151
|
Awal Khan MA, Zhang S, Emon RM, Chen F, Song W, Wu T, Yuan S, Wu C, Hou W, Sun S, Fu Y, Jiang B, Han T. CONSTANS Polymorphism Modulates Flowering Time and Maturity in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:817544. [PMID: 35371153 PMCID: PMC8969907 DOI: 10.3389/fpls.2022.817544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/15/2022] [Indexed: 06/01/2023]
Abstract
CONSTANS (CO) plays a critical role in the photoperiodic flowering pathway. However, the function of soybean CO orthologs and the molecular mechanisms in regulating flowering remain largely unknown. This study characterized the natural variations in CO family genes and their association with flowering time and maturity in soybeans. A total of 21 soybean CO family genes (GmCOLs) were cloned and sequenced in 128 varieties covering 14 known maturity groups (MG 0000-MG X from earliest to latest maturity). Regarding the whole genomic region involving these genes, GmCOL1, GmCOL3, GmCOL8, GmCOL9, GmCOL10, and GmCOL13 were conserved, and the remaining 15 genes showed genetic variation that was brought about by mutation, namely, all single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels). In addition, a few genes showed some strong linkage disequilibrium. Point mutations were found in 15 GmCOL genes, which can lead to changes in the potential protein structure. Early flowering and maturation were related to eight genes (GmCOL1/3/4/8/13/15/16/19). For flowering and maturation, 11 genes (GmCOL2/5/6/14/20/22/23/24/25/26/28) expressed divergent physiognomy. Haplotype analysis indicated that the haplotypes of GmCOL5-Hap2, GmCOL13-Hap2/3, and GmCOL28-Hap2 were associated with flowering dates and soybean maturity. This study helps address the role of GmCOL family genes in adapting to diverse environments, particularly when it is necessary to regulate soybean flowering dates and maturity.
Collapse
Affiliation(s)
- Mohammad Abdul Awal Khan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shouwei Zhang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Reza Mohammad Emon
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding Division, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh
| | - Fulu Chen
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenwen Song
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingting Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan Yuan
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cunxiang Wu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Hou
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shi Sun
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfu Fu
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingjun Jiang
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianfu Han
- MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
152
|
Comprehensive Analyses of Four PtoNF-YC Genes from Populus tomentosa and Impacts on Flowering Timing. Int J Mol Sci 2022; 23:ijms23063116. [PMID: 35328537 PMCID: PMC8950544 DOI: 10.3390/ijms23063116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Flowering is an important link in the life process of angiosperms, and it is also an important sign of the transformation of plants from vegetative to reproductive growth. Although the flowering regulation network of Arabidopsis is well-understood, there has been little research on the molecular mechanisms of perennial woody plant flower development regulation. Populus tomentosa is a unique Chinese poplar species with fast growth, strong ecological adaptability, and a long lifecycle. However, it has a long juvenile phase, which seriously affects its breeding process. Nuclear factor-Y (NF-Y) is an important type of transcription factor involved in the regulation of plant flowering. However, there are few reports on PtoNF-Y gene flowering regulation, and the members of the PtNF-YC subfamily are unknown. In this study, four key genes were cloned and analyzed for sequence characteristics, gene structure, genetic evolution, expression patterns, and subcellular localization. The plant expression vector was further constructed, and transgenic Arabidopsis and P. tomentosa plants were obtained through genetic transformation and a series of molecular tests. The flowering time and other growth characteristics were analyzed. Finally, the expression level of flowering genes was detected by quantitative PCR, the interaction between PtoNF-YC and PtoCOL proteins was measured using the yeast two-hybrid system to further explain the flowering regulation mechanism, and the molecular mechanisms by which PtNF-YC6 and PtNF-YC8 regulate poplar flowering were discussed. These results lay the foundation for elucidating the molecular regulation mechanism of PtoNF-YC in flowering and furthering the molecular design and breeding of poplar, while providing a reference for other flowering woody plants.
Collapse
|
153
|
Liu Y, Luo C, Guo Y, Liang R, Yu H, Chen S, Mo X, Yang X, He X. Isolation and Functional Characterization of Two CONSTANS-like 16 (MiCOL16) Genes from Mango. Int J Mol Sci 2022; 23:ijms23063075. [PMID: 35328495 PMCID: PMC8951110 DOI: 10.3390/ijms23063075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
CONSTANS (CO) is an important regulator of photoperiodic flowering and functions at a key position in the flowering regulatory network. Here, two CO homologs, MiCOL16A and MiCOL16B, were isolated from “SiJiMi” mango to elucidate the mechanisms controlling mango flowering. The MiCOL16A and MiCOL16B genes were highly expressed in the leaves and expressed at low levels in the buds and flowers. The expression levels of MiCOL16A and MiCOL16B increased during the flowering induction period but decreased during the flower organ development and flowering periods. The MiCOL16A gene was expressed in accordance with the circadian rhythm, and MiCOL16B expression was affected by diurnal variation, albeit not regularly. Both the MiCOL16A and MiCOL16B proteins were localized in the nucleus of cells and exerted transcriptional activity through their MR domains in yeast. Overexpression of both the MiCOL16A and MiCOL16B genes significantly repressed flowering in Arabidopsis under short-day (SD) and long-day (LD) conditions because they repressed the expression of AtFT and AtSOC1. This research also revealed that overexpression of MiCOL16A and MiCOL16B improved the salt and drought tolerance of Arabidopsis, conferring longer roots and higher survival rates to overexpression lines under drought and salt stress. Together, our results demonstrated that MiCOL16A and MiCOL16B not only regulate flowering but also play a role in the abiotic stress response in mango.
Collapse
|
154
|
Xu X, Xu J, Yuan C, Chen Q, Liu Q, Wang X, Qin C. BBX17 Interacts with CO and Negatively Regulates Flowering Time in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2022; 63:401-409. [PMID: 35016218 DOI: 10.1093/pcp/pcac005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Floral transition, the change from vegetative growth to reproductive development, is dramatic in flowering plants. Here, we show that one subgroup III member of the B-box (BBX) family, BBX17, is a repressor of floral transition under long-day conditions. BBX17 contains a B-box domain and a CCT domain. Although the phenotype of the BBX17 loss-of-function plants was comparable to that of wild-type plants, BBX17-overexpression plants displayed a delayed-flowering phenotype under long-day conditions. The delayed-flowering phenotype was not the result of an altered CONSTANS (CO) expression level but rather the repression of the FLOWERING LOCUS T (FT) expression level. BBX17 physically associated with CO and repressed its ability to control FT expression. Furthermore, the BBX17 protein degraded in the dark, but irradiating seedlings with white, blue, red or far-red light stabilized the BBX17 level. We also proved that the degradation of BBX17 was via 26S proteasome and requires COP1. Thus, BBX17 acts as a key factor in the CO-FT regulatory system to control Arabidopsis thaliana flowering.
Collapse
Affiliation(s)
- Xiaorui Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingya Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chen Yuan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qianqian Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinggang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuming Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agriproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
155
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
156
|
Satake A, Nagahama A, Sasaki E. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. THE NEW PHYTOLOGIST 2022; 233:2340-2353. [PMID: 34862973 DOI: 10.1111/nph.17897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Plants have evolved to time their leafing, flowering and fruiting in appropriate seasons for growth, reproduction and resting. As a consequence of their adaptation to geographically different environments, there is a rich diversity in plant phenology from temperate and tropical climates. Recent progress in genetic and molecular studies will provide numerous opportunities to study the genetic basis of phenological traits and the history of adaptation of phenological traits to seasonal and aseasonal environments. Integrating molecular data with long-term phenology and climate data into predictive models will be a powerful tool to forecast future phenological changes in the face of global environmental change. Here, we review the cross-scale approach from genes to plant communities from three aspects: the latitudinal gradient of plant phenology at the community level, the environmental and genetic factors underlying the diversity of plant phenology, and an integrated approach to forecast future plant phenology based on genetically informed knowledge. Synthesizing the latest knowledge about plant phenology from molecular, ecological and mathematical perspectives will help us understand how natural selection can lead to the further evolution of the gene regulatory mechanisms in phenological traits in future forest ecosystems.
Collapse
Affiliation(s)
- Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ai Nagahama
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
157
|
Zeng X, Lv X, Liu R, He H, Liang S, Chen L, Zhang F, Chen L, He Y, Du J. Molecular basis of CONSTANS oligomerization in FLOWERING LOCUS T activation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:731-740. [PMID: 35023269 DOI: 10.1111/jipb.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The transcription factor CONSTANS (CO) integrates day-length information to induce the expression of florigen FLOWERING LOCUS T (FT) in Arabidopsis. We recently reported that the C-terminal CCT domain of CO forms a complex with NUCLEAR FACTOR-YB/YC to recognize multiple cis-elements in the FT promoter, and the N-terminal tandem B-box domains form a homomultimeric assembly. However, the mechanism and biological function of CO multimerization remained unclear. Here, we report that CO takes on a head-to-tail oligomeric configuration via its B-boxes to mediate FT activation in long days. The crystal structure of B-boxesCO reveals a closely connected tandem B-box fold forming a continuous head-to-tail assembly through unique CDHH zinc fingers. Mutating the key residues involved in CO oligomerization resulted in a non-functional CO, as evidenced by the inability to rescue co mutants. By contrast, a transgene encoding a human p53-derived tetrameric peptide in place of the B-boxesCO rescued co mutant, emphasizing the essential role of B-boxesCO -mediated oligomerization. Furthermore, we found that the four TGTG-bearing cis-elements in FT proximal promoter are required for FT activation in long days. Our results suggest that CO forms a multimer to bind to the four TGTG motifs in the FT promoter to mediate FT activation.
Collapse
Affiliation(s)
- Xiaolin Zeng
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, China
| | - Xinchen Lv
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hang He
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shiqi Liang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lixian Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Chen
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
- National Key Laboratory of Plant Molecular Genetics & Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai, 201602, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
158
|
Huang Z, Bai X, Duan W, Chen B, Chen G, Xu B, Cheng R, Wang J. Genome-Wide Identification and Expression Profiling of CONSTANS-Like Genes in Pepper ( Capsicum annuum): Gaining an Insight to Their Phylogenetic Evolution and Stress-Specific Roles. FRONTIERS IN PLANT SCIENCE 2022; 13:828209. [PMID: 35251098 PMCID: PMC8892298 DOI: 10.3389/fpls.2022.828209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
CONSTANS-like (COL) genes play important regulatory roles in multiple growth and development processes of plants but have rarely been studied in Capsicum annuum. This study explored the evolutionary relationship and expression patterns of COL genes from C. annuum. A total of 10 COL genes were identified in the genome of the cultivated pepper Zunla-1 and were named CaCOL01-10. These genes were unequally distributed among five chromosomes and could be divided into three groups based on differences in gene structure characteristics. During evolutionary history, duplications and retentions were divergent among different groups of COL genes. Tandem duplication caused amplification of group I genes. Genetic distance among COL genes was the largest in group III, suggesting that group III genes undergo more relaxed selection pressure compared with the other groups. Expression patterns of CaCOLs in tissues were significantly different, with CaCOL08 exhibiting the highest expression in stem and leaf. Some COL orthologous genes showed markedly different expression patterns in pepper compared with tomato, such as COL_1 orthologs, which may be involved in fruit development in pepper. In addition, CaCOLs participated in the regulation of abiotic stresses to varying degrees. Five CaCOL genes were induced by cold, and CaCOL02 and CaCOL03 were specifically upregulated by cold and downregulated by heat. This study provides a theoretical basis for the in-depth understanding of the functions of COL genes in pepper and their molecular mechanisms involved in growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Zhinan Huang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Xueying Bai
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Weike Duan
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Boqing Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Binghua Xu
- Huai’an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an, China
| | - Rui Cheng
- Huai’an Key Laboratory for Facility Vegetables, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai’an, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
159
|
The Genetic and Hormonal Inducers of Continuous Flowering in Orchids: An Emerging View. Cells 2022; 11:cells11040657. [PMID: 35203310 PMCID: PMC8870070 DOI: 10.3390/cells11040657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Orchids are the flowers of magnetic beauty. Vivid and attractive flowers with magnificent shapes make them the king of the floriculture industry. However, the long-awaited flowering is a drawback to their market success, and therefore, flowering time regulation is the key to studies about orchid flower development. Although there are some rare orchids with a continuous flowering pattern, the molecular regulatory mechanisms are yet to be elucidated to find applicable solutions to other orchid species. Multiple regulatory pathways, such as photoperiod, vernalization, circadian clock, temperature and hormonal pathways are thought to signalize flower timing using a group of floral integrators. This mini review, thus, organizes the current knowledge of floral time regulators to suggest future perspectives on the continuous flowering mechanism that may help to plan functional studies to induce flowering revolution in precious orchid species.
Collapse
|
160
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
161
|
Chiurazzi MJ, Nørrevang AF, García P, Cerdán PD, Palmgren M, Wenkel S. Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:205-214. [PMID: 34761872 PMCID: PMC9303315 DOI: 10.1111/jipb.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.
Collapse
Affiliation(s)
- Maurizio Junior Chiurazzi
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Anton Frisgaard Nørrevang
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Pedro García
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Pablo D. Cerdán
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Michael Palmgren
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Stephan Wenkel
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| |
Collapse
|
162
|
Garcia RS, Coronejo S, Concepcion J, Subudhi PK. Whole-Genome Sequencing and RNA-Seq Reveal Differences in Genetic Mechanism for Flowering Response between Weedy Rice and Cultivated Rice. Int J Mol Sci 2022; 23:1608. [PMID: 35163531 PMCID: PMC8836195 DOI: 10.3390/ijms23031608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Flowering is a key agronomic trait that influences adaptation and productivity. Previous studies have indicated the genetic complexity associated with the flowering response in a photoinsensitive weedy rice accession PSRR-1 despite the presence of a photosensitive allele of a key flowering gene Hd1. In this study, we used whole-genome and RNA sequencing data from both cultivated and weedy rice to add further insights. The de novo assembly of unaligned sequences predicted 225 genes, in which 45 were specific to PSRR-1, including two genes associated with flowering. Comparison of the variants in PSRR-1 with the 3K rice genome (RG) dataset identified unique variants within the heading date QTLs. Analyses of the RNA-Seq result under both short-day (SD) and long-day (LD) conditions revealed that many differentially expressed genes (DEGs) colocalized with the flowering QTLs, and some DEGs such as Hd1, OsMADS56, Hd3a, and RFT1 had unique variants in PSRR-1. Ehd1, Hd1, OsMADS15, and OsMADS56 showed different alternate splicing (AS) events between genotypes and day length conditions. OsMADS56 was expressed in PSRR-1 but not in Cypress under both LD and SD conditions. Based on variations in both sequence and expression, the unique flowering response in PSRR-1 may be due to the high-impact variants of flowering genes, and OsMADS56 is proposed as a key regulator for its day-neutral flowering response.
Collapse
Affiliation(s)
| | | | | | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.); (J.C.)
| |
Collapse
|
163
|
Chen P, Zhi F, Li X, Shen W, Yan M, He J, Bao C, Fan T, Zhou S, Ma F, Guan Q. Zinc-finger protein MdBBX7/MdCOL9, a target of MdMIEL1 E3 ligase, confers drought tolerance in apple. PLANT PHYSIOLOGY 2022; 188:540-559. [PMID: 34618120 PMCID: PMC8774816 DOI: 10.1093/plphys/kiab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1-MdBBX7 module influences the response of apple to drought stress.
Collapse
Affiliation(s)
- Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangxi Zhou
- The New Zealand Institute for Plant and Food Research Ltd., Hawke's Bay 4130, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
164
|
Xia L, Kong X, Song H, Han Q, Zhang S. Advances in proteome-wide analysis of plant lysine acetylation. PLANT COMMUNICATIONS 2022; 3:100266. [PMID: 35059632 PMCID: PMC8760137 DOI: 10.1016/j.xplc.2021.100266] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Lysine acetylation (LysAc) is a conserved and important post-translational modification (PTM) that plays a key role in plant physiological and metabolic processes. Based on advances in Lys-acetylated protein immunoenrichment and mass-spectrometric technology, LysAc proteomics studies have been performed in many species. Such studies have made substantial contributions to our understanding of plant LysAc, revealing that Lys-acetylated histones and nonhistones are involved in a broad spectrum of plant cellular processes. Here, we present an extensive overview of recent research on plant Lys-acetylproteomes. We provide in-depth insights into the characteristics of plant LysAc modifications and the mechanisms by which LysAc participates in cellular processes and regulates metabolism and physiology during plant growth and development. First, we summarize the characteristics of LysAc, including the properties of Lys-acetylated sites, the motifs that flank Lys-acetylated lysines, and the dynamic alterations in LysAc among different tissues and developmental stages. We also outline a map of Lys-acetylated proteins in the Calvin-Benson cycle and central carbon metabolism-related pathways. We then introduce some examples of the regulation of plant growth, development, and biotic and abiotic stress responses by LysAc. We discuss the interaction between LysAc and Nα-terminal acetylation and the crosstalk between LysAc and other PTMs, including phosphorylation and succinylation. Finally, we propose recommendations for future studies in the field. We conclude that LysAc of proteins plays an important role in the regulation of the plant life cycle.
Collapse
Affiliation(s)
- Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qingquan Han
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
165
|
Yang C, Yan W, Chang H, Sun C. Arabidopsis CIA2 and CIL have distinct and overlapping functions in regulating chloroplast and flower development. PLANT DIRECT 2022; 6:e380. [PMID: 35106435 PMCID: PMC8786619 DOI: 10.1002/pld3.380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 05/05/2023]
Abstract
Arabidopsis CHLOROPLAST IMPORT APPARATUS 2 (CIA2) and its paralogous protein CIA2-LIKE (CIL) are nuclear transcription factors containing a C-terminal CCT motif. CIA2 promotes the expression of nuclear genes encoding chloroplast-localized translocons and ribosomal proteins, thereby increasing the efficiency of protein import and synthesis in chloroplasts. We have previously reported that CIA2 and CIL form a homodimer or heterodimer through their C-terminal sequences and interact with other nuclear proteins, such as CONSTANS (CO), via their N-terminal sequences, but the function of CIL had remained unclear. In this study, we verified through transgenic cia2 mutant plants expressing the CIL coding sequence that CIL is partially functionally redundant to CIA2 during vegetative growth. We also compared phenotypes and gene expression profiles of wildtype Col-0, cia2, cil, and cia2/cil mutants. Our results indicate that CIA2 and CIL coordinate chloroplast biogenesis and function mainly by upregulating the expression of the nuclear factor GOLDEN2-LIKE 1 (GLK1) and chloroplast transcription-, translation-, protein import-, and photosynthesis-related genes, with CIA2 playing a more crucial role. Furthermore, we compared flowering phenotypes in single, double, and triple mutant plants of co, cia2, and cil. We found that CIA2 and CIL participate in modulating long-day floral development. Notably, CIA2 increases flower number and height of the inflorescence main axis, whereas CIL promotes flowering.
Collapse
Affiliation(s)
- Chun‐Yen Yang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Wen‐You Yan
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Hsin‐Yen Chang
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Chih‐Wen Sun
- Department of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| |
Collapse
|
166
|
Jiang L, Jiang X, Li Y, Gao Y, Wang S, Ma Y, Wang G. FT-like paralogs are repressed by an SVP protein during the floral transition in Phalaenopsis orchid. PLANT CELL REPORTS 2022; 41:233-248. [PMID: 34713321 DOI: 10.1007/s00299-021-02805-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
An SVP protein, PhSVP, bound to the CArG-boxes in the promoter regions of FT-like paralogs and repressed their expression, thus affecting the floral transition in Phalaenopsis orchid. Phalaenopsis is an important ornamental flower native to tropical rain forests. It usually reaches vegetative maturity after 4-5 leaves and, after a juvenile stage, forms a flower spike (inflorescence) from the axillary buds. The PEBP gene family encodes a phosphatidyl-ethanolamine-binding protein (PEBP) domain involved in regulating flowering and other aspects of plant development. Here, we identified eight PEBP family genes in Phalaenopsis and detected the expression patterns of seven of them in various organs. Among them, PhFT1 (Phalaenopsis hybrid FLOWERING LOCUS T1), PhFT3, PhFT5, and PhMFT (Phalaenopsis hybrid MOTHER OF FT AND TFL1) promoted flowering in transgenic Arabidopsis, while PhFT6 inhibited flowering. PhSVP (Phalaenopsis hybrid SHORT VEGETATIVE PHASE), an SVP protein that repressed flowering in Arabidopsis, bound to the CArG-boxes in the promoter regions of PhFT3, PhFT6, and PhMFT in a yeast one-hybrid assay. Additionally, dual-luciferase and transient expression assays showed that PhSVP significantly inhibits the expression of both PhFT3 and PhFT6. Together, our work provides a comprehensive understanding of the PhFT-like genes that can promote or repress flowering, and it suggests strategies for regulating the floral transition in Phalaenopsis that exploit the evolutionary versatility of PhFTs to respond to various signals stimuli.
Collapse
Affiliation(s)
- Li Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxiao Jiang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanna Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongxia Gao
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiyao Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuehua Ma
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangdong Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
167
|
Wong ACS, Massel K, Lam Y, Hintzsche J, Chauhan BS. Biotechnological Road Map for Innovative Weed Management. FRONTIERS IN PLANT SCIENCE 2022; 13:887723. [PMID: 35548307 PMCID: PMC9082642 DOI: 10.3389/fpls.2022.887723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/07/2022] [Indexed: 05/07/2023]
Abstract
In most agriculture farmlands, weed management is predominantly reliant on integrated weed management (IWM) strategies, such as herbicide application. However, the overuse and misuse of herbicides, coupled with the lack of novel active ingredients, has resulted in the uptrend of herbicide-resistant weeds globally. Moreover, weedy traits that contribute to weed seed bank persistence further exacerbate the challenges in weed management. Despite ongoing efforts in identifying and improving current weed management processes, the pressing need for novel control techniques in agricultural weed management should not be overlooked. The advent of CRISPR/Cas9 gene-editing systems, coupled with the recent advances in "omics" and cheaper sequencing technologies, has brought into focus the potential of managing weeds in farmlands through direct genetic control approaches, but could be achieved stably or transiently. These approaches encompass a range of technologies that could potentially manipulate expression of key genes in weeds to reduce its fitness and competitiveness, or, by altering the crop to improve its competitiveness or herbicide tolerance. The push for reducing or circumventing the use of chemicals in farmlands has provided an added incentive to develop practical and feasible molecular approaches for weed management, although there are significant technical, practical, and regulatory challenges for utilizing these prospective molecular technologies in weed management.
Collapse
Affiliation(s)
- Albert Chern Sun Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Albert Chern Sun Wong,
| | - Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica Hintzsche
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bhagirath Singh Chauhan
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Gatton, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, QLD, Australia
| |
Collapse
|
168
|
Cheng X, Tian B, Gao C, Gao W, Yan S, Yao H, Wang X, Jiang Y, Hu L, Pan X, Cao J, Lu J, Ma C, Chang C, Zhang H. Identification and expression analysis of candidate genes related to seed dormancy and germination in the wheat GATA family. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:343-359. [PMID: 34837867 DOI: 10.1016/j.plaphy.2021.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
GATA transcription factors have been reported to function in plant growth and development and during various biotic/abiotic stresses in Arabidopsis and rice. However, the functions of wheat GATAs, particularly in the regulation of seed dormancy and germination, remain unclear. Here, we identified 78 TaGATAs in wheat and divided them into five subfamilies. Sixty-four paralogous pairs and 52 orthologous pairs were obtained, and Ka/Ks ratios showed that the TaGATAs had undergone strong purifying election during the evolutionary process. Triplet analysis indicated that a high homologue retention rate could explain the large number of TaGATAs in wheat. Gene structure analysis revealed that most members of the same subfamily had similar structures, and subcellular localization prediction indicated that most TaGATAs were located in the nucleus. Gene ontology annotation results showed that most TaGATAs had molecular functions in DNA and zinc binding, and promoter analysis suggested that they may play important roles in growth, development, and biotic/abiotic stress response. We combined three microarray datasets with qRT-PCR expression data from wheat varieties of contrasting dormancy and pre-harvest sprouting resistance levels during imbibition in order to identify ten candidate genes (TaGATA17/-25/-34/-37/-40/-46/-48/-51/-72/-73) that may be involved in the regulation of seed dormancy and germination in wheat. These findings provide valuable information for further dissection of TaGATA functions in the regulation of seed dormancy and germination, thereby enabling the improvement of wheat pre-harvest sprouting resistance by gene pyramiding.
Collapse
Affiliation(s)
- Xinran Cheng
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China; National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingbing Tian
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chang Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Wei Gao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Shengnan Yan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Hui Yao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xuyang Wang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Yating Jiang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Leixue Hu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Xu Pan
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jiajia Cao
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China
| | - Cheng Chang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| | - Haiping Zhang
- College of Agronomy, Anhui Agricultural University, Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, 230036, Anhui, China.
| |
Collapse
|
169
|
Ma Y, Chhapekar SS, Lu L, Yu X, Kim S, Lee SM, Gan TH, Choi GJ, Lim YP, Choi SR. QTL mapping for Fusarium wilt resistance based on the whole-genome resequencing and their association with functional genes in Raphanus sativus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3925-3940. [PMID: 34387712 DOI: 10.1007/s00122-021-03937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Two major QTL associated with resistance to Fusarium wilt (FW) were identified using whole-genome resequencing. Sequence variations and gene expression level differences suggest that TIR-NBS and LRR-RLK are candidate genes associated with FW-resistance. Fusarium wilt (FW) caused by Fusarium oxysporum f. sp. raphani is an important disease in radish, leading to severe decrease in yield and quality. YR4 as a novel genetic source to resistant to FW was confirmed through screening with five pathogen isolates. We have generated F2 and F2:3 populations segregated with FW resistance using YR4 and YR18 inbred lines. The disease symptom was evaluated in F2:3 population (n = 180) in three independent studies over two years. We identified 4 QTL including the two major QTL (FoRsR7.159A and FoRsR9.359A). FoRsR7.159A and FoRsR9.359A were detected in three replicated experiments. FoRsR7.159A was delimited to the 2.18-Mb physical interval on chromosome R07, with a high LOD value (5.17-12.84) and explained phenotypic variation (9.34%-27.97%). The FoRsR9.359A represented relatively low LOD value (3.38-4.52) and explained phenotypic variation (6.24%-8.82%). On the basis of the re-sequencing data for the parental lines, we identified five putative resistance-related genes and 13 unknown genes with sequence variations at the gene and protein levels. A semi-quantitative RT-PCR analysis revealed that Rs382940 (TIR-NBS) and Rs382200 (RLK) were expressed only in 'YR4' from 0 to 6 days after the inoculation. Moreover, Rs382950 (TIR-NBS-LRR) was more highly expressed in 'YR4' from 3 to 6 days after the inoculation. These three genes might be important for FW-resistance in radish. We identified several markers based on these potential candidate genes. The marker set should be useful for breeding system to introduce the FW resistance loci from 'YR4' to improve tolerance to FW.
Collapse
Affiliation(s)
- Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sushil Satish Chhapekar
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Xiaona Yu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Shandong Provincial Key Laboratory of Dryland Farming Technology, Shandong Peanut Industry Collaborative Innovation Center, College of Agronomy, Qingdao Agricultural University, Qingdao, 266000, China
| | - Seungho Kim
- Neo Seed Co., 256-45 Jingeonjung-gil, Gongdo-eup, Anseong, Gyeonggi Province, 17565, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Tae Hyoung Gan
- JIREH Seed Co., 104 Dongtansunhwan-daero 20-gil, Hwaseong, Gyeonggi Province, 18484, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Su Ryun Choi
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
170
|
Huang T, Zhang H, Zhou Y, Su Y, Zheng H, Ding Y. Phosphorylation of Histone H2A at Serine 95 Is Essential for Flowering Time and Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:761008. [PMID: 34887889 PMCID: PMC8650089 DOI: 10.3389/fpls.2021.761008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Phosphorylation of H2A at serine 95 (H2AS95ph) mediated by MLK4 promotes flowering and H2A.Z deposition. However, little is known about MLK1, MLK2, and MLK3 during the flowering time. Here, we systemically analyze the functions of MLK family in flowering time and development. Mutation in MLK3, but not MLK1 and MLK2, displayed late-flowering phenotype. Loss of MLK3 function enhanced the late-flowering phenotype of mlk4 mutant, but not reinforced the late-flowering phenotype of mlk1 mlk2 double mutants. MLK3 displayed the kinase activity to histone H2AS95ph in vitro. The global H2AS95ph levels were reduced in mlk3 mlk4, but not in mlk3 and mlk4 single mutant and mlk1 mlk2 double mutant, and the H2AS95ph levels in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 were similar to those in mlk3 mlk4 double mutant. MLK3 interacted with CCA1, which binds to the promoter of GI. Correspondingly, the transcription levels and H2AS95ph levels of GI were reduced in mlk3 and mlk4 single mutant, and greatly decreased in mlk3 mlk4 double mutant, but not further attenuated in mlk1 mlk3 mlk4 and mlk2 mlk3 mlk4 triple mutant. Together, our results suggested that H2AS95ph deposition mediated by MLK3 and MLK4 is essential for flowering time in Arabidopsis.
Collapse
|
171
|
Structural and functional analysis of CCT family genes in pigeonpea. Mol Biol Rep 2021; 49:217-226. [PMID: 34800230 DOI: 10.1007/s11033-021-06860-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Pigeonpea (Cajanus cajan L.) is a photoperiod-sensitive short-day plant. Understanding the flowering-related genes is critical to developing photoperiod insensitive cultivars. METHODS The CCT family genes were identified using 'CCT DOMAIN PROTEIN' as a keyword and localized on the chromosomes using the BLAST search option available at the LIS database. The centromeric positions were identified through BLAST search using the centromeric repeat sequence of C. cajan as a query against the chromosome-wise FASTA files downloaded from the NCBI database. The CCT family genes were classified based on additional domains and/or CCT domains. The orthologous and phylogenetic relationships were inferred using the OrthoFinder and MEGA 10.1 software, respectively. The CCT family genes' expression level in photoperiod-sensitive and insensitive genotypes was compared using RNA-seq data and qRT-PCR analysis. RESULTS We identified 33 CCT family genes in C. cajan distributed on ten chromosomes and nine genomic scaffolds. They were classified into CMF-type, COL-type, PRR-type, and GTCC- type. The CCT family genes of legumes exhibited an extensive orthologous relationship. Glycine max showed the maximum similarity of CCT family genes with C. cajan. The expression analysis of CCT family genes using photoperiod insensitive (ICP20338) and photoperiod sensitive (MAL3) genotypes of C. cajan demonstrated that CcCCT4 and CcCCT23 are the active CONSTANS in ICP20338. In contrast, only CcCCT23 is active in MAL3. CONCLUSION The CCT family genes in C. cajan vary considerably in structure and domain types. They are maximally similar to soybean's CCT family genes. The differential photoperiod response of pigeonpea genotypes, ICP20338 and MAL3, is possibly due to the difference in the number and types of active CONSTANS in them.
Collapse
|
172
|
Wang X, Zhou P, Huang R, Zhang J, Ouyang X. A Daylength Recognition Model of Photoperiodic Flowering. FRONTIERS IN PLANT SCIENCE 2021; 12:778515. [PMID: 34868180 PMCID: PMC8638659 DOI: 10.3389/fpls.2021.778515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 06/01/2023]
Abstract
The photoperiodic flowering pathway is crucial for plant development to synchronize internal signaling events and external seasons. One hundred years after photoperiodic flowering was discovered, the underlying core signaling network has been elucidated in model plants such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max). Here, we review the progress made in the photoperiodic flowering area and summarize previously accepted photoperiodic flowering models. We then introduce a new model based on daylength recognition by florigen. By determining the expression levels of the florigen gene, this model can assess the mechanism of daylength sensing and crop latitude adaptation. Future applications of this model under the constraints of global climate change are discussed.
Collapse
Affiliation(s)
- Xiaoying Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Peng Zhou
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Rongyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
173
|
Haile TA, Stonehouse R, Weller JL, Bett KE. Genetic basis for lentil adaptation to summer cropping in northern temperate environments. THE PLANT GENOME 2021; 14:e20144. [PMID: 34643336 DOI: 10.1002/tpg2.20144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The continued success of lentil (Lens culinaris Medik.) genetic improvement relies on the availability of broad genetic diversity, and new alleles need to be identified and incorporated into the cultivated gene pool. Availability of robust and predictive markers greatly enhances the precise transfer of genomic regions from unadapted germplasm. Quantitative trait loci (QTL) for key phenological traits in lentil were located using a recombinant inbreed line (RIL) population derived from a cross between an Ethiopian landrace (ILL 1704) and a northern temperate cultivar (CDC Robin). Field experiments were conducted at Sutherland research farm in Saskatoon and at Rosthern, Saskatchewan, Canada during 2018 and 2019. A linkage map was constructed using 21,634 single nucleotide polymorphisms (SNPs) located on seven linkage groups (LGs), which correspond to the seven haploid chromosomes of lentil. Eight QTL were identified for six phenological traits. Flowering-related QTL were identified at two regions on LG6. FLOWERING LOCUS T (FT) genes were annotated within the flowering time QTL interval based on the lentil reference genome. Similarly, a major QTL for postflowering developmental processes was located on LG5 with several senescence-associated genes annotated within the QTL interval. The flowering time QTL was validated in a different genetic background indicating the potential use of the identified markers for marker-assisted selection to precisely transfer genomic regions from exotic germplasm into elite crop cultivars without disrupting adaptation.
Collapse
Affiliation(s)
- Teketel A Haile
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| | - Robert Stonehouse
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| | - James L Weller
- School of Natural Sciences, Univ. of Tasmania, Hobart, TAS, Australia
| | - Kirstin E Bett
- Dep. of Plant Sciences, Univ. of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
174
|
Sun Q, Huang R, Zhu H, Sun Y, Guo Z. A novel Medicago truncatula calmodulin-like protein (MtCML42) regulates cold tolerance and flowering time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1069-1082. [PMID: 34528312 DOI: 10.1111/tpj.15494] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 05/20/2023]
Abstract
Calmodulin-like proteins (CMLs) are one of the Ca2+ sensors in plants, but the functions of most CMLs remain unknown. The regulation of cold tolerance and flowering time by MtCML42 in Medicago truncatula and the underlying mechanisms were investigated using MtCML42-overexpressing plants and cml42 Medicago mutants with a Tnt1 retrotransposon insertion. Compared with the wild type (WT), MtCML42-overexpressing lines had increased cold tolerance, whereas cml42 mutants showed decreased cold tolerance. The impaired cold tolerance in cml42 could b complemented by MtCML42 expression. The transcript levels of MtCBF1, MtCBF4, MtCOR413, MtCAS15, MtLTI6A, MtGolS1 and MtGolS2 and the concentrations of raffinose and sucrose were increased in response to cold treatment, whereas higher levels were observed in MtCML42-overexpressing lines and lower levels were observed in cml42 mutants. In addition, early flowering with upregulated MtFTa1 and downregulated MtABI5 transcripts was observed in MtCML42-overexpressing lines, whereas delayed flowering with downregulated MtFTa1 and upregulated MtABI5 was observed in cml42. MtABI5 expression could complement the flowering phenotype in the Arabidopsis mutant abi5. Our results suggest that MtCML42 positively regulates MtCBF1 and MtCBF4 expression, which in turn upregulates the expression of some COR genes, MtGolS1 and MtGolS2, which leads to raffinose accumulation and increased cold tolerance. MtCML42 regulates flowering time through sequentially downregulating MtABI5 and upregulating MtFTa1 expression.
Collapse
Affiliation(s)
- Qiguo Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmei Sun
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
175
|
Mahesh HB, Prasannakumar MK, Manasa KG, Perumal S, Khedikar Y, Kagale S, Soolanayakanahally RY, Lohithaswa HC, Rao AM, Hittalmani S. Genome, Transcriptome, and Germplasm Sequencing Uncovers Functional Variation in the Warm-Season Grain Legume Horsegram Macrotyloma uniflorum (Lam.) Verdc. FRONTIERS IN PLANT SCIENCE 2021; 12:758119. [PMID: 34733308 PMCID: PMC8558620 DOI: 10.3389/fpls.2021.758119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/07/2023]
Abstract
Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman-Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.
Collapse
Affiliation(s)
- H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - K. G. Manasa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Sampath Perumal
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - H. C. Lohithaswa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Annabathula Mohan Rao
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Shailaja Hittalmani
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
176
|
Saussurea involucrata (Snow Lotus) ICE1 and ICE2 Orthologues Involved in Regulating Cold Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms221910850. [PMID: 34639192 PMCID: PMC8509503 DOI: 10.3390/ijms221910850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
As with other environmental stresses, cold stress limits plant growth, geographical distribution, and agricultural productivity. CBF/DREB (CRT-binding factors/DRE-binding proteins) regulate tolerance to cold/freezing stress across plant species. ICE (inducer of CBF expression) is regarded as the upstream inducer of CBF expression and plays a crucial role as a main regulator of cold acclimation. Snow lotus (Saussurea involucrata) is a well-known traditional Chinese herb. This herb is known to have greater tolerance to cold/freezing stress compared to other plants. According to transcriptome datasets, two putative ICE homologous genes, SiICE1 and SiICE2, were identified in snow lotus. The predicted SiICE1 cDNA contains an ORF of 1506 bp, encoding a protein of 501 amino acids, whereas SiICE2 cDNA has an ORF of 1482 bp, coding for a protein of 493 amino acids. Sequence alignment and structure analysis show SiICE1 and SiICE2 possess a S-rich motif at the N-terminal region, while the conserved ZIP-bHLH domain and ACT domain are at the C-terminus. Both SiICE1 and SiICE2 transcripts were cold-inducible. Subcellular localization and yeast one-hybrid assays revealed that SiICE1 and SiICE2 are transcriptional regulators. Overexpression of SiICE1 (35S::SiICE1) and SiICE2 (35S::SiICE2) in transgenic Arabidopsis increased the cold tolerance. In addition, the expression patterns of downstream stress-related genes, CBF1, CBF2, CBF3, COR15A, COR47, and KIN1, were up-regulated when compared to the wild type. These results thus provide evidence that SiICE1 and SiICE2 function in cold acclimation and this cold/freezing tolerance may be regulated through a CBF-controlling pathway.
Collapse
|
177
|
Gendron JM, Leung CC, Liu W. Energy as a seasonal signal for growth and reproduction. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102092. [PMID: 34461431 DOI: 10.1016/j.pbi.2021.102092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Plants measure photoperiod as a predictable signal for seasonal change. Recently, new connections between photoperiod measuring systems and metabolism in plants have been revealed. These studies explore historical observations of metabolism and photoperiod with modern tools and approaches, suggesting there is much more to learn about photoperiodism in plants.
Collapse
Affiliation(s)
- Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06511, USA
| |
Collapse
|
178
|
Huang S, Chen C, Xu M, Wang G, Xu LA, Wu Y. Overexpression of Ginkgo BBX25 enhances salt tolerance in Transgenic Populus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:946-954. [PMID: 34555668 DOI: 10.1016/j.plaphy.2021.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
B-box (BBX) genes play important roles in plant growth, light morphogenesis, and environmental stress responses. Ginkgo (Ginkgo biloba L.) is known as a living fossil species that has a strong ability to adapt to environmental changes and tolerate harsh conditions. In this study, we chose this species to investigate the function of the GbBBX25 gene. We isolated the BBX gene from ginkgo and named it GbBBX25; this gene consists of an 819 bp open reading frame (ORF) that encodes 273 amino acids with two B-box domains but no CCT domain. GbBBX25 was localized in only the nucleus. The expression of GbBBX25 transcripts was observed in the leaves and was significantly enhanced under salt stress conditions. To further verify its function, we overexpressed the GbBBX25 gene in Populus davidiana × Populus bolleana and found that the transgenic Populus had greater soluble sugar levels and higher peroxidase (POD) activity in response to salt stress than nontransgenic (NT) Populus. Five genes related to salt stress were induced in transgenic plants with significantly higher expression levels than those in NT plants. This finding suggests that GbBBX25 improves the salt adaptation abilities of transgenic Populus and provides a scientific basis for related research.
Collapse
Affiliation(s)
- Shujing Huang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Caihui Chen
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Institute of Biological Resources, Jiangxi Academy of Science, Nanchang 330096, China.
| | - Mengxuan Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Guibin Wang
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Li-An Xu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China.
| | - Yaqiong Wu
- Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; Research Center for Pomology, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Qian Hu Hou Cun No. 1, Nanjing 210014, China; Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver V6T 1Z4, Canada.
| |
Collapse
|
179
|
Gutiérrez-Larruscain D, Abeyawardana OAJ, Krüger M, Belz C, Juříček M, Štorchová H. Transcriptomic study of the night break in Chenopodium rubrum reveals possible upstream regulators of the floral activator CrFTL1. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153492. [PMID: 34385120 DOI: 10.1016/j.jplph.2021.153492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The transition from vegetative to reproductive phases is the most fundamental and tightly controlled switch in the life of flowering plants. The short-day plant Chenopodium rubrum is a fast cycling annual plant lacking a juvenile phase. It can be induced to flowering at the seedling stage by exposure to a single period of darkness. This floral induction may then be cancelled by a short pulse of red light at midnight called night break (NB), which also inhibits the floral activator FLOWERING LOCUS T LIKE 1 (CrFTL1). We performed a comparative transcriptomic study between C. rubrum seedlings treated by NB and ones growing through uninterrupted night, and found about six hundred differentially expressed genes, including the B-BOX DOMAIN (BBX) genes. We focused on the CrBBX19 and BOLTING TIME CONTROL 1 (BTC1) genes, homologous to the upstream regulators of the BvFT2, a floral inducer in sugar beet. The transcription patterns of the two genes were compatible with their putative role as a sensor of the dark period length optimal for flowering (CrBBX19), and a signal of lights-on (CrBTC1), but the participation of other genes cannot be excluded. The expression profiles of CrBBX19 and the homolog of the core endogenous clock gene LATE ELONGATED HYPOCOTYL (LHY) were highly similar, which suggested their co-regulation.
Collapse
Affiliation(s)
- David Gutiérrez-Larruscain
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Oushadee A J Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic; Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic.
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502, Prague, Czech Republic.
| |
Collapse
|
180
|
Jin Q, Yin S, Li G, Guo T, Wan M, Li H, Li J, Ge X, King GJ, Li Z, Wang J, Zhou G. Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3287-3303. [PMID: 34410456 DOI: 10.1007/s00122-021-03896-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Two CO paralogs in Brassica napus were confirmed and shown distinct expression pattern and function in promoting flowering and allelic variation s within BnaCO.A10 were found closely associated with ecotype divergence. CONSTANS (CO) is a key gene that responds to photoperiod and in Arabidopsis can promote flowering under long-day (LD) conditions. Brassica napus L. is a major oil crop and close relative of Arabidopsis, and arose via allopolyploidization from the diploids B. rapa (A genome) and B. oleracea (C genome). In this study, we confirmed that B. napus has two CO genes located on the A10 (BnaCO.A10) and C9 (BnaCO.C9) chromosomes. Significant differences in level and temporal pattern of transcription, as well as in protein function, of these homoeologous may have resulted from sequence variation in the promoter as well as in the coding region. Apart from two insertions of 527 bp and 2002 bp in the promoter of BnaCO.C9 that function as transcriptional enhancers, this gene is otherwise highly conserved in both promoter and coding region. However, BnaCO.A10 was classified into two haplotypes and transgene analysis in Arabidopsis and backcross analysis in rapeseed indicated that the winter-type haplotype had a greater effect in promoting flowering than the spring type. We discuss the contribution of CO alleles to species evolution, and for eco-geographic radiation following crop domestication, alongside scope for managing this locus in future breeding.
Collapse
Affiliation(s)
- Qingdong Jin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Wan
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Juanjuan Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
181
|
Han R, Lavelle D, Truco MJ, Michelmore R. Quantitative Trait Loci and Candidate Genes Associated with Photoperiod Sensitivity in Lettuce (Lactuca spp.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3473-3487. [PMID: 34245320 PMCID: PMC8440299 DOI: 10.1007/s00122-021-03908-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A population of lettuce that segregated for photoperiod sensitivity was planted under long-day and short-day conditions. Genetic mapping revealed two distinct sets of QTLs controlling daylength-independent and photoperiod-sensitive flowering time. The molecular mechanism of flowering time regulation in lettuce is of interest to both geneticists and breeders because of the extensive impact of this trait on agricultural production. Lettuce is a facultative long-day plant which changes in flowering time in response to photoperiod. Variations exist in both flowering time and the degree of photoperiod sensitivity among accessions of wild (Lactuca serriola) and cultivated (L. sativa) lettuce. An F6 population of 236 recombinant inbred lines (RILs) was previously developed from a cross between a late-flowering, photoperiod-sensitive L. serriola accession and an early-flowering, photoperiod-insensitive L. sativa accession. This population was planted under long-day (LD) and short-day (SD) conditions in a total of four field and screenhouse trials; the developmental phenotype was scored weekly in each trial. Using genotyping-by-sequencing (GBS) data of the RILs, quantitative trait loci (QTL) mapping revealed five flowering time QTLs that together explained more than 20% of the variation in flowering time under LD conditions. Using two independent statistical models to extract the photoperiod sensitivity phenotype from the LD and SD flowering time data, we identified an additional five QTLs that together explained more than 30% of the variation in photoperiod sensitivity in the population. Orthology and sequence analysis of genes within the nine QTLs revealed potential functional equivalents in the lettuce genome to the key regulators of flowering time and photoperiodism, FD and CONSTANS, respectively, in Arabidopsis.
Collapse
Affiliation(s)
- Rongkui Han
- The Plant Biology Graduate Group, University of California, Davis, 95616, USA
- The Genome Center, University of California, Davis, 95616, USA
| | - Dean Lavelle
- The Genome Center, University of California, Davis, 95616, USA
| | | | - Richard Michelmore
- The Genome Center, University of California, Davis, 95616, USA.
- Department of Plant Sciences, University of California, Davis, 95616, USA.
| |
Collapse
|
182
|
Singh S, Chhapekar SS, Ma Y, Rameneni JJ, Oh SH, Kim J, Lim YP, Choi SR. Genome-Wide Identification, Evolution, and Comparative Analysis of B-Box Genes in Brassica rapa, B. oleracea, and B. napus and Their Expression Profiling in B. rapa in Response to Multiple Hormones and Abiotic Stresses. Int J Mol Sci 2021; 22:ijms221910367. [PMID: 34638707 PMCID: PMC8509055 DOI: 10.3390/ijms221910367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
The B-box zinc-finger transcription factors are important for plant growth, development, and various physiological processes such as photomorphogenesis, light signaling, and flowering, as well as for several biotic and abiotic stress responses. However, there is relatively little information available regarding Brassica B-box genes and their expression. In this study, we identified 51, 52, and 101 non-redundant genes encoding B-box proteins in Brassica rapa (BrBBX genes), B. oleracea (BoBBX genes), and B. napus (BnBBX genes), respectively. A whole-genome identification, characterization, and evolutionary analysis (synteny and orthology) of the B-box gene families in the diploid species B. rapa (A genome) and B. oleracea (C genome) and in the allotetraploid species B. napus (AC genome) revealed segmental duplications were the major contributors to the expansion of the BrassicaBBX gene families. The BrassicaBBX genes were classified into five subgroups according to phylogenetic relationships, gene structures, and conserved domains. Light-responsive cis-regulatory elements were detected in many of the BBX gene promoters. Additionally, BrBBX expression profiles in different tissues and in response to various abiotic stresses (heat, cold, salt, and drought) or hormones (abscisic acid, methyl jasmonate, and gibberellic acid) were analyzed by qRT-PCR. The data indicated that many B-box genes (e.g., BrBBX13, BrBBX15, and BrBBX17) may contribute to plant development and growth as well as abiotic stress tolerance. Overall, the identified BBX genes may be useful as functional genetic markers for multiple stress responses and plant developmental processes.
Collapse
Affiliation(s)
- Sonam Singh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sushil Satish Chhapekar
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Yinbo Ma
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jana Jeevan Rameneni
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Sang Heon Oh
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
| | - Jusang Kim
- Breeding Research Institute, Dayi International Seed Co., Ltd., 16-35 Ssiat-gil, Baeksan-myeon, Gimje 54324, Jeollabuk-do, Korea;
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| | - Su Ryun Choi
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea; (S.S.); (S.S.C.); (Y.M.); (J.J.R.); (S.H.O.)
- Correspondence: (Y.P.L.); (S.R.C.); Tel.: +82-42-821-8846 (Y.P.L. & S.R.C.); Fax: +82-42-821-8847 (Y.P.L. & S.R.C.)
| |
Collapse
|
183
|
Liu W, Feke A, Leung CC, Tarté DA, Yuan W, Vanderwall M, Sager G, Wu X, Schear A, Clark DA, Thines BC, Gendron JM. A metabolic daylength measurement system mediates winter photoperiodism in plants. Dev Cell 2021; 56:2501-2515.e5. [PMID: 34407427 DOI: 10.1016/j.devcel.2021.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/30/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022]
Abstract
Plants have served as a preeminent study system for photoperiodism due to their propensity to flower in concordance with the seasons. A nearly singular focus on understanding photoperiodic flowering has prevented the discovery of other photoperiod measuring systems necessary for vegetative health. Here, we use bioinformatics to identify photoperiod-induced genes in Arabidopsis. We show that one, PP2-A13, is expressed exclusively in, and required for, plant fitness in short, winter-like photoperiods. We create a real-time photoperiod reporter, using the PP2-A13 promoter driving luciferase, and show that photoperiodic regulation is independent of the canonical CO/FT mechanism for photoperiodic flowering. We then reveal that photosynthesis combines with circadian-clock-controlled starch production to regulate cellular sucrose levels to control photoperiodic expression of PP2-A13. This work demonstrates the existence of a photoperiod measuring system housed in the metabolic network of plants that functions to control seasonal cellular health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ann Feke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Chun Chung Leung
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Daniel A Tarté
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Wenxin Yuan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Morgan Vanderwall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Garrett Sager
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Xing Wu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ariela Schear
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA 98416, USA
| | - Joshua M Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
184
|
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. PLANT PHYSIOLOGY 2021; 187:187-202. [PMID: 34015131 PMCID: PMC8418433 DOI: 10.1093/plphys/kiab235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/01/2021] [Indexed: 05/12/2023]
Abstract
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Collapse
Affiliation(s)
- Vandasue L. Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg-Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Shinyoung Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Moritz Graeff
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Author for communication:
| |
Collapse
|
185
|
Kumar A, Anju T, Kumar S, Chhapekar SS, Sreedharan S, Singh S, Choi SR, Ramchiary N, Lim YP. Integrating Omics and Gene Editing Tools for Rapid Improvement of Traditional Food Plants for Diversified and Sustainable Food Security. Int J Mol Sci 2021; 22:8093. [PMID: 34360856 PMCID: PMC8348985 DOI: 10.3390/ijms22158093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/20/2022] Open
Abstract
Indigenous communities across the globe, especially in rural areas, consume locally available plants known as Traditional Food Plants (TFPs) for their nutritional and health-related needs. Recent research shows that many TFPs are highly nutritious as they contain health beneficial metabolites, vitamins, mineral elements and other nutrients. Excessive reliance on the mainstream staple crops has its own disadvantages. Traditional food plants are nowadays considered important crops of the future and can act as supplementary foods for the burgeoning global population. They can also act as emergency foods in situations such as COVID-19 and in times of other pandemics. The current situation necessitates locally available alternative nutritious TFPs for sustainable food production. To increase the cultivation or improve the traits in TFPs, it is essential to understand the molecular basis of the genes that regulate some important traits such as nutritional components and resilience to biotic and abiotic stresses. The integrated use of modern omics and gene editing technologies provide great opportunities to better understand the genetic and molecular basis of superior nutrient content, climate-resilient traits and adaptation to local agroclimatic zones. Recently, realizing the importance and benefits of TFPs, scientists have shown interest in the prospection and sequencing of TFPs for their improvements, cultivation and mainstreaming. Integrated omics such as genomics, transcriptomics, proteomics, metabolomics and ionomics are successfully used in plants and have provided a comprehensive understanding of gene-protein-metabolite networks. Combined use of omics and editing tools has led to successful editing of beneficial traits in several TFPs. This suggests that there is ample scope for improvement of TFPs for sustainable food production. In this article, we highlight the importance, scope and progress towards improvement of TFPs for valuable traits by integrated use of omics and gene editing techniques.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Thattantavide Anju
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sushil Kumar
- Department of Botany, Govt. Degree College, Kishtwar 182204, Jammu and Kashmir, India;
| | - Sushil Satish Chhapekar
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Sajana Sreedharan
- Department of Plant Science, Central University of Kerala, Kasaragod 671316, Kerala, India; (T.A.); (S.S.)
| | - Sonam Singh
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Su Ryun Choi
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| | - Yong Pyo Lim
- Molecular Genetics & Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.C.); (S.S.); (S.R.C.)
| |
Collapse
|
186
|
Tian Z, Jahn M, Qin X, Obel HO, Yang F, Li J, Chen J. Genetic and Transcriptomic Analysis Reveal the Molecular Basis of Photoperiod-Regulated Flowering in Xishuangbanna Cucumber ( Cucumis sativus L. var. xishuangbannesis Qi et Yuan). Genes (Basel) 2021; 12:genes12071064. [PMID: 34356080 PMCID: PMC8304308 DOI: 10.3390/genes12071064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Xishuangbanna (XIS) cucumber (Cucumis sativus L. var. xishuangbannesis Qi et Yuan), is a botanical variety of cucumber cultivars native to southwest China that possesses excellent agronomic traits for cucumber improvement. However, breeding utilization of XIS cucumber is limited due to the current poor understanding of its photoperiod-sensitive flowering characteristics. In this study, genetic and transcriptomic analysis were conducted to reveal the molecular basis of photoperiod-regulated flowering in XIS cucumber. A major-effect QTL locus DFF1.1 was identified that controls the days to first flowering (DFF) of XIS cucumbers with a span of 1.38 Mb. Whole-genome re-sequencing data of 9 cucumber varieties with different flowering characteristics in response to photoperiod suggested that CsaNFYA1 was the candidate gene of DFF1.1, which harbored a single non-synonymous mutation in its fifth exon. Transcriptomic analysis revealed the positive roles of auxin and ethylene in accelerating flowering under short-day (SD) light-dark cycles when compared with equal-day/night treatment. Carbohydrate storage and high expression levels of related genes were important reasons explaining early flowering of XIS cucumber under SD conditions. By combining with the RNA-Seq data, the co-expression network suggested that CsaNFYA1 integrated multiple types of genes to regulate the flowering of XIS cucumber. Our findings explain the internal regulatory mechanisms of a photoperiodic flowering pathway. These findings may guide the use of photoperiod shifts to promote flowering of photoperiod-sensitive crops.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Molly Jahn
- Jahn Research Group, USDA/FPL, Madison, WI 53726, USA;
| | - Xiaodong Qin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Hesbon Ochieng Obel
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Fan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| | - Ji Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
- Correspondence: ; Tel.: +86-25-8439-6279
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.T.); (X.Q.); (H.O.O.); (F.Y.); (J.C.)
| |
Collapse
|
187
|
Feng Z, Li M, Li Y, Yang X, Wei H, Fu X, Ma L, Lu J, Wang H, Yu S. Comprehensive identification and expression analysis of B-Box genes in cotton. BMC Genomics 2021; 22:439. [PMID: 34118883 PMCID: PMC8196430 DOI: 10.1186/s12864-021-07770-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND B-BOX (BBX) proteins are zinc-finger transcription factors with one or two BBX domains and sometimes a CCT domain. These proteins play an essential role in regulating plant growth and development, as well as in resisting abiotic stress. So far, the BBX gene family has been widely studied in other crops. However, no one has systematically studied the BBX gene in cotton. RESULTS In the present study, 17, 18, 37 and 33 BBX genes were detected in Gossypium arboreum, G. raimondii, G. hirsutum and G. barbadense, respectively, via genome-wide identification. Phylogenetic analysis showed that all BBX genes were divided into 5 main categories. The protein motifs and exon/intron structures showed that each group of BBX genes was highly conserved. Collinearity analysis revealed that the amplification of BBX gene family in Gossypium spp. was mainly through segmental replication. Nonsynonymous (Ka)/ synonymous (Ks) substitution ratios indicated that the BBX gene family had undergone purification selection throughout the long-term natural selection process. Moreover, transcriptomic data showed that some GhBBX genes were highly expressed in floral organs. The qRT-PCR results showed that there were significant differences in GhBBX genes in leaves and shoot apexes between early-maturing materials and late-maturing materials at most periods. Yeast two-hybrid results showed that GhBBX5/GhBBX23 and GhBBX8/GhBBX26 might interact with GhFT. Transcriptome data analysis and qRT-PCR verification showed that different GhBBX genes had different biological functions in abiotic stress and phytohormone response. CONCLUSIONS Our comprehensive analysis of BBX in G. hirsutum provided a basis for further study on the molecular role of GhBBXs in regulating flowering and cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Zhen Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Mengyu Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xu Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| |
Collapse
|
188
|
Transcriptome Profile Analysis of Strawberry Leaves Reveals Flowering Regulation under Blue Light Treatment. Int J Genomics 2021; 2021:5572076. [PMID: 34235213 PMCID: PMC8216796 DOI: 10.1155/2021/5572076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
Blue light is an important signal that regulates the flowering of strawberry plants. To reveal the mechanism of early flowering under blue light treatment at the transcriptional regulation level, seedlings of cultivated strawberry (Fragaria × ananassa Duch.) "Benihoppe" were subjected to a white light treatment (WL) and blue light treatment (BL) until their flowering. To detect the expression patterns of genes in response to BL, a transcriptome analysis was performed based on RNA-Seq. The results identified a total of 6875 differentially expressed genes (DEGs) that responded to BL, consisting of 3138 (45.64%) downregulated ones and 3737 (54.36%) upregulated ones. These DEGs were significantly enriched into 98 GO terms and 71 KEGG pathways based on gene function annotation. Among the DEGs, the expression levels of genes that might participate in light signaling (PhyB, PIFs, and HY5) and circadian rhythm (FKF1, CCA1, LHY, and CO) in plants were altered under BL. The BBX transcription factors which responded to BL were also identified. The result showed that the FaBBX29, one of strawberry's BBX family genes, may play an important role in flowering regulation. Our results provide a timely, comprehensive view and a reliable reference data resource for further study of flowering regulation under different light qualities.
Collapse
|
189
|
Wang W, Mao Z, Guo T, Kou S, Yang HQ. The involvement of the N-terminal PHR domain of Arabidopsis cryptochromes in mediating light signaling. ABIOTECH 2021; 2:146-155. [PMID: 36304752 PMCID: PMC9590466 DOI: 10.1007/s42994-021-00044-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
Light is a key environmental cue that fundamentally regulates all aspects of plant growth and development, which is mediated by the multiple photoreceptors including the blue light photoreceptors cryptochromes (CRYs). In Arabidopsis, there are two well-characterized homologous CRYs, CRY1 and CRY2. Whereas CRYs are flavoproteins, they lack photolyase activity and are characterized by an N-terminal photolyase-homologous region (PHR) domain and a C-terminal extension domain. It has been established that the C-terminal extension domain of CRYs is involved in mediating light signaling through direct interactions with the master negative regulator of photomorphogenesis, COP1. Recent studies have revealed that the N-terminal PHR domain of CRYs is also involved in mediating light signaling. In this review, we mainly summarize and discuss the recent advances in CRYs signaling mediated by the N-terminal PHR domain, which involves the N-terminal PHR domain-mediated dimerization/oligomerization of CRYs and physical interactions with the pivotal transcription regulators in light and phytohormone signaling.
Collapse
Affiliation(s)
- Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Shuang Kou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
190
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
191
|
Lv X, Zeng X, Hu H, Chen L, Zhang F, Liu R, Liu Y, Zhou X, Wang C, Wu Z, Kim C, He Y, Du J. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. THE PLANT CELL 2021; 33:1182-1195. [PMID: 33693873 DOI: 10.1093/plcell/koab016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/09/2021] [Indexed: 05/19/2023]
Abstract
Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.
Collapse
Affiliation(s)
- Xinchen Lv
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Zeng
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Hongmiao Hu
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixian Chen
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yue Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuelin Zhou
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshi Wang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chanhong Kim
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yuehui He
- National Key Laboratory of Plant Molecular Genetics and Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Jiamu Du
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
192
|
Beyond the Genetic Pathways, Flowering Regulation Complexity in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22115716. [PMID: 34071961 PMCID: PMC8198774 DOI: 10.3390/ijms22115716] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Flowering is one of the most critical developmental transitions in plants’ life. The irreversible change from the vegetative to the reproductive stage is strictly controlled to ensure the progeny’s success. In Arabidopsis thaliana, seven flowering genetic pathways have been described under specific growth conditions. However, the evidence condensed here suggest that these pathways are tightly interconnected in a complex multilevel regulatory network. In this review, we pursue an integrative approach emphasizing the molecular interactions among the flowering regulatory network components. We also consider that the same regulatory network prevents or induces flowering phase change in response to internal cues modulated by environmental signals. In this sense, we describe how during the vegetative phase of development it is essential to prevent the expression of flowering promoting genes until they are required. Then, we mention flowering regulation under suboptimal growing temperatures, such as those in autumn and winter. We next expose the requirement of endogenous signals in flowering, and finally, the acceleration of this transition by long-day photoperiod and temperature rise signals allowing A. thaliana to bloom in spring and summer seasons. With this approach, we aim to provide an initial systemic view to help the reader integrate this complex developmental process.
Collapse
|
193
|
Zhou S, Zhu S, Cui S, Hou H, Wu H, Hao B, Cai L, Xu Z, Liu L, Jiang L, Wang H, Wan J. Transcriptional and post-transcriptional regulation of heading date in rice. THE NEW PHYTOLOGIST 2021; 230:943-956. [PMID: 33341945 PMCID: PMC8048436 DOI: 10.1111/nph.17158] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 05/04/2023]
Abstract
Rice is a facultative short day (SD) plant. In addition to serving as a model plant for molecular genetic studies of monocots, rice is a staple crop for about half of the world's population. Heading date is a critical agronomic trait, and many genes controlling heading date have been cloned over the last 2 decades. The mechanism of flowering in rice from recognition of day length by leaves to floral activation in the shoot apical meristem has been extensively studied. In this review, we summarise current progress on transcriptional and post-transcriptional regulation of heading date in rice, with emphasis on post-translational modifications of key regulators, including Heading date 1 (Hd1), Early heading date 1 (Ehd1), Grain number, plant height, and heading date7 (Ghd7). The contribution of heading date genes to heterosis and the expansion of rice cultivation areas from low-latitude to high-latitude regions are also discussed. To overcome the limitations of diverse genetic backgrounds used in heading date studies and to gain a clearer understanding of flowering in rice, we propose a systematic collection of genetic resources in a common genetic background. Strategies in breeding adapted cultivars by rational design are also discussed.
Collapse
Affiliation(s)
- Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haigang Hou
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haoqin Wu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Benyuan Hao
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Liang Cai
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Zhuang Xu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Linglong Liu
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm EnhancementJiangsu Plant Gene Engineering Research CenterNanjing Agricultural UniversityNanjing210095China
- National Key Facility for Crop Gene Resources and Genetic ImprovementInstitute of Crop ScienceChinese Academy of Agricultural SciencesBeijing100081China
| |
Collapse
|
194
|
Wang MJ, Ding L, Liu XH, Liu JX. Two B-box domain proteins, BBX28 and BBX29, regulate flowering time at low ambient temperature in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 106:21-32. [PMID: 33554307 DOI: 10.1007/s11103-021-01123-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
This paper demonstrates that BBX28 and BBX29 proteins in Arabidopsis promote flowering in association with the CO-FT regulatory module at low ambient temperature under LD conditions. Flowering plants integrate internal developmental signals with external environmental stimuli for precise flowering time control. The expression of BBX29 is up-regulated by low temperature treatment, but the biological function of BBX29 in low temperature response is unknown. In the current study, we examined the biological role of BBX29 and its close-related protein BBX28 in flowering time control under long-day conditions. Although neither BBX28 single mutant nor BBX29 single mutant has a flowering-associated phenotype, the bbx28 bbx29 double mutant plants have an obvious delayed flowering phenotype grown at low ambient temperature (16°C) compared to the wild-type (WT) plants. The expression of FT and TSF was lower in bbx28 bbx29 double mutant plants than in wild-type plants at 16°C. Both BBX28 and BBX29 interact with CONSTANS (CO), an important flowering integrator that directly binds to the FLOWERING LOCUS T (FT) promoter. In the effector-reporter assays, transcriptional activation activity of CO on the FT promoter was reduced in bbx28 bbx29 double mutant plants compared to that in WT plants. Taken together, our results reveal that BBX28 and BBX29 are promoters of flowering in Arabidopsis, especially at low ambient temperature.
Collapse
Affiliation(s)
- Mei-Jing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Lan Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Xue-Huan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, 310027, Hangzhou, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
195
|
Zhang J, Fan X, Hu Y, Zhou X, He Q, Liang L, Xing Y. Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:913-923. [PMID: 32889758 DOI: 10.1111/jipb.13013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Many genes encoding CCT domain-containing proteins regulate flowering time. In rice (Oryza sativa), 41 such genes have been identified, but only a few have been shown to regulate heading date. Here, to test whether and how additional CCT family genes regulate heading date in rice, we classified these genes into five groups based on their diurnal expression patterns. The expression patterns of genes in the same subfamily or in close phylogenetic clades tended to be similar. We generated knockout mutants of the entire gene family via CRISPR/Cas9. The heading dates of knockout mutants of only 4 of 14 genes previously shown to regulate heading date were altered, pointing to functional redundancy of CCT family genes in regulating this trait. Analysis of mutants of four other genes showed that OsCCT22, OsCCT38, and OsCCT41 suppress heading under long-day conditions and promote heading under short-day conditions. OsCCT03 promotes heading under both conditions and upregulates the expression of Hd1 and Ehd1, a phenomenon not previously reported for other such genes. To date, at least 18 CCT domain-containing genes involved in regulating heading have been identified, providing diverse, flexible gene combinations for generating rice varieties with a given heading date.
Collapse
Affiliation(s)
- Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaowei Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
196
|
Liu W, Tang R, Zhang Y, Liu X, Gao Y, Dai Z, Li S, Wu B, Wang L. Genome-wide identification of B-box proteins and VvBBX44 involved in light-induced anthocyanin biosynthesis in grape (Vitis vinifera L.). PLANTA 2021; 253:114. [PMID: 33934247 DOI: 10.1007/s00425-021-03618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/26/2021] [Indexed: 05/27/2023]
Abstract
Genome-wide identification, analysis and functional characterization of an unreported VvBBX gene showed a response to light and positive correlation with anthocyanin content, but also inhibition of light-induced anthocyanin synthesis. B-box (BBX) proteins are a class of zinc (Zn) finger transcription factors or regulators characterized by the presence of one or two BBX domains and play important roles in plant growth and development. However, the BBX genes' potential functions are insufficiently characterized in grape, a globally popular berry with high economic value. Here, 25 BBX family genes including a novel member (assigned VvBBX44) were identified genome widely in grape. The expression level of these VvBBXs were analyzed in 'Cabernet Sauvignon' (V. vinifera) stem, flower, leaf, tendril, petiole, and developing berries. The expression of VvBBX44 increased in developing 'Cabernet Sauvignon' berries. Its expression was inhibited in 'Jingxiu' and 'Muscat Hamburg' berry skin without sunlight. Furthermore, overexpression of VvBBX44 decreased the expression of LONG HYPOCOTYL 5 (VvHY5) and UDP-glucose flavonoid 3-O-glucosyltransferase (VvUFGT), and reduced the anthocyanin content in grape calli. Our results suggest that VvBBX44 may play an important role in grape berry coloring by directly repressing VvHY5 expression. This study provides new insights into the potential role of VvBBXs in berry development and light response and contributes to the understanding on the regulation mechanism of VvBBX44 in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Wenwen Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Renkun Tang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Yingying Gao
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China
| | - Benhong Wu
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| | - Lijun Wang
- Beijing Key Laboratory of Grape Science and Enology, and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China.
- LIA INNOGRAPE International Associated Laboratory, Beijing, 100093, People's Republic of China.
| |
Collapse
|
197
|
Boden SA. Evolution: Replicated mutation of COL2 contributed long-day flowering in common bean. Curr Biol 2021; 31:R384-R386. [PMID: 33905695 DOI: 10.1016/j.cub.2021.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability to flower without strict daylength constraints has helped spread cultivation of crop plants to new locations. The generation of daylength-insensitive common bean accessions in central and South America involved the repeated selection of mutant alleles for a key transcription factor that suppresses long-day flowering.
Collapse
Affiliation(s)
- Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
198
|
Fan M, Miao F, Jia H, Li G, Powers C, Nagarajan R, Alderman PD, Carver BF, Ma Z, Yan L. O-linked N-acetylglucosamine transferase is involved in fine regulation of flowering time in winter wheat. Nat Commun 2021; 12:2303. [PMID: 33863881 PMCID: PMC8052332 DOI: 10.1038/s41467-021-22564-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/16/2021] [Indexed: 01/29/2023] Open
Abstract
Vernalization genes underlying dramatic differences in flowering time between spring wheat and winter wheat have been studied extensively, but little is known about genes that regulate subtler differences in flowering time among winter wheat cultivars, which account for approximately 75% of wheat grown worldwide. Here, we identify a gene encoding an O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) that differentiates heading date between winter wheat cultivars Duster and Billings. We clone this TaOGT1 gene from a quantitative trait locus (QTL) for heading date in a mapping population derived from these two bread wheat cultivars and analyzed in various environments. Transgenic complementation analysis shows that constitutive overexpression of TaOGT1b from Billings accelerates the heading of transgenic Duster plants. TaOGT1 is able to transfer an O-GlcNAc group to wheat protein TaGRP2. Our findings establish important roles for TaOGT1 in winter wheat in adaptation to global warming in the future climate scenarios.
Collapse
Affiliation(s)
- Min Fan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing, PR China
| | - Fang Miao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
- College of Life Science, Northwest A & F University, Yangling, Shaanxi, PR China
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing, PR China
| | - Genqiao Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
- Wheat, Peanut and Other Field Crops Research Unit, USDA-ARS, Stillwater, OK, USA
| | - Carol Powers
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Phillip D Alderman
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Zhengqiang Ma
- Crop Genomics and Bioinformatics Center and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Jiangsu, Nanjing, PR China
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
199
|
A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L. Genes (Basel) 2021; 12:genes12040545. [PMID: 33918715 PMCID: PMC8070190 DOI: 10.3390/genes12040545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ branches. These genes could directly and indirectly modulate different pathways, suggesting their key role during the lateral bud transition to flowering stage. Interestingly, several genes related to the flowering process appeared as over-expressed in buds from March ‘OFF’ branches and they could address the buds towards flower differentiation. By this approach, interesting candidate genes related to the switch from vegetative to reproductive stages were detected and analyzed. The functional analysis of these genes will provide tools for developing breeding programs to obtain olive trees characterized by more constant productivity over the years.
Collapse
|
200
|
Singh RK, Bhalerao RP, Eriksson ME. Growing in time: exploring the molecular mechanisms of tree growth. TREE PHYSIOLOGY 2021; 41:657-678. [PMID: 32470114 PMCID: PMC8033248 DOI: 10.1093/treephys/tpaa065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 05/31/2023]
Abstract
Trees cover vast areas of the Earth's landmasses. They mitigate erosion, capture carbon dioxide, produce oxygen and support biodiversity, and also are a source of food, raw materials and energy for human populations. Understanding the growth cycles of trees is fundamental for many areas of research. Trees, like most other organisms, have evolved a circadian clock to synchronize their growth and development with the daily and seasonal cycles of the environment. These regular changes in light, daylength and temperature are perceived via a range of dedicated receptors and cause resetting of the circadian clock to local time. This allows anticipation of daily and seasonal fluctuations and enables trees to co-ordinate their metabolism and physiology to ensure vital processes occur at the optimal times. In this review, we explore the current state of knowledge concerning the regulation of growth and seasonal dormancy in trees, using information drawn from model systems such as Populus spp.
Collapse
Affiliation(s)
- Rajesh Kumar Singh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå SE-901 82, Sweden
| | - Maria E Eriksson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå SE-901 87, Sweden
| |
Collapse
|