151
|
Monti PM, Miranda R, Nixon K, Sher KJ, Swartzwelder HS, Tapert SF, White A, Crews FT. Adolescence: Booze, Brains, and Behavior. Alcohol Clin Exp Res 2005; 29:207-20. [PMID: 15714044 DOI: 10.1097/01.alc.0000153551.11000.f3] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article represents the proceedings of a symposium at the 2004 Research Society on Alcoholism meeting in Vancouver, British Columbia, Canada, organized and chaired by Peter M. Monti and Fulton T. Crews. The presentations and presenters were (1) Introduction, by Peter M. Monti; (2) Adolescent Binge Drinking Causes Life-Long Changes in Brain, by Fulton T. Crews and Kim Nixon; (3) Functional Neuroimaging Studies in Human Adolescent Drinkers, by Susan F. Tapert; (4) Abnormal Emotional Reactivity as a Risk Factor for Alcoholism, by Robert Miranda, Jr.; (5) Alcohol-Induced Memory Impairments, Including Blackouts, and the Changing Adolescent Brain, by Aaron M. White and H. Scott Swartzwelder; and (6) Discussion, by Kenneth Sher.
Collapse
Affiliation(s)
- Peter M Monti
- Veterans Affairs Medical Center, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Binienda Z, Holson R, Chen FX, Oriaku E, Kim C, Flynn T, Slikker W, Paule M, Feuers R, Ferguson S. Effects of ischemia-hypoxia induced by interruption of uterine blood flow on fetal rat liver and brain enzyme activities and offspring behavior. Int J Dev Neurosci 2005. [DOI: 10.1016/0736-5748(96)00025-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Z. Binienda
- Division of Neurotoxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - R.R. Holson
- Division of Reproductive and Developmental Toxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - F.-X. Chen
- Division of Genetic Toxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - E. Oriaku
- Division of Genetic Toxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - C.S. Kim
- Division of Toxicological Studies; Center for Food Safety and Applied Nutrition/FDA; Washington DC 20204 USA
| | - T.J. Flynn
- Division of Toxicological Studies; Center for Food Safety and Applied Nutrition/FDA; Washington DC 20204 USA
| | - W. Slikker
- Division of Neurotoxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - M.G. Paule
- Division of Neurotoxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - R.J. Feuers
- Division of Genetic Toxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| | - S.A. Ferguson
- Division of Reproductive and Developmental Toxicology; National Center for Toxicological Research/FDA; Jefferson AR 72079 USA
| |
Collapse
|
153
|
Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73:397-445. [PMID: 15313334 DOI: 10.1016/j.pneurobio.2004.06.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 06/09/2004] [Indexed: 12/28/2022]
Abstract
Production of energy for the maintenance of ionic disequilibria necessary for generation and transmission of nerve impulses is one of the primary functions of the brain. This review attempts to link the plethora of information on the maturation of the central nervous system with the ontogeny of ATP metabolism, placing special emphasis on variations that occur during development in different brain regions and across the mammalian species. It correlates morphological events and markers with biochemical changes in activities of enzymes and pathways that participate in the production of ATP. The paper also evaluates alterations in energy levels as a function of age and, based on the tenet that ATP synthesis and utilization cannot be considered in isolation, investigates maturational profiles of the key processes that utilize energy. Finally, an attempt is made to assess the relevance of currently available animal models to improvement of our understanding of the etiopathology of various disease states in the human infant. This is deemed essential for the development and testing of novel strategies for prevention and treatment of several severe neurological deficits.
Collapse
Affiliation(s)
- Maria Erecinska
- Department of Anatomy, School of Veterinary Science, Southwell Street, Bristol BS2 8EJ, UK.
| | | | | |
Collapse
|
154
|
Hirose M, Yokoyama H, Iinuma K. Theophylline impairs memory/learning in developing mice. Brain Dev 2004; 26:448-52. [PMID: 15351080 DOI: 10.1016/j.braindev.2003.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2003] [Revised: 12/11/2003] [Accepted: 12/22/2003] [Indexed: 11/27/2022]
Abstract
We studied the relationship between theophylline and memory/learning using an elevated plus-maze test and measuring spontaneous locomotor activity in developing mice. There were no significant differences in transfer latency (TL) in 21-, 30- and 42-day-old mice in the acquisition trial, but theophylline significantly prolonged TL in comparison with the control group in 21- and 30-day-old mice in the retention trial (n = 20; 21-day-old mice, P = 0.0009; 30-day-old mice, P = 0.03). The dose-dependent stimulant effects of theophylline were shown in spontaneous locomotor activity (n = 16; 21-day-old mice, P = 0.0005; 30-day-old mice, P = 0.0007; 42-day-old mice, P = 0.0003) in all groups and in rearing in 21-day-old mice (P = 0.02) 1 h after drug administration, but there were no significant effects 24 h after drug administration in all groups. Our study showed that even a therapeutic dose of theophylline impaired memory/learning only in developing mice, and theophylline increased locomotor activity both in developing and adolescent mice. These observations are consistent with several clinical studies, which reported the relationships between theophylline use and memory/learning and learning-related behaviors in children, such as difficulty in studying and hyperactivity. Theophylline possibly induces memory/learning disabilities and hyperactivity in infants and young children.
Collapse
Affiliation(s)
- Mieko Hirose
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai city 980-8574, Japan.
| | | | | |
Collapse
|
155
|
Sato K, Momose-Sato Y. Optical Mapping Reveals Developmental Dynamics of Mg2+-/APV-Sensitive Components of Glossopharyngeal Glutamatergic EPSPs in the Embryonic Chick NTS. J Neurophysiol 2004; 92:2538-47. [PMID: 15175368 DOI: 10.1152/jn.00372.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine whether there are any differences in functional organization between the glossopharyngeal nerve (N. IX)– and vagus nerve (N. X)–projecting areas in the nucleus of the tractus solitarius (NTS), we performed optical recording of neural responses evoked by N. IX stimulation in 5- to 9-day-old embryonic chick brain stem preparations and compared the results with those in our previous studies concerning the N. X-related NTS. First, we investigated dl-2-amino-5-phosphonovaleric acid (APV)/Mg2+sensitivity of the glutamatergic excitatory postsynaptic potentials (EPSPs) in the N. IX-related NTS. In 7- to 9-day-old preparations, we found regional differences in the degree of both the APV-induced reduction and Mg2+-free–induced enhancement of the EPSPs. We constructed developmental maps of spatial patterns of the APV- and Mg2+-sensitive components and showed that functional expression of the N-methyl-d-aspartate (NMDA) receptor dynamically changed during development. Second, we studied initial expression of synaptic functions in the N. IX-related NTS. In 6-day-old preparations, although action potentials alone were usually detected in normal Ringer solution, small EPSPs were elicited in a Mg2+-free solution. This result suggests that the NMDA receptor–mediated synaptic function is latently generated in the N. IX-related NTS at the 6-day-old embryonic stage and that external Mg2+regulates the onset of synaptic functions. Developmental patterns of APV/Mg2+sensitivity and the stage of initial expression of the glossopharyngeal EPSP were similar to those of the N. X, suggesting that the developmental sequence of the synaptic function in the NTS is the same for the N. IX- and N. X-related NTS.
Collapse
Affiliation(s)
- Katsushige Sato
- Dept. of Physiology, Tokyo Medical and Dental Univ., Graduate School and Faculty of Medicine, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | |
Collapse
|
156
|
Owen D, Setiawan E, Li A, McCabe L, Matthews SG. Regulation of N-Methyl-d-Aspartate Receptor Subunit Expression in the Fetal Guinea Pig Brain1. Biol Reprod 2004; 71:676-83. [PMID: 15115726 DOI: 10.1095/biolreprod.104.027946] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are critical for neuronal maturation and synaptic formation as well as for the onset of long-term potentiation, a process critical to learning and memory in postnatal life. In the current study, we demonstrated that NMDAR subunits undergo spatial, temporal, and sex-specific regulation. During development, we observed increasing NR1 and NR2A expression at the same time as levels of NR2B subunits decreased in the hippocampus and cortex in the fetal guinea pig. We have also shown that glucocorticoids can modulate fetal NMDAR subunit expression in a sex-specific fashion. This is clinically important because synthetic glucocorticoids are administered to pregnant women at risk of preterm labor. Repeated exposure to exogenous glucocorticoids caused a dose-dependent decrease in NR1 mRNA levels and increased NR2A mRNA expression in the female hippocampus at Gestational Day 62. There are significant changes in NMDAR subunit expression in late gestation. It is possible that these alter NMDA-dependent signaling at this time. Prenatal exposure to exogenous glucocorticoids modifies the trajectory of NMDAR subunit expression in females but not in males.
Collapse
Affiliation(s)
- Dawn Owen
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
157
|
Koh S, Tibayan FD, Simpson JN, Jensen FE. NBQX or topiramate treatment after perinatal hypoxia-induced seizures prevents later increases in seizure-induced neuronal injury. Epilepsia 2004; 45:569-75. [PMID: 15144420 DOI: 10.1111/j.0013-9580.2004.69103.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE To evaluate the efficacy of NBQX (2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f) quinoxaline-2,3-dione) and topiramate (TPM) given after hypoxia-induced seizures in preventing the delayed effect of hypoxia on subsequent susceptibility to seizures and neuronal injury. METHODS We used "two-hit" rodent seizure model to study the long-term effect of perinatal hypoxia on later kainate (KA) seizure-induced neuronal damage and investigated the therapeutic efficacy of a postseizure treatment protocol in reversing the conditioning effect of early-life seizures. RESULTS Hypoxia at P10 induces seizures without cell death but causes an increase in susceptibility to second seizures induced by KA as early as 96 h after hypoxia, and this lowered seizure threshold persists to adulthood. Furthermore, perinatal hypoxia increases KA-induced neuronal injury at postnatal day (P)21 and 28/30. Repeated doses of NBQX (20 mg/kg) or TPM (30 mg/kg) given for 48 h after hypoxia-induced seizures prevent the increase in susceptibility to KA seizure-induced hippocampal neuronal injury at P28/30. CONCLUSIONS Our results suggest that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor blockade after hypoxia prevents the priming effect of perinatal hypoxia-induced seizures and that this protection occurs independent of its anticonvulsant action.
Collapse
Affiliation(s)
- Sookyong Koh
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
158
|
Simeone TA, Sanchez RM, Rho JM. Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J Child Neurol 2004; 19:343-60; discussion 361. [PMID: 15224708 DOI: 10.1177/088307380401900507] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic terminals, glutamate binds to both ionotropic and metabotropic receptors to mediate fast, slow, and persistent effects on synaptic transmission and integrity. There are three types of ionotropic glutamate receptors. N-Methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA), and kainate receptors are principally activated by the agonist bearing its name and are permeable to cationic flux; hence, their activation results in membrane depolarization. All ionotropic glutamate receptors are believed to be composed of four distinct subunits, each of which is topologically arranged with three transmembrane-spanning and one pore-lining (hairpin loop) domain. In contrast, metabotropic glutamate receptors are G protein (guanine nucleotide-binding protein) -coupled receptors linked to second-messenger systems. Group I metabotropic glutamate receptors are linked to phospholipase C, which results in phosphoinositide hydrolysis and release of calcium from intracellular stores. Group II and group III metabotropic glutamate receptors are negatively linked to adenylate cyclase, which catalyzes the production of cyclic adenosine monophosphate. Each metabotropic glutamate receptor is composed of seven transmembrane-spanning domains, similar to other members of the superfamily of metabotropic receptors, which includes noradrenergic, muscarinic acetylcholinergic, dopaminergic, serotonergic (except type 3 receptors), and gamma-aminobutyric acid (GABA) type B receptors. This review summarizes the relevant molecular biology and ontogeny of glutamate receptors in the central nervous system and highlights some of the roles that they can play during brain development and in certain disease states.
Collapse
Affiliation(s)
- Timothy A Simeone
- Department of Pediatrics, University of California at Irvine College of Medicine, Irvine, CA, USA
| | | | | |
Collapse
|
159
|
Slawecki CJ, Roth J. Comparison of the Onset of Hypoactivity and Anxiety-Like Behavior During Alcohol Withdrawal in Adolescent and Adult Rats. Alcohol Clin Exp Res 2004; 28:598-607. [PMID: 15100611 DOI: 10.1097/01.alc.0000122767.69206.1b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early life alcohol use is associated with increased alcoholism risk. It has been suggested that alterations in the sensitivity of adolescents to the acute effects of ethanol may contribute to this risk by promoting excessive intake. However, an enhanced propensity for developing ethanol dependence or withdrawal-related behavior could also contribute to increased risk. The objective of these studies was to compare the appearance of ethanol withdrawal-related behaviors in adolescent and adult rats. METHODS Male Sprague-Dawley rats were exposed to ethanol vapor (12 hr/day) for 12 or 14 days during adolescence or adulthood. In the first study, locomotor activity was assessed after 2, 4, 7, 10, and 14 days of ethanol exposure. In the second study, open field behavior was assessed after 5 or 12 days of ethanol exposure. In follow-up studies, changes in sucrose preference during ethanol withdrawal and motor activity during food restriction were assessed in adolescent rats. Withdrawal assessments were made 7 to 9 hr after daily exposure ended. RESULTS Hypoactivity emerged rapidly in adolescent rats during ethanol withdrawal in activity tests, but comparable reductions were not found in adult rats. However, hypoactivity developed in both adolescents and adults in the novel open field. Enhanced anxiety-like behavior in the open field was not observed in either age group during withdrawal. Finally, sucrose preference was unchanged during ethanol withdrawal, and food restriction increased motor activity in adolescent rats. CONCLUSIONS These data confirm that symptoms of withdrawal may be differentially expressed in adolescent and adult rats. However, discrepancies in hypoactivity between studies suggest that assessment in a novel versus familiar environment may influence the expression of withdrawal-related behaviors.
Collapse
Affiliation(s)
- Craig J Slawecki
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
160
|
Zhang G, Raol YSH, Hsu FC, Brooks-Kayal AR. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. J Neurochem 2003; 88:91-101. [PMID: 14675153 DOI: 10.1046/j.1471-4159.2003.02124.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolonged seizures in early childhood are associated with an increased risk of development of epilepsy in later life. The mechanism(s) behind this susceptibility to later development of epilepsy is unclear. Increased synaptic activity during development has been shown to permanently alter excitatory neurotransmission and could be one of the mechanisms involved in this increased susceptibility to the development of epilepsy. In the present study we determine the effect of status-epilepticus induced by lithium/pilocarpine at postnatal day 10 (P10 SE) on the expression of glutamate receptor and transporter mRNAs in hippocampal dentate granule cells and protein levels in dentate gyrus of these animals in adulthood. The results revealed a decrease in glutamate receptor 2 (GluR2) mRNA expression and protein levels as well as an increase in protein levels for the excitatory amino acid carrier 1 (EAAC1) in P10 SE rats compared to controls. Expression of glutamate receptor 1 (GluR1) mRNA was decreased in both P10 SE rats and identically handled, lithium-injected littermate controls compared to naive animals, and GluR1 protein levels were significantly lower in lithium-controls than in naive rats, suggesting an effect of either the handling or the lithium on GluR1 expression. These changes in EAA receptors and transporters were accompanied by an increased susceptibility to kainic acid induced seizures in P10 SE rats compared to controls. The current data suggest that early-life status-epilepticus can result in permanent alterations in glutamate receptor and transporter gene expression, which may contribute to a lower seizure threshold.
Collapse
Affiliation(s)
- Guojun Zhang
- Division of Neurology, Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
161
|
Yaniv D, Vouimba RM, Diamond DM, Richter-Levin G. Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles. Neuroscience 2003; 120:1125-35. [PMID: 12927217 DOI: 10.1016/s0306-4522(03)00386-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medial temporal lobe, including the entorhinal cortex, the amygdala and the hippocampus, has an important role in learning and memory, and its circuits exhibit synaptic plasticity (long-term potentiation [LTP]). The entorhinal cortex is positioned to exert a potent influence on the amygdala and the hippocampus given its extensive monosynaptic projections to both areas. We therefore studied the effects of activation of the entorhinal cortex with simultaneous recording of LTP in the hippocampus and amygdala in the anesthetized rat. theta Burst stimulation of the lateral entorhinal cortex induced LTP simultaneously in the basal amygdaloid nucleus and in the dentate gyrus. However, the mechanisms involved in the induction of LTP in the two areas differed. The N-methyl-D-aspartate receptor antagonist 3-[(+/-)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid delivered 1 h before LTP induction (10 mg/kg, i.p.), blocked LTP in the dentate gyrus but not in the amygdala. In addition we found that the basal amygdala as well as the dentate gyrus sustained late-phase LTP (10 h) which may participate in memory encoding and/or modulation processes. Overall, the results suggest a coordinating role for the entorhinal cortex by simultaneously modulating activity and plasticity in these structures, albeit through different mechanisms. Interactive encoding of this sort is believed to endow memories with a different, more integrative, quality than when either pathway is activated alone.
Collapse
Affiliation(s)
- D Yaniv
- Department of Psychology, Laboratory of Behavioral Neuroscience, and The Brain and Behavior Research Center, University of Haifa, 31905, Haifa, Israel
| | | | | | | |
Collapse
|
162
|
Oi H, Chiba C, Saito T. The appearance and maturation of excitatory and inhibitory neurotransmitter sensitivity during retinal regeneration of the adult newt. Neurosci Res 2003; 47:117-29. [PMID: 12941453 DOI: 10.1016/s0168-0102(03)00190-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using living slice preparations from newt retinas at different stages of regeneration, we examined the time course of appearance and maturation of neurotransmitter-induced currents with whole-cell patch-clamp methods. Neurons from which currents were recorded were identified by Lucifer Yellow fills. All progenitor cells examined at the regenerating retinas did not express any voltage-gated Na+ currents and responsiveness to excitatory amino acid analogues (AMPA and NMDA) and inhibitory amino acids (GABA and glycine). Voltage-gated Na+ currents were first detected in premature ganglion cells with round cell body located at the most proximal level of the 'intermediate-II' regenerating retina. AMPA- GABA- and glycine-induced currents were simultaneously observed in many premature ganglion cells expressing Na+ channels, but not all, suggesting that the onset of the Na+ channels is slightly earlier than that of excitatory and inhibitory amino acid receptors in regeneration. NMDA-evoked currents were first observed in the 'intermediate-III' regenerating retina just before the synaptogenesis. Pharmacological properties and reversal potential values of the excitatory and inhibitory amino acid responses did not change substantially between regenerating ganglion cells and mature ganglion cells, while rectification properties of current-voltage relations for AMPA and NMDA responses were somewhat different between them.
Collapse
Affiliation(s)
- Hanako Oi
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | |
Collapse
|
163
|
Saransaari P, Oja SS. Enhanced release of adenosine under cell-damaging conditions in the developing and adult mouse hippocampus. Neurochem Res 2003; 28:1409-17. [PMID: 12938864 DOI: 10.1023/a:1024956701683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice was characterized using a superfusion system under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals and metabolic poisons. The release of adenosine was greatly potentiated under the above conditions at both ages, with free radicals, metabolic poisons, and ischemia generally having the strongest stimulatory effects. Depolarization by K+ ions (50 mM) could then evoke more release of adenosine only in the immature hippocampus. Omission of Ca2+ from the superfusion media had no effect on the ischemia-induced release in the adults, indicating that it occurs by a Ca2+-independent system. In contrast, the release in the immature hippocampus was partially dependent on extracellular Ca2+. Furthermore, the ischemia-induced adenosine release was reduced in Na+-deficient media and enhanced by ouabain at both ages, pointing to the involvement of Na+-dependent transporters. The release was also reduced by Cl- channel blockers, thus indicating that a part of the evoked release occurs through anion channels. Another inhibitory neuromodulator and cell volume regulator, taurine, was seen to enhance adenosine release in ischemia at both ages. The simultaneous release of taurine and adenosine under cell-damaging conditions could constitute an important protective mechanism against excessive amounts of excitatory amino acids, counteracting their harmful effects and preventing excitation from reaching neurotoxic levels.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, FIN-33014 University of Tampere, Finland.
| | | |
Collapse
|
164
|
Ferreira VM, Morato GS. Influence of age and of pre-treatment with D-cycloserine on the behavior of ethanol-treated rats tested in the elevated plus-maze apparatus. Addict Biol 2003; 1:395-404. [PMID: 12893457 DOI: 10.1080/1355621961000125016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There is evidence that ethanol is able to influence central functions through the antagonism of the NMDA-receptor system. It has been shown that this system is also involved in the modulation of anxiety-related behavior in rats. Recently, we observed gender- and age-related behavioral influences in rats tested on the elevated plus-maze apparatus The present study was undertaken in order to investigate: (1) the effects of ethanol (0.8, 1.0 or 1.2 g/kg, i.p.) on the behavior of male and female rats tested on the elevated plus-maze at 2, 3, 4 or 5 months of age; (2) the effect of the pre-treatment with D-cycloserine (3.0 or 6.0 mg/kg), an agonist of the glutamate NMDA-receptor system, 30 min before the ethanol (1.2 g/kg) injections, in rats tested in the elevated plus-maze at 2 months or 4 months of age. The results demonstrated that ethanol did not affect the time spent and the frequency of entries on the open arms of the elevated plus-maze in rats tested at 2 months of age, but increased these parameters in older animals. Moreover, the results showed that D-cycloserine, at doses that did not affect the behavior of control animals, antagonized the increased frequency of entries and time spent on open arms produced by ethanol in rats tested at 4 months of age. Our results suggest an age-related influence on the anxiolytic action of ethanol in rats tested in the elevated plus-maze. Moreover, the results suggest that the NMDA-receptor system can be involved in this effect, and strengthens the evidence for the participation of the NMDA-receptor system in anxiety-related behavior.
Collapse
Affiliation(s)
- V M Ferreira
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC, Brazil
| | | |
Collapse
|
165
|
Blaise JH, Bronzino JD. Effects of stimulus frequency and age on bidirectional synaptic plasticity in the dentate gyrus of freely moving rats. Exp Neurol 2003; 182:497-506. [PMID: 12895462 DOI: 10.1016/s0014-4886(03)00136-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the frequency-dependent transition from homosynaptic long-term depression (LTD) to long-term potentiation (LTP) at the lateral perforant pathway/dentate gyrus synapse in adult (90 days of age) and immature (15 days of age) awake, freely moving rats. Dentate-evoked field potentials were recorded and analyzed using the population spike amplitude and the field EPSP slope measures following sustained stimulation (900 pulses) of the lateral perforant pathway at various frequencies (1, 3, 7, 30, 50, or 200 Hz). Our results indicate that both the strength and the direction (LTP or LTD) of synaptic plasticity vary as a function of activation frequency: sustained low-frequency stimulation ranging from 1 to 7 Hz results in depression of activated synapses, whereas high-frequency stimulation (30-200 Hz) produces potentiation. In addition, a significant (P < 0.01) ontogenetic shift in the frequency of transition from LTD to LTP was observed; the transition frequency in immature animals was significantly lower than that obtained in adult animals. These observations agree strongly with the prediction of the Bienenstock-Cooper-Munro theory of synapse modification, indicating perhaps a neurophysiological basis for this theoretical model of learning in the dentate gyrus of awake behaving rats.
Collapse
Affiliation(s)
- J Harry Blaise
- Department of Engineering, Trinity College, Hartford, CT 06106, USA.
| | | |
Collapse
|
166
|
Grojean S, Pourié G, Vert P, Daval JL. Differential neuronal fates in the CA1 hippocampus after hypoxia in newborn and 7-day-old rats: Effects of pre-treatment with MK-801. Hippocampus 2003; 13:970-7. [PMID: 14750659 DOI: 10.1002/hipo.10171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The brain displays an age-dependent sensitivity to ischemic insults. However, the consequences of oxygen deprivation per se in the developing brain remain unclear, and the role of glutamate excitotoxicity via N-methyl-D-aspartate (NMDA) receptors is controversial. To gain a better understanding of the mechanisms involved in the cerebral response to severe hypoxia, cell damage was temporally monitored in the CA1 hippocampus of rat pups transiently exposed to in vivo hypoxia (100% N2) at either 24 h or 7 days of age. Also, the influence of a pre-treatment with the NMDA receptor antagonist MK-801 (5 mg/kg, i.p.) was examined. At both ages, morphometric analyses and cell counts showed hypoxia-induced significant neuronal loss (30-35%) in the pyramidal layer, with injury appearing more rapidly in rats exposed at 7 days. Morphological alterations of 4,6-diamidino-2-phenylindole (DAPI)-labeled nuclei, DNA fragmentation patterns on agarose gels, as well as expression profiles of the apoptosis-related regulatory proteins Bax and Bcl-2 showed that apoptosis was prevalent in younger animals, whereas only necrosis was detected in hippocampi of rats treated at 7 days. Moreover, pre-treatment with MK-801 was ineffective in protecting hippocampal neurons from hypoxic injury in newborn rats, but significantly reduced necrosis in older subjects. These data confirm that hypoxia alone may trigger neuronal death in vivo, and the type of cell death is strongly influenced by the degree of brain maturity. Finally, NMDA receptors are not involved in the apoptotic consequences of hypoxia in the newborn rat brain, but they were found to mediate necrosis at 7 days of age.
Collapse
Affiliation(s)
- Stéphanie Grojean
- INSERM EMI 0014, Faculté de Médecine, Université H. Poincaré, Nancy, France
| | | | | | | |
Collapse
|
167
|
Sutor B. Gap junctions and their implications for neurogenesis and maturation of synaptic circuitry in the developing neocortex. Results Probl Cell Differ 2003; 39:53-73. [PMID: 12353468 DOI: 10.1007/978-3-540-46006-0_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
More and more data accumulate which provide evidence for an important role of gap junctions for the development and function of the mammalian brain. In the neocortex, gap junctions are already present at very early stages of development and they seem to be involved in neurogenesis and neuronal migration. At postnatal stages of development, gap junctions obviously participate in the differentiation of neurons and formation of synapses. Recently, it has been shown that they are responsible for the synchronization of inhibitory network activity, even within the adult mammalian neocortex. Gap junction-mediated interneuronal communication seems to be complementary to the signal transfer created by chemical synapses and, in some cases, these two systems interact or act synergistically. There are, however, many open questions which need to be answered before we can achieve a comprehensive understanding of the function of gap junctions and electrical synapses for the development and function of the neocortex.
Collapse
Affiliation(s)
- Bernd Sutor
- Institute of Physiology, University of Munich, Pettenkoferstrasse 12, 80336 Munich, Germany
| |
Collapse
|
168
|
Hedberg TG, Velísková J, Sperber EF, Nunes ML, Moshé SL. Age-related differences in NMDA/metabotropic glutamate receptor binding in rat substantia nigra. Int J Dev Neurosci 2003; 21:95-103. [PMID: 12615085 DOI: 10.1016/s0736-5748(02)00125-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both N-methyl-D-aspartate (NMDA) and quisqualate/AMPA-insensitive metabotropic glutamate (mGlu) receptors mediate glutamate neurotransmission in substantia nigra (SN). In this work, NMDA and mGlu receptor sites in substantia nigra pars compacta (SNC) and pars reticulata were autoradiographically mapped in rat brains using specific binding of (+)3H-MK801 or 3H-glutamate, with saturating concentrations of NMDA, AMPA and quisqualate. In brains of both adult and postnatal day 15 (PN15) male rats, prepared at subjective mid-day of a 12h light/12h dark (12h L/12h D) cycle, specific binding at NMDA and mGlu sites in substantia nigra was pronounced when compared with control binding. The (+)3H-MK801 binding in adults was spatially heterogeneous. Overall binding density in pars compacta was higher relative to binding density in pars reticulata with a mean percent change (Deltaxmacr;%) of 32%. Within the pars reticulata but not pars compacta, there were rostro-caudal differences with considerably denser binding in the posterior compared with the anterior pars reticulata (Deltaxmacr;%=108%). PN15 rats showed a less pronounced heterogeneity in pars compacta versus pars reticulata binding, (Deltaxmacr;%=27%), and less rostro-caudal differentiation in (+)3H-MK801 binding density throughout pars reticulata (Deltaxmacr;%=46%). 3H-glutamate binding in both adult and PN15 rats was less dense overall than (+)3H-MK801 binding. In adults, there was no difference in binding density between pars compacta and pars reticulata (Deltaxmacr;%=0.4%), but there were marked heterogeneities when binding was compared between anterior versus posterior pars compacta (Deltaxmacr;%=29%), and anterior versus posterior pars reticulata (Deltaxmacr;%=25%). This rostro-caudal heterogeneity in 3H-glutamate binding density was also present in PN15 pars compacta (Deltaxmacr;%=45%) but not in pars reticulata. Our findings mirror similar anterior/posterior heterogeneities in the GABAergic system in adult and PN15 male rats and may reflect a developmental change in both the structure and anticonvulsant/proconvulsant properties of substantia nigra pars reticulata (SNR) with age.
Collapse
Affiliation(s)
- Thomas G Hedberg
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
169
|
Bell RL, Rodd-Henricks ZA, Kuc KA, Lumeng L, Li TK, Murphy JM, McBride WJ. Effects of concurrent access to a single concentration or multiple concentrations of ethanol on the intake of ethanol by male and female periadolescent alcohol-preferring (P) rats. Alcohol 2003; 29:137-48. [PMID: 12798969 DOI: 10.1016/s0741-8329(03)00022-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The objectives of this study were to assess the effects of access to different concentrations of ethanol and sex of the animal on ethanol consumption during periadolescence [postnatal days (PNDs) 30-60] in alcohol-preferring (P) rats. On PND 28, female and male P pups were single housed in hanging stainless steel cages with ad libitum access to water and food. Beginning on PND 30, the rats were also given access to either a single concentration [15% volume/volume (vol./vol.)] or multiple concentrations [10%, 20%, and 30% (vol./vol.)] of ethanol. Differences between sex (male vs. female) and ethanol conditions (single concentration vs. multiple concentrations), for the average amount of ethanol consumed for each week (starting on PND 33) of access, were examined. Analyses of the data for ethanol drinking revealed significant (P<.025) main effects of week and ethanol condition, as well as a significant weekxethanol condition interaction. For the first week, both male and female P pups consumed more ethanol under the multiple-ethanol-concentration condition than under the single-ethanol-concentration condition. However, across the second through fourth weeks, this pattern was seen only in female P pups. When preference for one concentration of ethanol over the other concentrations was assessed, it was found that male P pups tended to choose the 30% concentration over the 10% and 20% concentrations, whereas female P pups did not display a preference. The findings of this study corroborate previous work indicating that periadolescent P rats readily acquire high-ethanol-drinking behavior and that, similar to adult P rats, concurrent access to multiple concentrations of ethanol further enhances ethanol intake. These findings suggest to us that innate genetically influenced mechanisms promoting high ethanol intake are present at this stage of development.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
170
|
Prins ML, Hovda DA. Developing experimental models to address traumatic brain injury in children. J Neurotrauma 2003; 20:123-37. [PMID: 12675967 DOI: 10.1089/08977150360547053] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of injury-related death and disability among children under the age of 15 years in the United States. Epidemiological studies have revealed that even within the pediatric population there are differences in incidence, gender differences, causes, types of injuries sustained, and mortality within age subdivisions. This heterogeneity must be taken into account when developing appropriate models to address TBI in children. This review explores the current developmental TBI models, including fluid percussion, weight drop, and controlled cortical impact. It also addresses unique considerations to modeling pediatric brain injury that require special attention when modeling and designing studies: age appropriateness, injury severity, evaluation of recovery, plasticity, and anesthesia.
Collapse
Affiliation(s)
- Mayumi L Prins
- Division of Neurosurgery, UCLA School of Medicine, Los Angeles, California 90095-7039, USA.
| | | |
Collapse
|
171
|
Stafstrom CE, Sasaki-Adams DM. NMDA-induced seizures in developing rats cause long-term learning impairment and increased seizure susceptibility. Epilepsy Res 2003; 53:129-37. [PMID: 12576174 DOI: 10.1016/s0920-1211(02)00258-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors play a prominent role in the pathogenesis of epilepsy, yet few studies have used NMDA as a convulsant in whole animals. In developing rats, systemic NMDA induces seizures with a unique seizure phenotype ("emprosthotonic" or hyperflexion seizures) and electrographic pattern (electrodecrement). These features are not seen in kainic acid-induced seizures, suggesting that seizures activated by NMDA might cause different long-term consequences. Therefore, we investigated the effects of NMDA seizures during development on cognitive function and susceptibility to seizures in adulthood. Rat pups (P12-20) were injected with saline (n=36) or NMDA (n=64) at convulsant doses (15-30mg/kg, i.p.). After NMDA injection, a characteristic sequence of seizure activity was seen: initial behavioral arrest, followed by hyperactivity, agitation, and then emprosthotonus and generalized tonic-clonic seizures. Seizures were terminated 30min later by ketamine (50mg/kg, i.p.). On P85, rats underwent behavioral testing in the water maze. Rats that had experienced NMDA seizures as pups took significantly longer to learn the platform location over 5 days of testing, compared to controls. On P90, rats were injected with pentylenetetrazol (PTZ, 50mg/kg, i.p.) to assess their susceptibility to generalized seizures. NMDA-treated rats had decreased latency and increased duration of class V PTZ seizures. Cresyl violet-stained sections of cortex and hippocampus had no obvious cell loss or gliosis. In summary, NMDA causes a unique seizure phenotype in the developing brain, with subsequent deficits in spatial learning and an increased susceptibility to PTZ seizures in adulthood. This study provides additional evidence for long-term alterations of neuronal excitability and cognitive capacity associated with seizures during development.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Department of Neurology, Neuroscience Training Program, H6-528, University of Wisconsin, 600 Highland Avenue, 53792, Madison, WI, USA.
| | | |
Collapse
|
172
|
Jensen FE. Relationship between encephalopathy and abnormal neuronal activity in the developing brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:23-35. [PMID: 12040895 DOI: 10.1016/s0074-7742(02)49004-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Infantile spasms represent a unique age-specific epileptic syndrome that is often associated with a focal or diffuse encephalopathy and can result in severe neurodevelopmental delay and retardation. The behavioral and electroencephalogram (EEG) phenotype of infantile spasms is similar, despite its association with multiple neurological disease states. The stereotypy suggests that the spasms originate from a highly age-specific hyperexcitable network. Treatment strategies for infantile spasms remain largely empirical due to the lack of understanding of the underlying neurochemistry and circuitry. This chapter reviews experimental evidence for the presence of unique developmental factors that appear to promote hyperexcitability in the immature brain and that may play a role in the generation of infantile spasms. In addition, this chapter evaluates the potential interplay between an associated developmental encephalopathy and enhanced neuronal hyperexcitability in infantile spasms.
Collapse
Affiliation(s)
- Frances E Jensen
- Department of Neurology, Children's Hospital, Program in Neuroscience Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
173
|
Rodd-Henricks ZA, Bell RL, Kuc KA, Murphy JM, McBride WJ, Lumeng L, Li TK. Effects of Ethanol Exposure on Subsequent Acquisition and Extinction of Ethanol Self-Administration and Expression of Alcohol-Seeking Behavior in Adult Alcohol-Preferring (P) Rats: II. Adult Exposure. Alcohol Clin Exp Res 2002. [DOI: 10.1111/j.1530-0277.2002.tb02466.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Mares P, Haugvicová R, Kubová H. Interaction of excitatory amino acid agonists with cortical afterdischarges in developing rats. Epilepsia 2002; 43 Suppl 5:61-7. [PMID: 12121297 DOI: 10.1046/j.1528-1157.43.s.5.21.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To determine the role of excitatory amino acids (EAAs) in genesis of two types of epileptic afterdischarges. METHODS Cortical stimulation and recording electrodes were implanted in 12-, 18-, and 25-day-old rats. Epileptic afterdischarges were induced by rhythmic stimulation of sensorimotor cortex. The stimulation was repeated 6 times with 20-min intervals. Ten minutes after the first afterdischarge, N-methyl-d-aspartate, homocysteine, or kainic acid was injected. The doses were chosen individually for different age groups to be subconvulsive. Type and duration of afterdischarges as well as type and severity of motor correlates were evaluated. RESULTS N-methyl-d-aspartate prolonged afterdischarges only in 12-day-old rats, whereas two other drugs did it in all age groups. Motor correlates of afterdischarges were changed to flexion seizures in 12-day-old rats after N-methyl-d-aspartate and homocysteine; in 25-day-old rats homocysteine led to generalized tonic-clonic seizures (i.e., both patterns seen after substantially higher doses of these drugs in nonstimulated rats). Seizures lasted tens of minutes. Kainic acid did not change the motor pattern in any age group, but nonconvulsive EEG seizures were recorded in the interstimulation periods mainly in 18- and 25-day-old rats. Increased transition into the limbic type of afterdischarges appeared only after homocysteine in 18- and 25-day-old rats. CONCLUSIONS A mutual potentiation of epileptic phenomena was induced by two agents. The actions of N-methyl-d-aspartate and kainic acid differ in all age groups; the effects of homocysteine were identical with those of N-methyl-d-aspartate in 12-day-old rats but not later. Only homocysteine augmented transition into the limbic type of afterdischarges.
Collapse
Affiliation(s)
- P Mares
- Institute of Physiology, Academy of Sciences, Videnská 1083, CZ-14220 Prague 4, Czech Republic
| | | | | |
Collapse
|
175
|
Vastola BJ, Douglas LA, Varlinskaya EI, Spear LP. Nicotine-induced conditioned place preference in adolescent and adult rats. Physiol Behav 2002; 77:107-14. [PMID: 12213508 DOI: 10.1016/s0031-9384(02)00818-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
About 1 million American adolescents start smoking every year. Adolescents may be unusually sensitive to certain consequences of nicotine, demonstrating, for instance, significantly higher rates of dependence than adults at the same level of nicotine use. To explore whether adolescents may be more sensitive to rewarding properties of nicotine than adults, the present study used an animal model to assess the rewarding effects of a low nicotine dose (0.6 mg/kg) in a conditioned place preference (CPP) paradigm. Locomotor activity during conditioning and testing was also evaluated. Nicotine was observed to induce place preference conditioning in adolescent Sprague-Dawley rats, whereas the training dose of 0.6 mg/kg failed to produce convincing place preference in their adult counterparts. Age differences were also apparent in terms of nicotine influences on motor activity, with adults being more sensitive to nicotine-suppressant effects and only adolescents showing an emergence of nicotine-stimulatory effects upon repeated exposures. An increased predisposition to stimulatory nicotine effects during adolescence may contribute to age-specific rewarding properties of the drug as revealed using the CPP paradigm in this experiment. Increased sensitivity to stimulatory and rewarding effects during adolescence could potentially contribute to the high rate of nicotine use and dependence among human adolescents.
Collapse
Affiliation(s)
- Bonnie J Vastola
- Department of Psychology, Center for Developmental Psychobiology, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | | | |
Collapse
|
176
|
Garthwaite G, Garthwaite J. AMPA Neurotoxicity in Rat Cerebellar and Hippocampal Slices: Histological Evidence for Three Mechanisms. Eur J Neurosci 2002; 3:715-728. [PMID: 12106458 DOI: 10.1111/j.1460-9568.1991.tb01668.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA. In cerebellar slices, AMPA induced the degeneration of most Purkinje cells together with a population of Golgi cells; in hippocampal slices the neurons were affected in the order CA3 > CA1 > dentate granule cells. Three mechanisms could be discerned: an acute one in which neurons (e.g. cerebellar Golgi cells) underwent a rapid degeneration; a delayed one in which the neurons (Purkinje cells and hippocampal neurons) appeared to be only mildly affected immediately after a 30 min exposure but then underwent a protracted degeneration during the postincubation period (1.5 - 3 h); and finally a slow toxicity, which took place during long (2 h) exposures to AMPA (3 - 30 microM). Although Purkinje cells were vulnerable in both cases, the efficacy of AMPA was higher for the delayed mechanism than for the slow one. The pathology displayed by the acutely destroyed Golgi neurons was a classical oedematous necrosis, whereas most neurons vulnerable to the delayed and slow mechanisms displayed a 'dark cell degeneration', whose cytological features bore a close resemblance to those of neurons irreversibly damaged by ischaemia, hypoglycaemia or status epilepticus in vivo.
Collapse
Affiliation(s)
- Giti Garthwaite
- Department of Physiology, University of Liverpool, Brownlow Hill, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
177
|
Bentivoglio M, Spreafico R, Alvarez-Bolado G, Sánchez MP, Fairén A. Differential Expression of the GABAA Receptor Complex in the Dorsal Thalamus and Reticular Nucleus: An Immunohistochemical Study in the Adult and Developing Rat. Eur J Neurosci 2002; 3:118-125. [PMID: 12106210 DOI: 10.1111/j.1460-9568.1991.tb00072.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of the GABAA receptor/benzodiazepine receptor/chloride channel complex was investigated in the thalamus of the rat by means of immunohistochemistry in adulthood, as well as during embryonic and postnatal development, using a monoclonal antibody. In adults, the immunoreactivity for the GABAA receptor complex was intensely expressed by neuronal processes throughout the dorsal thalamus. Neuronal perikaryal membranes were frequently outlined by punctate immunostaining; cell bodies, intrathalamic fibre bundles and the internal capsule did not display immunoreactivity for the GABAA receptor. Regional differences in the expression of the receptor were consistently observed: the immunostaining was much lighter in the thalamic reticular nucleus than in the dorsal thalamic nuclei and, among the latter, the anteroventral nucleus and the ventral nuclear complex displayed the most intense immunopositivity. Immunostaining for the GABAA receptor was already expressed in embryos at E14, and was homogeneously distributed throughout the neuropil of the dorsal and ventral thalamic primordia. During the first two postnatal weeks, a regional differentiation of the immunopositivity was appreciable in the thalamus, with a progressive reduction in the reticular nucleus and a parallel increase in the dorsal thalamic structures. Immunoreactive neuronal perikarya were not observed in the thalamus at any developmental stage. The expression of the GABAA receptor complex appeared to have reached a mature configuration by the end of the third postnatal week. These findings indicate that in adults the GABAA receptor is differentially expressed by thalamic nuclear structures, including the reticular nucleus. Furthermore, the maturation of the receptor in the thalamus undergoes a rearrangement during the first postnatal weeks that results in a considerable regression within the reticular nucleus.
Collapse
|
178
|
Gaiarsa JL, Corradetti R, Cherubini E, Ben-Ari Y. Modulation of GABA-mediated Synaptic Potentials by Glutamatergic Agonists in Neonatal CA3 Rat Hippocampal Neurons. Eur J Neurosci 2002; 3:301-309. [PMID: 12106187 DOI: 10.1111/j.1460-9568.1991.tb00816.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Intracellular recordings were made from slices of adult and neonatal hippocampal neurons. During the first 2 weeks of life the majority of pyramidal cells exhibited spontaneous gamma-aminobutyric acid (GABA)-mediated synaptic potentials, which were depolarizing at birth and became hyperpolarizing by the end of the first postnatal week. These synaptic potentials were reduced in frequency or blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist d(-)2-amino-5-phosphonovalerate (AP-5, 50 microM) (13/15 cells). The non-NMDA antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 - 10 microM) abolished the GABA-mediated synaptic potentials in all the cells tested (n=12), Superfusion of l-glutamate (up to 100 microM) increased the frequency of both depolarizing and hyperpolarizing GABA-mediated synaptic potentials. This effect was reduced by AP-5 or dl-2-amino-7-phosphonoheptanoate (AP-7, 50 microM) and fully blocked by concomitant application of AP-5 (50 microM) and CNQX (5 - 10 microM). NMDA (0.5 - 2 microM) increased the frequency of the GABA-mediated synaptic potentials. These effects were blocked by AP-5 (50 microM) and by bicuculline (10 microM). Quisqualate (100 - 300 nM), (RS)-alpha-amino-3-hydroxy-5-methyl-4-izopropionate (AMPA, 100 - 300 nM) and kainate (100 nM) also increased the frequency of the GABA-mediated synaptic potentials. These effects were blocked by CNQX (5 - 10 microM) and by bicuculline (10 microM) but not by AP-5 (50 microM). In the presence of tetrodotoxin (TTX, 1 microM), quisqualate (up to 300 nM), AMPA (up to 500 nM) and kainate (100 nM) had no effect on membrane potential or input resistance. In conclusion, our experiments suggest that, in early postnatal life, NMDA and non-NMDA receptors located on GABAergic interneurons modulate GABAergic synaptic potentials.
Collapse
Affiliation(s)
- Jean-Luc Gaiarsa
- INSERM U-29, Hôpital de Port-Royal, 123 Boulevard de Port-Royal, 75014 Paris, France
| | | | | | | |
Collapse
|
179
|
Tandon P, Yang Y, Stafstrom CE, Holmes GL. Downregulation of kainate receptors in the hippocampus following repeated seizures in immature rats. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:145-50. [PMID: 12101031 DOI: 10.1016/s0165-3806(02)00358-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
There are significant differences in seizure-induced sequelae between the immature and mature brain. We have previously demonstrated that repeated doses of the chemoconvulsant kainic acid is associated with a progressive increase in severity of seizures in adult animals while in immature rats the opposite occurs; seizure intensity decreases with subsequent doses of kainic acid. Likewise, repeated kainic acid seizures causes severe hippocampal damage in mature rats while in the immature brain serial administration of kainic acid causes no demonstrable cell loss. Here we show that recurrent kainic acid seizures in immature rats are associated with a downregulation of kainate receptor binding. No histological damage was noted in any of the rats exposed to recurrent seizures. Furthermore, when tested for visual-spatial memory immature rats with recurrent kainate seizures did not differ from controls. The downregulation of KA receptors following repeated exposure to KA suggests that the decrease in glutamate receptor density might account in part for the observed lack of neuronal loss and decrease in seizure intensity in these animals.
Collapse
Affiliation(s)
- Pushpa Tandon
- Department of Neurology, Harvard Medical School, Center for Research in Pediatric Epilepsy, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
180
|
Abstract
The perinatal age window is characterized by vulnerability to age-specific patterns of injury. Hypoxia/ischemia occurs in a number of settings both in term and preterm neonates, yet the patterns of response appear dependent upon the age of the infant. In the preterm neonate, hypoxic/ischemic insults result in selective white matter injury, termed periventricular leukomalacia (PVL), with little or no cortical pathology. However, in term babies, hypoxic encephalopathy is the most common cause of seizures, and also can result in cortical infarction. Extracellular glutamate accumulates in the setting of hypoxia/ischemia, and excess activation of glutamate receptors has been implicated in hypoxic/ischemic cellular death. Glutamate receptors are developmentally regulated in both neuronal and glial cells within the brain. Using rodent models, we have shown that hypoxia/ischemia results in selective white matter injury in postnatal day (P) seven rat pups, while hypoxia causes seizures in P10-12 rats, but not at younger or older ages. We have further demonstrated that antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor subtype block white matter injury at P7 and seizures at P10. We have shown that AMPA receptors are relatively overexpressed in oligodendrocytes (OLs) within white matter at P7 and in neurons in cortex and hippocampus at P10. Hence maturational patterns of glutamate receptor expression correlate with age-specific regional susceptibility to injury to hypoxia/ischemia. While glutamate receptor blockade represents a rational strategy in the treatment of perinatal hypoxic/ischemic brain injury, it is unclear what role variations in their expression play in normal development and plasticity. Further investigation of patterns of glutamate receptor subunit expression in human brain and in experimental animal models is necessary to determine potential age specific strategies as well as adverse effects.
Collapse
Affiliation(s)
- Frances E Jensen
- Program in Neuroscience, Department of Neurology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
181
|
Giza CC, Prins ML, Hovda DA, Herschman HR, Feldman JD. Genes preferentially induced by depolarization after concussive brain injury: effects of age and injury severity. J Neurotrauma 2002; 19:387-402. [PMID: 11990346 DOI: 10.1089/08977150252932352] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fluid percussion (FP) brain injury leads to immediate indiscriminate depolarization and massive potassium efflux from neurons. Using Northern blotting, we examined the post-FP expression of primary response/immediate early genes previously described as induced by depolarization in brain. RNA from ipsilateral and contralateral hippocampus was harvested from immature and adult rats 1 h following mild, moderate, or severe lateral fluid percussion injury and compared against age-matched sham animals. C-fos gene expression was used as a positive control and showed marked induction in both pups (6-25-fold with increasing severity) and adults (9.7-17.1-fold). Kinase-induced-by-depolarization-1 (KID-1) and salt-inducible kinase (SIK) gene expression was increased in adult (KID-1 1.5-1.6-fold; SIK 1.3-3.9-fold) but not developing rats. NGFI-b RNA was elevated after injury in both ages (pups 1.8-6.1-fold; adults 3.5-5-fold), in a pattern similar to that seen for c-fos. Secretogranin I (sec I) demonstrated no significant changes. Synaptotagmin IV (syt IV) was induced only following severe injury in the immature rats (1.4-fold). Our results reveal specific severity- and age-dependent patterns of hippocampal immediate early gene expression for these depolarization-induced genes following traumatic brain injury. Differential expression of these genes may be an important determinant of the distinct molecular responses of the brain to varying severities of trauma experienced at different ages.
Collapse
|
182
|
Abstract
The immature brain is more prone to seizures than the older brain as a result of an imbalance between excitatory and inhibitory input. The depolarizing, rather than hyperpolarizing effect of GABA(A) during the first week of life in the rodent, and the delay in postsynaptic GABA(B) inhibition coupled with the over-expression of glutamatergic synapses contribute to this increased propensity toward seizures. It is now clear that seizures can be injurious to the immature brain, although the pattern of seizure-induced injury is age-related. While the immature brain is resistant to acute seizure-induced cell loss, there are functional abnormalities following seizures with impairment of visual-spatial memory and reduced seizure threshold. Neonatal seizures are also associated with a number of activity-dependent changes in brain development including altered synaptogenesis and reduction in neurogenesis. These results argue that neonatal seizures should no longer be considered as benign events.
Collapse
Affiliation(s)
- Gregory L Holmes
- Department of Neurology, Harvard Medical School, Center for Research in Pediatric Epilepsy, Children's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
183
|
Hurst RS, Cepeda C, Shumate LW, Levine MS. Delayed postnatal development of NMDA receptor function in medium-sized neurons of the rat striatum. Dev Neurosci 2002; 23:122-34. [PMID: 11509835 DOI: 10.1159/000048704] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During early postnatal development, the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor plays a dominant role in excitatory amino acid-mediated synaptic transmission in essentially every brain region that has been examined. In contrast, we have found that in the rat striatum, NMDA receptor-mediated current develops later in the medium-sized neurons (MSNs) than currents mediated by activation of non-NMDA receptors. MSNs were identified using infrared video microscopy, and voltage-clamped in a slice preparation using the whole-cell patch-clamp technique. Intrastriatal stimulation was used to evoke excitatory synaptic currents from slices in animals ranging in age from postnatal day (PND) 5 to 60. Though most cells from animals younger than PND 10 failed to respond to synaptic stimulation, postsynaptic responses were occasionally evoked in cells as young as PND 5. Synaptic currents from cells between PNDs 5 and 7 had a significant contribution due to activation of non- NMDA receptors, as evidenced by sensitivity to the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione and rapidly rising and falling response components. The relative contribution of NMDA receptors increased approximately twofold from the first to the third postnatal week; no further change was observed through PND 60. At the same ages that the NMDA receptors contributed maximally to the synaptic current, the decay time constant of the NMDA receptor-mediated current decreased significantly. The increasing weight of NMDA receptor-mediated current may reflect a change in the number of functional receptors at the synapse since there was no apparent change in the voltage dependence of the current. To more completely examine receptor function early in postnatal development, NMDA and kainate were applied either iontophoretically or in the bath. Iontophoretic application of NMDA onto cells obtained from rats between PNDs 3 and 5 only occasionally evoked current, provided that the membrane was held at depolarized potentials to remove the Mg(2+) block. In contrast, application of kainate consistently evoked a response from cells of the same age group. Bath application of the same agonists provided similar results. Taken together, the present experiments demonstrate that striatal non-NMDA receptor-mediated currents are more mature than NMDA receptor-mediated currents early in development.
Collapse
Affiliation(s)
- R S Hurst
- Mental Retardation Research Center, University of California at Los Angeles, Los Angeles, Calif. 90095-1759, USA
| | | | | | | |
Collapse
|
184
|
|
185
|
Reader TA, Sénécal J. Topology of ionotropic glutamate receptors in brains of heterozygous and homozygous weaver mutant mice. Synapse 2001; 42:213-33. [PMID: 11746720 DOI: 10.1002/syn.10007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In weaver mice, mutation of a G-protein inwardly rectifying K(+) channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, ionotropic glutamate receptors sensitive to N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA) were examined by autoradiography with [(3)H]MK-801, [(3)H]AMPA, and [(3)H]KA. These surveys were carried out in selected areas of cerebral cortex, hippocampus and related limbic regions, basal ganglia, thalamus, hypothalamus, brainstem, and cerebellum from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild-type (+/+) mice. In wv/+ and wv/wv mutants, NMDA receptor levels were lower in cortical areas, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus, and in the cerebellar granular layer. Densities of KA receptors were lower in cortical areas, hippocampus, limbic system structures, neostriatum, nucleus accumbens, thalamus and hypothalamus, superior and inferior colliculi, and cerebellar cortex of wv/wv mutants. Levels of AMPA receptors in the weaver were higher than in +/+ mice, particularly in somatosensory and piriform cortices and periaqueductal gray of wv/+, and in somatosensory cortex, CA1 field of Ammon's horn and cerebellar granular layer of wv/wv. Abnormal developmental signals, aberrant cellular responses, or a distorted balance between neurotransmitter interactions may underlie such widespread and reciprocal glutamate receptor alterations, while in the case of cerebellar cortex, NMDA receptors are lacking due to a massive disappearance of cerebellar granule cells and some loss of Purkinje neurons.
Collapse
Affiliation(s)
- T A Reader
- Centre de recherche en sciences neurologiques, Département de physiologie, Faculté de médecine, Université de Montréal, Montréal, Quebec, H3C 3J7 Canada.
| | | |
Collapse
|
186
|
Abstract
The aims of this paper are to provide a comprehensive and up to date review of the mechanisms of induction and expression of long-term depression (LTD) of synaptic transmission. The review will focus largely on homosynaptic LTD and other forms of LTD will be considered only where appropriate for a fuller understanding of LTD mechanisms. We shall concentrate on what are felt to be some of the most interesting recent findings concerning LTD in the central nervous system. Wherever possible we shall try to consider some of the disparities in results and possible reasons for these. Finally, we shall briefly consider some of the possible functional consequences of LTD for normal physiological function.
Collapse
Affiliation(s)
- N Kemp
- Department of Anatomy, University of Bristol, MRC Centre for Synaptic Plasticity, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|
187
|
Abstract
Experimental and epidemiological studies have indicated that central histaminergic neuron system plays an important role in inhibition of convulsive disorders through histamine H(1)-receptors, especially in developing period. Histamine H(1) antagonists increase the duration of electrically induced convulsions in 21-day-old mice, but not in 42-day-old mice. Epidemiological studies suggested that histamine H(1) antagonist may be one of the risk factors in febrile convulsions. In histidinemic patients who were considered to have high brain histamine content, the incidence of convulsions was lower than that of ordinary population.The centrally acting histamine H(1) antagonists including pyrilamine and ketotifen facilitate the development of amygdaloid kindling in rats, an experimental model of epileptogenic process. On the contrary, epinastine, a histamine H(1) antagonist which scarcely enters the brain, shows no facilitation. These findings suggest that the central histaminergic neuron system plays an inhibitory role on the seizure development through central histamine H(1)-receptors.Recently, three cases has been reported in which West syndrome developed 8-10 days after ketotifen or oxatomide administration. Considering experimental and clinical studies, histamine H(1) antagonists may be associated with West syndrome and may be hazardous to infants. Further careful experimental and clinical studies will be required to elucidate the relationships between West syndrome and central histaminergic neuron system.
Collapse
Affiliation(s)
- H Yokoyama
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
188
|
Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J Neurosci 2001. [PMID: 11588188 DOI: 10.1523/jneurosci.21-20-08154.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxic encephalopathy is the most common cause of neonatal seizures and can lead to chronic epilepsy. In rats at postnatal days 10-12 (P10-12), global hypoxia induces spontaneous seizures and chronically decreases seizure threshold, thus mimicking clinical aspects of neonatal hypoxia. We have shown previously that the acute and chronic epileptogenic effects of hypoxia are age-dependent and require AMPA receptor activation. In this study, we aimed to determine whether hypoxia-induced seizures and epileptogenesis are associated with maturational and seizure-induced changes in AMPA receptor composition and function. Northern and Western blots indicated that glutamate receptor 2 (GluR2) mRNA and protein expression were significantly lower in neocortex and hippocampus at P10-12 compared with adult. After hypoxia-induced seizures at P10, GluR2 mRNA was significantly decreased within 48 hr, and GluR2 protein was significantly decreased within 96 hr. AMPA-induced Co(2+) uptake by neurons in hippocampal slices indicated higher expression of Ca(2+)-permeable AMPA receptors in immature pyramidal neurons compared with adult. In slices obtained 96 hr after hypoxia-induced seizures, AMPA-induced Co(2+) uptake was significantly increased compared with age-matched controls, and field recordings revealed increased tetanus-induced afterdischarges that could be kindled in the absence of NMDA receptor activation. In situ end labeling showed no acute or delayed cell death after hypoxia-induced seizures. Our results indicate that susceptibility to hypoxia-induced seizures occurs during a developmental stage in which the expression of Ca(2+)-permeable AMPA receptors is relatively high. Furthermore, perinatal hypoxia-induced seizures induce increased expression of Ca(2+)-permeable AMPA receptors and an increased capacity for AMPA receptor-mediated epileptogenesis without inducing cell death.
Collapse
|
189
|
Kristensen BW, Noraberg J, Zimmer J. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures. Brain Res 2001; 917:21-44. [PMID: 11602227 DOI: 10.1016/s0006-8993(01)02900-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitotoxic profiles of (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl)propionic acid (ATPA), (RS)-2-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), kainic acid (KA) and N-methyl-D-aspartate (NMDA) were evaluated using cellular uptake of propidium iodide (PI) as a measure for induced, concentration-dependent neuronal damage in hippocampal slice cultures. ATPA is in low concentrations a new selective agonist of the glutamate receptor subunit GluR5 confined to KA receptors and also in high concentrations an AMPA receptor agonist. The following rank order of estimated EC(50) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity was mediated primarily via AMPA receptors. Similar results were found for a high concentration of ATPA (30 microM). In low GluR5 selective concentrations (0.3-3 microM), ATPA did not induce an increase in PI uptake or a reduction in glutamic acid decarboxylase (GAD) activity of hippocampal interneurons. For KA, the excitotoxicity appeared to be mediated via both KA and AMPA receptors. NMDA receptors were not involved in AMPA-, ATPA- and KA-induced excitotoxicity, nor did NMDA-induced excitotoxicity require activation of AMPA and KA receptors. We conclude that hippocampal slice cultures constitute a feasible test system for evaluation of excitotoxic effects and mechanisms of new (ATPA) and classic (AMPA, KA and NMDA) glutamate receptor agonists. Comparison of concentration-response curves with calculation of EC(50) values for glutamate receptor agonists are possible, as well as comparison of inhibition data for glutamate receptor antagonists. The observation that the slice cultures respond with more in vivo-like patterns of excitotoxicity than primary neuronal cultures, suggests that slice cultures are the best model of choice for a number of glutamate agonist and antagonist studies.
Collapse
Affiliation(s)
- B W Kristensen
- Anatomy and Neurobiology, Inst. of Medical Biology, SDU-Odense University, Winsløwparken 21, DK-5000 Odense C, Denmark.
| | | | | |
Collapse
|
190
|
Fiske BK, Brunjes PC. NMDA receptor regulation of cell death in the rat olfactory bulb. JOURNAL OF NEUROBIOLOGY 2001; 47:223-32. [PMID: 11333403 DOI: 10.1002/neu.1029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell death is widespread in the developing nervous system and is under complex regulation by numerous intra- and intercellular mechanisms. Blockade of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor has been shown to promote cell death in the developing brain (Ikonomidou et al., 1999), suggesting that afferent functional activation is an important regulator of cell survival. The olfactory bulb, the first central relay for olfactory information from the nose, is well suited for examining the role of afferent activity in neuronal development. Functional deprivation is easily performed by surgical blockade of airflow to one side of the nasal passage, which results in dramatic alterations in postnatal development of the bulb (Brunjes, 1994), including enhanced neuronal loss (Frazier and Brunjes, 1988; Najbauer and Leon, 1995). The present report examined the specific role of NMDA receptor activation in regulating cell survival within the rat bulb. Pharmacological blockade of receptors with the noncompetitive channel blocker MK-801 (3 x 0.5 mg/kg i.p.) resulted in profound increases in cell death within 24 h. Furthermore, in contrast to other regions, where the effects of receptor blockade were confined to the first 2 postnatal weeks (Ikonomidou et al., 1999), enhancement of cell death was seen in the deeper granule cell-containing regions of the bulb with injections as late as postnatal day 28. In addition, the effects of MK-801 were much more dramatic than those seen after unilateral naris closure, suggesting that NMDA receptor activation may mediate additional survival pathways in the bulb beyond that provided by first nerve input.
Collapse
Affiliation(s)
- B K Fiske
- Neuroscience Program, University of Virginia, Charlottesville, Virginia 22903, USA
| | | |
Collapse
|
191
|
Sanchez RM, Jensen FE. Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 2001; 42:577-85. [PMID: 11380563 DOI: 10.1046/j.1528-1157.2001.12000.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R M Sanchez
- Children's Hospital, Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
192
|
Peña F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience 2001; 101:547-61. [PMID: 11113304 DOI: 10.1016/s0306-4522(00)00400-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infusion of the K(+) channel blocker 4-aminopyridine in the hippocampus induces the release of glutamate, as well as seizures and neurodegeneration. Since an imbalance between excitation and inhibition, as well as alterations of ion channels, may be involved in these effects of 4-aminopyridine, we have studied whether they are modified by drugs that block glutamatergic transmission or ion channels, or drugs that potentiate GABA-mediated transmission. The drugs were administered to anesthetized rats subjected to intrahippocampal infusion of 4-aminopyridine through microdialysis probes, with simultaneous collection of dialysis perfusates and recording of the electroencephalogram, and subsequent histological analysis. Ionotropic glutamate receptor antagonists clearly diminished the intensity of seizures and prevented the neuronal damage, but did not alter substantially the enhancement of extracellular glutamate induced by 4-aminopyridine. None of the drugs facilitating GABA-mediated transmission, including uptake blockers, GABA-transaminase inhibitors and agonists of the A-type receptor, was able to reduce the glutamate release, seizures or neuronal damage produced by 4-aminopyridine. In contrast, nipecotate, which notably increased extracellular levels of the amino acid, potentiated the intensity of seizures and the neurodegeneration. GABA(A) receptor antagonists partially reduced the extracellular accumulation of glutamate induced by 4-aminopyridine, but did not exert any protective action. Tetrodotoxin largely prevented the increase of extracellular glutamate, the electroencephalographic epileptic discharges and the neuronal death in the CA1 and CA3 hippocampal regions. Valproate and carbamazepine, also Na(+) channel blockers that possess general anticonvulsant action, failed to modify the three effects of 4-aminopyridine studied. The N-type Ca(2+) channel blocker omega-conotoxin, the K(+) channel opener diazoxide, and the non-specific ion channel blocker riluzole diminished the enhancement of extracellular glutamate and slightly protected against the neurodegeneration. However, the two former compounds did not antagonize the 4-aminopyridine-induced epileptiform discharges, and riluzole instead markedly increased the intensity and duration of the disharges. Moreover, at the highest dose tested (8mg/kg, i.p.), riluzole caused a 75% mortality of the rats. We conclude that 4-aminopyridine stimulates the release of glutamate from nerve endings and that the resultant augmented extracellular glutamate is directly related to the neurodegeneration and is involved in the generation of epileptiform discharges through the concomitant overactivation of glutamate receptors. Under these conditions, a facilitated GABA-mediated transmission may paradoxically boost neuronal hyperexcitation. Riluzole, a drug used to treat amyotrophic lateral sclerosis, seems to be toxic when combined with neuronal hyperexcitation.
Collapse
Affiliation(s)
- F Peña
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510, D.F., Mexico City, Mexico
| | | |
Collapse
|
193
|
Sperber EF, Moshé SL. The effects of seizures on the hippocampus of the immature brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:119-39. [PMID: 11130895 DOI: 10.1016/s0074-7742(01)45008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- E F Sperber
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | |
Collapse
|
194
|
Lado FA, Sankar R, Lowenstein D, Moshé SL. Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 6:242-52. [PMID: 11107189 DOI: 10.1002/1098-2779(2000)6:4<242::aid-mrdd3>3.0.co;2-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seizures in the developing brain pose a challenge to the clinician. In addition to the acute effects of the seizure, there are questions regarding the impact of severe or recurrent seizures on the developing brain. Whether provoked seizures cause brain damage, synaptic reorganization, or epilepsy is of paramount importance to patients and physicians. Such questions are especially relevant in the decision to treat or not treat febrile seizures, a common occurrence in childhood. These clinical questions have been addressed using clinical and animal research. The largest prospective studies do not find a causal connection between febrile seizures and later temporal lobe epilepsy. The immature brain seems relatively resistant to the seizure-induced neuronal loss and new synapse formation seen in the mature brain. Laboratory investigations using a developmental rat model corresponding to human febrile seizures find that even though structural changes do not result from hyperthermic seizures, synaptic function may be chronically altered. The increased understanding of the cellular and synaptic mechanisms of seizure-induced damage may benefit patients and clinicians in the form of improved therapies to attenuate damage and changes induced by seizures and to prevent the development of epilepsy.
Collapse
Affiliation(s)
- F A Lado
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
195
|
Zilles K, Wu J, Crusio WE, Schwegler H. Water maze and radial maze learning and the density of binding sites of glutamate, GABA, and serotonin receptors in the hippocampus of inbred mouse strains. Hippocampus 2001; 10:213-25. [PMID: 10902891 DOI: 10.1002/1098-1063(2000)10:3<213::aid-hipo2>3.0.co;2-q] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correlations between the densities of ionotropic glutamate, GABA(A), and serotonin binding sites in the hippocampus of seven inbred mouse strains and strain-specific learning capacities in two types of maze were studied. Binding site densities were measured with quantitative receptor autoradiography. Learning capacities were determined in a water maze task as well as in spatial and nonspatial versions of an eight-arm radial maze. The densities of most binding sites differed significantly between the strains in the subfields of Ammon's horn (CA1 and CA3) and the dentate gyrus, except for serotonin binding sites in CA1. By comparing the different strains, significant receptor-behavioral correlations between the densities of the GABA(A) receptors and the activity-dependent behavior in the water maze as well as the spatial learning in the radial maze were found. The densities of D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxalone propionate (AMPA) and kainate receptors correlated positively with learning capacity in the spatial eight-arm radial maze. We conclude that hereditary variations mainly in AMPA, kainate, and GABA(A) receptor densities are involved in behavioral variations in spatial and nonspatial learning tasks.
Collapse
Affiliation(s)
- K Zilles
- C. und O. Vogt Institut für Hirnforschung, Universität Düsseldorf, Germany.
| | | | | | | |
Collapse
|
196
|
Abstract
Electrophysiological characteristics of the hippocampal slices of juvenile (14-27 days) or young (36-40 days) Wistar rats have been compared. In the juvenile rats measurements were taken daily, from postnatal day (PN) 14 to PN27. Input-output curves were used to quantify the ontogeny of excitatory processes. The dynamic of population spike (PS) maturation was not even during the investigated postnatal period. After day 19 transient decrease of PS amplitude was observed until day 22. There were also some differences between the shape of input-output curves from the slices of rats of different ages. In general, PS was saturated at lower intensities in younger animals. The slices from 19-day-old rats did not display saturated input-output curve with 2-20 V stimuli intensities. But input-output curves on PN20-22 were rather similar to that obtained before PN19. The periods of gradual increase and subsequent decrease of PS amplitudes during early ontogeny correlate with the appearance of certain forms of behaviour. This fact suggests that hippocampal PS amplitude depression may be relevant functionally.
Collapse
Affiliation(s)
- I E Kudryashov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 5a Butlerov str., 117485, Moscow, Russia.
| | | |
Collapse
|
197
|
Developmental changes in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunit composition in living hippocampal neurons. J Neurosci 2001. [PMID: 11050112 DOI: 10.1523/jneurosci.20-21-07922.2000] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA and NMDA receptors mediate most excitatory synaptic transmission in the CNS. We have developed antibodies that recognize all AMPA or all NMDA receptor variants on the surface of living neurons. AMPA receptor variants were identified with a polyclonal antibody recognizing the conserved extracellular loop region of all four AMPA receptor subunits (GluR1-4, both flip and flop), whereas NMDA receptors were immunolabeled with a polyclonal antibody that binds to an extracellular N-terminal epitope of the NR1 subunit, common to all splice variants. In non-fixed brain sections these antibodies gave labeling patterns similar to autoradiographic distributions with particularly high levels in the hippocampus. Using these antibodies, in conjunction with GluR2-specific and synaptophysin antibodies, we have directly localized and quantified surface-expressed native AMPA and NMDA receptors on cultured living hippocampal neurons during development. Using a quantitative cell ELISA, a dramatic increase was observed in the surface expression of AMPA receptors, but not NMDA receptors, between 3 and 10 d in culture. Immunocytochemical analysis of hippocampal neurons between 3 and 20 d in vitro shows no change in the proportion of synapses expressing NMDA receptors (approximately 60%) but a dramatic increase (approximately 50%) in the proportion of them that also express AMPA receptors. Furthermore, over this period the proportion of AMPA receptor-positive synapses expressing the GluR2 subunit increased from approximately 67 to approximately 96%. These changes will dramatically alter the functional properties of hippocampal synapses.
Collapse
|
198
|
Momose-Sato Y, Sato K, Kamino K. Optical approaches to embryonic development of neural functions in the brainstem. Prog Neurobiol 2001; 63:151-97. [PMID: 11124445 DOI: 10.1016/s0301-0082(00)00023-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ontogenetic approach to physiological events is a useful strategy for understanding the functional organization/architecture of the vertebrate brainstem. However, conventional electrophysiological techniques are difficult or impossible to employ in the early embryonic central nervous system. Optical techniques using voltage-sensitive dyes have made it possible to monitor neural activities from multiple regions of living systems, and have proven to be a useful tool for analyzing the embryogenetic expression of brainstem neural function. This review describes recent progress in optical studies made on embryonic chick and rat brainstems. Several technical issues concerning optical recording from the embryonic brainstem preparations are discussed, and characteristics of the optical signals evoked by cranial nerve stimulation or occurring spontaneously are described. Special attention is paid to the chronological analyses of embryogenetic expression of brainstem function and to the spatial patterning of the functional organization/architecture of the brainstem nuclei. In addition, optical analyses of glutamate, GABA, and glycine receptor functions during embryogenesis are described in detail for the chick nucleus tractus solitarius. This review also discusses intrinsic optical signals associated with neuronal depolarization. Some emphases are also placed on the physiological properties of embryonic brainstem neurons, which may be of interest from the viewpoint of developmental neurobiology.
Collapse
Affiliation(s)
- Y Momose-Sato
- Department of Physiology, Tokyo Medical and Dental University School of Medicine, Japan.
| | | | | |
Collapse
|
199
|
Osteen CL, Moore AH, Prins ML, Hovda DA. Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. J Neurotrauma 2001; 18:141-62. [PMID: 11229708 DOI: 10.1089/08977150150502587] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This study was designed to determine the regional and temporal profile of 45calcium (45Ca2+) accumulation following mild lateral fluid percussion (LFP) injury and how this profile differs when traumatic brain injury occurs early in life. Thirty-six postnatal day (P) 17, thirty-four P28, and 17 adult rats were subjected to a mild (approximately 2.75 atm) LFP or sham injury and processed for 45Ca2+ autoradiography immediately, 6 h, and 1, 2, 4, 7, and 14 days after injury. Optical densities were measured bilaterally within 16 regions of interest. 45Ca2+ accumulation was evident diffusely within the ipsilateral cerebral cortex immediately after injury (18-64% increase) in all ages, returning to sham levels by 2-4 days in P17s, 1 day in P28s, and 4 days in adults. While P17s showed no further 45Ca2+ accumulation, P28 and adult rats showed an additional delayed, focal accumulation in the ipsilateral thalamus beginning 2-4 days postinjury (12-49% increase) and progressing out to 14 days (26-64% increase). Histological analysis of cresyl violet-stained, fresh frozen tissue indicated little evidence of neuronal loss acutely (in all ages), but considerable delayed cell death in the ipsilateral thalamus of the P28 and adult animals. These data suggest that two temporal patterns of 45Ca2+ accumulation exist following LFP: acute, diffuse calcium flux associated with the injury-induced ionic cascade and blood brain barrier breakdown and delayed, focal calcium accumulation associated with secondary cell death. The age-dependency of posttraumatic 45Ca2+ accumulation may be attributed to differential biomechanical consequences of the LFP injury and/or the presence or lack of secondary cell death.
Collapse
Affiliation(s)
- C L Osteen
- Department of Physiological Science, UCLA, Los Angeles, California 90024-7039, USA.
| | | | | | | |
Collapse
|
200
|
Lee BJ, Cho GJ, Norgren RB, Junier MP, Hill DF, Tapia V, Costa ME, Ojeda SR. TTF-1, a homeodomain gene required for diencephalic morphogenesis, is postnatally expressed in the neuroendocrine brain in a developmentally regulated and cell-specific fashion. Mol Cell Neurosci 2001; 17:107-26. [PMID: 11161473 DOI: 10.1006/mcne.2000.0933] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TTF-1 is a member of the Nkx family of homeodomain genes required for morphogenesis of the hypothalamus. Whether TTF-1, or other Nkx genes, contributes to regulating differentiated hypothalamic functions is not known. We now report that postnatal hypothalamic TTF-1 expression is developmentally regulated and associated with the neuroendocrine process of female sexual development. Lesions of the hypothalamus that cause sexual precocity transiently activate neuronal TTF-1 expression near the lesion site. In intact animals, hypothalamic TTF-1 mRNA content also increases transiently, preceding the initiation of puberty. Postnatal expression of the TTF-1 gene was limited to subsets of hypothalamic neurons, including LHRH neurons, which control sexual maturation, and preproenkephalinergic neurons of the lateroventromedial nucleus of the basal hypothalamus, which restrain sexual maturation and facilitate reproductive behavior. TTF-1 mRNA was also detected in astrocytes of the median eminence and ependymal/subependymal cells of the third ventricle, where it colocalized with erbB-2, a receptor involved in facilitating sexual development. TTF-1 binds to and transactivates the erbB-2 and LHRH promoters, but represses transcription of the preproenkephalin gene. The singular increase in hypothalamic TTF-1 gene expression that precedes the initiation of puberty, its highly specific pattern of cellular expression, and its transcriptional actions on genes directly involved in neuroendocrine reproductive regulation suggest that TTF-1 may represent one of the controlling factors that set in motion early events underlying the central activation of mammalian puberty.
Collapse
Affiliation(s)
- B J Lee
- Division of Neuroscience, Oregon Regional Primate Research Center/Oregon Health Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | | | |
Collapse
|