Affiliation(s)
- C D Balaban
- Department of Otolaryngology, University of Pittsburgh School of Medicine, PA, USA
| | | |
Collapse
|
166
|
Panteleev S, Grundy D. Descending influences from the infralimbic cortex on vago-vagal reflex control of gastric motor activity in the rat. Auton Neurosci 2000; 86:78-83. [PMID: 11269928 DOI: 10.1016/s1566-0702(00)00249-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In experiments on urethane anaesthetised rats the influence of electrical stimulation of ventral areas of the medial prefrontal cortex (mPFC) on spontaneous and vagally-mediated gastric motility were studied. Stimulation of the mPFC resulted in gastric relaxation manifested as a fall in intragastric pressure from a baseline value of 5.0 +/- 0.5 cm H2O. These were most prominent following a short latency when the infralimbic cortex (IL) was stimulated (27.4 +/- 2.5% fall in gastric pressure). Electrical stimulation of the central end of one cervical vagus nerve caused a comparable decrease in gastric pressure (27.1 +/- 2.9%). The cortical mediated relaxation was reduced by atropine and abolished by vagotomy. The cortically induced gastric relaxation followed a shorter latency (5.9 +/- 1.0 s), time to nadir (20.1 +/- 2.7 s) and the half recovery time (21.5 +/- 4.0 s) than vagally mediated-relaxations (9.9 +/- 2.3, 56.0 +/- 5.3 and 83.4 +/- 9.5 s, respectively). Vagally mediated relaxations were inhibited by simultaneous stimulation of the infralimbic cortex. In this case the decrease of gastric pressure, the time to nadir and the half recovery time were significantly decreased in comparison with the gastric relaxatory responses to vagal stimulation alone (P < 0.05). We conclude that one way in which the mPFC influences gastric motility is via corticofugal projections from the infralimbic cortex to the brain-stem which modulate transmission of vago-vagal reflexes.
Collapse
Affiliation(s)
- S Panteleev
- Laboratory of Cortico-visceral Physiology, I.P. Pavlov Institute of Physiology, n. Makarova, 6, St-Petersburg 199034, Russia.
| | | |
Collapse
|
167
|
Knapp DJ, Sim-Selley LJ, Breese GR, Overstreet DH. Selective breeding of 5-HT(1A) receptor-mediated responses: application to emotion and receptor action. Pharmacol Biochem Behav 2000; 67:701-8. [PMID: 11166060 DOI: 10.1016/s0091-3057(00)00415-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rat lines that were selectively bred for high (high DPAT-sensitive, HDS) or low (low DPAT-sensitive, LDS) hypothermic responses to the specific 5-HT(1A) receptor agonist, 8-hydroxy-di-n-propylaminotetralin (8-OH-DPAT), differ in receptor binding and certain behaviors related to anxiety and depression. After reviewing this literature, the present communication summarizes new experiments designed to clarify and extend the nature of the pharmacological and biochemical differences between the lines. A challenge with the 5-HT(2) receptor agonist, DOI, produced similar degrees of head shakes and skin crawls in the HDS and LDS rats, suggesting similar sensitivity of 5-HT(2A) and 5-HT(2C) receptors. In contrast, DOI-induced flat body posture (FBP), which has been linked to 5-HT(1A) receptor stimulation, was observed more readily in the HDS rats. The HDS and LDS rats exhibited similar degrees of increase in 8-OH-DPAT-stimulated [35S]GTPgammaS binding in several brain regions. This result suggests that the dramatic differences in hypothermia in HDS and LDS rats cannot be related to 5-HT(1A) receptor-mediated action on G proteins. Overall, these findings indicate that the selective breeding for 5-HT(1A)-mediated hypothermia has been fairly selective, and that differences in emotionally relevant behaviors between these two rat lines can strongly be associated with an unidentified component of the 5-HT(1A) receptor signaling pathway.
Collapse
Affiliation(s)
- D J Knapp
- Bowles Center for Alcohol Studies and Department of Psychiatry, CB 7178, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
168
|
Chiba T. Collateral projection from the amygdalo--hippocampal transition area and CA1 to the hypothalamus and medial prefrontal cortex in the rat. Neurosci Res 2000; 38:373-83. [PMID: 11164564 DOI: 10.1016/s0168-0102(00)00183-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Amygdaloid and hippocampal neurons projecting to both the medial prefrontal cortex and hypothalamus by way of axon collaterals were examined in the rat by double labeling method using fluorescence retrograde tracers. Fluoro-gold was injected in the medial prefrontal cortex, while Fluoro-red was injected into the ventromedial and ventral premammillary nuclei of the hypothalamus. The results indicated that neurons which sent axon collaterals to both the medial prefrontal cortex and hypothalamus constituted 50 or 30% of populations of medial prefrontal cortex-projecting neurons in the amygdalo-hippocampal transition area or in CA1, respectively. Possible roles of the neurons with axon collaterals in sexually related aggressive and/or defensive behavior were discussed.
Collapse
Affiliation(s)
- T Chiba
- Department of Anatomy and Neurobiology, University of Chiba School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan.
| |
Collapse
|
169
|
Haddjeri N, Lucas G, Blier P. Role of cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons. Neuroreport 2000; 11:3397-401. [PMID: 11059909 DOI: 10.1097/00001756-200010200-00026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several observations indicate that 5-HT1A receptors found on a long neuronal feedback loop, originating from the medial prefrontal cortex, regulate 5-HT neuronal firing. In the present study, the muscarinic (M) receptor antagonists atropine and scopolamine as well as the M2 receptor antagonist AF-DX 116, but not the preferential M1 receptor antagonist pirenzepine, reduced the suppressant effect of the 5-HT1A receptor agonist 8-OH-DPAT on the spontaneous firing activity of rat dorsal raphe 5-HT neurons. Moreover, AF-64A-induced lesions of cholinergic neurons directly in the medial prefrontal cortex and after its i.c.v. injection attenuated the effect of 8-OH-DPAT. Finally, the NMDA receptor antagonist (+)MK-801 and the GABA(B) receptor antagonist SCH-50911, but not the GABA(A) receptor antagonist (-)bicuculline, dampened the latter response. The present study unveiled a key role for the cholinergic and GABAergic systems in the feedback inhibition of dorsal raphe 5-HT neurons.
Collapse
Affiliation(s)
- N Haddjeri
- Department of Psychiatry, Brain Institute, University of Florida, Gainesville 32610-0256, USA
| | | | | |
Collapse
|
170
|
Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000; 12:3713-20. [PMID: 11029641 DOI: 10.1046/j.1460-9568.2000.00243.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using intracerebral microdialysis in urethane-anaesthetized adult male Wistar rats, we monitored the effects of acute repetitive transcranial magnetic stimulation (rTMS; 20 trains of 20 Hz, 2.5 s) on the intrahypothalamic release of arginine vasopressin (AVP) and selected amino acids (glutamate, glutamine, aspartate, serine, arginine, taurine, gamma-aminobutyric acid) and the intrahippocampal release of monoamines (dopamine, noradrenaline, serotonin) and their metabolites (homovanillic acid, 3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid). The stimulation parameters were adjusted according to the results of accurate computer reconstructions of the current density distributions induced by rTMS in the rat and human brains, ensuring similar stimulation patterns in both cases. There was a continuous reduction in AVP release of up to 50% within the hypothalamic paraventricular nucleus in response to rTMS. In contrast, the release of taurine, aspartate and serine was selectively stimulated within this nucleus by rTMS. Furthermore, in the dorsal hippocampus the extracellular concentration of dopamine was elevated in response to rTMS. Taken together, these data provide the first in vivo evidence that acute rTMS of frontal brain regions has a differentiated modulatory effect on selected neurotransmitter/neuromodulator systems in distinct brain areas.
Collapse
Affiliation(s)
- M E Keck
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Conditioned fear responses to a tone paired with footshock extinguish when the tone is presented repeatedly in the absence of shock. Rather than erase the tone-shock association, extinction is thought to involve new learning accompanied by inhibition of conditioned responding. Despite much interest in extinction from a clinical perspective, little is known about the neural circuits that are involved. Although the prefrontal cortex has a well established role in the inhibition of inappropriate behaviors, previous reports have disagreed as to the role of the ventromedial prefrontal cortex (vmPFC) in extinction. We have reexamined the effects of electrolytic vmPFC lesions made before training on the acquisition, extinction, and recovery of conditioned fear responses in a 2 d experiment. On Day 1 vmPFC lesions had no effect on acquisition or extinction of conditioned freezing and suppression of bar pressing. On Day 2 sham rats recovered only 27% of their acquired freezing, whereas vmPFC-lesioned rats recovered 86%, which was indistinguishable from a control group that never received extinction. The high recovery in lesioned rats could not be attributed to decreased motivation or altered sensitivity to footshock. vmPFC lesions that spared the caudal infralimbic (IL) nucleus had no effect. Thus, the vmPFC (particularly the IL nucleus) is not necessary for expression of extinction, but it is necessary for the recall of extinction learning after a long delay. These data suggest a role of the vmPFC in consolidation of extinction learning or the recall of contexts in which extinction took place.
Collapse
|
172
|
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 2000; 422:556-78. [PMID: 10861526 DOI: 10.1002/1096-9861(20000710)422:4<556::aid-cne6>3.0.co;2-u] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We utilised retrograde and anterograde tracing procedures to study the origin and termination of prefrontal cortical (PFC) projections to the periaqueductal gray (PAG) in the rat. A previous study, in the primate, had demonstrated that distinct subgroups of PFC areas project to specific PAG columns. Retrograde tracing experiments revealed that projections to dorsolateral (dlPAG) and ventrolateral (vlPAG) periaqueductal gray columns arose from medial PFC, specifically prelimbic, infralimbic, and anterior cingulate cortices. Injections made in the vlPAG also labeled cells in medial, ventral, and dorsolateral orbital cortex and dorsal and posterior agranular insular cortex. Other orbital and insular regions, including lateral and ventrolateral orbital, ventral agranular insular, and dysgranular and granular insular cortex did not give rise to appreciable projections to the PAG. Anterograde tracing experiments revealed that the projections to different PAG columns arose from specific PFC areas. Projections from the caudodorsal medial PFC (caudal prelimbic and anterior cingulate cortices) terminated predominantly in dlPAG, whereas projections from the rostroventral medial PFC (rostral prelimbic cortex) innervated predominantly the vlPAG. As well, consistent with the retrograde data, projections arising from select orbital and agranular insular cortical areas terminated selectively in the vlPAG. The results indicate: (1) that rat orbital and medial PFC possesses an organisation broadly similar to that of the primate; and (2) that subdivisions within the rat orbital and medial PFC can be recognised on the basis of projections to distinct PAG columns.
Collapse
Affiliation(s)
- N S Floyd
- Department of Anatomy and Histology, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
173
|
Abstract
The parahippocampal region, as defined in this review, comprises the cortical regions that surround the rodent hippocampus including the perirhinal, postrhinal, and entorhinal cortices. The comparable regions in the primate brain are the perirhinal, parahippocampal, and entorhinal cortices. The perirhinal and postrhinal/parahippocampal cortices provide the major polysensory input to the hippocampus through their entorhinal connections and are the recipients of differing combinations of sensory information. The differences in the perirhinal and postrhinal cortical afferentation have important functional implications, in part, because these two regions project with different terminal patterns to the entorhinal cortex. The perirhinal cortex projects preferentially to the lateral entorhinal area (LEA), and the postrhinal cortex projects preferentially to the medial entorhinal area (MEA) and the caudal portion of LEA. Although the perirhinal and postrhinal cortices provide the major cortical input to the entorhinal cortex, the entorhinal cortex itself receives some direct cortical input. An examination of the cortical afferentation of the entorhinal cortex reveals an interesting principle of connectivity among these regions; the composition of the direct neocortical input to the LEA is more similar to that of the perirhinal cortex, and the composition of the direct neocortical input to the MEA is more similar to that of the postrhinal cortex. Thus, polymodal associational input to the LEA and the MEA exhibits some segregation and is organized in parallel. The organization of intrinsic connections for each of the parahippocampal regions also contributes to the segregation of information into parallel pathways.
Collapse
Affiliation(s)
- R D Burwell
- Department of Psychology, Brown University, Providence, Rhode Island 02912, USA.
| |
Collapse
|
174
|
|
175
|
Morrow BA, Elsworth JD, Lee EJ, Roth RH. Divergent effects of putative anxiolytics on stress-induced fos expression in the mesoprefrontal system of the rat. Synapse 2000; 36:143-54. [PMID: 10767061 DOI: 10.1002/(sici)1098-2396(200005)36:2<143::aid-syn7>3.0.co;2-h] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we reported that R(+)HA-966, a weak partial agonist for the glycine/NMDA receptor, and guanfacine, a noradrenergic alpha2 agonist, have anxiolytic-like actions on the biochemical activation of the mesoprefrontal dopamine neurons and fear-induced behaviors. Here, we examined these two putative anxiolytic agents, both with primary actions independent of GABAergic systems, for their ability to alter stress-induced Fos-like immunoreactivity in the mesoprefrontal cortex and in tyrosine hydroxylase-stained, presumed dopaminergic, neurons in the ventral tegmental area. The benzodiazepine agonist, lorazepam, and partial agonist, bretazenil, were also tested in this footshock paradigm [10 x 0.5 sec, 0.8 mA paired with a 5-sec tone]. In saline-treated rats, footshock resulted in an increase in Fos-li in the prelimbic and infralimbic cortices and tyrosine hydroxylase-labeled cells in the ventral tegmental area. Treatment with lorazepam or bretazenil prevented the stress-induced activation in Fos-li nuclei in all regions of the medial prefrontal cortex and in dopaminergic neurons in the ventral tegmental area. In contrast, the actions of the novel anxiolytic-like agents on stress-induced Fos-li were different than those observed with benzodiazepine agonists. Both putative anxiolytics, R(+)HA-966 and guanfacine, did not reduce, but significantly enhanced the stress-induced Fos-li in the prelimbic region of the medial prefrontal cortex. Additionally, treatment with R(+)HA-966 completely blocked, while guanfacine attenuated, the stress-induced increase in the number of Fos-li, TH-li cells in the ventral tegmental area. These results indicate that the putative anxiolytics, R(+)HA-966 and guanfacine, have actions on the stress-sensitive mesoprefrontal system which appear distinct from those of traditional anxiolytics.
Collapse
Affiliation(s)
- B A Morrow
- Department of Pharmacology, Laboratory of Neuropsychopharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA.
| | | | | | | |
Collapse
|
176
|
Fisk GD, Wyss JM. Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res 2000; 859:83-95. [PMID: 10720617 DOI: 10.1016/s0006-8993(00)01935-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The infralimbic cortex (IL) of the rat can modify autonomic nervous system activity, but the critical pathway(s) that mediate this influence are unclear. To define the potential pathways, the first series of experiments characterizes the descending projections of IL and the neighboring cortical areas using Phaseolus vulgaris leucoagglutinin (PHA-L). IL has prominent projections to the central nucleus of the amygdala (Ce), the mediodorsal nucleus of the thalamus (MD), the lateral hypothalamic area (LHA), the periaqueductal gray (PAG), the parabrachial nucleus (Pb), and the nucleus of the solitary tract (NTS). The density and selectivity of these projections suggest that the LHA and the PAG mediate the ability of the IL to regulate cardiovascular function. The second series of experiments demonstrates that locally anesthetizing neurons in either the LHA or PAG with lidocaine attenuates the hypotensive effects produced by electrical stimulation of the IL. Similarly, microinjections of cobalt chloride (a neurotransmission blocker) into the anterior portion of the LHA also decrease the arterial pressure responses to IL stimulation, suggesting that the ability of lidocaine to reversibly block the evoked response is due to inactivation of neurons in the LHA. These data indicate that hypotension evoked by stimulation of IL is mediated, at least in part, by direct or indirect projections to the LHA and through the PAG.
Collapse
Affiliation(s)
- G D Fisk
- Department of Psychology, Division of Business and Social Sciences, Gordon College, 419 College Drive, Barnesville, GA 30204, USA.
| | | |
Collapse
|
177
|
Dong H, Petrovich GD, Swanson LW. Organization of projections from the juxtacapsular nucleus of the BST: a PHAL study in the rat. Brain Res 2000; 859:1-14. [PMID: 10720609 DOI: 10.1016/s0006-8993(99)02246-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The axonal projections of the juxtacapsular nucleus of the anterior division of the bed nuclei of the stria terminalis (BSTju) were examined with the Phaseolus vulgaris-leucoagglutinin (PHAL) method in the adult male rat. Our results indicate that the BSTju displays a relatively simple projection pattern. First, it densely innervates the medial central amygdalar nucleus and the subcommissural zone and caudal anterolateral area of the BST - cell groups involved in visceromotor responses. Second, it provides inputs to the ventromedial caudoputamen (CP) and anterior basolateral amygdalar nucleus - areas presumably modulating somatomotor outflow. Third, the BSTju sends dense projections to the caudal substantia innominata, a distinct caudal dorsolateral region of the compact part of the substantia nigra, and the adjacent mesencephalic reticular nucleus and retrorubral area. And fourth, the BSTju provides light inputs to the prelimbic, infralimbic, and ventral CA1 cortical areas; to the posterior basolateral, posterior basomedial, and lateral amygdalar nuclei; to the paraventricular and medial mediodorsal thalamic nuclei; to the subthalamic and parasubthalamic nuclei of the hypothalamus; and to the ventrolateral periaqueductal gray. These projections, in part, suggest a role for the BSTju in circuitry integrating autonomic responses with somatomotor activity in adaptive behaviors.
Collapse
Affiliation(s)
- H Dong
- Neuroscience Program and Department of Biological Sciences, University of Southern California, Hedco Neuroscience Building, Room 428, Los Angeles, CA 90089-2520, USA
| | | | | |
Collapse
|
178
|
Wall PM, Messier C. U-69,593 microinjection in the infralimbic cortex reduces anxiety and enhances spontaneous alternation memory in mice. Brain Res 2000; 856:259-80. [PMID: 10677636 DOI: 10.1016/s0006-8993(99)01990-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present report investigated the contributions of the ventromedial prefrontal cortex to the control of spontaneous alternation/working memory and anxiety-related behaviour. In Experiment 1, we examined the effects of microinjections of the selective kappa(1) receptor agonist, U-69,593, in the infralimbic cortex (IL) of CD-1 mice on several ethologically-derived anxiety indices in the elevated plus-maze (EPM) and defensive/withdrawal (D/W) anxiety in the open field, as well as on memory in the EPM transfer-latency (T-L) test and implicit spontaneous alternation memory (SAP) in the Y-maze. In week 1, pretreatment with one injection of vehicle, 1, 10 or 25 nmol/1.0 microliter U-69,593 in the IL dose-dependently prolonged T-L and produced a dose-dependent anxiolytic behavioural profile in the first EPM trial. Following a 24-h delay, the same mice were given a drug-free second trial in the EPM tests of T-L memory and anxiety. Whereas T-L memory was not disturbed, small but detectable carry-over effects were observed in trial-2 EPM behaviour relative to vehicle-treated animals. In week 2, the same groups of mice were again pretreated with one injection of the same doses of U-69,593 in the IL and given a D/W test in an open field, followed immediately by an 8-min SAP trial in the Y-maze. The smallest U-69,593 dose was anxiolytic in the D/W test, and SAP/working memory was dose-dependently enhanced in the Y-maze. In Experiment 2, we evaluated whether 0.5 microliter volume microinjections would produce comparable behavioural and carry-over effects in the IL of three new groups of CD-1 mice, in the event that the 1.0 microl volume injections used in Experiment 1 diffused beyond the IL and therefore may have confounded some effects. Experiment 2 procedures were carried out in the same manner as in Experiment 1, except the animals were tested in reverse order. Thus in week 1, SAP memory was tested in the Y-maze followed by D/W anxiety in the open field for half of the animals in each group, and the other half was tested in reverse order. In week 2, T/L memory and anxiety were tested in the EPM in 2 trials as described in Experiment 1. Pretreatment with one injection of vehicle, 10 or 25 nmol/0.5 microliter U-69,593 in the IL reduced D/W anxiety and enhanced SAP memory regardless of testing order in week 1. In week 2, the same groups of mice were again pretreated with one injection of the same doses of U-69,593 in 0.5 microliter volumes in the IL and tested in the EPM. In a similar fashion to Experiment 1, U-69,593 dose-dependently prolonged T/L and produced an anxiolytic behavioural profile in the first EPM trial. Following a 24-h delay, T/L recall memory was again not significantly influenced, but a robust anxiolytic behavioural profile was observed in the second drug-free anxiety trial in the EPM relative to vehicle-treated animals. Results are discussed relative to a) injection volumes and testing order, b) the possible influence kappa receptors may exert on neurochemical responsivity to anxiety-provoking environments in the IL area of the mPFC, c) the possibility that kappa-mediated anxiolysis from the IL in CD-1 mice results from interactions with neurochemical systems involved in the blunting of incoming anxiety-provoking information, d) evidence that SAP memory may be an implicit subtype of working memory, and e) the possibility that IL implicit working memory processes may modulate the induction and expression of anxiety-related behaviour.
Collapse
Affiliation(s)
- P M Wall
- School of Psychology, University of Ottawa, Vanier: Room 215, Ottawa, Canada.
| | | |
Collapse
|
179
|
Hart S, Sarter M, Berntson GG. Cholinergic inputs to the rat medial prefrontal cortex mediate potentiation of the cardiovascular defensive response by the anxiogenic benzodiazephine receptor partial inverse agonist FG 7142. Neuroscience 2000; 94:1029-38. [PMID: 10625045 DOI: 10.1016/s0306-4522(99)00269-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Consistent with its putative anxiogenic actions, administration of the benzodiazepine receptor partial inverse agonist FG 7142 has been shown to potentiate defensive-like cardiovascular reactivity to an acoustic stimulus in the rat, an effect that appears to be mediated by the basal forebrain cholinergic system. The present studies tested the hypothesis that the basal forebrain cholinergic projections to the medial prefrontal cortex, an area that has been implicated in both anxiety and autonomic control, may be a relevant pathway underlying this response potentiation. Infusions of the muscarinic receptor agonist carbachol into the medial prefrontal cortex, but not into the lateral prefrontal cortex or the basolateral amygdala, mimicked the effects of systemically administered FG 7142 on the cardioacceleratory response. Infusions of the muscarinic antagonist atropine blocked this effect, as well as the response-potentiating actions of FG 7142. The effects of FG 7142 were also blocked by lesions of the cholinergic inputs to the medial prefrontal cortex produced by local infusions of the immunotoxin 192 immunoglobulin G-saporin into this area. These findings indicate that cholinergic activation of the medial prefrontal cortex is sufficient to enhance the cardioacceleratory defensive response, and that cholinergic inputs to the medial prefrontal cortex are necessary for the response-potentiating effects of FG 7142. These results are consistent with a recent neurobiological model of anxiety and autonomic control that attributes the enhanced processing of anxiety-related stimuli and contexts to increases in activity in cortical cholinergic inputs.
Collapse
Affiliation(s)
- S Hart
- Department of Psychology and Neuroscience Program, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
180
|
|
181
|
Westerhaus MJ, Loewy AD. Sympathetic-related neurons in the preoptic region of the rat identified by viral transneuronal labeling. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991122)414:3<361::aid-cne6>3.0.co;2-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
182
|
Abstract
Although recent studies in squamate reptiles have importantly clarified how chemical information is processed in the reptilian brain, how the amygdala relays chemosensory inputs to the hypothalamus to influence chemically guided behaviors is still poorly documented. To identify these chemosensory pathways, the amygdalo-hypothalamic projections, intra-amygdaloid circuitry and afferents from the lateral cortex (LC) to the amygdala were investigated by injecting conjugated dextran-amines into the hypothalamus, amygdala, and LC of garter snakes. The amygdala was divided into olfactory recipient (ventral anterior and external amygdalae), vomeronasal recipient (nucleus sphericus, NS, and medial amygdala, MA), and nonchemosensory (e.g., posterior dorsal ventricular ridge, PDVR, and dorsolateral amygdaloid nucleus, DLA) subdivisions. Rostroventral (LCrv) and dorsocaudal subdivisions of the LC were distinguished. In addition to receiving afferents from the main olfactory bulb, the olfactory amygdala receives afferents from NS and projects to the NS, PDVR, and dorsal hypothalamus. The NS has only a minor projection to the lateral hypothalamus, whereas the MA, which receives afferents from the LCrv and NS, has projections to the ventromedial hypothalamic (VMH) and lateral posterior hypothalamic nuclei. Among the nonchemosensory amygdaloid structures, the PDVR receives afferents from the LCrv and the olfactory amygdala and projects to the VMH, whereas DLA receives afferents from the LCrv and NS, and projects to the periventricular hypothalamus. These results substantially clarify the olfactory and vomeronasal tertiary connections and demonstrate that parts of the nonchemosensory amygdala play a major role in relaying chemosensory information to the hypothalamus.
Collapse
Affiliation(s)
- A Martínez-Marcos
- Department of Anatomy and Cell Biology, Health Science Center at Brooklyn, State University of New York, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
183
|
Wu J, Buchsbaum MS, Gillin JC, Tang C, Cadwell S, Wiegand M, Najafi A, Klein E, Hazen K, Bunney WE, Fallon JH, Keator D. Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 1999; 156:1149-58. [PMID: 10450253 DOI: 10.1176/ajp.156.8.1149] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Sleep deprivation has been shown to have an antidepressant benefit in a subgroup of depressed patients. Functional imaging studies by the authors and others have suggested that patients with elevated metabolic rates in the anterior cingulate gyrus at baseline are more likely to respond to either sleep deprivation or antidepressant medications than patients with normal metabolic rates. The authors extend their earlier work in a larger group of patients and explore additional brain areas with statistical probability mapping. METHOD Thirty-six patients with unipolar depression and 26 normal volunteers were studied with positron emission tomography before and after sleep deprivation. Response to sleep deprivation was defined as a 40% or larger decrease in total scores on the Hamilton Depression Rating Scale. RESULTS One-third of the depressed patients had a significant response to sleep deprivation. Responders had higher relative metabolic rates in the medial prefrontal cortex, ventral anterior cingulate, and posterior subcallosal gyrus at baseline than depressed patients who did not respond to sleep deprivation and normal volunteers. Lower Hamilton depression scores correlated significantly with lower metabolic rates in the left medial prefrontal cortex. After sleep deprivation, significant decreases in metabolic rates occurred in the medial prefrontal cortex and frontal pole in the patients who responded positively to sleep deprivation. CONCLUSIONS High pretreatment metabolic rates and decreases in metabolic rates after treatment in the medial prefrontal cortex may characterize a subgroup of depressed patients who improve following sleep deprivation and, perhaps, other antidepressant treatments.
Collapse
Affiliation(s)
- J Wu
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine 92717, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The projections of the cerebral cortex to the extended amygdala were studied in the rat using anterograde and retrograde tract-tracing techniques. Most cortical areas with strong projections to the extended amygdala preferentially targeted either the medial extended amygdala (including the medial amygdalar nucleus, ventromedial substantia innominata, and the medial part of the bed nucleus the stria terminalis) or the central extended amygdala (including the central amygdalar nucleus, dorsolateral substantia innominata, and the lateral part of the bed nucleus of the stria terminalis). Some cortical areas, however, had equal projections to both medial and central portions. The main areas projecting preferentially to the medial extended amygdala were the ventral subiculum, infralimbic cortex, ventral agranular insular area, and the rostral part of the ventrolateral entorhinal area. The main areas projecting preferentially to the central extended amygdala were the prefrontal cortex, viscerosensory and somatosensory portions of the insular cortex, and the amygdalopiriform transitional area. It is suggested that these cortical inputs may be important for cognitive, mnemonic, and affective aspects of emotional and motivated behavior.
Collapse
Affiliation(s)
- A J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia 29208, USA.
| | | | | | | |
Collapse
|
185
|
Owens NC, Sartor DM, Verberne AJ. Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat. Neuroscience 1999; 89:1331-46. [PMID: 10362318 DOI: 10.1016/s0306-4522(98)00389-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The depressor response elicited by unilateral low intensity electrical stimulation of the rat ventral medial prefrontal cortex may be mediated by a connection with the solitary tract nucleus. We tested this hypothesis by (i) examining the influence of medial prefrontal cortex stimulation on the induction of Fos-like immunoreactivity in neurons in the medulla oblongata, and (ii) by testing the effect of inhibition of solitary tract nucleus neurons on the medial prefrontal cortex stimulation-evoked depressor response. Depressor responses (>10 mmHg) were elicited by electrical stimulation of the medial prefrontal cortex every minute for 1 h ('Stimulated' group). Control animals were treated identically but did not receive electrical stimulation ('Unstimulated' group). Neurons exhibiting Fos-like immunoreactivity were abundant at the stimulation site which included the infralimbic area, and dorsal peduncular cortex. Medullary Fos-like immunoreactivity observed in the 'Stimulated' and 'Unstimulated' groups exceeded levels observed in untreated rats and was detected in the rostral, caudal and intermediate areas of the ventrolateral medulla, and the commissural, intermediate, medial and lateral regions of the solitary tract nucleus, as well as the medial vestibular nucleus, and the dorsal motor nucleus of the vagus. The number of neurons displaying Fos-like immunoreactivity in the ipsilateral solitary tract nucleus and caudal ventrolateral medulla of the 'Stimulated' group was found to be significantly elevated compared to the contralateral side (P<0.05), and the 'Unstimulated' group bilaterally. Inhibition of solitary tract nucleus neurons using bilateral injections of the GABA(A) receptor agonist muscimol (44 pmol/25 nl) inhibited the sympathetic vasomotor baroreflex and attenuated the depressor and sympathoinhibitory response to medial prefrontal cortex stimulation by 62% and 65%, respectively. These findings suggest that the projection from the medial prefrontal cortex to the solitary tract nucleus is excitatory and support the hypothesis that the depressor response elicited by medial prefrontal cortex stimulation is mediated, in part, by a cortico-solitary projection which activates the intramedullary baroreflex pathway.
Collapse
Affiliation(s)
- N C Owens
- Department of Medicine, Austin and Repatriation Medical Centre, University of Melbourne, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
186
|
Fisk GD, Wyss JM. Associational projections of the anterior midline cortex in the rat: intracingulate and retrosplenial connections. Brain Res 1999; 825:1-13. [PMID: 10216168 DOI: 10.1016/s0006-8993(99)01182-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Past studies indicate that distinct areas of anterior midline cortex in the rat contribute to diverse functions, such as autonomic nervous system regulation and learning, but the anatomical substrate for these functions has not been fully elucidated. The present study characterizes the associational connections within the midline cortex of the rat by using the anterograde transport of Phaseolus vulgaris leucoagglutinin and Fluororuby. The prelimbic area and the rostral part of the anterior cingulate area (both dorsal and ventral subdivisions) are extensively interconnected with each other. In addition, the caudal half of anterior cingulate cortex has extensive projections to precentral medial cortex and caudally directed projections to retrosplenial cortex. Other cortical areas within anterior midline cortex have relatively limited cortical-cortical projections. The infralimbic, dorsal peduncular, and medial precentral cortices have dense intrinsic projections, but have either very limited or no projections to other areas in the anterior midline cortex. Although it has been suggested that cortical-cortical projections from anterior cingulate cortex and prelimbic cortex to infralimbic cortex may be important for linking learning processes with an autonomic nervous system response, the paucity of direct projections between these areas calls this hypothesis into question. Conversely, the results suggest that the anterior midline cortex contains two regions that are functionally and connectionally distinct.
Collapse
Affiliation(s)
- G D Fisk
- Gordon College, Division of Business and Social Sciences, Department of Psychology, 419 College Drive, Barnesville, GA 30204, USA.
| | | |
Collapse
|
187
|
Li L, Shao J. Restricted lesions to ventral prefrontal subareas block reversal learning but not visual discrimination learning in rats. Physiol Behav 1998; 65:371-9. [PMID: 9855490 DOI: 10.1016/s0031-9384(98)00216-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Previous studies have shown that extensive damage to the medial prefrontal cortex (mPFC) of rats causes reversal learning deficits. The mPFC of rats, however, consists of several subareas that are different from each other in both cytoarchitecture and neural connectivity, suggesting a functional dissociation among the mPFC subareas. In the present study, selective lesions of the mPFC of rats were made with a specially designed microknife whose intracranial placement could be controlled stereotaxically. Restricted lesions were made to each of the 3 parts of the mPFC: the anterior cingulate area (AC) (including the medial precentral area, PrCm), the prelimbic area (PL), and the infralimbic area (IL). One week after surgery, rats were trained in an aversively motivated visual discrimination task in a novel rotating T-maze. After reaching the acquisition criterion, rats were trained in a reversal task in the same maze. No difference was found in acquisition between control and mPFC lesioned rats. However, lesions of either the PL or the IL produced a marked deficit in the reversal task. This behavioral deficit was not found in rats with lesions of the AC. The results indicate that the mPFC of rats is not essential for discrimination learning, but that each of the 2 ventral subareas of the mPFC, PL, and IL, plays a critical role in reversal learning.
Collapse
Affiliation(s)
- L Li
- Department of Psychology, Peking University, Beijing, People's Republic of China.
| | | |
Collapse
|
188
|
Hajós M, Richards CD, Székely AD, Sharp T. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 1998; 87:95-108. [PMID: 9722144 DOI: 10.1016/s0306-4522(98)00157-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study we utilized electrophysiological and pathway tracing methods to investigate the projections from the medial prefrontal cortex to the midbrain raphe nuclei of the rat. Initial pathway tracing experiments using retrograde (horseradish peroxidase conjugates with wheatgerm agglutinin or choleratoxin B subunit) and anterograde (Phaseolus vulgaris-leucoagglutinin) markers demonstrated a direct, bilateral projection to the dorsal raphe nucleus and median raphe nucleus from the medial prefrontal cortex, and the origin of this projection was localized predominantly in the ventral medial prefrontal cortex (infralimbic/dorsal penduncular cortices). Using chloral hydrate-anaesthetized rats, extracellular recordings were made mostly from 5-hydroxytryptamine neurons in the dorsal raphe nucleus, but non-5-hydroxytryptamine dorsal raphe neurons were also studied, as was a small number of 5-hydroxytryptamine neurons in the median raphe nucleus. In an initial study, electrical stimulation of the ventral medial prefrontal cortex caused a post-stimulus inhibition in the majority (49/56) of dorsal raphe 5-hydroxytryptamine neurons tested (mean duration of inhibition, 200+/-17 ms); in some cases (8/56) the inhibition was preceded by short-latency (26 +/-3 ms) orthodromic activation, and a small number of cells was antidromically activated (6/56). Both single spiking and burst-firing 5-hydroxytryptamine neurons in the dorsal raphe nucleus responded in the same way, and median raphe 5-hydroxytryptamine neurons were also inhibited (5/5). In contrast, few (2/12) of the non-5-hydroxytryptamine dorsal raphe neurons tested were inhibited by ventral medial prefrontal cortex stimulation. The effects of stimulation of the dorsal and ventral medial prefrontal cortex were compared on the same raphe 5-hydroxytryptamine neurons (n=17): ventral medial prefrontal cortex stimulation inhibited 16/17 of these neurons while only 8/17 were inhibited by dorsal medial prefrontal cortex stimulation. Finally, the inhibitory effect of ventral medial prefrontal cortex stimulation on 5-hydroxytryptamine cell-firing was not altered by 5-hydroxytryptamine depletion with p-chlorophenylalanine or by systemic administration of the selective 5-hydroxytryptamine1A receptor antagonist WAY 100635. The latter findings indicate that the inhibition is not due to release of raphe 5-hydroxytryptamine which could theoretically arise from anti- or orthodromically activated 5-hydroxytryptamine neurons. Our results show that stimulation of the ventral medial prefrontal cortex causes a marked post-stimulus inhibition in the vast majority of midbrain raphe 5-hydroxytryptamine neurons tested. It seems likely that the projection from ventral medial prefrontal cortex to the midbrain raphe nuclei mediates the responses of 5-hydroxytryptamine neurons to cortical stimulation. These data are relevant to recent discoveries of functional and structural abnormalities in the medial prefrontal cortex of patients with major depressive illness.
Collapse
Affiliation(s)
- M Hajós
- Department of Clinical Pharmacology, Radcliffe Infirmary, University of Oxford, UK
| | | | | | | |
Collapse
|
189
|
Christensen MK, Frederickson CJ. Zinc-containing afferent projections to the rat corticomedial amygdaloid complex: a retrograde tracing study. J Comp Neurol 1998; 400:375-90. [PMID: 9779942 DOI: 10.1002/(sici)1096-9861(19981026)400:3<375::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mammalian amygdaloid complex is densely innervated by zinc-containing neurons. The distribution of the terminals throughout the region has been described, but the origins of these zinc-containing fibers have not. The present work describes the origins of one major component of the zinc-containing innervation of the amygdaloid complex, namely, the component that innervates the corticomedial complex. Selective labeling of zinc-containing axons was accomplished by intracerebral microinfusion of selenium anions (SeO3(2-)), a procedure that produces a ZnSe precipitate in zinc-containing axonal boutons with subsequent retrograde transport to the neurons of origin. After infusions of SeO3(2-) into combinations of cortical, medial, or amygdalohippocampal regions, retrogradely labeled zinc-containing somata were found in all amygdaloid nuclei except for the medial and central nuclei, the bed nucleus of the accessory olfactory tract, the nucleus of the lateral olfactory tract, and the anterior amygdaloid area. Extrinsic zinc-containing projections to the same amygdaloid terminal fields were found to originate from the infralimbic, cingulate, piriform, perirhinal and entorhinal cortices, and from the prosubiculum and CA1. Commissural zinc-containing projections were found to originate from the posterolateral and posteromedial cortical nuclei and from the posterior part of the basomedial nucleus. Zinc-containing neurons have been implicated in the pathophysiology of epilepsy, in cell death after seizure or stroke, and in Alzheimer's disease, all clinical conditions that involve the amygdaloid complex. Identification of the zinc-containing pathways is a prerequisite to the elucidation of zinc's role in these disorders.
Collapse
Affiliation(s)
- M K Christensen
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark.
| | | |
Collapse
|
190
|
Allen GV, Hopkins DA. Convergent prefrontal cortex and mamillary body projections to the medial pontine nuclei: a light and electron microscopic study in the rat. J Comp Neurol 1998; 398:347-58. [PMID: 9714148 DOI: 10.1002/(sici)1096-9861(19980831)398:3<347::aid-cne4>3.0.co;2-#] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To study the convergence of medial prefrontal cortex and mamillary body projections to the medial pontine nuclei, light and electron microscopic, neuroanatomical, tract-tracing experiments were performed. Injections of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP), biotin conjugated to dextran (BD), or rhodamine conjugated to dextran (RD) were made individually or in combinations into the cerebral cortex, hypothalamus, or pons. In addition, injections of WGA-HRP into the medial prefrontal cortex and electrolytic lesions of the mamillary body were made to study the synaptology of afferent projections to the pontine nuclei. In the light microscopic studies, injections of WGA-HRP into the rostromedial pontine nuclei produced dense, retrograde labeling both in the dorsal peduncular area of the medial prefrontal cortex and in the medial mamillary nucleus, pars medialis. Injections of the anterograde tracers BD and RD into the medial prefrontal cortex and the medial mamillary nuclei, respectively, resulted in partially overlapping terminal fields in the rostromedial pontine nuclei. In the electron microscopic studies, injections of WGA-HRP into the dorsal peduncular area and electrolytic lesions of the mamillary body produced anterogradely labeled axon terminals and degenerating axon terminals that synapsed on the same dendrites or neuronal somata in the rostromedial pontine nuclei. The results demonstrate that the medial prefrontal cortex and the medial mamillary nuclei have partially overlapping projections to the rostromedial pontine nuclei and implicate precerebellar relay nuclei in the integration of limbic and/or autonomic functions mediated by convergent projections from the cerebral cortex and the hypothalamus.
Collapse
Affiliation(s)
- G V Allen
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
191
|
Usuda I, Tanaka K, Chiba T. Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res 1998; 797:73-93. [PMID: 9630528 DOI: 10.1016/s0006-8993(98)00359-x] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleus accumbens (Acb) of the rat has been divided immunohistochemically into shell and core, and further, it was subdivided into several portions in relation to functional significance. In this report, the efferent projection of each subdivision of the Acb was examined using biotinylated dextran amine as an anterograde tracer. In rostral Acb, the dorsomedial shell mainly projected to the dorsomedial ventral pallidum (VP), lateral hypothalamus (LH) and substantia nigra pars compacta (SNc), while the ventromedial shell projected to the ventromedial VP, lateral preoptic area, LH and ventral tegmental area (VTA). The dorsal core of rostral Acb projected to the caudate putamen, dorsolateral VP, globus pallidus (GP), LH, and substantia nigra pars reticulata (SNr). In the middle to caudal Acb, the dorsomedial shell mainly projected to the dorsomedial VP, LH and VTA, the ventromedial shell projected to the ventromedial VP, substantia innominata, VTA, SNc and retrorubral area, and the ventrolateral shell projected to the ventrolateral VP and SNc. Furthermore, the ventromedial shell projected to the parabrachial nucleus (PB). The dorsomedial core projected to the dorsal VP, LH, SNc and SNr, and the ventral and lateral core sent axons to the dorsolateral VP, GP and SNc. From the point of view of projection patterns, shell and core are distinct throughout the rostro-caudal extent of the Acb. The ventrolateral shell at the caudal Acb was clearly differentiated. A direct projection from the ventromedial shell of the Acb to PB was also recognised.
Collapse
Affiliation(s)
- I Usuda
- The Third Department of Anatomy, Chiba University School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260, Japan
| | | | | |
Collapse
|
192
|
Abstract
The amygdaloid nuclear complex is critical for producing appropriate emotional and behavioral responses to biologically relevant sensory stimuli. It constitutes an essential link between sensory and limbic areas of the cerebral cortex and subcortical brain regions, such as the hypothalamus, brainstem, and striatum, that are responsible for eliciting emotional and motivational responses. This review summarizes the anatomy and physiology of the cortical pathways to the amygdala in the rat, cat and monkey. Although the basic anatomy of these systems in the cat and monkey was largely delineated in studies conducted during the 1970s and 1980s, detailed information regarding the cortico-amygdalar pathways in the rat was only obtained in the past several years. The purpose of this review is to describe the results of recent studies in the rat and to compare the organization of cortico-amygdalar projections in this species with that seen in the cat and monkey. In all three species visual, auditory, and somatosensory information is transmitted to the amygdala by a series of modality-specific cortico-cortical pathways ("cascades") that originate in the primary sensory cortices and flow toward higher order association areas. The cortical areas in the more distal portions of these cascades have stronger and more extensive projections to the amygdala than the more proximal areas. In all three species olfactory and gustatory/visceral information has access to the amygdala at an earlier stage of cortical processing than visual, auditory and somatosensory information. There are also important polysensory cortical inputs to the mammalian amygdala from the prefrontal and hippocampal regions. Whereas the overall organization of cortical pathways is basically similar in all mammalian species, there is anatomical evidence which suggests that there are important differences in the extent of convergence of cortical projections in the primate versus the nonprimate amygdala.
Collapse
Affiliation(s)
- A J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia 29208, USA.
| |
Collapse
|
193
|
Knapp DJ, Duncan GE, Crews FT, Breese GR. Induction of Fos-Like Proteins and Ultrasonic Vocalizations during Ethanol Withdrawal: Further Evidence for Withdrawal-Induced Anxiety. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03677.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
194
|
Knapp DJ, Overstreet DH, Crews FT. Brain 5-HT1A receptor autoradiography and hypothermic responses in rats bred for differences in 8-OH-DPAT sensitivity. Brain Res 1998; 782:1-10. [PMID: 9519243 DOI: 10.1016/s0006-8993(97)01127-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three rat lines were selectively bred for high (HDS), random (RDS), or low (LDS) hypothermic responses to the specific 5-HT1A receptor agonist 8-OH-DPAT. Forty-five minutes after 8-OH-DPAT administration (0.5 mg/kg), body temperatures dropped 3-5 degrees C in HDS rats, yet this dose produced only about 1.2 degrees C and 0.7 degree C drops in RDS and LDS rats, respectively. To investigate the relationship of body temperature of 5-HT1A receptor binding sites, autoradiographic analyses of [3H]8-OH-DPAT binding to 5-HT1A receptors in brains of these rats were conducted. Significant differences in binding were found in specific limbic cortical projection sites, with the HDS line having the greatest density of sites. Body temperature responses correlated significantly with [3H]8-OH-DPAT receptor binding in only a few areas of frontal cortex. Binding in many other brain regions, including the anterior and posterior hypothalami (regions long associated with body temperature regulation) and the raphe showed no significant differences among the lines. [3H]Ketanserin binding to cortical 5-HT2 receptors did not differ among the lines, except in the cingulate and superficial frontal cortices where HDS exhibited higher binding. These data suggest that differences in 5-HT1A receptor number may contribute to the exaggerated hypothermic response to 8-OH-DPAT in HDS rats. These studies also suggest that genetic regulation of receptor density may be brain region specific which should encourage future studies of the mechanisms of 5-HT1A receptor activity in brain and the action of drugs affecting this receptor.
Collapse
Affiliation(s)
- D J Knapp
- Skipper Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7178, USA.
| | | | | |
Collapse
|
195
|
Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998; 82:443-68. [PMID: 9466453 DOI: 10.1016/s0306-4522(97)00268-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dorsal raphe nucleus through its extensive efferents has been implicated in a great variety of physiological and behavioural functions. However, little is know about its afferents. Therefore, to identify the systems likely to influence the activity of serotonergic neurons of the dorsal raphe nucleus, we re-examined the forebrain afferents to the dorsal raphe nucleus using cholera toxin b subunit and Phaseolus vulgaris-leucoagglutinin as retrograde or anterograde tracers. With small cholera toxin b subunit injection sites, we further determined the specific afferents to the ventral and dorsal parts of the central dorsal raphe nucleus, the rostral dorsal raphe nucleus and the lateral wings. In agreement with previous studies, we observed a large number of retrogradely-labelled cells in the lateral habenula following injections in all subdivisions of the dorsal raphe nucleus. In addition, depending on the subdivision of the dorsal raphe nucleus injected, we observed a small to large number of retrogradely-labelled cells in the orbital, cingulate, infralimbic, dorsal peduncular, and insular cortice, a moderate or substantial number in the ventral pallidum and a small to substantial number in the claustrum. In addition, we observed a substantial to large number of cells in the medial and lateral preoptic areas and the medial preoptic nucleus after cholera toxin b subunit injections in the dorsal raphe nucleus excepting for those located in the ventral part of the central dorsal raphe nucleus, after which we found a moderate number of retrogradely-labelled cells. Following cholera toxin b subunit injections in the dorsal part of the central dorsal raphe nucleus, a large number of retrogradely-labelled cells was seen in the lateral, ventral and medial parts of the bed nucleus of the stria terminalis whereas only a small to moderate number was visualized after injections in the other dorsal raphe nucleus subdivisions. In addition, respectively, a substantial and a moderate number of retrogradely-labelled cells was distributed in the zona incerta and the subincertal nucleus following all tracer injections in the dorsal raphe nucleus. A large number of retrogradely-labelled cells was also visualized in the lateral, dorsal and posterior hypothalamic areas and the perifornical nucleus after cholera toxin b subunit injections in the dorsal part of the central raphe nucleus and to a lesser extent following injections in the other subdivisions. We further observed a substantial to large number of retrogradely-labelled cells in the tuber cinereum and the medial tuberal nucleus following cholera toxin b subunit injections in the dorsal part of the central dorsal raphe nucleus or the lateral wings and a small to moderate number after injections in the two other dorsal raphe nucleus subdivisions. A moderate or substantial number of labelled cells was also seen in the ventromedial hypothalamic area and the arcuate nucleus following cholera toxin injections in the dorsal part of the central dorsal raphe nucleus and the lateral wings and an occasional or small number with injection sites located in the other subdivisions. Finally, we observed, respectively, a moderate and a substantial number of retrogradely-labelled cells in the central nucleus of the amygdala following tracer injections in the ventral or dorsal parts of the central dorsal raphe nucleus and a small number after injections in the other subnuclei. In agreement with these retrograde data, we visualized anterogradely-labelled fibres heterogeneously distributed in the dorsal raphe nucleus following Phaseolus vulgaris-leucoagglutinin injections in the lateral orbital or infralimbic cortice, the lateral preoptic area, the perifornical nucleus, the lateral or posterior hypothalamic areas, the zona incerta, the subincertal nucleus or the medial tuberal nucleus. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- C Peyron
- INSERM U52, CNRS ERS 5645, Université Claude Bernard, Lyon, France
| | | | | | | | | |
Collapse
|
196
|
DeCoteau WE, Kesner RP, Williams JM. Short-term memory for food reward magnitude: the role of the prefrontal cortex. Behav Brain Res 1997; 88:239-49. [PMID: 9404633 DOI: 10.1016/s0166-4328(97)00044-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Memory for magnitude of reinforcement was assessed in rats using a go/no-go short-term memory paradigm. During the task's study phase rats were given a piece of cereal comprised of either 25 or 50% sugar. For all trials, one of the cereal types was designated positive, the other negative. On the ensuing test phase the rat was presented with an object which covered a food well. If a positive food reward was given during the study phase, a second food reward was placed beneath the object. No food reward was placed under the object if the study phase consisted of a negative food reward. Latency to object displacement was used as the measure of performance. Following the establishment of a significant difference between latency to approach the object with reward compared to latency to approach the object without reward, rats were given either agranular insular cortex, anterior cingulate cortex, pre- and infralimbic cortex or control lesions. Agranular insular cortex lesioned animals demonstrated a mild post-surgery impairment. Trials consisting of 10 and 20 s delays between the study and test phases were then introduced. Delays exacerbated the previous deficit of the agranular insular cortex lesion group, but had little effect on the other lesion groups. All animals transferred to a new set of cereals containing 25 and 50% sugar and exhibited taste preferences to sugar solutions of different concentrations. These results indicate that the agranular insular cortex may play an important role in the processing of affect-laden information within a prefrontal cortex short-term or working memory system.
Collapse
Affiliation(s)
- W E DeCoteau
- Department of Psychology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
197
|
Risold PY, Thompson RH, Swanson LW. The structural organization of connections between hypothalamus and cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:197-254. [PMID: 9385455 DOI: 10.1016/s0165-0173(97)00007-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Motivated behavior requires coordinated somatic, autonomic, and endocrine responses, and may be divided into initiation, procurement, and consummatory phases (Swanson, L.W. and Mogenson, G.J., Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptative behavior, Brain Res. Rev., 3 (1981) 1-34). Obviously, such behavior may involve the entire central nervous system, although it is important to identify circuitry or systems that mediate the behavior directed toward specific goal objects. This problem has recently been clarified by the identification of hypothalamic subsystems important for the execution of instinctive behaviors related to ingestion, reproduction, and defense. These subsystems are modulated by sensory (reflex), central control (e.g., circadian), and voluntary (cortical) inputs. The latter are dominated by inputs from the ventral temporal lobe and medial prefrontal region, which are both direct and via associated parts of the basal nuclei (ganglia). Hypothalamic output is characterized by descending projections to brainstem and spinal motor systems, and by projections back to the cerebral cortex, which are both direct and via a continuous rostromedial part of the dorsal thalamus. This thalamic region includes the anterior, medial, and midline groups, which in turn innervate a continuous ring of cortex that includes the hippocampal formation and the cingulate, prefrontal, and insular regions. Parts of this thalamic region also innervate the ventral striatum, which receives a massive input from the cortical rings as well.
Collapse
Affiliation(s)
- P Y Risold
- Program for Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|
198
|
Verberne AJ, Lam W, Owens NC, Sartor D. Supramedullary modulation of sympathetic vasomotor function. Clin Exp Pharmacol Physiol 1997; 24:748-54. [PMID: 9315383 DOI: 10.1111/j.1440-1681.1997.tb02126.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. Supramedullary structures including the ventral medial prefrontal cortex (MPFC) and the midbrain cuneiform nucleus (CnF) project directly and indirectly to premotor sympatho-excitatory neurons of the rostral ventrolateral medulla (RVLM) that are critically involved in the generation of sympathetic vasomotor tone. 2. Electrophysiological studies have demonstrated that activation of depressor sites within the MPFC is associated with splanchnic sympathetic vasomotor inhibition and inhibition of the activity of RVLM sympathoexcitatory neurons. 3. Antidromic mapping and anatomical studies support the notion that a relay in the nucleus tractus solitarius is involved in the cardiovascular response to MPFC stimulation. 4. The midbrain CnF, which lies adjacent to the midbrain periaqueductal grey, is a sympathoexcitatory region of the midbrain reticular formation. Sympathoexcitatory responses evoked from the CnF are associated with short-latency excitation of RVLM neurons. 5. Cuneiform nucleus stimulation induces the expression of mRNA for the immediate early genes c-fos and NGFI-A in mid-brain, pontine and hypothalamic structures. 6. The MPFC and CnF are supramedullary structures with opposing modulatory influences on sympathetic vasomotor drive, whose roles in cardiovascular control mechanisms warrant further investigation.
Collapse
Affiliation(s)
- A J Verberne
- University of Melbourne, Department of Medicine, Victoria, Australia.
| | | | | | | |
Collapse
|
199
|
Abstract
The arborization pattern and postsynaptic targets of corticofugal axons in basal forebrain areas have been studied by the combination of anatomical tract-tracing and pre- and postembedding immunocytochemistry. The anterograde neuronal tracer Phaseolus vulgaris leucoagglutinin was iontophoretically delivered into different neocortical (frontal, parietal, occipital), allocortical (piriform) and mesocortical (insular, prefrontal) areas in rats. To identify the transmitter phenotype in pre- or postsynaptic elements, the tracer staining was combined with immunolabeling for either glutamate or GABA, or with immunolabeling for choline acetyltransferase or parvalbumin. Tracer injections into medial and ventral prefrontal areas gave rise to dense terminal arborizations in extended basal forebrain areas, particularly in the horizontal limb of the diagonal band and the region ventral to it. Terminals were also found to a lesser extent in the ventral part of the substantia innominata and in ventral pallidal areas adjoining ventral striatal territories. Similarly, labeled fibers from the piriform and insular cortices were found to reach lateral and ventral parts of the substantia innominata, where terminal varicosities were evident. In contrast, descending fibers from neocortical areas were smooth, devoid of terminal varicosities, and restricted to the myelinated fascicles of the internal capsule en route to more caudal targets. Ultrastructural studies obtained indicated that corticofugal axon terminals in the basal forebrain areas form synaptic contact primarily with dendritic spines or small dendritic branches (89%); the remaining axon terminals established synapses with dendritic shafts. All tracer labeled axon terminals were immunonegative for GABA, and in the cases investigated, were found to contain glutamate immunoreactivity. In material stained for the anterograde tracer and choline acetyltransferase, a total of 63 Phaseolus vulgaris leucoagglutinin varicosities closely associated with cholinergic profiles were selected for electron microscopic analysis. From this material, 37 varicosities were identified as establishing asymmetric synaptic contacts with neurons that were immunonegative for choline acetyltransferase, including spines and small dendrites (87%) or dendritic shafts (13%). Unequivocal evidence for synaptic interactions between tracer labeled terminals and cholinergic profiles could not be obtained in the remaining cases. From material stained for the anterograde tracer and parvalbumin, 40% of the labeled terminals investigated were found to establish synapses with parvalbumin-positive elements; these contacts were on dendritic shafts and were of the asymmetrical type. The present data suggest that corticofugal axons innervate forebrain neurons that are primarily inhibitory and non-cholinergic; local forebrain axonal arborizations of these cells may represent a mechanism by which prefrontal cortical areas control basal forebrain cholinergic neurons outside the traditional boundaries of pallidal areas.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
200
|
Foerster A, Schmitz JM, Nouri S, Claus D. Safety of rapid-rate transcranial magnetic stimulation: heart rate and blood pressure changes. ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY 1997; 104:207-12. [PMID: 9186235 DOI: 10.1016/s0168-5597(97)00016-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We examined the influence of rapid-rate transcranial magnetic stimulation on heart rate and blood pressure in 13 healthy volunteers. In a first series three different cortical magnetic stimuli were applied: over C3, C4 and Fz (10/20 system), in a second series additionally over Pz. We also used a stimulus over the brachial plexus and a sham stimulus. Five stimuli of each location were applied with a Cadwell high speed magnetic stimulator using a focal point circular coil. Stimulus train duration was 500 ms, stimulus frequency 20 Hz. Stimulus strength was 70-90% of maximum stimulator output, 20% of maximum stimulator output above subjects' individual motor threshold. The subjects assessed stimulus inconvenience immediately after stimulation. ECG and blood pressure (Finapres) were recorded continuously during the 1 h test. In all subjects there was a clearly marked autonomic response with heart rate acceleration and decrease in blood pressure after all stimuli. There was no difference in responses between cortical stimuli. Blood pressure decrease after sham stimulation was significantly smaller than after cortical stimulation, it was more marked after brachial plexus stimulation. Autonomic reaction correlates well with subjective estimation of stimulus inconvenience. We conclude the observed effect of rapid-rate transcranial magnetic stimulation to be associated to rather an unspecific arousal reaction than to a direct stimulation of autonomic cortex areas. We did not observe any clinically relevant side-effects.
Collapse
Affiliation(s)
- A Foerster
- Department of Neurology, Friedrich-Alexander-Universität Erlangen, Germany
| | | | | | | |
Collapse
|