151
|
Wise SB, Stock DW. Conservation and divergence of Bmp2a, Bmp2b, and Bmp4 expression patterns within and between dentitions of teleost fishes. Evol Dev 2007; 8:511-23. [PMID: 17073935 DOI: 10.1111/j.1525-142x.2006.00124.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The diversity of tooth location in teleost fishes provides an excellent system for comparing genetic divergence between teeth in different species (phylogenetic homologs) with divergence between teeth within one species (iterative homologs). We have chosen to examine the expression of three members of the bone morphogenetic protein (Bmp) family because they are known to play multiple roles in tooth development and evolution in tetrapod vertebrates. We characterized expression of Bmp2a, Bmp2b, and Bmp4 during the development of oral and pharyngeal dentitions in three species of teleost fishes, the zebrafish (Danio rerio), Mexican tetra (Astyanax mexicanus), and Japanese medaka (Oryzias latipes). We found that expression in teleosts is generally highly conserved, with minor differences found among both iteratively homologous and phylogenetically homologous teeth. Expression of orthologous genes differs in several ways between the teeth of teleost fishes and those of the mouse, but between these vertebrate groups the summed expression pattern of Bmp genes is highly conserved. Significantly, the toothless oral region of the zebrafish lacks Bmp expression domains found in teleosts with oral teeth, implicating these genes in evolutionary tooth loss. We conclude that Bmp expression has been largely conserved in vertebrate tooth development over evolutionary time, and that loss of Bmp expression is correlated with region-specific loss of the dentition in a major group of fishes.
Collapse
Affiliation(s)
- Sarah B Wise
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
152
|
Boughner JC, Hallgrímsson B. Biological spacetime and the temporal integration of functional modules: A case study of dento–gnathic developmental timing. Dev Dyn 2007; 237:1-17. [DOI: 10.1002/dvdy.21383] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
153
|
Mikkola ML, Millar SE. The mammary bud as a skin appendage: unique and shared aspects of development. J Mammary Gland Biol Neoplasia 2006; 11:187-203. [PMID: 17111222 DOI: 10.1007/s10911-006-9029-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Like other skin appendages, the embryonic mammary gland develops via extensive epithelial-mesenchymal interactions. Early stages in embryonic mammary development strikingly resemble analogous steps in the development of hair follicles and teeth. In each case the first morphological sign of development is a localized thickening in the surface epithelium that subsequently invaginates to form a mammary, hair follicle or tooth bud. Similar sets of intersecting signaling pathways are involved in patterning the mammary, hair follicle and dental epithelium, directing placode formation, and controlling bud invagination. Despite these similarities, subsequent events in the formation of these appendages are diverse. The mammary bud extends to form a sprout that begins to branch upon contact with the mammary fat pad. Hair follicles also extend into the underlying mesenchyme, but instead of branching, hair follicle epithelium folds around a condensation of dermal cells. In contrast, teeth undergo a more complex folding morphogenesis. Here, we review what is known of the molecular and cellular mechanisms controlling early steps in the development of these organs, attempt to unravel both common themes and unique aspects that can begin to explain the diversity of appendage formation, and discuss human genetic diseases that affect appendage morphogenesis.
Collapse
Affiliation(s)
- Marja L Mikkola
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, Viikinkaari 9, Helsinki, 00014, Finland
| | | |
Collapse
|
154
|
Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR. Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 2006; 11:181-90. [PMID: 16890158 PMCID: PMC2847684 DOI: 10.1016/j.devcel.2006.05.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/16/2006] [Accepted: 05/18/2006] [Indexed: 11/26/2022]
Abstract
Unlike humans, who have a continuous row of teeth, mice have only molars and incisors separated by a toothless region called a diastema. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. Here, we identify members of the Sprouty (Spry) family, which encode negative feedback regulators of fibroblast growth factor (FGF) and other receptor tyrosine kinase signaling, as genes that repress diastema tooth development. We show that different Sprouty genes are deployed in different tissue compartments--Spry2 in epithelium and Spry4 in mesenchyme--to prevent diastema tooth formation. We provide genetic evidence that they function to ensure that diastema tooth buds are refractory to signaling via FGF ligands that are present in the region and thus prevent these buds from engaging in the FGF-mediated bidirectional signaling between epithelium and mesenchyme that normally sustains tooth development.
Collapse
Affiliation(s)
- Ophir D. Klein
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco, San Francisco, California 94143
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - George Minowada
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco, San Francisco, California 94143
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Case Western Reserve University, School of Medicine, University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Renata Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Aapo Kangas
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, Post Office Box 56, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Benjamin D. Yu
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco, San Francisco, California 94143
- Department of Dermatology, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Herve Lesot
- INSERM UMR-595, Faculty of Medicine, 67085 Strasbourg, France
- University of Louis Pasteur, Faculté de Chirurgie Dentaire, 67085 Strasbourg, France
| | - Miroslav Peterka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jukka Jernvall
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, Post Office Box 56, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Gail R. Martin
- Department of Anatomy and Program in Developmental Biology, School of Medicine, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
155
|
Li W, Machule D, Gao C, DenBesten PK. Growth of ameloblast-lineage cells in a three-dimensional Matrigel environment. Eur J Oral Sci 2006; 114 Suppl 1:159-63; discussion 164-5, 380-1. [PMID: 16674679 DOI: 10.1111/j.1600-0722.2006.00308.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Enamel organ epithelial cells grow in culture as two distinct cell populations--either stellate-shaped or polygonal-shaped cells. The polygonal cells have an ameloblast cell phenotype and are difficult to grow in culture beyond two passages. This study was designed to determine the effects of a Matrigel three-dimensional (3D) environment on polygonal cells, as compared with stellate cells, derived from porcine tooth enamel organ. Enamel organs were dissected free from the unerupted molars of 30-kg pigs and then grown in LCH-8e media, either with or without serum. Cells grown in serum-free media were primarily polygonal shaped, whereas cells grown in media containing serum were stellate shaped. Both types of cells were grown in a 3D Matrigel matrix. In addition, polygonal-shaped cells were mixed with hydroxyapatite powder and transplanted subcutaneously into nude mice. Polygonal-shaped epithelial cells formed cell groups, similar to epithelial pearls, both in vitro and in vivo. The stellate-shaped cells, in contrast, did not form similar structures, but remained suspended in the Matrigel and gradually disappeared from the culture. These results suggest that a Matrigel environment, rich in basement membrane and matrix proteins, selects for polygonal-shaped ameloblast-lineage cells and induces the formation of epithelial pearls.
Collapse
Affiliation(s)
- Wu Li
- Department of Orofacial Science, University of California at San Francisco, San Francisco, CA 94143-0422, USA.
| | | | | | | |
Collapse
|
156
|
Nakatomi M, Morita I, Eto K, Ota MS. Sonic hedgehog signaling is important in tooth root development. J Dent Res 2006; 85:427-31. [PMID: 16632755 DOI: 10.1177/154405910608500506] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hertwig's epithelial root sheath (HERS) is important for tooth root formation, but the molecular basis for the signaling of root development remains uncertain. We hypothesized that Sonic hedgehog (Shh) signaling is involved in the HERS function, because it mediates epithelial-mesenchymal interactions during embryonic odontogenesis. We examined the gene expression patterns of Shh signaling in murine developing molar roots. Shh and Patched2 transcripts were identified in the HERS, whereas Patched1, Smoothened, and Gli1 were expressed in the proliferative dental mesenchyme in addition to the HERS. To confirm whether Shh signaling physiologically functions in vivo, we analyzed mesenchymal dysplasia (mes) mice carrying an abnormal C-terminus of the PATCHED1 protein. In the mutant, cell proliferation was repressed around the HERS at 1 wk. Moreover, the molar eruption was disturbed, and all roots were shorter than those in control littermates at 4 wks. These results indicate that Shh signaling is important in tooth root development. Abbreviations used: BrdU, 5-bromo-2'-deoxyuridine; HERS, Hertwig's epithelial root sheath; NFI-C/CTF, nuclear factor Ic/CAAT box transcription factor; PCNA, proliferating cell nuclear antigen; Ptc, patched; Shh, sonic hedgehog; Smo, smoothened.
Collapse
Affiliation(s)
- M Nakatomi
- Section of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
157
|
Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, Huysseune A, Sire JY. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 2006; 8:130-41. [PMID: 16509892 DOI: 10.1111/j.1525-142x.2006.00084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.
Collapse
|
158
|
Streelman JT, Albertson RC. Evolution of novelty in the cichlid dentition. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:216-26. [PMID: 16555305 DOI: 10.1002/jez.b.21101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The shape of teeth occupies a central position in various biological disciplines, from paleo-ecology to molecular biology to cosmetic and reconstructive dentistry. Despite a long tradition of study in mammals, important questions remain regarding the genetic and developmental basis of differences in tooth shape. Here, we use natural mutants of cichlid fish from East Africa, which exhibit tremendous dental diversity, to help fill the gaps in our understanding of vertebrate odontogenesis. We employ an expanded genetic linkage map to demonstrate that cusp number segregates as a gene of major effect, which explains approximately 40% of the phenotypic variance, on cichlid chromosome 5. Furthermore, we examine patterns of Bmp4 expression in early odontogenesis to address and refine predictions of models linking tooth shape and tooth number. Mutations in the Bmp4 cistron do not control tooth shape in this mapping cross. Our data suggest that the evolution of novelty in the cichlid dentition is galvanized by a small number of genetic changes, echoing similar conclusions from recent studies of other vertebrate adaptive morphologies.
Collapse
Affiliation(s)
- Jeffrey Todd Streelman
- School of Biology, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| | | |
Collapse
|
159
|
Nakasone N, Yoshie H, Ohshima H. An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars. Arch Oral Biol 2006; 51:378-86. [PMID: 16259940 DOI: 10.1016/j.archoralbio.2005.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2005] [Revised: 08/14/2005] [Accepted: 09/19/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study is to clarify the functional significance of heat-shock protein (HSP)-25 during tooth development. DESIGN We compared the expression of HSP-25 in the dental epithelial and mesenchymal cells with their proliferative activity during odontogenesis in rat molars on postnatal days 1-100 by immunohistochemistry using anti-HSP-25 and anti-5-bromo-2'-deoxyuridine (BrdU) for cell proliferation assay. RESULTS On day 1, BrdU-immunoreactive cells were densely located in the inner enamel epithelium in the cervical loop and intercusped areas and the dental pulp adjacent to them, whereas HSP-25-immunoractivity (IR) was restricted to the cusped area where odontoblasts and ameloblasts had already differentiated. Subsequently, BrdU-IR shifted in the apical direction to be localized around Hertwig's epithelial root sheath during days 5-30, never overlapping with concomitantly apically-shifted HSP-25-IR. On days 60-100, BrdU-immunoreactive cells were hardly recognizable in the dental pulp, where HSP-25-IR was exclusively localized in the odontoblast layer. Furthermore, the odontoblast- and ameloblast-lineage cells exhibited two steps in the expression of HSP-25 throughout the postnatal stages: first, dental epithelial and pulpal mesenchymal cells showed a weak IR for HSP-25 after the cessation of their proliferative activity, and subsequently odontoblasts and ameloblasts consistently expressed an intense HSP-25-IR. CONCLUSION Odontoblast- and ameloblast-lineage cells acquire HSP-25-IR after they complete their cell division, suggesting that this protein acts as a switch between cell proliferation and differentiation during tooth development. The consistent expression of HSP-25-IR in the formative cells may be involved in the maintenance of their functional integrity.
Collapse
Affiliation(s)
- Naohiro Nakasone
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | |
Collapse
|
160
|
Abstract
Advances in tissue engineering and materials science have led to significant progress in hard and soft tissue repair and regeneration. Studies demonstrate the successful application of tissue engineering for bioengineering dental tissues. The ability to apply tissue engineering to repair or regenerate dental tissues and even whole teeth is becoming a reality. Current efforts focus on directing the formation of bioengineered dental tissues and whole teeth of predetermined size and shape. Advances in dental progenitor cell characterizations, combined with improved methods of fabricating biodegradable scaffold materials, bring closer the goal of making tooth tissue engineering a clinically relevant practice.
Collapse
Affiliation(s)
- Pamela C Yelick
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA.
| | | |
Collapse
|
161
|
Du C, Moradian-Oldak J. Tooth regeneration: challenges and opportunities for biomedical material research. Biomed Mater 2006; 1:R10-7. [DOI: 10.1088/1748-6041/1/1/r02] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
162
|
Kriangkrai R, Iseki S, Eto K, Chareonvit S. Dual odontogenic origins develop at the early stage of rat maxillary incisor development. ANATOMY AND EMBRYOLOGY 2006; 211:101-8. [PMID: 16416307 DOI: 10.1007/s00429-005-0068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
Developmental process of rat maxillary incisor has been studied through histological analysis and investigation of tooth-related gene expression patterns at initial tooth development. The tooth-related genes studied here are fibroblast growth factor-8 (Fgf-8), pituitary homeobox gene-2 (Pitx-2), sonic hedgehog (Shh), muscle segment homeobox-1 (Msx-1), paired box-9 (Pax-9) and bone morphogenetic protein-4 (Bmp-4). The genes are expressed in oral epithelium and/or ectomesenchyme at the stage of epithelial thickening to the early bud stage of tooth development. Both the histological observation and tooth-related gene expression patterns during early stage of maxillary incisor development demonstrate that dual odontogenic origins aligned medio-laterally in the medial nasal process develop, subsequently only single functional maxillary incisor dental placode forms. The cascade of tooth-related gene expression patterns in rat maxillary incisor studied here is quite similar to those of the previous studies in mouse mandibular molar, even though the origins of oral epithelium and ectomesenchyme involved in development of maxillary incisor and mandibular molar are different. Thus, we conclude that maxillary incisor and mandibular molar share a similar signaling control of Fgf-8, Pitx-2, Shh, Msx-1, Pax-9 and Bmp-4 genes at the stage of oral epithelial thickening to the early bud stage of tooth development.
Collapse
Affiliation(s)
- Rungarun Kriangkrai
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, 10330, Bangkok, Thailand
| | | | | | | |
Collapse
|
163
|
Kumamoto H, Ooya K. Expression of bone morphogenetic proteins and their associated molecules in ameloblastomas and adenomatoid odontogenic tumors. Oral Dis 2006; 12:163-70. [PMID: 16476038 DOI: 10.1111/j.1601-0825.2005.01177.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To further clarify the roles of regulators of embryonic development, bone morphogenetic protein (BMPs) and their associated molecules, in oncogenesis and cytodifferentiation of odontogenic tumors, the expression of these regulator molecules were analyzed in epithelial odontogenic tumors as well as in tooth germs. MATERIALS AND METHODS Tooth germs, ameloblastomas, adenomatoid odontogenic tumors, and malignant ameloblastomas were examined by RT-PCR and immunohistochemistry for detection of BMP-2, -4, -7, BMP receptors I and II (BMPR-I, BMPR-II), core-binding factor alpha1 (CBFA1), and osterix. RESULTS mRNA expression of BMPs, BMPRs, CBFA1, and osterix was detected in all odontogenic tissues. Immunohistochemical reactivity for BMPs, BMPRs, and CBFA1 was detected in both epithelial and mesenchymal cells of tooth germs and epithelial odontogenic tumors. BMPs and BMPRs were evidently expressed in odontogenic epithelial cells in tooth germs and epithelial odontogenic tumors. Acanthomatous ameloblastomas showed increased BMP-7 reactivity in keratinizing cells. Nuclear CBFA1 expression was detected scatteredly in odontogenic epithelial cells in normal and neoplastic odontogenic tissues, as well as in some mesenchymal cells in tooth germs and in some stromal cells in epithelial odontogenic tumors. Ameloblastic carcinomas showed low reactivity for BMPs, BMPRs, and CBFA1. CONCLUSION BMPs and their associated molecules might play a role in cytodifferentiation of normal and neoplastic odontogenic epithelium via epithelial-mesenchymal interactions.
Collapse
Affiliation(s)
- H Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
164
|
Heikinheimo K, Mori K, Nagatsuka H, Happonen RP. Transforming Growth Factor Beta (TGF-β) Gene Family Members in Developing and Neoplastic Odontogenic Tissues. J HARD TISSUE BIOL 2006. [DOI: 10.2485/jhtb.15.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku
- Department of Oral Diseases, Turku University Central Hospital
| | - Kazuhisa Mori
- 2nd Department of Oral and Maxillofacial Surgery, The Nippon Dental University School of Dentistry at Niigata
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Risto-Pekka Happonen
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku
- Department of Oral Diseases, Turku University Central Hospital
| |
Collapse
|
165
|
Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y. Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 2005; 281:5008-16. [PMID: 16365040 DOI: 10.1074/jbc.m509295200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In tooth development, the oral ectoderm and mesenchyme coordinately and reciprocally interact through the basement membrane for their growth and differentiation to form the proper shape and size of the tooth. Laminin alpha5 subunit-containing laminin-10/11 (LM-511/521) is the major laminin in the tooth germ basement membrane. Here, we have examined the role of laminin alpha5 (Lama5) in tooth development using laminin alpha5-null mouse primary dental epithelium and tooth germ organ cultures. Lama5-null mice develop a small tooth germ with defective cusp formation and have reduced proliferation of dental epithelium. Also, cell polarity and formation of the monolayer of the inner dental epithelium are disturbed. The enamel knot, a signaling center for tooth germ development, is defective, and there is a significant reduction of Shh and Fgf4 expression in the dental epithelium. In the absence of laminin alpha5, the basement membrane in the inner dental epithelium becomes discontinuous. In normal mice, integrin alpha6beta4, a receptor for laminin alpha5, is strongly localized at the basal layer of the epithelium, whereas in mutant mice, integrin alpha6beta4 is expressed around the cell surface. In primary dental epithelium culture, laminin-10/11 promotes cell growth, spreading, and filopodia-like microspike formation. This promotion is inhibited by anti-integrin alpha6 and beta4 antibodies and by phosphatidylinositol 3-kinase inhibitors and dominant negative Rho-GTPase family proteins Cdc42 and Rac. In organ culture, anti-integrin alpha6 antibody and wortmannin reduce tooth germ size and shape. Our studies demonstrate that laminin alpha5 is required for the proliferation and polarity of basal epithelial cells and suggest that the interaction between laminin-10/11-integrin alpha6beta4 and the phosphatidylinositol 3-kinase-Cdc42/Rac pathways play an important role in determining the size and shape of tooth germ.
Collapse
Affiliation(s)
- Satoshi Fukumoto
- Craniofacial Developmental Biology and Regeneration Branch and Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Kock M, Nolting D, Kjaer KW, Hansen BF, Kjaer I. Immunohistochemical expression of p63 in human prenatal tooth primordia. Acta Odontol Scand 2005; 63:253-7. [PMID: 16419429 DOI: 10.1080/00016350510019919] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the expression of the p63 gene in normal human tooth buds at different gestational stages. This is the first detailed study of p63 expression in normal human prenatal tooth primordia. The material consisted of sections of the midaxial tissue block from the cranial base of three human fetuses of gestational ages (GA) 11, 15, and 21 weeks. The sections included tooth primordia representing cap stages and bell stages of human tooth morphogenesis. In the present study, immunostaining was carried out using the primary antibody, monoclonal mouse anti human p63 protein, clone 4A4. The sections were counterstained with hematoxylin Mayer. p63 immunoreactivity was identified by microscopy. The study showed a positive reaction of p63 in both the cap stage and the bell stage. In both stages, positivity was observed in the cells of the oral mucosa, the inner and outer enamel epithelium, and in the primary and secondary dental lamina. In the early cap stage, there is a strong positive reaction to p63 in the enamel knot, but not in the late cap stage. We suggest that p63 may have an important regulatory function in the enamel knot.
Collapse
Affiliation(s)
- Marianne Kock
- Department of Orthodontics, School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
167
|
Abstract
Late tooth morphogenesis is characterized by a series of events that determine cusp morphogenesis and the histodifferentiation of epithelial cells into enamel-secreting ameloblasts. Mice lacking the homeobox gene Msx2 exhibit defects in cusp morphogenesis and in the process of amelogenesis. To better understand the basis of the Msx2 mutant tooth defects, we have investigated the function of Msx2 during late stages of tooth morphogenesis. Cusp formation is thought to be under the control of the enamel knot, which has been proposed to act as an organizing center during this process (Vaahtokari et al. [ 1996] Mech. Dev. 54:39-43). Bone morphogenetic protein-4 (BMP4) has been suggested to mediate termination of enamel knot signaling by means of regulation of programmed cell death (Jernvall et al. [ 1998] Development 125:161-169). Here, we show that Bmp4 expression in the enamel knot is Msx2-dependent. We further show that during amelogenesis Msx2 is required for the expression of the extracellular matrix gene Laminin 5 alpha 3, which is known to play an essential role during ameloblast differentiation. This result thus provides a paradigm for understanding how transcription factors and extracellular matrix can be integrated into a developmental pathway controlling cell differentiation.
Collapse
Affiliation(s)
- Marianna Bei
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
168
|
Young CS, Kim SW, Qin C, Baba O, Butler WT, Taylor RR, Bartlett JD, Vacanti JP, Yelick PC. Developmental analysis and computer modelling of bioengineered teeth. Arch Oral Biol 2005; 50:259-65. [PMID: 15721159 DOI: 10.1016/j.archoralbio.2004.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/19/2004] [Indexed: 01/09/2023]
Abstract
Here we present the developmental progression of bioengineered pig teeth from 1 to 25 weeks of development. We demonstrate that 2-25 week implants contained embryonic tooth bud- and cap-stage tooth structures consisting of dental epithelium expressing the sonic hedgehog gene and condensed dental mesenchyme. Implants harvested at 18-25 weeks also contained tooth bud-like structures, as well as mature tooth structures containing enamel, dentin and pulp tissues. Immunohistochemical analyses confirmed the expression of dentin- and enamel-specific proteins in differentiated bioengineered tooth tissues. Three-dimensional computer modelling further demonstrated a spatial organization of enamel, dentin and pulp tissues resembling that of natural teeth. We conclude that bioengineered teeth commonly exhibit morphological stages characteristic of naturally forming teeth. Furthermore, the presence of immature tooth buds at all times assayed and increased numbers of bioengineered tooth structures over time suggests that porcine dental progenitor cells maintain the ability to form teeth for at least 25 weeks.
Collapse
Affiliation(s)
- C S Young
- Department of Cytokine Biology, The Forsyth Institute, 140 The Fenway, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Calvi LM, Shin HI, Knight MC, Weber JM, Young MF, Giovannetti A, Schipani E. Constitutively active PTH/PTHrP receptor in odontoblasts alters odontoblast and ameloblast function and maturation. Mech Dev 2005; 121:397-408. [PMID: 15110049 DOI: 10.1016/j.mod.2004.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 01/28/2004] [Accepted: 02/02/2004] [Indexed: 11/15/2022]
Abstract
Parathyroid hormone (PTH)-related protein (PTH-rP) is an important autocrine/paracrine attenuator of programmed cell differentiation whose expression is restricted to the epithelial layer in tooth development. The PTH/PTHrP receptor (PPR) mRNA in contrast is detected in the dental papilla, suggesting that PTHrP and the PPR may modulate epithelial-mesenchymal interactions. To explore the possible interactions, we studied the previously described transgenic mice in which a constitutively active PPR is targeted to osteoblastic cells. These transgenic mice have a vivid postnatal bone and tooth phenotype, with normal tooth eruption but abnormal, widened crowns. Transgene mRNA expression was first detected at birth in the dental papilla and, at 1 week postnatally, in odontoblasts. There was no transgene expression in ameloblasts or in other epithelial structures. Prenatally, transgenic molars and incisors revealed no remarkable change. By the age of 1 week, the dental papilla was widened, with disorganization of the odontoblastic layer and decreased dentin matrix. In addition, the number of cusps was abnormally increased, the ameloblastic layer disorganized, and enamel matrix decreased. Odontoblastic and, surprisingly, ameloblastic cytodifferentiation was impaired, as shown by in situ hybridization and electron microscopy. Interestingly, ameloblastic expression of Sonic Hedgehog, a major determinant of ameloblastic cytodifferentiation, was dramatically altered in the transgenic molars. These data suggest that odontoblastic activation of the PPR may play an important role in terminal odontoblastic and, indirectly, ameloblastic cytodifferentiation, and describe a useful model to study how this novel action of the PPR may modulate mesenchymal/epithelial interactions at later stages of tooth morphogenesis and development.
Collapse
Affiliation(s)
- L M Calvi
- Endocrine Unit, Department of Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Peterková R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice-a reminiscence of the premolar in mouse ancestors. Arch Oral Biol 2005; 50:219-25. [PMID: 15721153 DOI: 10.1016/j.archoralbio.2004.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 10/12/2004] [Indexed: 12/29/2022]
Abstract
OBJECTIVE A supernumerary cheek tooth occurs mesially to the first molar in tabby/EDA (Ta) mice affected by hypohidrotic ectodermal dysplasia. The supernumerary tooth (S) has been hypothetically homologized to the premolar, which has disappeared during mouse evolution. DESIGN This hypothesis was tested using available morphological data on the lower cheek teeth in wild type (WT) and Ta mice. RESULTS The presence of S is accompanied by a reduction in the mesial portion of the M(1) in mutant mice. 3D reconstructions suggest that the S in Ta homo/hemizygous embryos originates from a split off the mesial portion of the first molar (M(1)) cap. In WT embryos, two vestigial tooth primordia are transiently distinct in front of the M(1). The distal vestige has the form of a wide bud and participates during the development of the mesial portion of the M(1). This bud has been homologized with the vestigial primordium of the fourth premolar of mouse ancestors. The premolar disappearance coincided with a mesial lengthening of the M(1) during mouse evolution. The incorporation of the distal premolar vestige into the mesial part of the M(1) in WT embryos can be regarded as a repetition of the premolar disappearance during evolution. CONCLUSION : Ontogenetic and phylogenetic data support that the S in Ta mice arises due to the segregation of the distal premolar vestige from the molar dentition and thus represents an evolutionary throwback (atavism).
Collapse
Affiliation(s)
- R Peterková
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences CR, Videnska 1083, 14220 Prague, Czech Republic.
| | | | | | | |
Collapse
|
171
|
Matalova E, Antonarakis GS, Sharpe PT, Tucker AS. Cell lineage of primary and secondary enamel knots. Dev Dyn 2005; 233:754-9. [PMID: 15861403 DOI: 10.1002/dvdy.20396] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent research indicates that control of cusp morphology involves a signalling center at the heart of the developing tooth germ, known as the enamel knot. The primary enamel knot forms in both incisors and molar tooth germs at the cap stage of tooth development. Secondary and tertiary enamel knots only develop in molar tooth germs. These sit at the sites of future cusp tips from the early bell stage of tooth development. In studies describing the relationship between the primary and secondary enamel knots, it is often assumed that there is a cellular continuity between these structures, such that cells from the primary enamel knot physically contribute to the secondary enamel knots. We have devised a method whereby the developing tooth germ can be cultured in frontal slices with the enamel knot visible. The fate of the primary enamel knot cells can then be followed by 1,1', di-octadecyl-3,3,3',3',-tetramethylindo-carbocyanine perchlorate (DiI) labeling. Using this method, no cells of the primary enamel knot were seen to move toward the developing secondary enamel knots. Thus, although the primary and secondary enamel knots have a close molecular and functional relationship in molar development, they are not actually derived from the same cells.
Collapse
Affiliation(s)
- E Matalova
- Academy of Sciences, Institute of Animal Physiology and Genetics, Veveri, Brno, Czech Republic
| | | | | | | |
Collapse
|
172
|
Crotwell PL, Sommervold AR, Mabee PM. Expression of bmp2a and bmp2b in late-stage zebrafish median fin development. Gene Expr Patterns 2004; 5:291-6. [PMID: 15567728 DOI: 10.1016/j.modgep.2004.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/29/2004] [Accepted: 07/02/2004] [Indexed: 11/23/2022]
Abstract
Zebrafish bmp2a and bmp2b mRNA expression in the developing median fins (caudal, anal, and dorsal) of late-stage larvae (>5 days post-fertilization) was analyzed by reverse transcriptase-PCR (RT-PCR) and in situ hybridization. bmp2a is expressed in developing fin rays, while bmp2b is expressed in developing fin rays, hypertrophic chondrocytes, and in the zone of segmentation (ZS) in developing anal and dorsal fin radials. This latter pattern of bmp2b expression in the ZS mirrors tetrapod bmp2 expression in developing joints. Additionally, both genes are expressed in neural and hemal arches and spines. bmp2a is strongly expressed in the lens; lens bmp2b expression is detected only weakly via RT-PCR.
Collapse
Affiliation(s)
- Patricia L Crotwell
- Department of Biology, University of South Dakota, 414 East Clark Street, CL-191, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
173
|
Kruzynska-Frejtag A, Wang J, Maeda M, Rogers R, Krug E, Hoffman S, Markwald RR, Conway SJ. Periostin is expressed within the developing teeth at the sites of epithelial-mesenchymal interaction. Dev Dyn 2004; 229:857-68. [PMID: 15042709 DOI: 10.1002/dvdy.10453] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periostin was originally isolated as an osteoblast-specific factor that functions as a cell adhesion molecule for preosteoblasts and is thought to be involved in osteoblast recruitment, attachment, and spreading. The protein was renamed "periostin" because of its expression in the periosteum and periodontal ligament, indicating a potential role in bone and maintenance of tooth structure. Periostin has structural similarity to insect fasciclin-I and can be induced by TGF-beta and Bmp2. Because tooth and periodontium development is a well-described genetic model for organogenesis governed by a reciprocal set of epithelial-mesenchymal interactions, thought to be controlled by various TGF-beta superfamily members, we investigated whether periostin is present during tooth morphogenesis. Both periostin mRNA and protein expression were analyzed throughout normal tooth development (embryonic day [E] 9.5-newborn) and within both Bmp4- and Msx2-null embryos. Periostin mRNA is initially present within the E9.5 first branchial arch epithelium and then shifts to underlying ectomesenchyme. Both mRNA and protein are asymmetrically localized to the lingual/palatal and buccal side during the early epithelial-mesenchymal interactions. Periostin is also present in dental papilla cells and within the trans-differentiating odontoblasts during the bell and hard tissue formation stages of tooth development. We suggest that periostin plays multiple roles as a primary responder molecule during tooth development and may be linked to deposition and organization of other extracellular matrix adhesion molecules during maintenance of the adult tooth, particularly at the sites of hard-soft tissue interface.
Collapse
|
174
|
Luukko K, Løes S, Kvinnsland IH, Kettunen P. Expression of ephrin-A ligands and EphA receptors in the developing mouse tooth and its supporting tissues. Cell Tissue Res 2004; 319:143-52. [PMID: 15517401 DOI: 10.1007/s00441-004-0951-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2003] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Ephrins are cell-membrane-bound ligands for Eph receptor tyrosine kinases and regulate a variety of developmental processes. In order to investigate the potential roles of the ephrin-Eph system in tooth formation, we studied the cellular mRNA expression of Ephrin-A1-A5 and EphA2, EphA3, EphA4, EphA7, and EphA8 receptors during embryonic histomorphogenesis of the mouse first molar (embryonic days 11.5-18.5). Ephrin-A1, ephrin-A5, EphA2, EphA3, EphA4, and EphA7 were expressed in the tooth germ at the epithelial thickening stage, and later, ephrin-A1, ephrin-A5, EphA2, EphA4, and EphA7 showed distinct expression patterns in the enamel organ undergoing epithelial folding morphogenesis. Prior to birth, ephrin-A1, ephrin-A5, EphA2, and EphA4 transcripts were present in the cuspal area of the dental papilla including the preodontoblasts. In addition, ephrin-A1 and ephrin-A5 were seen in the forming blood vessels and alveolar bone, respectively. In contrast, ephrin-A2, ephrin-A3, and ephrin-A4 showed ubiquitous expression during odontogenesis, whereas EphA8 transcripts were not observed. During dental trigeminal axon pathfinding (embryonic days 12.5-13.5), ephrin-A2, ephrin-A4, and ephrin-A5 were evenly distributed in the trigeminal ganglion, whereas EphA7 was expressed in a subset of ganglion cells. These results suggest regulatory roles for ephrin-A/EphA signaling in the formation of the tooth organ proper and its supporting tissues.
Collapse
Affiliation(s)
- Keijo Luukko
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | | | | | | |
Collapse
|
175
|
Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I, Mikkola ML. Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 2004; 131:4907-19. [PMID: 15371307 DOI: 10.1242/dev.01377] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Organs developing as appendages of the ectoderm are initiated from epithelial thickenings called placodes. Their formation is regulated by interactions between the ectoderm and underlying mesenchyme, and several signalling molecules have been implicated as activators or inhibitors of placode formation. Ectodysplasin (Eda) is a unique signalling molecule in the tumour necrosis factor family that, together with its receptor Edar, is necessary for normal development of ectodermal organs both in humans and mice. We have shown previously that overexpression of the Eda-A1 isoform in transgenic mice stimulates the formation of several ectodermal organs. In the present study, we have analysed the formation and morphology of placodes using in vivo and in vitro models in which both the timing and amount of Eda-A1 applied could be varied. The hair and tooth placodes of K14-Eda-A1transgenic embryos were enlarged, and extra placodes developed from the dental lamina and mammary line. Exposure of embryonic skin to Eda-A1 recombinant protein in vitro stimulated the growth and fusion of placodes. However, it did not accelerate the initiation of the first wave of hair follicles giving rise to the guard hairs. Hence, the function of Eda-A1 appears to be downstream of the primary inductive signal required for placode initiation during skin patterning. Analysis of BrdU incorporation indicated that the formation of the epithelial thickening in early placodes does not involve increased cell proliferation and also that the positive effect of Eda-A1 on placode expansion is not a result of increased cell proliferation. Taken together, our results suggest that Eda-A1 signalling promotes placodal cell fate during early development of ectodermal organs.
Collapse
Affiliation(s)
- Tuija Mustonen
- Developmental Biology Program, Institute of Biotechnology, PO Box 56 (Viikinkaari 9), University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 2004; 5:499-508. [PMID: 15211352 DOI: 10.1038/nrg1380] [Citation(s) in RCA: 419] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abigail Tucker
- Department of Craniofacial Development, Dental Institute, Kings College London, Floor 28 Guys Hospital, London Bridge, London SE1 9RT, UK.
| | | |
Collapse
|
177
|
Aberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev Biol 2004; 270:76-93. [PMID: 15136142 DOI: 10.1016/j.ydbio.2004.02.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 12/16/2003] [Accepted: 02/02/2004] [Indexed: 01/11/2023]
Abstract
Runx2 (Cbfa1) is a runt domain transcription factor that is essential for bone development and tooth morphogenesis. Teeth form as ectodermal appendages and their development is regulated by interactions between the epithelium and mesenchyme. We have shown previously that Runx2 is expressed in the dental mesenchyme and regulated by FGF signals from the epithelium, and that tooth development arrests at late bud stage in Runx2 knockout mice [Development 126 (1999) 2911]. In the present study, we have continued to clarify the role of Runx2 in tooth development and searched for downstream targets of Runx2 by extensive in situ hybridization analysis. The expression of Fgf3 was downregulated in the mesenchyme of Runx2 mutant teeth. FGF-soaked beads failed to induce Fgf3 expression in Runx2 mutant dental mesenchyme whereas in wild-type mesenchyme they induced Fgf3 in all explants indicating a requirement of Runx2 for transduction of FGF signals. Fgf3 was absent also in cultured Runx2-/- calvarial cells and it was induced by overexpression of Runx2. Furthermore, Runx2 was downregulated in Msx1 mutant tooth germs, indicating that it functions in the dental mesenchyme between Msx1 and Fgf3. Shh expression was absent from the epithelial enamel knot in lower molars of Runx2 mutant and reduced in upper molars. However, other enamel knot marker genes were expressed normally in mutant upper molars, while reduced or missing in lower molars. These differences between mutant upper and lower molars may be explained by the substitution of Runx2 function by Runx3, another member of the runt gene family that was upregulated in upper but not lower molars of Runx2 mutants. Shh expression in mutant enamel knots was not rescued by FGFs in vitro, indicating that in addition to Fgf3, Runx2 regulates other mesenchymal genes required for early tooth morphogenesis. Also, exogenous FGF and SHH did not rescue the morphogenesis of Runx2 mutant molars. We conclude that Runx2 mediates the functions of epithelial FGF signals regulating Fgf3 expression in the dental mesenchyme and that Fgf3 may be a direct target gene of Runx2.
Collapse
Affiliation(s)
- Thomas Aberg
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development and Orthodontics, GKT Dental Institute, King's College London, United Kingdom
| | | |
Collapse
|
179
|
Wang XP, Suomalainen M, Jorgez CJ, Matzuk MM, Wankell M, Werner S, Thesleff I. Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev Dyn 2004; 231:98-108. [PMID: 15305290 DOI: 10.1002/dvdy.20118] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Teeth form as ectodermal appendages, and their morphogenesis is regulated by conserved signaling pathways. The shape of the tooth crown results from growth and folding of inner dental epithelium, and the cusp patterning is regulated by transient signaling centers, the enamel knots. Several signal proteins in the transforming growth factor-beta (TGF beta) superfamily are required for tooth development. Follistatin is an extracellular inhibitor of TGF beta signaling. To investigate the roles of follistatin during tooth development, we analyzed in detail the expression patterns of follistatin, activin beta A, as well as Bmp2, Bmp4, and Bmp7 during tooth morphogenesis. We also examined the tooth phenotypes of follistatin knockout mice and of transgenic mice overexpressing follistatin in the epithelium under the keratin 14 (K14) promoter. The folding of the dental epithelium was aberrant in the molars of follistatin knockout mice, and the cusps were shallow with reduced cell proliferation and lack of anteroposterior polarization. The functions of both primary and secondary enamel knots were apparently disturbed. In K14-follistatin transgenic mice, the molar cusp pattern was also seriously affected (although different from the follistatin knockouts) and the occlusal surfaces of the molars were whorled. Their enamel was prematurely worn. In addition, all of the third molars were missing. Our results indicate that follistatin regulates morphogenesis and shaping of the tooth crown. We propose that finely tuned antagonistic effects between follistatin and TGF beta superfamily signals are critical for enamel knot formation and function, as well as for patterning of tooth cusps.
Collapse
Affiliation(s)
- Xiu-Ping Wang
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
180
|
Suzuki K, Bachiller D, Chen YP, Kamikawa M, Ogi H, Haraguchi R, Ogino Y, Minami Y, Mishina Y, Ahn K, Crenshaw EB, Yamada G. Regulation of outgrowth and apoptosis for the terminal appendage:external genitalia: development by concerted actions of BMP signaling. Development 2003; 130:6209-20. [PMID: 14602679 DOI: 10.1242/dev.00846] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extra-corporal fertilization depends on the formation of copulatory organs:the external genitalia. Coordinated growth and differentiation of the genital tubercle (GT), an embryonic anlage of external genitalia, generates a proximodistally elongated structure suitable for copulation, erection, uresis and ejaculation. Despite recent progress in molecular embryology, few attempts have been made to elucidate the molecular developmental processes of external genitalia formation.Bone morphogenetic protein genes (Bmp genes) and their antagonists were spatiotemporally expressed during GT development. Exogenously applied BMP increased apoptosis of GT and inhibited its outgrowth. It has been shown that the distal urethral epithelium (DUE), distal epithelia marked by the Fgf8 expression, may control the initial GT outgrowth. Exogenously applied BMP4 downregulated the expression of Fgf8 and Wnt5a,concomitant with increased apoptosis and decreased cell proliferation of the GT mesenchyme. Furthermore, noggin mutants and Bmpr1a conditional mutant mice displayed hypoplasia and hyperplasia of the external genitalia respectively. noggin mutant mice exhibited downregulation of Wnt5aand Fgf8 expression with decreased cell proliferation. Consistent with such findings, Wnt5a mutant mice displayed GT agenesis with decreased cell proliferation. By contrast, Bmpr1a mutant mice displayed decreased apoptosis and augmented Fgf8 expression in the DUE associated with GT hyperplasia. These results suggest that some of the Bmp genes could negatively affect proximodistally oriented outgrowth of GT with regulatory functions on cell proliferation and apoptosis.The DUE region can be marked only until 14.0 dpc (days post coitum) in mouse development, while GT outgrowth continues thereafter. Possible signaling crosstalk among the whole distal GT regions were also investigated.
Collapse
Affiliation(s)
- Kentaro Suzuki
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
All ectodermal organs, e.g. hair, teeth, and many exocrine glands, originate from two adjacent tissue layers: the epithelium and the mesenchyme. Similar sequential and reciprocal interactions between the epithelium and mesenchyme regulate the early steps of development in all ectodermal organs. Generally, the mesenchyme provides the first instructive signal, which is followed by the formation of the epithelial placode, an early signaling center. The placode buds into or out of the mesenchyme, and subsequent proliferation, cell movements, and differentiation of the epithelium and mesenchyme contribute to morphogenesis. The molecular signals regulating organogenesis, such as molecules in the FGF, TGFbeta, Wnt, and hedgehog families, regulate the development of all ectodermal appendages repeatedly during advancing morphogenesis and differentiation. In addition, signaling by ectodysplasin, a recently identified member of the TNF family, and its receptor Edar is required for ectodermal organ development across vertebrate species. Here the current knowledge on the molecular regulation of the initiation, placode formation, and morphogenesis of ectodermal organs is discussed with emphasis on feathers, hair, and teeth.
Collapse
Affiliation(s)
- Johanna Pispa
- Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, 00014, Helsinki, Finland
| | | |
Collapse
|
182
|
Alappat SR, Zhang M, Zhao X, Alliegro MA, Alliegro MC, Burdsal CA. Mouse pigpen encodes a nuclear protein whose expression is developmentally regulated during craniofacial morphogenesis. Dev Dyn 2003; 228:59-71. [PMID: 12950080 DOI: 10.1002/dvdy.10353] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Pigpen, a nuclear protein with RNA-binding motifs and a putative transcriptional activation domain (TAD), is expressed at high levels in proliferating endothelial cells and expression is down-regulated when cells adopt a quiescent or differentiated phenotype. We cloned the mouse homolog of pigpen and investigated the regulation of its expression during embryogenesis. In situ hybridization demonstrated that a broad pattern of pigpen expression became restricted during tooth formation in the mandible. In the eye, pigpen showed a spatial restriction to the more proliferating and less differentiated regions of the lens and neural retina. Expression was also restricted in the developing vibrissae, lung, and kidney, all sites where epithelial-mesenchymal interactions are vital for morphogenesis. In vitro assays, that focused on the mandible and tooth development, indicated that epithelial signals, mediated by fibroblast growth factor-8, were required to maintain pigpen expression in the mandibular mesenchyme, whereas bone morphogenetic protein-4 negatively regulated expression in that tissue during early odontogenesis. At the protein level, immunocytochemistry demonstrated that Pigpen was expressed diffusely in the cytoplasm and more concentratedly in focal granules within the nuclei of mouse embryonic cells. Lastly, CAT reporter assays showed that the N-terminus of mouse pigpen encodes an active TAD. These data suggest that mouse Pigpen may activate transcription in vivo in response to specific growth factor signals and regulate proliferation and/or differentiation events during mouse organogenesis.
Collapse
Affiliation(s)
- Sylvia R Alappat
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Yoshiba N, Yoshiba K, Stoetzel C, Perrin-Schmitt F, Cam Y, Ruch JV, Lesot H. Temporospatial gene expression and protein localization of matrix metalloproteinases and their inhibitors during mouse molar tooth development. Dev Dyn 2003; 228:105-12. [PMID: 12950084 DOI: 10.1002/dvdy.10352] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The gene expression and protein distribution of matrix metalloproteinase (MMP) -2, -9, membrane type-1 MMP (MT1-MMP), as well as of TIMP-1, -2, and -3 were analyzed during mouse molar development. Immunohistochemical data demonstrated that all the MMPs investigated were expressed in the dental epithelium and mesenchyme. In contrast, gene and protein expression analysis for TIMPs showed that they were differentially expressed. TIMP-1 was expressed in the dental epithelium and mesenchyme between E13 and E16 and was transiently up-regulated at E14, the cap stage. TIMP-1 expression was also detected in differentiating odontoblasts. TIMP-2 RNA transcripts were found in the peridental and dental mesenchyme, odontoblasts, and ameloblasts. Protein analysis revealed high expression on the lingual side of the dental epithelium and underlying mesenchyme together with transient expression in the enamel knot at E14 and expression in the gingival tissue and enamel matrix postnatally. TIMP-3 RNA transcripts were found in discrete regions of the dental epithelium, including at high levels in the cervical loop at E16. Expression was also detected in preodontoblasts at E16 and transiently during ameloblast differentiation. Analysis of the protein distribution revealed a lower level of TIMP-3 on the lingual side of the dental epithelium at E14. MT1-MMP was expressed in the dental mesenchyme between E13 and E16, at relatively high levels in the cervical loop at E14, and in the odontoblasts and ameloblasts. The distinct temporospatial distribution patterns of the TIMPs suggest that these inhibitors play several intrinsic roles during tooth development.
Collapse
Affiliation(s)
- Nagako Yoshiba
- Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
184
|
Hamrick MW. Evolution and development of mammalian limb integumentary structures. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 298:152-63. [PMID: 12949775 DOI: 10.1002/jez.b.32] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adaptive radiation of mammalian clades has involved marked changes in limb morphology that have affected not only the skeleton but also the integumentary structures. For example, didelphid marsupials show distinct differences in nail and claw morphology that are functionally related to the evolution of arboreal, terrestrial, and aquatic foraging behaviors. Vespertilionoid bats have evolved different volar pad structures such as adhesive discs, scales, and skin folds, whereas didelphid marsupials have apical pads covered either with scales, ridges, or small cones. Comparative analysis of pad and claw development reveals subtle differences in mesenchymal and ectodermal patterning underlying interspecific variation in morphology. Analysis of gene expression during pad and claw development reveals that signaling molecules such as Msx1 and Hoxc13 play important roles in the morphogenesis of these integumentary structures. These findings suggest that evolutionary change in the expression of these molecules, and in the response of mesenchymal and ectodermal cells to these signaling factors, may underlie interspecific differences in nail, claw, and volar pad morphology. Evidence from comparative morphology, development, and functional genomics therefore sheds new light on both the patterns and mechanisms of evolutionary change in mammalian limb integumentary structures.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| |
Collapse
|
185
|
Hyer J, Kuhlman J, Afif E, Mikawa T. Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev Biol 2003; 259:351-63. [PMID: 12871706 DOI: 10.1016/s0012-1606(03)00205-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.
Collapse
Affiliation(s)
- Jeanette Hyer
- Department of Neurosurgery, University of California/San Francisco, Box 0520, 513 Parnassus Ave., San Francisco, CA 94143-0520, USA.
| | | | | | | |
Collapse
|
186
|
Mitsiadis TA, Chéraud Y, Sharpe P, Fontaine-Pérus J. Development of teeth in chick embryos after mouse neural crest transplantations. Proc Natl Acad Sci U S A 2003; 100:6541-5. [PMID: 12740432 PMCID: PMC164482 DOI: 10.1073/pnas.1137104100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Teeth were lost in birds 70-80 million years ago. Current thinking holds that it is the avian cranial neural crest-derived mesenchyme that has lost odontogenic capacity, whereas the oral epithelium retains the signaling properties required to induce odontogenesis. To investigate the odontogenic capacity of ectomesenchyme, we have used neural tube transplantations from mice to chick embryos to replace the chick neural crest cell populations with mouse neural crest cells. The mouse/chick chimeras obtained show evidence of tooth formation showing that avian oral epithelium is able to induce a nonavian developmental program in mouse neural crest-derived mesenchymal cells.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Craniofacial Development, Guy's, King's, and St. Thomas' Dental Institute, King's College London, Floor 28 Guy's Tower, Guy's Hospital, United Kingdom
| | | | | | | |
Collapse
|
187
|
Cobourne MT, Sharpe PT. Expression and regulation of hedgehog-interacting protein during early tooth development. Connect Tissue Res 2003; 43:143-7. [PMID: 12489150 DOI: 10.1080/03008200290000907] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sonic hedgehog (Shh) expression is highly localized to the epithelium at the future sites of tooth development. This restricted expression suggests that inhibition of Shh in areas where teeth do not form may be an important mechanism in tooth germ localization. Recently, Hip, a putative vertebrate antagonist of Shh, has been identified. We have investigated the expression of Hip during early tooth development and found it not to be localized in cells immediately adjacent to Shh-expressing cells, but rather at a distance, separated by cells expressing Ptc1. Hip is also regulated by Shh in the first branchial arch. Shh-soaked agarose beads are able to induce the expression of Hip in odontogenic mesenchyme. A role for Hip might be to prevent the spread of excess Shh ligand beyond an immediate Ptc1-induced zone in odontogenic mesenchyme. This mechanism would therefore restrict Shh signaling specifically to those regions along the oral axis that are destined to form teeth.
Collapse
Affiliation(s)
- Martyn T Cobourne
- Department of Craniofacial Development, GKT Dental Institute, London SE1 9RT, United Kingdom
| | | |
Collapse
|
188
|
Lesot H, Kieffer-Combeau S, Fausser JL, Meyer JM, Perrin-Schmitt F, Peterková R, Peterka M, Ruch JV. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res 2003; 43:191-200. [PMID: 12489158 DOI: 10.1080/03008200290000529] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Relationships between cell-cell/cell-matrix interactions and enamel organ histomorphogenesis were examined by immunostaining and electron microscopy. During the cap-bell transition in the mouse molar, laminin-5 (LN5) disappeared from the basement membrane (BM) associated with the inner dental epithelium (IDE), and nondividing IDE cells from the enamel knot (EK) underwent a tooth-specific segregation in as many subpopulations as cusps develop. In the incisor, the basement membrane (BM) in contact with EK cells showed strong staining for LN5 and integrin alpha 6 beta 4. LN5 seems to provide stable adhesion, while its proteolytic processing might facilitate cell segregation. In both teeth, immunostaining for antigens associated with desmosomes or adherens junctions was similar for EK cells and neighboring IDE cells. Outside the EK, IDE cell-BM interactions changed locally during the initial molar cusp delimitation and on the labial part of the incisor cervical loop. Conversely, cell-cell junctions stabilized the anterior part of the incisor during completion of morphogenesis. Time and space regulation of cell-matrix and cell-cell interactions might thus play complementary roles in allowing plasticity during tooth morphogenesis and stabilization at later stages of epithelial histogenesis.
Collapse
Affiliation(s)
- H Lesot
- INSERM U424, Institut de Biologie Médicale, Faculté de Médecine, 11, rue Humann, 67085 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
For decades, the understanding of craniofacial development has been a central issue in odontology and developmental biology. As a consequence, a significant number of deformities are being studied for their variety of genotype and phenotype. Although there is little doubt about the essential roles of homeobox genes, transcription factors, and growth factors, we now know at least the fundamental strategy of craniofacial biology. The tooth as an organ performs a whole range of functions, each of which is truly indispensable for the maintenance of life. The possession of teeth is, therefore, obviously coupled with the complication of the natural structure of an individual organism. In the following, we shall focus on a brief history of tooth studies and some suggestions for obtaining a full understanding of teeth in the future.
Collapse
Affiliation(s)
- Han-Sung Jung
- Department of Oral Biology, College of Dentistry, Institute of Life Science and Biotechnology, Brain Korea 21 Project of Medical Sciences, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
190
|
Hall JMH, Bell ML, Finger TE. Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev Biol 2003; 255:263-77. [PMID: 12648489 DOI: 10.1016/s0012-1606(02)00048-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Taste buds on the anterior part of the tongue develop in conjunction with epithelial-mesenchymal specializations in the form of gustatory (taste) papillae. Sonic hedgehog (Shh) and Bone Morphogenetic Protein 4 (BMP4) are expressed in developing taste papillae, but the roles of these signaling molecules in specification of taste bud progenitors and in papillary morphogenesis are unclear. We show here that BMP4 is not expressed in the early tongue, but is precisely coexpressed with Shh in papillary placodes, which serve as a signaling center for both gustatory and papillary development. To elucidate the role of Shh, we used an in vitro model of mouse fungiform papillary development to determine the effects of two functional inhibitors of Shh signaling: anti-Shh (5E1) antibody and cyclopamine. Cultured E11.5 tongue explants express Shh and BMP4(LacZ) in a pattern similar to that of intact embryos, localizing to developing papillary placodes after 2 days in culture. Tongues cultured with 5E1 antibody continue to express these genes in papillary patterns but develop more papillae that are larger and closer together than in controls. Tongues cultured with cyclopamine have a dose-dependent expansion of Shh and BMP4(LacZ) expression domains. Both antibody-treated and cyclopamine-treated tongue explants also are smaller than controls. Taken together, these results suggest that, although Shh is not involved in the initial specification of papillary placodes, Shh does play two key roles during pmcry development: (1) as a morphogen that directs cells toward a nonpapillary fate, and (2) as a mitogen, causing expansion of the interplacodal epithelium and underlying mesenchyme.
Collapse
Affiliation(s)
- Joshua M H Hall
- Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | |
Collapse
|
191
|
Tummers M, Thesleff I. Root or crown: a developmental choice orchestrated by the differential regulation of the epithelial stem cell niche in the tooth of two rodent species. Development 2003; 130:1049-57. [PMID: 12571097 DOI: 10.1242/dev.00332] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rodent incisor grows continuously throughout its lifetime. The epithelial stem cell niche is located at the apical end of the tooth and its progeny gives rise to the ameloblasts that form the hard enamel. Previously, mesenchymal FGF10 was shown to support the niche, in conjunction with epithelial Notch signaling. Here we show that in a different continuously growing tooth type, the molar of the sibling vole, a similar regulatory system is in place. Moreover, the identical expression pattern of Bmp4 compared to Fgf10 suggests that BMP4 could also be involved in the regulation of the epithelial stem cell niche. Notch and FGF10 signaling is mainly absent in the mouse molar, which stops growing and develops roots. The regulation of the epithelial stem cell niche seems to be flexible allowing for the existence of different tooth types, such as continuously growing teeth, and high and low crowned molars.
Collapse
Affiliation(s)
- Mark Tummers
- Institute of Biotechnology, Viikki Biocenter, FIN-00014 University of Helsinki, Finland.
| | | |
Collapse
|
192
|
Luukko K, Løes S, Furmanek T, Fjeld K, Kvinnsland IH, Kettunen P. Identification of a novel putative signaling center, the tertiary enamel knot in the postnatal mouse molar tooth. Mech Dev 2003; 120:270-6. [PMID: 12591596 DOI: 10.1016/s0925-4773(02)00458-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The final shape of the molar tooth crown is thought to be regulated by the transient epithelial signaling centers in the cusp tips, the secondary enamel knots (SEKs), which are believed to disappear after initiation of the cusp growth. We investigated the developmental fate of the signaling center using the recently characterized Slit1 enamel knot marker as a lineage tracer during morphogenesis of the first molar and crown calcification in the mouse. In situ hybridization analysis showed that after Fgf4 downregulation in the SEK, Slit1 expression persisted in the deep compartment of the knot. After the histological disappearance of the SEK, Slit1 expression was evident in a novel epithelial cell cluster, which we call the tertiary enamel knot (TEK) next to the enamel-free area (EFA)-epithelium at the cusp tips. In embryonic tooth, Slit1 was also observed in the stratum intermedium (SI) and stellate reticulum cells between the parallel SEKs correlating to the area where the inner enamel epithelium cells do not proliferate. After birth, the expression of Slit1 persisted in the SI cells of the transverse connecting lophs of the parallel cusps above the EFA-cells. These results demonstrate the presence of a novel putative signaling center, the TEK, in the calcifying tooth. Moreover, our results suggest that Slit1 signaling may be involved in the regulation of molar tooth shape by regulating epithelial cell proliferation and formation of EFA of the crown.
Collapse
Affiliation(s)
- Keijo Luukko
- Department of Anatomy and Cell Biology, University of Bergen, Arstadveien 19, N-5009, Bergen, Norway.
| | | | | | | | | | | |
Collapse
|
193
|
Yamashiro T, Tummers M, Thesleff I. Expression of bone morphogenetic proteins and Msx genes during root formation. J Dent Res 2003; 82:172-6. [PMID: 12598544 DOI: 10.1177/154405910308200305] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Like crown development, root formation is also regulated by interactions between epithelial and mesenchymml tissues. Bone morphogenetic proteins (BMPs), together with the transcription factors Msx1 and Msx2, play important roles in these interactions during early tooth morphogenesis. To investigate the involvement of this signaling pathway in root development, we analyzed the expression patterns of Bmp2, Bmp3, Bmp4, and Bmp7 as well as Msx1 and Msx2 in the roots of mouse molars. Bmp4 was expressed in the apical mesenchyme and Msx2 in the root sheath. However, Bmps were not detected in the root sheath epithelium, and Msx transcripts were absent from the underlying mesenchyme. These findings indicate that this Bmp signaling pathway, required for tooth initiation, does not regulate root development, but we suggest that root shape may be regulated by a mechanism similar to that regulating crown shape in cap-stage tooth germs. Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium.
Collapse
Affiliation(s)
- T Yamashiro
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, PO Box 56, FIN-00014 University of Helsinki, Finland.
| | | | | |
Collapse
|
194
|
Abstract
The mammalian jaw apparatus is ultimately derived from the first branchial arch derivatives, the maxillary and mandibular processes, and composed of a highly specialised group of structures. Principle amongst these are the skeletal components of the mandible and maxilla and the teeth of the mature dentition. Integral to the development of these structures are signalling interactions between the stomodeal ectoderm and underlying neural crest-derived ectomesenchymal cells that populate this region. Recent evidence suggests that in the early mouse embryo, regionally restricted expression of homeobox-containing genes, such as members of the Dlx, Lhx and Gsc classes, are responsible for generating early polarity in the first branchial arch and establishing the molecular foundations for patterning of the skeletal elements. Teeth also develop on the first branchial arch and are derived from both ectoderm and the underlying ectomesenchyme. Reciprocal signalling interactions between these cell populations also control the odontogenic developmental programme, from early patterning of the future dental axis to the initiation of tooth development at specific sites within the ectoderm. In particular, members of the Fibroblast growth factor (Fgf), Bmp, Hedgehog and Wnt families of signalling molecules induce regionally restricted expression of downstream target genes in the odontogenic ectomesenchyme. Finally, the processes of morphogenesis and cellular differentiation ultimately generate a tooth of specific class. Many of the same genetic interactions that are involved in early tooth development mediate these effects through the activity of localised signalling centres within the developing tooth germ.
Collapse
|
195
|
Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev 2002; 16:3173-85. [PMID: 12502739 PMCID: PMC187508 DOI: 10.1101/gad.1035602] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lymphoid enhancer factor (LEF1), a nuclear mediator of Wnt signaling, is required for the formation of organs that depend on inductive interactions between epithelial and mesenchymal tissues. In previous tissue recombination experiments with normal and Lef1(-/-) tooth germs, we found that the effect of LEF1 expression in the epithelium is tissue nonautonomous and transferred to the subjacent mesenchyme. Here we examine the molecular basis for LEF1 function and find that the epithelium of the developmentally arrested Lef1(-/-) tooth rudiments fails to express Fgf4, Shh, and Bmp4, but not Wnt10a. We identify the Fgf4 gene as a direct transcriptional target for LEF1 and show that beads soaked with recombinant FGF4 protein can fully overcome the developmental arrest of Lef1(-/-) tooth germs. In addition, we find that FGF4 beads induce rapidly the expression of Fgf3 in dental mesenchyme and that both epithelial and mesenchymal FGF proteins induce the delayed expression of Shh in the epithelium. Taken together, these data indicate that a single target of LEF1 can account for the function of LEF1 in tooth development and for a relay of a Wnt signal reception to a cascade of FGF signaling activities, allowing for a sequential and reciprocal communication between epithelium and mesenchyme.
Collapse
Affiliation(s)
- Klaus Kratochwil
- Institute of Molecular Biology, Austrian Academy of Sciences, 5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
196
|
Thesleff I, Mikkola M. The role of growth factors in tooth development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:93-135. [PMID: 12019566 DOI: 10.1016/s0074-7696(02)17013-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors and other paracrine signal molecules regulate communication between cells in all developing organs. During tooth morphogenesis, molecules in several conserved signal families mediate interactions both between and within the epithelial and mesenchymal tissue layers. The same molecules are used repeatedly during advancing development, and several growth factors are coexpressed in epithelial signaling centers. The enamel knots are signaling centers that regulate the patterning of teeth and are associated with foldings of the epithelial sheet. Different signaling pathways form networks and are integrated at many levels. Many targets of the growth factors have been identified, and mutations in several genes within the signaling networks cause defective tooth formation in both humans and mice.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
197
|
Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, McMahon AP. Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 2002; 129:5323-37. [PMID: 12403705 DOI: 10.1242/dev.00100] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog (Shh), a member of the mammalian Hedgehog (Hh) family, plays a key role during embryogenesis and organogenesis. Tooth development, odontogenesis, is governed by sequential and reciprocal epithelial-mesenchymal interactions. Genetic removal of Shh activity from the dental epithelium, the sole source of Shh during tooth development, alters tooth growth and cytological organization within both the dental epithelium and mesenchyme of the tooth. In this model it is not clear which aspects of the phenotype are the result of the direct action of Shh on a target tissue and which are indirect effects due to deficiencies in reciprocal signalings between the epithelial and mesenchymal components. To distinguish between these two alternatives and extend our understanding of Shh's actions in odontogenesis, we have used the Cre-loxP system to remove Smoothened (Smo) activity in the dental epithelium. Smo, a seven-pass membrane protein is essential for the transduction of all Hh signals. Hence, removal of Smo activity from the dental epithelium should block Shh signaling within dental epithelial derivatives while preserving normal mesenchymal signaling. Here we show that Shh-dependent interactions occur within the dental epithelium itself. The dental mesenchyme develops normally up until birth. In contrast, dental epithelial derivatives show altered proliferation, growth, differentiation and polarization. Our approach uncovers roles for Shh in controlling epithelial cell size, organelle development and polarization. Furthermore, we provide evidence that Shh signaling between ameloblasts and the overlying stratum intermedium may involve subcellular localization of Patched 2 and Gli1 mRNAs, both of which are targets of Shh signaling in these cells.
Collapse
Affiliation(s)
- Amel Gritli-Linde
- Department of Oral Biochemistry, Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
198
|
Mustonen T, Tümmers M, Mikami T, Itoh N, Zhang N, Gridley T, Thesleff I. Lunatic fringe, FGF, and BMP regulate the Notch pathway during epithelial morphogenesis of teeth. Dev Biol 2002; 248:281-93. [PMID: 12167404 DOI: 10.1006/dbio.2002.0734] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Teeth develop as epithelial appendages, and their morphogenesis is regulated by epithelial-mesenchymal interactions and conserved signaling pathways common to many developmental processes. A key event during tooth morphogenesis is the transition from bud to cap stage when the epithelial bud is divided into specific compartments distinguished by morphology as well as gene expression patterns. The enamel knot, a signaling center, forms and regulates the shape and size of the tooth. Mesenchymal signals are necessary for epithelial patterning and for the formation and maintenance of the epithelial compartments. We studied the expression of Notch pathway molecules during the bud-to-cap stage transition of the developing mouse tooth. Lunatic fringe expression was restricted to the epithelium, where it formed a boundary flanking the enamel knot. The Lunatic fringe expression domains overlapped only partly with the expression of Notch1 and Notch2, which were coexpressed with Hes1. We examined the regulation of Lunatic fringe and Hes1 in cultured explants of dental epithelium. The expression of Lunatic fringe and Hes1 depended on mesenchymal signals and both were positively regulated by FGF-10. BMP-4 antagonized the stimulatory effect of FGF-10 on Lunatic fringe expression but had a synergistic effect with FGF-10 on Hes1 expression. Recombinant Lunatic fringe protein induced Hes1 expression in the dental epithelium, suggesting that Lunatic fringe can act also extracellularly. Lunatic fringe mutant mice did not reveal tooth abnormalities, and no changes were observed in the expression patterns of other Fringe genes. We conclude that Lunatic fringe may play a role in boundary formation of the enamel knot and that Notch-signaling in the dental epithelium is regulated by mesenchymal FGFs and BMP.
Collapse
Affiliation(s)
- Tuija Mustonen
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki FIN-00014, Finland
| | | | | | | | | | | | | |
Collapse
|
199
|
Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol 2002; 247:26-46. [PMID: 12074550 DOI: 10.1006/dbio.2002.0668] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
External genital development begins with formation of paired genital swellings, which develop into the genital tubercle. Proximodistal outgrowth and axial patterning of the genital tubercle are coordinated to give rise to the penis or clitoris. The genital tubercle consists of lateral plate mesoderm, surface ectoderm, and endodermal urethral epithelium derived from the urogenital sinus. We have investigated the molecular control of external genital development in the mouse embryo. Previous work has shown that the genital tubercle has polarizing activity, but the precise location of this activity within the tubercle is unknown. We reasoned that if the tubercle itself is patterned by a specialized signaling region, then polarizing activity may be restricted to a subset of cells. Transplantation of urethral epithelium, but not genital mesenchyme, to chick limbs results in mirror-image duplication of the digits. Moreover, when grafted to chick limbs, the urethral plate orchestrates morphogenetic movements normally associated with external genital development. Signaling activity is therefore restricted to urethral plate cells. Before and during normal genital tubercle outgrowth, urethral plate epithelium expresses Sonic hedgehog (Shh). In mice with a targeted deletion of Shh, external genitalia are absent. Genital swellings are initiated, but outgrowth is not maintained. In the absence of Shh signaling, Fgf8, Bmp2, Bmp4, Fgf10, and Wnt5a are downregulated, and apoptosis is enhanced in the genitalia. These results identify the urethral epithelium as a signaling center of the genital tubercle, and demonstrate that Shh from the urethral epithelium is required for outgrowth, patterning, and cell survival in the developing external genitalia.
Collapse
Affiliation(s)
- Claire L Perriton
- Division of Zoology, University of Reading, Whiteknights, United Kingdom
| | | | | | | | | |
Collapse
|
200
|
Shimo T, Wu C, Billings PC, Piddington R, Rosenbloom J, Pacifici M, Koyama E. Expression, gene regulation, and roles of Fisp12/CTGF in developing tooth germs. Dev Dyn 2002; 224:267-78. [PMID: 12112457 DOI: 10.1002/dvdy.10109] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Odontogenesis involves multiple events, including tissue-tissue interactions, cell proliferation, and cell differentiation, but the underlying mechanisms of regulation are far from clear. Because Fisp12/CTGF is a signaling protein involved in similar events in other systems, we asked whether it is expressed in developing tooth germs and what roles it may have. Indeed, Fisp12/CTGF transcripts were first expressed by dental laminas, invaginating epithelium, and condensing mesenchyme at the bud stage, and then became abundant in enamel knot and preameloblasts. Fisp12/CTGF was present not only in inner dental epithelium but also in stratum intermedium and underlying dental mesenchyme. Fisp12/CTGF expression decreased markedly in secreting ameloblasts. Tissue reconstitution experiments showed that Fisp12/CTGF expression in dental epithelium required interaction with mesenchyme but was maintained by treatment of epithelium with transforming growth factor-1, a factor regulating Fisp12/CTGF expression in other systems, or with bone morphogenetic protein-2. Loss-of-function studies using CTGF neutralizing antibodies revealed that interference with endogenous factor action in tooth germ explants led to a severe inhibition of proliferation in both epithelium and mesenchyme and a marked delay in cytodifferentiation of ameloblasts and odontoblasts. Treatment of dental epithelial and mesenchymal cells in culture with recombinant CTGF stimulated cell proliferation, whereas treatment with neutralizing antibodies inhibited it. The data demonstrate for the first time that Fisp12/CTGF is expressed during odontogenesis. Expression is confined to specific sites and times, is regulated by epithelial-mesenchymal interactions and critical soluble factors, and appears to be needed for proliferation and differentiation along both ameloblast and odontoblast cell lineages.
Collapse
Affiliation(s)
- Tsuyoshi Shimo
- Department of Anatomy and Histology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6003, USA
| | | | | | | | | | | | | |
Collapse
|