151
|
Carneiro TN, Krepischi AC, Costa SS, Tojal da Silva I, Vianna-Morgante AM, Valieris R, Ezquina SA, Bertola DR, Otto PA, Rosenberg C. Utility of trio-based exome sequencing in the elucidation of the genetic basis of isolated syndromic intellectual disability: illustrative cases. APPLICATION OF CLINICAL GENETICS 2018; 11:93-98. [PMID: 30174453 PMCID: PMC6110279 DOI: 10.2147/tacg.s165799] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction Exome sequencing is recognized as a powerful tool for identifying the genetic cause of intellectual disability (ID). It is uncertain, however, whether only the exome of the proband should be sequenced or if the sequencing of parental genomes is also required, and the resulting increase in diagnostic yield justifies the increase in costs. Patients and methods We sequenced the exomes of eight individuals with sporadic syndromic ID and their parents. Results and discussion Likely pathogenic variants were detected in eight candidate genes, namely homozygous or compound heterozygous variants in three autosomal genes (ADAMTSL2, NALCN, VPS13B), one in an X-linked gene (MID1), and de novo heterozygous variants in four autosomal genes (RYR2, GABBR2, CDK13, DDX3X). Two patients harbored rare variants in two or more candidate genes, while in three other patients no candidate was identified. In five probands (62%), the detected variants explained their clinical findings. The causative recessive variants would have led to diagnosis even without parental exome sequencing, but for the heterozygous dominant ones, the exome trio-based approach was fundamental in the identification of the de novo likely pathogenic variants.
Collapse
Affiliation(s)
- Thaise Nr Carneiro
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Ana Cv Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Silvia S Costa
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Israel Tojal da Silva
- Laboratory of Computational Biology and Bioinformatics, International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Angela M Vianna-Morgante
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Renan Valieris
- Laboratory of Computational Biology and Bioinformatics, International Research Center, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Suzana Am Ezquina
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Debora R Bertola
- Genetics Unit, Instituto da Criança, Hospital das Clínicas, Medical School, University of São Paulo, São Paulo, Brazil
| | - Paulo A Otto
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
152
|
Ottman R, Freyer C, Mefford HC, Poduri A, Lowenstein DH. Return of individual results in epilepsy genomic research: A view from the field. Epilepsia 2018; 59:1635-1642. [PMID: 30098010 DOI: 10.1111/epi.14530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/13/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022]
Abstract
Genomic findings are emerging rapidly in 2 large, closely related epilepsy research consortia: the Epilepsy Phenome/Genome Project and Epi4K. Disclosure of individual results to participants in genomic research is increasingly viewed as an ethical obligation, but strategies for return of results were not included in the design of these consortia, raising complexities in establishing criteria for which results to offer, determining participant preferences, managing the large number of sites involved, and covering associated costs. Here, we describe the challenges faced, alternative approaches considered, and progress to date. Experience from these 2 consortia illustrates the importance, for genomic research in epilepsy and other disorders, of including a specific plan for return of results in the study design, with financial support for obtaining clinical confirmation and providing ongoing support for participants. Participant preferences for return of results should be established at the time of enrollment, and methods for allowing future contacts with participants should be included. In addition, methods should be developed for summarizing meaningful, comprehensible information about findings in the aggregate that participants can access in an ongoing way.
Collapse
Affiliation(s)
- Ruth Ottman
- Departments of Epidemiology and Neurology, and G. H. Sergievsky Center, Columbia University, New York, New York.,Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| | - Catharine Freyer
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Annapurna Poduri
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
153
|
Koy A, Cirak S, Gonzalez V, Becker K, Roujeau T, Milesi C, Baleine J, Cambonie G, Boularan A, Greco F, Perrigault PF, Cances C, Dorison N, Doummar D, Roubertie A, Beroud C, Körber F, Stüve B, Waltz S, Mignot C, Nava C, Maarouf M, Coubes P, Cif L. Deep brain stimulation is effective in pediatric patients with GNAO1 associated severe hyperkinesia. J Neurol Sci 2018; 391:31-39. [DOI: 10.1016/j.jns.2018.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
|
154
|
Sundaram L, Gao H, Padigepati SR, McRae JF, Li Y, Kosmicki JA, Fritzilas N, Hakenberg J, Dutta A, Shon J, Xu J, Batzoglou S, Li X, Farh KKH. Predicting the clinical impact of human mutation with deep neural networks. Nat Genet 2018; 50:1161-1170. [PMID: 30038395 PMCID: PMC6237276 DOI: 10.1038/s41588-018-0167-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
Millions of human genomes and exomes have been sequenced, but their clinical applications remain limited due to the difficulty of distinguishing disease-causing mutations from benign genetic variation. Here we demonstrate that common missense variants in other primate species are largely clinically benign in human, enabling pathogenic mutations to be systematically identified by the process of elimination. Using hundreds of thousands of common variants from population sequencing of six non-human primate species, we train a deep neural network that identifies pathogenic mutations in rare disease patients with 88% accuracy and enables the discovery of 14 new candidate genes in intellectual disability at genome-wide significance. Cataloging common variation from additional primate species would improve interpretation for millions of variants of uncertain significance, further advancing the clinical utility of human genome sequencing.
Collapse
Affiliation(s)
- Laksshman Sundaram
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- National Science Foundation Center for Big Learning, University of Florida, Gainesville, FL, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Samskruthi Reddy Padigepati
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
- National Science Foundation Center for Big Learning, University of Florida, Gainesville, FL, USA
| | - Jeremy F McRae
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Yanjun Li
- National Science Foundation Center for Big Learning, University of Florida, Gainesville, FL, USA
| | - Jack A Kosmicki
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
- Analytic and Translational Genetics Unit (ATGU), Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nondas Fritzilas
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Jörg Hakenberg
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Anindita Dutta
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - John Shon
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Jinbo Xu
- Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Serafim Batzoglou
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA
| | - Xiaolin Li
- National Science Foundation Center for Big Learning, University of Florida, Gainesville, FL, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc, San Diego, CA, USA.
| |
Collapse
|
155
|
Ullman NL, Smith-Hicks CL, Desai S, Stafstrom CE. De Novo HECW2 Mutation Associated With Epilepsy, Developmental Decline, and Intellectual Disability: Case Report and Review of Literature. Pediatr Neurol 2018; 85:76-78. [PMID: 29807643 DOI: 10.1016/j.pediatrneurol.2018.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/12/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Natalie L Ullman
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Constance L Smith-Hicks
- Department of Neurology, Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonal Desai
- Department of Neurology, Kennedy Krieger Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
156
|
Willsey AJ, Morris MT, Wang S, Willsey HR, Sun N, Teerikorpi N, Baum TB, Cagney G, Bender KJ, Desai TA, Srivastava D, Davis GW, Doudna J, Chang E, Sohal V, Lowenstein DH, Li H, Agard D, Keiser MJ, Shoichet B, von Zastrow M, Mucke L, Finkbeiner S, Gan L, Sestan N, Ward ME, Huttenhain R, Nowakowski TJ, Bellen HJ, Frank LM, Khokha MK, Lifton RP, Kampmann M, Ideker T, State MW, Krogan NJ. The Psychiatric Cell Map Initiative: A Convergent Systems Biological Approach to Illuminating Key Molecular Pathways in Neuropsychiatric Disorders. Cell 2018; 174:505-520. [PMID: 30053424 PMCID: PMC6247911 DOI: 10.1016/j.cell.2018.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Although gene discovery in neuropsychiatric disorders, including autism spectrum disorder, intellectual disability, epilepsy, schizophrenia, and Tourette disorder, has accelerated, resulting in a large number of molecular clues, it has proven difficult to generate specific hypotheses without the corresponding datasets at the protein complex and functional pathway level. Here, we describe one path forward-an initiative aimed at mapping the physical and genetic interaction networks of these conditions and then using these maps to connect the genomic data to neurobiology and, ultimately, the clinic. These efforts will include a team of geneticists, structural biologists, neurobiologists, systems biologists, and clinicians, leveraging a wide array of experimental approaches and creating a collaborative infrastructure necessary for long-term investigation. This initiative will ultimately intersect with parallel studies that focus on other diseases, as there is a significant overlap with genes implicated in cancer, infectious disease, and congenital heart defects.
Collapse
Affiliation(s)
- A Jeremy Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Montana T Morris
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen R Willsey
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nia Teerikorpi
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tierney B Baum
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Kevin J Bender
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Graeme W Davis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, 94720, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Edward Chang
- Department of Neurological Surgery, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vikaas Sohal
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Daniel H Lowenstein
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David Agard
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Keiser
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brian Shoichet
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark von Zastrow
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lennart Mucke
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Steven Finkbeiner
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Li Gan
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michael E Ward
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Ruth Huttenhain
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hugo J Bellen
- Departments of Molecular and Human Genetics and Neuroscience, Neurological Research Institute at TCH, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY 10065, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew W State
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
157
|
Abstract
The clinical presentation of patients with epileptic encephalopathies can be heterogenous. When attempting to classify a patient's epilepsy syndrome, challenges can arise due to the phenotypic overlap of various epilepsies as well as the different presentations of mutations within the same gene. Genetic testing can be most helpful in evaluation of children with features spanning several epilepsy phenotypes. In this case, we report on a boy with an epileptic encephalopathy found to have a previously unreported mutation in a recently described gene.
Collapse
|
158
|
Fernández E, Collins MO, Frank RAW, Zhu F, Kopanitsa MV, Nithianantharajah J, Lemprière SA, Fricker D, Elsegood KA, McLaughlin CL, Croning MDR, Mclean C, Armstrong JD, Hill WD, Deary IJ, Cencelli G, Bagni C, Fromer M, Purcell SM, Pocklington AJ, Choudhary JS, Komiyama NH, Grant SGN. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Rep 2018; 21:679-691. [PMID: 29045836 PMCID: PMC5656750 DOI: 10.1016/j.celrep.2017.09.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/03/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP) tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function. TAP tag and purification of endogenous Arc protein complexes from the mouse brain PSD95 is the major Arc binding protein, and both assemble into 1.5-MDa supercomplexes PSD95 is essential for recruitment of Arc to synapses Mutations and genetic variants in Arc-PSD95 are linked to cognition
Collapse
Affiliation(s)
- Esperanza Fernández
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium
| | - Mark O Collins
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - René A W Frank
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fei Zhu
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Maksym V Kopanitsa
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Jess Nithianantharajah
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Sarah A Lemprière
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - David Fricker
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Synome Ltd., Moneta Building, Babraham Research Campus, Cambridge, UK
| | - Kathryn A Elsegood
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Catherine L McLaughlin
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Mike D R Croning
- Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Colin Mclean
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - J Douglas Armstrong
- School of Informatics, Institute for Adaptive and Neural Computation, University of Edinburgh, UK
| | - W David Hill
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, UK
| | - Giulia Cencelli
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Bagni
- KU Leuven, Center for Human Genetics and Leuven Institute for Neurodegenerative Diseases (LIND), and VIB Center for the Biology of Disease, Leuven, Belgium; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Menachem Fromer
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaun M Purcell
- Division of Psychiatric Genomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew J Pocklington
- Institute of Psychological Medicine & Clinical Neurosciences, University of Cardiff, Cardiff, Wales, UK
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Noboru H Komiyama
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK
| | - Seth G N Grant
- Genes to Cognition Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK; Genes to Cognition Programme, Centre for Clinical Brain Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
159
|
An interactome perturbation framework prioritizes damaging missense mutations for developmental disorders. Nat Genet 2018; 50:1032-1040. [PMID: 29892012 DOI: 10.1038/s41588-018-0130-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/06/2018] [Indexed: 01/20/2023]
Abstract
Identifying disease-associated missense mutations remains a challenge, especially in large-scale sequencing studies. Here we establish an experimentally and computationally integrated approach to investigate the functional impact of missense mutations in the context of the human interactome network and test our approach by analyzing ~2,000 de novo missense mutations found in autism subjects and their unaffected siblings. Interaction-disrupting de novo missense mutations are more common in autism probands, principally affect hub proteins, and disrupt a significantly higher fraction of hub interactions than in unaffected siblings. Moreover, they tend to disrupt interactions involving genes previously implicated in autism, providing complementary evidence that strengthens previously identified associations and enhances the discovery of new ones. Importantly, by analyzing de novo missense mutation data from six disorders, we demonstrate that our interactome perturbation approach offers a generalizable framework for identifying and prioritizing missense mutations that contribute to the risk of human disease.
Collapse
|
160
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
161
|
Winawer MR, Griffin NG, Samanamud J, Baugh EH, Rathakrishnan D, Ramalingam S, Zagzag D, Schevon CA, Dugan P, Hegde M, Sheth SA, McKhann GM, Doyle WK, Grant GA, Porter BE, Mikati MA, Muh CR, Malone CD, Bergin AMR, Peters JM, McBrian DK, Pack AM, Akman CI, LaCoursiere CM, Keever KM, Madsen JR, Yang E, Lidov HG, Shain C, Allen AS, Canoll P, Crino PB, Poduri AH, Heinzen EL. Somatic SLC35A2 variants in the brain are associated with intractable neocortical epilepsy. Ann Neurol 2018; 83:1133-1146. [PMID: 29679388 PMCID: PMC6105543 DOI: 10.1002/ana.25243] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/01/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Somatic variants are a recognized cause of epilepsy-associated focal malformations of cortical development (MCD). We hypothesized that somatic variants may underlie a wider range of focal epilepsy, including nonlesional focal epilepsy (NLFE). Through genetic analysis of brain tissue, we evaluated the role of somatic variation in focal epilepsy with and without MCD. METHODS We identified somatic variants through high-depth exome and ultra-high-depth candidate gene sequencing of DNA from epilepsy surgery specimens and leukocytes from 18 individuals with NLFE and 38 with focal MCD. RESULTS We observed somatic variants in 5 cases in SLC35A2, a gene associated with glycosylation defects and rare X-linked epileptic encephalopathies. Nonsynonymous variants in SLC35A2 were detected in resected brain, and absent from leukocytes, in 3 of 18 individuals (17%) with NLFE, 1 female and 2 males, with variant allele frequencies (VAFs) in brain-derived DNA of 2 to 14%. Pathologic evaluation revealed focal cortical dysplasia type Ia (FCD1a) in 2 of the 3 NLFE cases. In the MCD cohort, nonsynonymous variants in SCL35A2 were detected in the brains of 2 males with intractable epilepsy, developmental delay, and magnetic resonance imaging suggesting FCD, with VAFs of 19 to 53%; Evidence for FCD was not observed in either brain tissue specimen. INTERPRETATION We report somatic variants in SLC35A2 as an explanation for a substantial fraction of NLFE, a largely unexplained condition, as well as focal MCD, previously shown to result from somatic mutation but until now only in PI3K-AKT-mTOR pathway genes. Collectively, our findings suggest a larger role than previously recognized for glycosylation defects in the intractable epilepsies. Ann Neurol 2018.
Collapse
Affiliation(s)
- Melodie R. Winawer
- Gertrude H. Sergievsky Center, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Nicole G. Griffin
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Jorge Samanamud
- Department of Neurosurgery, Columbia University, New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Evan H. Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | | | | | - David Zagzag
- Department of Pathology, New York University Langone Medical Center, New York, NY, 10016, USA
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, 10016, USA
| | | | - Patricia Dugan
- Department of Neurology, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Manu Hegde
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143 USA
| | - Sameer A. Sheth
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA
| | - Werner K. Doyle
- Department of Neurosurgery, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Gerald A. Grant
- Department of Neurosurgery, Lucile Packard Children’s Hospital at Stanford, Stanford, CA, 94305, USA
| | - Brenda E. Porter
- Department of Neurology, Lucile Packard Children’s Hospital at Stanford, Stanford, CA 94305
| | - Mohamad A. Mikati
- Division of Pediatric Neurology, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Neurobiology, Duke University, Durham, NC, 27708, USA
| | - Carrie R. Muh
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, 27708, USA
| | - Colin D. Malone
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
| | - Ann Marie R. Bergin
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Jurriaan M. Peters
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Danielle K. McBrian
- Division of Pediatric Neurology, Columbia University, New York, NY, 10032, USA
| | - Alison M. Pack
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Cigdem I. Akman
- Division of Pediatric Neurology, Columbia University, New York, NY, 10032, USA
| | | | - Katherine M. Keever
- Department of Neurology, Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph R. Madsen
- Department of Neurosurgery, Boston Children’s Hospital and Department of Neurosurgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Edward Yang
- Department of Radiology, Boston Children’s Hospital and Department of Radiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hart G.W. Lidov
- Department of Pathology, Boston Children’s Hospital and Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine Shain
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27710, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Peter B. Crino
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Annapurna H. Poduri
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
- Epilepsy Genetics Program, Department of Neurology, Boston Children’s Hospital, Boston, MA, 02115, USA
- F.M.Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Erin L. Heinzen
- Institute for Genomic Medicine, Columbia University, New York, NY, 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
162
|
Abstract
Epilepsy is a chronic neurological disorder affecting 65 million people worldwide. The etiologies of seizures can often be identified as genetic, metabolic, structural, immunologic or infectious, but in many cases the cause is unknown with the current diagnostic tools. Epileptogenesis is a process during which genetic or other acquired etiologies/insults lead to functional, structural, or network reorganization changes in the brain that may lead to the development of, or progression of, spontaneous seizures. During development, there are continuous changes in the structure, function, and network operation that also show sex specificity, which may alter the mechanisms underlying the generation of seizures (ictogenesis) and epileptogenesis. Understanding the mechanisms of early life epileptogenesis will enable the development of rationally designed age- and sex-appropriate therapies that would improve the overall quality of patients' lives. Here, we discuss some of these processes that may affect seizure generation and epileptogenesis in the neonatal brain.
Collapse
Affiliation(s)
- Anna-Maria Katsarou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA,Laboratory of Developmental Epilepsy, Albert Einstein College of Medicine, Bronx, New York, USA,Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, New York, USA,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA,Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA,Corresponding author. Address: Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Rose F. Kennedy Center, Rm 316, Bronx, NY 10461, USA. Tel.: +1 718-430-2447; fax: +1 718-430-8899. (S.L. Moshé)
| |
Collapse
|
163
|
Abstract
West syndrome (WS) is an early life epileptic encephalopathy associated with infantile spasms, interictal electroencephalography (EEG) abnormalities including high amplitude, disorganized background with multifocal epileptic spikes (hypsarrhythmia), and often neurodevelopmental impairments. Approximately 64% of the patients have structural, metabolic, genetic, or infectious etiologies and, in the rest, the etiology is unknown. Here we review the contribution of etiologies due to various metabolic disorders in the pathology of WS. These may include metabolic errors in organic molecules involved in amino acid and glucose metabolism, fatty acid oxidation, metal metabolism, pyridoxine deficiency or dependency, or acidurias in organelles such as mitochondria and lysosomes. We discuss the biochemical, clinical, and EEG features of these disorders as well as the evidence of how they may be implicated in the pathogenesis and treatment of WS. The early recognition of these etiologies in some cases may permit early interventions that may improve the course of the disease.
Collapse
Affiliation(s)
- Seda Salar
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Solomon L. Moshé
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Department of PediatricsMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| | - Aristea S. Galanopoulou
- Laboratory of Developmental EpilepsySaul R. Korey Department of NeurologyMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
- Dominick P. Purpura Department of NeuroscienceMontefiore/Einstein Epilepsy CenterAlbert Einstein College of MedicineBronxNew YorkU.S.A.
| |
Collapse
|
164
|
Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation Tolerance and Mutational Architecture of the Corresponding Genes. Int J Mol Sci 2018; 19:ijms19061584. [PMID: 29861492 PMCID: PMC6032105 DOI: 10.3390/ijms19061584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/09/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
The biggest challenge geneticists face when applying next-generation sequencing technology to the diagnosis of rare diseases is determining which rare variants, from the dozens or hundreds detected, are potentially implicated in the patient’s phenotype. Thus, variant prioritization is an essential step in the process of rare disease diagnosis. In addition to conducting the usual in-silico analyses to predict variant pathogenicity (based on nucleotide/amino-acid conservation and the differences between the physicochemical features of the amino-acid change), three important concepts should be borne in mind. The first is the “mutation tolerance” of the genes in which variants are located. This describes the susceptibility of a given gene to any functional mutation and depends on the strength of purifying selection acting against it. The second is the “mutational architecture” of each gene. This describes the type and location of mutations previously identified in the gene, and their association with different phenotypes or degrees of severity. The third is the mode of inheritance (inherited vs. de novo) of the variants detected. Here, we discuss the importance of each of these concepts for variant prioritization in the diagnosis of rare diseases. Using real data, we show how genes, rather than variants, can be prioritized by calculating a gene-specific mutation tolerance score. We also illustrate the influence of mutational architecture on variant prioritization using five paradigmatic examples. Finally, we discuss the importance of familial variant analysis as final step in variant prioritization.
Collapse
|
165
|
Feng H, Khalil S, Neubig RR, Sidiropoulos C. A mechanistic review on GNAO1-associated movement disorder. Neurobiol Dis 2018; 116:131-141. [PMID: 29758257 DOI: 10.1016/j.nbd.2018.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in the GNAO1 gene cause a complex constellation of neurological disorders including epilepsy, developmental delay, and movement disorders. GNAO1 encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays major roles in synaptic neurotransmission and neurodevelopment. GNAO1 mutations were first reported in early infantile epileptic encephalopathy 17 (EIEE17) but are also associated with a more common syndrome termed neurodevelopmental disorder with involuntary movements (NEDIM). Here we review a mechanistic model in which loss-of-function (LOF) GNAO1 alleles cause epilepsy and gain-of-function (GOF) alleles are primarily associated with movement disorders. We also develop a signaling framework related to cyclic AMP (cAMP), synaptic vesicle release, and neural development and discuss gene mutations perturbing those mechanisms in a range of genetic movement disorders. Finally, we analyze clinical reports of patients carrying GNAO1 mutations with respect to their symptom onset and discuss pharmacological/surgical treatments in the context of our mechanistic model.
Collapse
Affiliation(s)
- Huijie Feng
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Suad Khalil
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard R Neubig
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Christos Sidiropoulos
- Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
166
|
Helbig I, Heinzen EL, Mefford HC. Genetic literacy series: Primer part 2-Paradigm shifts in epilepsy genetics. Epilepsia 2018; 59:1138-1147. [PMID: 29741288 DOI: 10.1111/epi.14193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2018] [Indexed: 01/05/2023]
Abstract
This is the second of a 2-part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy. In Part 1, we covered types of genetic variation, inheritance patterns, and their relationship to disease. In Part 2, we apply these basic principles to the case of a young boy with epileptic encephalopathy and ask 3 important questions: (1) Is the gene in question an established genetic etiology for epilepsy? (2) Is the variant in this particular gene pathogenic by established variant interpretation criteria? (3) Is the variant considered causative in the clinical context? These questions are considered and then answered for the clinical case in question.
Collapse
Affiliation(s)
- Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
167
|
Heinzen EL, O'Neill AC, Zhu X, Allen AS, Bahlo M, Chelly J, Chen MH, Dobyns WB, Freytag S, Guerrini R, Leventer RJ, Poduri A, Robertson SP, Walsh CA, Zhang M. De novo and inherited private variants in MAP1B in periventricular nodular heterotopia. PLoS Genet 2018; 14:e1007281. [PMID: 29738522 PMCID: PMC5965900 DOI: 10.1371/journal.pgen.1007281] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/23/2018] [Accepted: 02/27/2018] [Indexed: 11/19/2022] Open
Abstract
Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.
Collapse
Affiliation(s)
- Erin L. Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, United States of America
- * E-mail: Corresponding author on behalf of the Epi4K Consortium,
| | - Adam C. O'Neill
- Department of Women’s and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Xiaolin Zhu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, New York, United States of America
| | - Andrew S. Allen
- Center for Statistical Genetics and Genomics, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
| | - Jamel Chelly
- Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- IGBMC, INSERM U964, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ming Hui Chen
- Department of Cardiology and Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - William B. Dobyns
- Departments of Pediatrics and Neurology, University of Washington, Seattle, Washington, United States of America
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Saskia Freytag
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Renzo Guerrini
- Neuroscience Department, Children's Hospital Anna Meyer-University of Florence, Florence, Italy
| | - Richard J. Leventer
- Department of Neurology Royal Children’s Hospital, University of Melbourne, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Annapurna Poduri
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Stephen P. Robertson
- Department of Women’s and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mengqi Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, United States of America
| | | | | |
Collapse
|
168
|
Helbig I. Commentary: The genetic architecture of the epilepsies, as told by 8500 gene panels. Epilepsia 2018; 59:1072-1073. [DOI: 10.1111/epi.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ingo Helbig
- Division of Neurology The Children's Hospital of Philadelphia Philadelphia PA USA
| |
Collapse
|
169
|
Genetics of Epilepsy in the Era of Precision Medicine: Implications for Testing, Treatment, and Genetic Counseling. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0139-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
170
|
Sanders SJ, Campbell AJ, Cottrell JR, Moller RS, Wagner FF, Auldridge AL, Bernier RA, Catterall WA, Chung WK, Empfield JR, George AL, Hipp JF, Khwaja O, Kiskinis E, Lal D, Malhotra D, Millichap JJ, Otis TS, Petrou S, Pitt G, Schust LF, Taylor CM, Tjernagel J, Spiro JE, Bender KJ. Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci 2018; 41:442-456. [PMID: 29691040 DOI: 10.1016/j.tins.2018.03.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 01/20/2023]
Abstract
Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between genotype and phenotype. This insight can help guide therapeutic decisions and raises the possibility that ligands that selectively enhance or diminish channel function may improve symptoms. The well-defined function of sodium channels makes SCN2A an important test case for investigating the neurobiology of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Rikke S Moller
- The Danish Epilepsy Centre, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Angie L Auldridge
- FamilieSCN2a Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Wendy K Chung
- Simons Foundation, New York, NY 10010, USA; Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - James R Empfield
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joerg F Hipp
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Omar Khwaja
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Evangelos Kiskinis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Dheeraj Malhotra
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - John J Millichap
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas S Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Geoffrey Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Leah F Schust
- FamilieSCN2a Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Cora M Taylor
- Geisinger Health System, 100 North Academy Avenue, Danville, PA 17822, USA
| | | | | | - Kevin J Bender
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
171
|
Peng J, Wang Y, He F, Chen C, Wu LW, Yang LF, Ma YP, Zhang W, Shi ZQ, Chen C, Xia K, Guo H, Yin F, Pang N. Novel West syndrome candidate genes in a Chinese cohort. CNS Neurosci Ther 2018; 24:1196-1206. [PMID: 29667327 DOI: 10.1111/cns.12860] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/19/2022] Open
Abstract
AIMS West syndrome (WS) is a classic form of early infantile epileptic encephalopathy (EIEE) characterized by tonic spasms with clustering, arrest of psychomotor development, and hypsarrhythmia on electroencephalography. Genetic defects play a critical role in the pathology of WS, and 54 EIEE genes have been identified till date. This study was designed to uncover new candidate genes for West syndrome. METHODS In this study, we recruited 56 Chinese families with WS of unknown etiology. Whole exome sequencing (WES) was performed to identify Mendelian inheritance rare or novel variants. The association between candidate genes and WS was analyzed from many aspects, including recurrent genes in patients, predicted variant effect on genes, human tolerance to deficient genes, gene expression in the nervous system, coexpression with EIEE genes, mutual interaction with known EIEE proteins, genes related to ion channel or fragile X mental retardation protein function, and mouse models with manifestation of seizures. Genes with supporting evidence from those aspects were defined as highlight candidate genes. RESULTS Whole exome sequencing identified 112 candidate variants in 89 genes. Among the candidate genes, 33 were autosomal dominant, 22 were autosomal recessive, and 34 were X-linked. Complex bioinformatic analysis revealed 17 highlight candidate genes: ATP2A2, CD99L2, CLCN6, CYFIP1, CYFIP2, GNB1, GPT2, HUWE1, KMT2D, MYO18A, NOS3, RYR1, RYR2, RYR3, TAF1, TECTA, and UBA1. The majority of highlight candidate genes are calcium-signaling pathway and mental retardation genes. CONCLUSIONS This is the first WES study of Chinese WS patients with unknown etiology. This combination of phenotypic and genomic data will enable further testing to elucidate mechanisms underlying the pathogenesis of WS.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Wen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Fen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Ping Ma
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Qing Shi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Chen
- Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hui Guo
- Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
172
|
Kolnikova M, Skopkova M, Ilencikova D, Foltan T, Payerova J, Danis D, Klimes I, Stanik J, Gasperikova D. DNM1 encephalopathy − atypical phenotype with hypomyelination due to a novel de novo variant in the DNM1 gene. Seizure 2018; 56:31-33. [DOI: 10.1016/j.seizure.2018.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022] Open
|
173
|
Alphabet Soup: Recurrent De Novo Mutations in Novel Genes Causing Developmental and Epileptic Encephalopathies. Epilepsy Curr 2018; 18:125-127. [DOI: 10.5698/1535-7597.18.2.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
174
|
Gao Z, Xie H, Jiang Q, Wu N, Chen X, Chen Q. Identification of two novel null variants in CLN8 by targeted next-generation sequencing: first report of a Chinese patient with neuronal ceroid lipofuscinosis due to CLN8 variants. BMC MEDICAL GENETICS 2018; 19:21. [PMID: 29422019 PMCID: PMC5806251 DOI: 10.1186/s12881-018-0535-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/24/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) are one of the most frequent childhood-onset neurodegenerative pathologies characterized by seizures, progressive cognitive decline, motor impairment and loss of vision. For the past two decades, more than 430 variants in 13 candidate genes have been identified in the affected patients. Most of the variants were almost exclusively reported in Western patients, and very little clinical and genetic information was available for Chinese patients. CASE PRESENTATION We report a Chinese boy whose clinical phenotypes were suspected to be NCL, including intractable epilepsy, cognitive and motor decline and progressive vision loss. Using targeted next-generation sequencing, two novel null variants in CLN8 (c.298C > T, p.Gln100Ter; c.551G > A, p.Trp184Ter) were detected in this patient in trans model. These two variants were interpreted as pathogenic according to the variant guidelines of the American College of Medical Genetics and Genomics. CONCLUSIONS This is the first case report of NCL due to CLN8 variants in China. Our findings expand the variant diversity of CLN8 and demonstrate the tremendous diagnosis value of targeted next-generation sequencing for pediatric NCLs.
Collapse
Affiliation(s)
- Zhijie Gao
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, No. 2, Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Hua Xie
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Nan Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100020, China
| | - Xiaoli Chen
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Qian Chen
- Department of Neurology, Affiliated Children's Hospital of Capital Institute of Pediatrics, No. 2, Yabao Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
175
|
Vuillaume ML, Jeanne M, Xue L, Blesson S, Denommé-Pichon AS, Alirol S, Brulard C, Colin E, Isidor B, Gilbert-Dussardier B, Odent S, Parent P, Donnart A, Redon R, Bézieau S, Rondard P, Laumonnier F, Toutain A. A novel mutation in the transmembrane 6 domain of GABBR2 leads to a Rett-like phenotype. Ann Neurol 2018; 83:437-439. [PMID: 29369404 DOI: 10.1002/ana.25155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Marie-Laure Vuillaume
- Genetics Department, University Hospital Center, Tours.,UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Médéric Jeanne
- Genetics Department, University Hospital Center, Tours.,UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Li Xue
- Institute of Functional Genomics, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier
| | | | - Anne-Sophie Denommé-Pichon
- Genetics Department.,UMR INSERM 1083 - CNRS 6015, Faculty of Medicine, Angers University, Angers, France
| | - Servane Alirol
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Céline Brulard
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France.,Platform for Cancer Molecular Biology, University Hospital Center, Tours, France
| | - Estelle Colin
- Genetics Department.,UMR INSERM 1083 - CNRS 6015, Faculty of Medicine, Angers University, Angers, France
| | - Bertrand Isidor
- Genetics Department, University Hospital Center, Nantes, France.,INSERM, UMR-S 1238, Nantes University, Nantes, France
| | | | - Sylvie Odent
- Genetics Department, University Hospital Center, Rennes, France.,CNRS UMR 6290 Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes 1 University, Rennes
| | - Philippe Parent
- Genetics Department, University Hospital Center, Brest, France
| | - Audrey Donnart
- INSERM, CNRS, Nantes University, University Hospital Center, Thorax Institute, Nantes, France
| | - Richard Redon
- INSERM, CNRS, Nantes University, University Hospital Center, Thorax Institute, Nantes, France
| | - Stéphane Bézieau
- Genetics Department, University Hospital Center, Nantes, France.,Center for Research in Cancer and Immunology, INSERM, Angers University, Nantes University, Nantes, France
| | - Philippe Rondard
- Institute of Functional Genomics, CNRS UMR5203, INSERM U1191, Montpellier University, Montpellier
| | - Frédéric Laumonnier
- Genetics Department, University Hospital Center, Tours.,UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Annick Toutain
- Genetics Department, University Hospital Center, Tours.,UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| |
Collapse
|
176
|
Abstract
The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy. We focus largely on genetic epilepsies and the research that is discovering the mechanisms linking disease genes to epilepsy syndromes. We also describe the strides made toward developing novel pharmacological and interventional treatment strategies to treat these disorders. The research reviewed provides hope for a complete understanding of, and eventual cure for, these childhood epilepsy syndromes.
Collapse
Affiliation(s)
- MacKenzie A Howard
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Texas, 78712;
| | - Scott C Baraban
- Epilepsy Research Laboratory in the Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco, California 94143;
| |
Collapse
|
177
|
Brereton E, Fassi E, Araujo GC, Dodd J, Telegrafi A, Pathak SJ, Shinawi M. Mutations in the PH Domain of DNM1 are associated with a nonepileptic phenotype characterized by developmental delay and neurobehavioral abnormalities. Mol Genet Genomic Med 2018; 6:294-300. [PMID: 29397573 PMCID: PMC5902389 DOI: 10.1002/mgg3.362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background Dynamin 1 is a protein involved in the synaptic vesicle cycle, which facilitates the exocytosis of neurotransmitters necessary for normal signaling and development in the central nervous system. Pathogenic variants in DNM1 have been implicated in global developmental delay (DD), severe intellectual disability (ID), and notably, epileptic encephalopathy. All previously reported DNM1 pathogenic variants causing this severe phenotype occur in the GTPase and Middle domains of the dynamin 1 protein. Methods We used whole‐exome sequencing to characterize the molecular basis of DD and autistic symptoms in two identical siblings. Results The twin siblings exhibit mild to moderate ID and autistic symptoms but no epileptic encephalopathy. Exome sequencing revealed a genetic variant, c.1603A>G (p.Lys535Glu), in the PH domain of dynamin 1. Previous in vitro studies showed that mutations at Lys535 inhibit endocytosis and impair PH loop binding to PIP2. Conclusions Our data suggest a previously undescribed milder phenotype associated with a missense genetic variant in the PH domain of dynamin 1.
Collapse
Affiliation(s)
- Emily Brereton
- Washington University School of Medicine, St. Louis, MO, USA
| | - Emily Fassi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel C Araujo
- Department of Psychology, St Louis Children's Hospital, St. Louis, MO, USA
| | - Jonathan Dodd
- Department of Psychology, St Louis Children's Hospital, St. Louis, MO, USA
| | | | - Sheel J Pathak
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marwan Shinawi
- Washington University School of Medicine, St. Louis, MO, USA.,Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
178
|
Yoo Y, Cho J, Choi M. Reply to “a novel mutation in the transmembrane 6 domain of GABBR2
leads to a rett-like phenotype”. Ann Neurol 2018; 83:439. [DOI: 10.1002/ana.25154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/21/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Yongjin Yoo
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Jaeso Cho
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences; Seoul National University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
179
|
Fernández-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment. Curr Med Chem 2018; 25:404-432. [PMID: 28721829 PMCID: PMC5815091 DOI: 10.2174/0929867324666170718101946] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Approximately 25-50 million Americans, 30 million Europeans, and 8% of the Australian population have a rare disease. Rare diseases are thus a common problem for clinicians and account for enormous healthcare costs worldwide due to the difficulty of establishing a specific diagnosis. In this article, we review the milestones achieved in our understanding of rare diseases since the emergence of next-generation sequencing (NGS) technologies and analyze how these advances have influenced research and diagnosis. The first half of this review describes how NGS has changed diagnostic workflows and provided an unprecedented, simple way of discovering novel disease-associated genes. We focus particularly on metabolic and neurodevelopmental disorders. NGS has enabled cheap and rapid genetic diagnosis, highlighted the relevance of mosaic and de novo mutations, brought to light the wide phenotypic spectrum of most genes, detected digenic inheritance or the presence of more than one rare disease in the same patient, and paved the way for promising new therapies. In the second part of the review, we look at the limitations and challenges of NGS, including determination of variant causality, the loss of variants in coding and non-coding regions, and the detection of somatic mosaicism variants and epigenetic mutations, and discuss how these can be overcome in the near future.
Collapse
Affiliation(s)
- Ana Fernández-Marmiesse
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sofía Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
180
|
Smith L, Singhal N, El Achkar CM, Truglio G, Rosen Sheidley B, Sullivan J, Poduri A. PCDH19-related epilepsy is associated with a broad neurodevelopmental spectrum. Epilepsia 2018; 59:679-689. [PMID: 29377098 DOI: 10.1111/epi.14003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To characterize the features associated with PCDH19-related epilepsy, also known as "female-limited epilepsy." METHODS We analyzed data from participants enrolled in the PCDH19 Registry, focusing on the seizure-related, developmental, neurobehavioral, and sleep-related features. We evaluated variants for pathogenicity based on previous reports, population databases, and in silico predictions, and included individuals with pathogenic or potentially pathogenic variants. We performed a retrospective analysis of medical records and administered a targeted questionnaire to characterize current or past features in probands and genotype-positive family members. RESULTS We included 38 individuals with pathogenic or potentially pathogenic variants in PCDH19: 21 de novo, 5 maternally inherited, 7 paternally inherited, and 5 unknown. All 38 had epilepsy; seizure burden varied, but typical features of clustering of seizures and association with fever were present. Thirty individuals had intellectual disability (ID), with a wide range of severity reported; notably, 8/38 (22%) had average intellect. Behavioral and sleep dysregulation were prominent, in 29/38 (76%) and 20/38 (53%), respectively. Autistic features were present in 22/38 (58%), of whom 12 had a formal diagnosis of autism spectrum disorder. We had additional data from 5 genotype-positive mothers, all with average intellect and 3 with epilepsy, and from 1 genotype-positive father. SIGNIFICANCE Our series represents a robust cohort with carefully curated PCDH19 variants. We observed seizures as a core feature with a range of seizure types and severity. Whereas the majority of individuals had ID, we highlight the possibility of average intellect in the setting of PCDH19-related epilepsy. We also note the high prevalence and severity of neurobehavioral phenotypes associated with likely pathogenic variants in PCDH19. Sleep dysregulation was also a major area of concern. Our data emphasize the importance of appropriate referrals for formal neuropsychological evaluations as well as the need for formal prospective studies to characterize the PCDH19-related neurodevelopmental syndrome in children and their genotype-positive parents.
Collapse
Affiliation(s)
- Lacey Smith
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Neurogenetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Nilika Singhal
- Department of Neurology, Division of Epilepsy, University of California, San Francisco, San Francisco, CA, USA
| | - Christelle M El Achkar
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Neurogenetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Gessica Truglio
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Neurogenetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Joseph Sullivan
- Department of Neurology, Division of Epilepsy, University of California, San Francisco, San Francisco, CA, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Neurogenetics Program, Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA.,F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
181
|
Srivastava PK, Bagnati M, Delahaye-Duriez A, Ko JH, Rotival M, Langley SR, Shkura K, Mazzuferi M, Danis B, van Eyll J, Foerch P, Behmoaras J, Kaminski RM, Petretto E, Johnson MR. Genome-wide analysis of differential RNA editing in epilepsy. Genome Res 2018; 27:440-450. [PMID: 28250018 PMCID: PMC5340971 DOI: 10.1101/gr.210740.116] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 01/10/2017] [Indexed: 02/03/2023]
Abstract
The recoding of genetic information through RNA editing contributes to proteomic diversity, but the extent and significance of RNA editing in disease is poorly understood. In particular, few studies have investigated the relationship between RNA editing and disease at a genome-wide level. Here, we developed a framework for the genome-wide detection of RNA sites that are differentially edited in disease. Using RNA-sequencing data from 100 hippocampi from mice with epilepsy (pilocarpine–temporal lobe epilepsy model) and 100 healthy control hippocampi, we identified 256 RNA sites (overlapping with 87 genes) that were significantly differentially edited between epileptic cases and controls. The degree of differential RNA editing in epileptic mice correlated with frequency of seizures, and the set of genes differentially RNA-edited between case and control mice were enriched for functional terms highly relevant to epilepsy, including “neuron projection” and “seizures.” Genes with differential RNA editing were preferentially enriched for genes with a genetic association to epilepsy. Indeed, we found that they are significantly enriched for genes that harbor nonsynonymous de novo mutations in patients with epileptic encephalopathy and for common susceptibility variants associated with generalized epilepsy. These analyses reveal a functional convergence between genes that are differentially RNA-edited in acquired symptomatic epilepsy and those that contribute risk for genetic epilepsy. Taken together, our results suggest a potential role for RNA editing in the epileptic hippocampus in the occurrence and severity of epileptic seizures.
Collapse
Affiliation(s)
| | - Marta Bagnati
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | - Andree Delahaye-Duriez
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | - Jeong-Hun Ko
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | - Maxime Rotival
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris 75015, France
| | - Sarah R Langley
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Kirill Shkura
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| | | | | | | | - Patrik Foerch
- Neuroscience TA, UCB Pharma, 1420 Braine-l'Alleud, Belgium
| | - Jacques Behmoaras
- Centre for Complement and Inflammation Research (CCIR), Imperial College London, London W12 0NN, United Kingdom
| | | | - Enrico Petretto
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Michael R Johnson
- Division of Brain Sciences, Imperial College Faculty of Medicine, London W12 0NN, United Kingdom
| |
Collapse
|
182
|
Palmer EE, Schofield D, Shrestha R, Kandula T, Macintosh R, Lawson JA, Andrews I, Sampaio H, Johnson AM, Farrar MA, Cardamone M, Mowat D, Elakis G, Lo W, Zhu Y, Ying K, Morris P, Tao J, Dias KR, Buckley M, Dinger ME, Cowley MJ, Roscioli T, Kirk EP, Bye A, Sachdev RK. Integrating exome sequencing into a diagnostic pathway for epileptic encephalopathy: Evidence of clinical utility and cost effectiveness. Mol Genet Genomic Med 2018; 6:186-199. [PMID: 29314763 PMCID: PMC5902395 DOI: 10.1002/mgg3.355] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 12/16/2022] Open
Abstract
Background Epileptic encephalopathies are a devastating group of neurological conditions in which etiological diagnosis can alter management and clinical outcome. Exome sequencing and gene panel testing can improve diagnostic yield but there is no cost‐effectiveness analysis of their use or consensus on how to best integrate these tests into clinical diagnostic pathways. Methods We conducted a retrospective cost‐effectiveness study comparing trio exome sequencing with a standard diagnostic approach, for a well‐phenotyped cohort of 32 patients with epileptic encephalopathy, who remained undiagnosed after “first‐tier” testing. Sensitivity analysis was included with a range of commercial exome and multigene panels. Results The diagnostic yield was higher for the exome sequencing (16/32; 50%) than the standard arm (2/32; 6.2%). The trio exome sequencing pathway was cost‐effective compared to the standard diagnostic pathway with a cost saving of AU$5,236 (95% confidence intervals $2,482; $9,784) per additional diagnosis; the standard pathway cost approximately 10 times more per diagnosis. Sensitivity analysis demonstrated that the majority of commercial exome sequencing and multigene panels studied were also cost‐effective. The clinical utility of all diagnoses was reported. Conclusion Our study supports the integration of exome sequencing and gene panel testing into the diagnostic pathway for epileptic encephalopathy, both in terms of cost effectiveness and clinical utility. We propose a diagnostic pathway that integrates initial rapid screening for treatable causes and comprehensive genomic screening. This study has important implications for health policy and public funding for epileptic encephalopathy and other neurological conditions.
Collapse
Affiliation(s)
- Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia.,Genetics of Learning Disability Service, Waratah, NSW, Australia.,The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Deborah Schofield
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia.,Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,The Murdoch Children's Research Institute, Melbourne, Vic., Australia
| | - Rupendra Shrestha
- Faculty of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | | | - John A Lawson
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Ian Andrews
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Hugo Sampaio
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Alexandra M Johnson
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Michelle A Farrar
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - David Mowat
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | | | - William Lo
- SEALS pathology, Randwick, NSW, Australia
| | - Ying Zhu
- Genetics of Learning Disability Service, Waratah, NSW, Australia.,SEALS pathology, Randwick, NSW, Australia
| | - Kevin Ying
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Paula Morris
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Jiang Tao
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Kerith-Rae Dias
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia
| | | | - Marcel E Dinger
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Cowley
- The Garvan Institute for Medical Research, Darlinghurst, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW, Australia.,SEALS pathology, Randwick, NSW, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia.,SEALS pathology, Randwick, NSW, Australia
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW, Australia.,School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
183
|
Hoffman-Zacharska D, Górka-Skoczylas P. [Trends and expectations the research on the molecular background of epileptic encephalopathies - state of the art in 2017]. DEVELOPMENTAL PERIOD MEDICINE 2018; 21. [PMID: 29291359 PMCID: PMC8522928 DOI: 10.34763/devperiodmed.20172104.317327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Epilepsy is common neurological condition affecting 0.8-1% of the human population. Since 80% of patients are under 20 years of age, it is mainly a disease of the developmental period. The causes of epilepsy are heterogeneous, but the disease has always been considered a genetic disorder, which no longer doubted. Epilepsy genetics has undergone a revolution since the discovery of the first gene responsible for epilepsy. This is mainly because of introduction of the next generation sequencing as research and diagnostic tool, and transition from studies of pedigrees with epilepsy to the analysis of cases of epileptic encephalopathies. In a short time more than 50 early infantile epileptic encephalopathies were recognized due to the causative genes. Whole exome or targeted panel sequencing has been used as a diagnostic tool with a diagnostic yield of about 30-40%. The "genetic diagnosis" that is obtained makes it possible to introduce targeted treatment in an increasing number of cases. Since epileptic encephalopaties are often regarded as the model disease for epilepsy, these therapeutic strategies can provide treatment for patients with common epilepsies.
Collapse
Affiliation(s)
- Dorota Hoffman-Zacharska
- Zakład Genetyki Medycznej, Instytut Matki i Dziecka, Warszawa, Polska, Dorota Hoffman-Zacharska Zakład Genetyki Medycznej Instytut Matki i Dziecka ul. Kasprzaka 17A, 01-211 Warszawa tel. (22) 32-77-313, fax (22) 32-77-200
| | | |
Collapse
|
184
|
Two Studies, One Message: High Yield of Genetic Testing in Infants and Young Children With Severe Epilepsies. Epilepsy Curr 2018; 18:24-26. [PMID: 29844755 DOI: 10.5698/1535-7597.18.1.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
185
|
Jansen S, Hoischen A, Coe BP, Carvill GL, Van Esch H, Bosch DGM, Andersen UA, Baker C, Bauters M, Bernier RA, van Bon BW, Claahsen-van der Grinten HL, Gecz J, Gilissen C, Grillo L, Hackett A, Kleefstra T, Koolen D, Kvarnung M, Larsen MJ, Marcelis C, McKenzie F, Monin ML, Nava C, Schuurs-Hoeijmakers JH, Pfundt R, Steehouwer M, Stevens SJC, Stumpel CT, Vansenne F, Vinci M, van de Vorst M, Vries PD, Witherspoon K, Veltman JA, Brunner HG, Mefford HC, Romano C, Vissers LELM, Eichler EE, de Vries BBA. A genotype-first approach identifies an intellectual disability-overweight syndrome caused by PHIP haploinsufficiency. Eur J Hum Genet 2018; 26:54-63. [PMID: 29209020 PMCID: PMC5839042 DOI: 10.1038/s41431-017-0039-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/19/2017] [Accepted: 10/17/2017] [Indexed: 11/08/2022] Open
Abstract
Genotype-first combined with reverse phenotyping has shown to be a powerful tool in human genetics, especially in the era of next generation sequencing. This combines the identification of individuals with mutations in the same gene and linking these to consistent (endo)phenotypes to establish disease causality. We have performed a MIP (molecular inversion probe)-based targeted re-sequencing study in 3,275 individuals with intellectual disability (ID) to facilitate a genotype-first approach for 24 genes previously implicated in ID.Combining our data with data from a publicly available database, we confirmed 11 of these 24 genes to be relevant for ID. Amongst these, PHIP was shown to have an enrichment of disruptive mutations in the individuals with ID (5 out of 3,275). Through international collaboration, we identified a total of 23 individuals with PHIP mutations and elucidated the associated phenotype. Remarkably, all 23 individuals had developmental delay/ID and the majority were overweight or obese. Other features comprised behavioral problems (hyperactivity, aggression, features of autism and/or mood disorder) and dysmorphisms (full eyebrows and/or synophrys, upturned nose, large ears and tapering fingers). Interestingly, PHIP encodes two protein-isoforms, PHIP/DCAF14 and NDRP, each involved in neurodevelopmental processes, including E3 ubiquitination and neuronal differentiation. Detailed genotype-phenotype analysis points towards haploinsufficiency of PHIP/DCAF14, and not NDRP, as the underlying cause of the phenotype.Thus, we demonstrated the use of large scale re-sequencing by MIPs, followed by reverse phenotyping, as a constructive approach to verify candidate disease genes and identify novel syndromes, highlighted by PHIP haploinsufficiency causing an ID-overweight syndrome.
Collapse
Affiliation(s)
- Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Bradley P Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Hilde Van Esch
- Centre for Human Genetics, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Daniëlle G M Bosch
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Currently working at the Department of Genetics, University Medical Center Utrecht, Utrecht, 3584 CX, The Netherlands
| | - Ulla A Andersen
- Department of Psychiatry, Odense, Institute of clinical research, University of Southern Denmark, J.B. Winsløwsvej 18, 5000, Odense C, Denmark
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Marijke Bauters
- Centre for Human Genetics, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Raphael A Bernier
- Department of Psychiatry, University of Washington, Seattle, WA, USA
| | - Bregje W van Bon
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Jozef Gecz
- Adelaide Medical School and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Christian Gilissen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lucia Grillo
- Laboratory of Medical Genetics, Oasi Research Institute (IRCCS), Via Conte Ruggero, 73, Postal Code 94018, Troina, Italy
| | - Anna Hackett
- The GOLD service Hunter Genetics, University of Newcastle, Newcastle, NSW, Australia
| | - Tjitske Kleefstra
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - David Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 77, Stockholm, Sweden
| | - Martin J Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Fiona McKenzie
- School of Paediatrics and Child Health, The University of Western Australia, Crawley, WA, Australia
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Marie-Lorraine Monin
- Department of Genetics, Pitié-Salpêtrière University Hospital, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Caroline Nava
- Département de Génétique, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, 75013, Paris, France
- INSERM, U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, 75013, Paris, France
| | - Janneke H Schuurs-Hoeijmakers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marloes Steehouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Connie T Stumpel
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Fleur Vansenne
- Department of Genetics, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Mirella Vinci
- Laboratory of Medical Genetics, Oasi Research Institute (IRCCS), Via Conte Ruggero, 73, Postal Code 94018, Troina, Italy
| | - Maartje van de Vorst
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Petra de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Kali Witherspoon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Joris A Veltman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle, NE1 3BZ, United Kingdom
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Clinical Genetics and GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Corrado Romano
- Pediatrics and Medical Genetics, Oasi Research Institute (IRCCS), Via Conte Ruggero, 73, Postal Code 94018, Troina, Italy
| | - Lisenka E L M Vissers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
186
|
Szepetowski P. Genetics of human epilepsies: Continuing progress. Presse Med 2017; 47:218-226. [PMID: 29277263 DOI: 10.1016/j.lpm.2017.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/24/2017] [Indexed: 01/06/2023] Open
Abstract
Numerous epilepsy genes have been identified in the last years, mostly in the (rare) monogenic forms and thanks to the increased availability and the decreased cost of next-generation sequencing approaches. Besides the somehow expected group of epilepsy genes encoding various ion channel subunits (e.g. sodium or potassium channel subunits, or GABA receptors, or glutamate-gated NMDA receptors), more diversity has emerged recently, with novel epilepsy genes encoding proteins playing a wide range of physiological roles at the cellular and molecular levels, such as synaptic proteins, members of the mTOR pathway, or proteins involved in chromatin remodeling. The overall picture is somehow complicated: one given epilepsy gene can be associated with more than one epileptic phenotype, and with variable degrees of severity, from the benign to the severe forms (e.g. epileptic encephalopathies), and with various comorbid conditions such as migraine or autism spectrum of disorders. Conversely, one given epileptic syndrome may be associated with different genes, some of which have obvious links with each other (e.g. encoding different subunits of the same receptor) while other ones have no clear relationships. Also genomic copy number variations have been detected, some of which, albeit rare, may confer high risk to epilepsy. Whereas translation from gene identification to targeted medicine still remains challenging, progress in epilepsy genetics is currently revolutionizing genetic-based diagnosis and genetic counseling. Epilepsy gene identification also represents a key entry point to start in deciphering the underlying pathophysiological mechanisms via the design and the study of the most pertinent cellular and animal models - which may in turn provide proofs-of-principle for future applications in human epilepsies.
Collapse
Affiliation(s)
- Pierre Szepetowski
- Mediterranean Institute of Neurobiology (INMED), Inserm U901, parc scientifique de Luminy, BP 13, 13273 Marseille cedex 09, France.
| |
Collapse
|
187
|
Nguyen HT, Bryois J, Kim A, Dobbyn A, Huckins LM, Munoz-Manchado AB, Ruderfer DM, Genovese G, Fromer M, Xu X, Pinto D, Linnarsson S, Verhage M, Smit AB, Hjerling-Leffler J, Buxbaum JD, Hultman C, Sklar P, Purcell SM, Lage K, He X, Sullivan PF, Stahl EA. Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome Med 2017; 9:114. [PMID: 29262854 PMCID: PMC5738153 DOI: 10.1186/s13073-017-0497-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Integrating rare variation from trio family and case-control studies has successfully implicated specific genes contributing to risk of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), intellectual disability (ID), developmental disorders (DDs), and epilepsy (EPI). For schizophrenia (SCZ), however, while sets of genes have been implicated through the study of rare variation, only two risk genes have been identified. METHODS We used hierarchical Bayesian modeling of rare-variant genetic architecture to estimate mean effect sizes and risk-gene proportions, analyzing the largest available collection of whole exome sequence data for SCZ (1,077 trios, 6,699 cases, and 13,028 controls), and data for four NDDs (ASD, ID, DD, and EPI; total 10,792 trios, and 4,058 cases and controls). RESULTS For SCZ, we estimate there are 1,551 risk genes. There are more risk genes and they have weaker effects than for NDDs. We provide power analyses to predict the number of risk-gene discoveries as more data become available. We confirm and augment prior risk gene and gene set enrichment results for SCZ and NDDs. In particular, we detected 98 new DD risk genes at FDR < 0.05. Correlations of risk-gene posterior probabilities are high across four NDDs (ρ>0.55), but low between SCZ and the NDDs (ρ<0.3). An in-depth analysis of 288 NDD genes shows there is highly significant protein-protein interaction (PPI) network connectivity, and functionally distinct PPI subnetworks based on pathway enrichment, single-cell RNA-seq cell types, and multi-region developmental brain RNA-seq. CONCLUSIONS We have extended a pipeline used in ASD studies and applied it to infer rare genetic parameters for SCZ and four NDDs ( https://github.com/hoangtn/extTADA ). We find many new DD risk genes, supported by gene set enrichment and PPI network connectivity analyses. We find greater similarity among NDDs than between NDDs and SCZ. NDD gene subnetworks are implicated in postnatally expressed presynaptic and postsynaptic genes, and for transcriptional and post-transcriptional gene regulation in prenatal neural progenitor and stem cells.
Collapse
Affiliation(s)
- Hoang T. Nguyen
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - April Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
- Department of Surgery, Massachusetts General Hospital, Boston, 02114 MA USA
| | - Amanda Dobbyn
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Laura M. Huckins
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Ana B. Munoz-Manchado
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177 Sweden
| | - Douglas M. Ruderfer
- Division of Genetic Medicine, Departments of Medicine, Psychiatry and Biomedical Informatics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, 37235 TN USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
- Department of Genetics, Harvard Medical School, Cambridge, Massachusetts USA
| | - Menachem Fromer
- Verily Life Sciences, 269 E Grand Ave, South San Francisco, 94080 CA USA
| | - Xinyi Xu
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Dalila Pinto
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177 Sweden
| | - Matthijs Verhage
- Department of Functional Genomics, The Center for Neurogenomics and Cognitive Research, VU University and VU Medical Center, Amsterdam, The Netherlands
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, The Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177 Sweden
| | - Joseph D. Buxbaum
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Pamela Sklar
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
| | - Shaun M. Purcell
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- Sleep Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
- Department of Surgery, Massachusetts General Hospital, Boston, 02114 MA USA
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, 60637 IL USA
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, 27599-7264 North Carolina USA
| | - Eli A. Stahl
- Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, 10029 NY USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts USA
| |
Collapse
|
188
|
GRIN and Bear the Diverse Functional Effects of Rare NMDA Receptor Variants. Epilepsy Curr 2017; 17:381-383. [PMID: 29217988 DOI: 10.5698/1535-7597.17.6.381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
189
|
Harper CB, Mancini GMS, van Slegtenhorst M, Cousin MA. Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder. Neurobiol Dis 2017; 108:298-306. [PMID: 28887151 PMCID: PMC5673032 DOI: 10.1016/j.nbd.2017.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/27/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022] Open
Abstract
Following exocytosis, synaptic vesicles (SVs) have to be reformed with the correct complement of proteins in the correct stoichiometry to ensure continued neurotransmission. Synaptophysin is a highly abundant, integral SV protein necessary for the efficient retrieval of the SV SNARE protein, synaptobrevin II (sybII). However the molecular mechanism underpinning synaptophysin-dependent sybII retrieval is still unclear. We recently identified a male patient with severe intellectual disability, hypotonia, epilepsy and callosal agenesis who has a point mutation in the juxtamembrane region of the fourth transmembrane domain of synaptophysin (T198I). This mutation had no effect on the activity-dependent retrieval of synaptophysin that was tagged with the genetically-encoded pH-sensitive reporter (pHluorin) in synaptophysin knockout hippocampal cultures. This suggested the mutant has no global effect on SV endocytosis, which was confirmed when retrieval of a different SV cargo (the glutamate transporter vGLUT1) was examined. However neurons expressing this T198I mutant did display impaired activity-dependent sybII retrieval, similar to that observed in synaptophysin knockout neurons. Interestingly this impairment did not result in an increased stranding of sybII at the plasma membrane. Screening of known human synaptophysin mutations revealed a similar presynaptic phenotype between T198I and a mutation found in X-linked intellectual disability. Thus this novel human synaptophysin mutation has revealed that aberrant retrieval and increased plasma membrane localisation of SV cargo can be decoupled in human disease.
Collapse
Affiliation(s)
- Callista B Harper
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, 3015CN Rotterdam, The Netherlands
| | - Michael A Cousin
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Simonds Initiative for the Developing Brain, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
190
|
Katrancha SM, Wu Y, Zhu M, Eipper BA, Koleske AJ, Mains RE. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity. Hum Mol Genet 2017; 26:4728-4740. [PMID: 28973398 PMCID: PMC5886096 DOI: 10.1093/hmg/ddx355] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Sara M Katrancha
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, USA
| | - Minsheng Zhu
- Model Animal Research Center, Nanjing University, Nanjing 210061, China
| | - Betty A Eipper
- Department of Neuroscience
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Anthony J Koleske
- Interdepartmental Neuroscience Program
- Department of Neuroscience
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
191
|
Ortega-Moreno L, Giráldez BG, Soto-Insuga V, Losada-Del Pozo R, Rodrigo-Moreno M, Alarcón-Morcillo C, Sánchez-Martín G, Díaz-Gómez E, Guerrero-López R, Serratosa JM. Molecular diagnosis of patients with epilepsy and developmental delay using a customized panel of epilepsy genes. PLoS One 2017; 12:e0188978. [PMID: 29190809 PMCID: PMC5708701 DOI: 10.1371/journal.pone.0188978] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/16/2017] [Indexed: 12/30/2022] Open
Abstract
Pediatric epilepsies are a group of disorders with a broad phenotypic spectrum that are associated with great genetic heterogeneity, thus making sequential single-gene testing an impractical basis for diagnostic strategy. The advent of next-generation sequencing has increased the success rate of epilepsy diagnosis, and targeted resequencing using genetic panels is the a most cost-effective choice. We report the results found in a group of 87 patients with epilepsy and developmental delay using targeted next generation sequencing (custom-designed Haloplex panel). Using this gene panel, we were able to identify disease-causing variants in 17 out of 87 (19.5%) analyzed patients, all found in known epilepsy-associated genes (KCNQ2, CDKL5, STXBP1, SCN1A, PCDH19, POLG, SLC2A1, ARX, ALG13, CHD2, SYNGAP1, and GRIN1). Twelve of 18 variants arose de novo and 6 were novel. The highest yield was found in patients with onset in the first years of life, especially in patients classified as having early-onset epileptic encephalopathy. Knowledge of the underlying genetic cause provides essential information on prognosis and could be used to avoid unnecessary studies, which may result in a greater diagnostic cost-effectiveness.
Collapse
Affiliation(s)
- Laura Ortega-Moreno
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Beatriz G. Giráldez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Victor Soto-Insuga
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - María Rodrigo-Moreno
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Cristina Alarcón-Morcillo
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gema Sánchez-Martín
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Esther Díaz-Gómez
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Rosa Guerrero-López
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M. Serratosa
- Neurology Lab and Epilepsy Unit, Department of Neurology, IIS- Fundación Jiménez Díaz, UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | |
Collapse
|
192
|
Zhu X, Padmanabhan R, Copeland B, Bridgers J, Ren Z, Kamalakaran S, O'Driscoll-Collins A, Berkovic SF, Scheffer IE, Poduri A, Mei D, Guerrini R, Lowenstein DH, Allen AS, Heinzen EL, Goldstein DB. A case-control collapsing analysis identifies epilepsy genes implicated in trio sequencing studies focused on de novo mutations. PLoS Genet 2017; 13:e1007104. [PMID: 29186148 PMCID: PMC5724893 DOI: 10.1371/journal.pgen.1007104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 12/11/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Trio exome sequencing has been successful in identifying genes with de novo mutations (DNMs) causing epileptic encephalopathy (EE) and other neurodevelopmental disorders. Here, we evaluate how well a case-control collapsing analysis recovers genes causing dominant forms of EE originally implicated by DNM analysis. We performed a genome-wide search for an enrichment of "qualifying variants" in protein-coding genes in 488 unrelated cases compared to 12,151 unrelated controls. These "qualifying variants" were selected to be extremely rare variants predicted to functionally impact the protein to enrich for likely pathogenic variants. Despite modest sample size, three known EE genes (KCNT1, SCN2A, and STXBP1) achieved genome-wide significance (p<2.68×10−6). In addition, six of the 10 most significantly associated genes are known EE genes, and the majority of the known EE genes (17 out of 25) originally implicated in trio sequencing are nominally significant (p<0.05), a proportion significantly higher than the expected (Fisher’s exact p = 2.33×10−17). Our results indicate that a case-control collapsing analysis can identify several of the EE genes originally implicated in trio sequencing studies, and clearly show that additional genes would be implicated with larger sample sizes. The case-control analysis not only makes discovery easier and more economical in early onset disorders, particularly when large cohorts are available, but also supports the use of this approach to identify genes in diseases that present later in life when parents are not readily available. Trio exome sequencing and de novo mutation (DNM) analysis has been the main approach to discovering genes responsible for severe sporadic disorders, including a range of neurodevelopmental disorders. This approach requires sequencing parents, identifying DNMs from trio sequence data, and comparing the observed rate of DNMs to the expected. In this study, we adopted a case-control design, performed a gene-based collapsing analysis, and rediscovered several of the epileptic encephalopathy (EE) genes originally implicated by DNM analysis of EE trios. Our collapsing analysis focused on ultra-rare, highly impactful variants (“qualifying variants”) by filtering against large-scale population datasets, and this approach revealed that most of the standing variation can be filtered out and DNMs are enriched in “qualifying variants”. Our study suggests that a case-control analysis approach can be used to identify disease genes with causal mutations that are predominantly de novo in place of trio-based analysis methods. This offers an efficient and cost effective alternative approach when large-scale trio sequencing is not possible.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Raghavendra Padmanabhan
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Brett Copeland
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Joshua Bridgers
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - Sitharthan Kamalakaran
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | | | - Samuel F. Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne at Austin Health, Heidelberg, Australia
| | - Ingrid E. Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne at Austin Health, Heidelberg, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Heidelberg, Australia
- Departments of Paediatrics and Neurology, Royal Children's Hospital, University of Melbourne, Melbourne, Australia
| | - Annapurna Poduri
- Epilepsy Genetics Program and Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Davide Mei
- Pediatric Neurology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, Florence, Italy
| | - Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, Florence, Italy
- IRCCS Stella Maris Foundation, Pisa, Italy
| | - Daniel H. Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Andrew S. Allen
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, United States of America
| | - Erin L. Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, United States of America
- Department of Medicine, Royal College of Surgeons in Ireland, St Stephen's Green, Dublin, Ireland
- * E-mail:
| |
Collapse
|
193
|
Wu SZ, Ye H, Yang XG, Lu ZL, Qu Q, Qu J. Case-control pharmacogenetic study of HCN1/HCN2 variants and genetic generalized epilepsies. Clin Exp Pharmacol Physiol 2017; 45:226-233. [PMID: 29047147 DOI: 10.1111/1440-1681.12877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 11/27/2022]
Abstract
Epilepsy is a common complex neurological disorder, and some forms are resistant to drug treatment. The HCN1/HCN2 genes encode hyperpolarization-activated cyclic nucleotide-gated channels, which play important roles in the electrophysiology of neurons. We investigated the association between HCN1/HCN2 variants and drug resistance or the risk of genetic generalized epilepsies (GGEs). We used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to assess nine variants of HCN1/HCN2 in 284 healthy participants and 483 GGEs (279 drug-responsive, 204 drug-resistant). Frequencies of HCN2 rs7255568 and rs3752158 G alleles differed in GGEs and in controls (P = .039, P = .027, respectively). The frequency of HCN2 haplotype (CAC) was higher in patients than controls (P = .046). The frequency of the HCN1 rs10462087 CC+CT genotype was lower in patients with childhood absence epilepsy (CAE) than controls (P = .047). Rs7255568 was associated with the risk of CAE (P = .028) and juvenile myoclonic epilepsy (JME) (P = .02). Rs3752158 was associated with the risk of generalized tonic-clonic seizures, JME, and febrile seizures (all P < .05). The frequency of the HCN2 haplotype (CAC) was higher in patients with JME (P = .015) and in those with febrile seizures (P = .024) than in controls. No significant association was found between HCN1/HCN2 alleles, genotypes or haplotypes, and drug resistance in patients. After Bonferroni's multiple comparisons correction, only the HCN2 rs3752158 C allele and GC+CC genotype frequencies in patients with JME were higher than those in controls (19.2% vs 11.6%, odds ratio (OR) = 1.71, 95% CI = 1.18-2.32), P = .004 < 0.05/9; 36% vs 22.2%, OR = 1.62(1.18-2.23), P = .003 < 0.05/9). Our study suggests that HCN2 rs3752158 is involved in the susceptibility to JME.
Collapse
Affiliation(s)
- Shu-Zhi Wu
- Department of Neurology, The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou, China
| | - Hua Ye
- Department of Neurology, The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou, China
| | - Xiao-Guo Yang
- Department of Neurology, The Third Clinical Institute Affiliated to Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou, China
| | - Zhi-Li Lu
- Department of Pathology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
194
|
Cavalleri GL, Petrovski S, Fitzsimons M, Delanty N. eHealth as a Facilitator of Precision Medicine in Epilepsy. Biomed Hub 2017; 2:137-145. [PMID: 31988944 PMCID: PMC6945901 DOI: 10.1159/000481793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022] Open
Abstract
Epilepsy is a chronic neurological condition that affects approximately 50 million people worldwide. Current treatments are inadequate and around a third of patients continue to experience uncontrolled seizures. The genetic architecture of many of the epilepsies makes them amenable to next-generation sequencing technologies, enabling a molecular diagnosis in an increasing proportion of patients. As a result, rare but remarkable examples of precision therapeutics in epilepsy are emerging. Coordinated research efforts are required to increase the diagnostic yield of sequencing and translate diagnosis to improved prognosis. This review explores the potential of eHealth technologies in facilitating and accelerating precision therapeutics in epilepsy. We describe the state of the art in precision diagnostics and therapeutics in epilepsy and identify opportunities for eHealth to accelerate the realisation of precision therapeutics via patient registries, research-enabled electronic health records, and connected health solutions.
Collapse
Affiliation(s)
- Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.,The FutureNeuro Research Centre, Dublin, Ireland
| | - Slave Petrovski
- Department of Medicine, The University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mary Fitzsimons
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland.,The FutureNeuro Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland.,The FutureNeuro Research Centre, Dublin, Ireland
| |
Collapse
|
195
|
Jin ZB, Li Z, Liu Z, Jiang Y, Cai XB, Wu J. Identification of de novo germline mutations and causal genes for sporadic diseases using trio-based whole-exome/genome sequencing. Biol Rev Camb Philos Soc 2017; 93:1014-1031. [PMID: 29154454 DOI: 10.1111/brv.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022]
Abstract
Whole-genome or whole-exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functional effects of DNMs remains limited and accurately identifying the disease-causing DNM from a group of irrelevant DNMs is complicated. Herein, we provide a general-purpose discussion of important issues related to pathogenic gene identification based on trio-based WGS/WES data. Specifically, the relevance of DNMs to human sporadic diseases, current knowledge of DNM biogenesis mechanisms, and common strategies or software tools used for DNM detection are reviewed, followed by a discussion of pathogenic gene prioritization. In addition, several key factors that may affect DNM identification accuracy and causal gene prioritization are reviewed. Based on recent major advances, this review both sheds light on how trio-based WGS/WES technologies can play a significant role in the identification of DNMs and causal genes for sporadic diseases, and also discusses existing challenges.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.,State Key Laboratory of Ophthalmology Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xue-Bi Cai
- Division of Ophthalmic Genetics, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.,State Key Laboratory of Ophthalmology Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
196
|
Hamdan FF, Myers CT, Cossette P, Lemay P, Spiegelman D, Laporte AD, Nassif C, Diallo O, Monlong J, Cadieux-Dion M, Dobrzeniecka S, Meloche C, Retterer K, Cho MT, Rosenfeld JA, Bi W, Massicotte C, Miguet M, Brunga L, Regan BM, Mo K, Tam C, Schneider A, Hollingsworth G, FitzPatrick DR, Donaldson A, Canham N, Blair E, Kerr B, Fry AE, Thomas RH, Shelagh J, Hurst JA, Brittain H, Blyth M, Lebel RR, Gerkes EH, Davis-Keppen L, Stein Q, Chung WK, Dorison SJ, Benke PJ, Fassi E, Corsten-Janssen N, Kamsteeg EJ, Mau-Them FT, Bruel AL, Verloes A, Õunap K, Wojcik MH, Albert DV, Venkateswaran S, Ware T, Jones D, Liu YC, Mohammad SS, Bizargity P, Bacino CA, Leuzzi V, Martinelli S, Dallapiccola B, Tartaglia M, Blumkin L, Wierenga KJ, Purcarin G, O’Byrne JJ, Stockler S, Lehman A, Keren B, Nougues MC, Mignot C, Auvin S, Nava C, Hiatt SM, Bebin M, Shao Y, Scaglia F, Lalani SR, Frye RE, Jarjour IT, Jacques S, Boucher RM, Riou E, Srour M, Carmant L, Lortie A, Major P, Diadori P, Dubeau F, D’Anjou G, Bourque G, Berkovic SF, Sadleir LG, Campeau PM, Kibar Z, Lafrenière RG, Girard SL, Mercimek-Mahmutoglu S, Boelman C, Rouleau GA, Scheffer IE, Mefford HC, Andrade DM, Rossignol E, Minassian BA, Michaud JL, Michaud JL. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies. Am J Hum Genet 2017; 101:664-685. [PMID: 29100083 DOI: 10.1016/j.ajhg.2017.09.008] [Citation(s) in RCA: 308] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/11/2017] [Indexed: 12/30/2022] Open
Abstract
Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques L Michaud
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T1C5, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC H3T1J4, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T1C5, Canada.
| |
Collapse
|
197
|
Rosenow F, van Alphen N, Becker A, Chiocchetti A, Deichmann R, Deller T, Freiman T, Freitag CM, Gehrig J, Hermsen AM, Jedlicka P, Kell C, Klein KM, Knake S, Kullmann DM, Liebner S, Norwood BA, Omigie D, Plate K, Reif A, Reif PS, Reiss Y, Roeper J, Ronellenfitsch MW, Schorge S, Schratt G, Schwarzacher SW, Steinbach JP, Strzelczyk A, Triesch J, Wagner M, Walker MC, von Wegner F, Bauer S. Personalized translational epilepsy research - Novel approaches and future perspectives: Part I: Clinical and network analysis approaches. Epilepsy Behav 2017; 76:13-18. [PMID: 28917501 DOI: 10.1016/j.yebeh.2017.06.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 01/01/2023]
Abstract
Despite the availability of more than 15 new "antiepileptic drugs", the proportion of patients with pharmacoresistant epilepsy has remained constant at about 20-30%. Furthermore, no disease-modifying treatments shown to prevent the development of epilepsy following an initial precipitating brain injury or to reverse established epilepsy have been identified to date. This is likely in part due to the polyetiologic nature of epilepsy, which in turn requires personalized medicine approaches. Recent advances in imaging, pathology, genetics and epigenetics have led to new pathophysiological concepts and the identification of monogenic causes of epilepsy. In the context of these advances, the First International Symposium on Personalized Translational Epilepsy Research (1st ISymPTER) was held in Frankfurt on September 8, 2016, to discuss novel approaches and future perspectives for personalized translational research. These included new developments and ideas in a range of experimental and clinical areas such as deep phenotyping, quantitative brain imaging, EEG/MEG-based analysis of network dysfunction, tissue-based translational studies, innate immunity mechanisms, microRNA as treatment targets, functional characterization of genetic variants in human cell models and rodent organotypic slice cultures, personalized treatment approaches for monogenic epilepsies, blood-brain barrier dysfunction, therapeutic focal tissue modification, computational modeling for target and biomarker identification, and cost analysis in (monogenic) disease and its treatment. This report on the meeting proceedings is aimed at stimulating much needed investments of time and resources in personalized translational epilepsy research. Part I includes the clinical phenotyping and diagnostic methods, EEG network-analysis, biomarkers, and personalized treatment approaches. In Part II, experimental and translational approaches will be discussed (Bauer et al., 2017) [1].
Collapse
Affiliation(s)
- Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1).
| | - Natascha van Alphen
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Albert Becker
- Institute for Neuropathology, University Bonn, 53105 Bonn, Germany
| | - Andreas Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Ralf Deichmann
- Brain Imaging Center (BIC) Frankfurt, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Thomas Freiman
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Johannes Gehrig
- Emmy-Noether Group Kell, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Anke M Hermsen
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Christian Kell
- Emmy-Noether Group Kell, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Susanne Knake
- Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Dimitri M Kullmann
- Institute of Neurology, University College London (UCL), London WC1E 6BT, United Kingdom
| | - Stefan Liebner
- Edinger-Institute Frankfurt, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Braxton A Norwood
- Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany
| | - Diana Omigie
- Max-Planck-Institute for Empirical Aesthetics, 60322 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Karlheinz Plate
- Edinger-Institute Frankfurt, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Andreas Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Philipp S Reif
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Yvonne Reiss
- Edinger-Institute Frankfurt, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Jochen Roeper
- Institute of Neurophysiology, Neuroscience Center, Goethe-University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Michael W Ronellenfitsch
- Dr. Senckenberg Institute for Neurooncology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Stephanie Schorge
- Institute of Neurology, University College London (UCL), London WC1E 6BT, United Kingdom
| | - Gerhard Schratt
- Institute of Physiological Chemistry, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Stephan W Schwarzacher
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University Frankfurt, 60590 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Joachim P Steinbach
- Dr. Senckenberg Institute for Neurooncology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies (FIAS), 60438 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Marlies Wagner
- Institute of Neuroradiology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Matthew C Walker
- Institute of Neurology, University College London (UCL), London WC1E 6BT, United Kingdom
| | - Frederic von Wegner
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| | - Sebastian Bauer
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, Goethe University Frankfurt, 60528 Frankfurt, Germany; Epilepsy Center Marburg, Department of Neurology, Philipps-University Marburg, 35043 Marburg, Germany; Center for Personalized Translational Epilepsy Research (CePTER), 60528 Frankfurt, Germany(1)
| |
Collapse
|
198
|
Marini C, Hardies K, Pisano T, May P, Weckhuysen S, Cellini E, Suls A, Mei D, Balling R, Jonghe PD, Helbig I, Garozzo D, Guerrini R. Recessive mutations in SLC35A3 cause early onset epileptic encephalopathy with skeletal defects. Am J Med Genet A 2017; 173:1119-1123. [PMID: 28328131 DOI: 10.1002/ajmg.a.38112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022]
Abstract
We describe the clinical and whole genome sequencing (WGS) study of a non-consanguineous Italian family in which two siblings, a boy and a girl, manifesting a severe epileptic encephalopathy (EE) with skeletal abnormalities, carried novel SLC35A3 compound heterozygous mutations. Both siblings exhibited infantile spasms, associated with focal, and tonic vibratory seizures from early infancy. EEG recordings showed a suppression-burst (SB) pattern and multifocal paroxysmal activity in both. In addition both had quadriplegia, acquired microcephaly, and severe intellectual disability. General examination showed distal arthrogryposis predominant in the hands in both siblings and severe left dorso-lumbar convex scoliosis in one. WGS of the siblings-parents quartet identified novel compound heterozygous mutations in SLC35A3 in both children. SLC35A3 encodes the major Golgi uridine diphosphate N-acetylglucosamine transporter. With this study, we add SLC35A3 to the gene list of epilepsies. Neurological symptoms and skeletal abnormalities might result from impaired glycosylation of proteins involved in normal development and function of the central nervous system and skeletal apparatus.
Collapse
Affiliation(s)
- Carla Marini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Katia Hardies
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Tiziana Pisano
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg.,Institute for Systems Biology (ISB), Seattle, Washington
| | - Sarah Weckhuysen
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Elena Cellini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Arvid Suls
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Davide Mei
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg, Luxembourg
| | - Peter D Jonghe
- Neurogenetics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium.,Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Division of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany.,Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Domenico Garozzo
- CNR, Institute of Chemistry and Technology of Polymers, Section of Catania, Catania, Italy
| | | | - Renzo Guerrini
- Neurology Unit and Neurogenetics Laboratories, Meyer Children Hospital, Florence, Italy.,University of Florence, Florence, Italy
| |
Collapse
|
199
|
Myers CT, Stong N, Mountier EI, Helbig KL, Freytag S, Sullivan JE, Ben Zeev B, Nissenkorn A, Tzadok M, Heimer G, Shinde DN, Rezazadeh A, Regan BM, Oliver KL, Ernst ME, Lippa NC, Mulhern MS, Ren Z, Poduri A, Andrade DM, Bird LM, Bahlo M, Berkovic SF, Lowenstein DH, Scheffer IE, Sadleir LG, Goldstein DB, Mefford HC, Heinzen EL. De Novo Mutations in PPP3CA Cause Severe Neurodevelopmental Disease with Seizures. Am J Hum Genet 2017; 101:516-524. [PMID: 28942967 DOI: 10.1016/j.ajhg.2017.08.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
Exome sequencing has readily enabled the discovery of the genetic mutations responsible for a wide range of diseases. This success has been particularly remarkable in the severe epilepsies and other neurodevelopmental diseases for which rare, often de novo, mutations play a significant role in disease risk. Despite significant progress, the high genetic heterogeneity of these disorders often requires large sample sizes to identify a critical mass of individuals with disease-causing mutations in a single gene. By pooling genetic findings across multiple studies, we have identified six individuals with severe developmental delay (6/6), refractory seizures (5/6), and similar dysmorphic features (3/6), each harboring a de novo mutation in PPP3CA. PPP3CA encodes the alpha isoform of a subunit of calcineurin. Calcineurin encodes a calcium- and calmodulin-dependent serine/threonine protein phosphatase that plays a role in a wide range of biological processes, including being a key regulator of synaptic vesicle recycling at nerve terminals. Five individuals with de novo PPP3CA mutations were identified among 4,760 trio probands with neurodevelopmental diseases; this is highly unlikely to occur by chance (p = 1.2 × 10-8) given the size and mutability of the gene. Additionally, a sixth individual with a de novo mutation in PPP3CA was connected to this study through GeneMatcher. Based on these findings, we securely implicate PPP3CA in early-onset refractory epilepsy and further support the emerging role for synaptic dysregulation in epilepsy.
Collapse
Affiliation(s)
- Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Emily I Mountier
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | | | - Saskia Freytag
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Joseph E Sullivan
- Department of Neurology & Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bruria Ben Zeev
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andreea Nissenkorn
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michal Tzadok
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gali Heimer
- Sheba Medical Center, Ramat Gan, Israel, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Arezoo Rezazadeh
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Brigid M Regan
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Karen L Oliver
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Natalie C Lippa
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Zhong Ren
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Danielle M Andrade
- Division of Neurology, Epilepsy Genetics Research Program, Toronto Western Hospital, Krembil Neuroscience Centre, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Lynne M Bird
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92037, USA; Rady Children's Hospital, San Diego, CA 92037, USA
| | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Daniel H Lowenstein
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia; Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington 6242, New Zealand
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
200
|
Cross JH, Auvin S, Falip M, Striano P, Arzimanoglou A. Expert Opinion on the Management of Lennox-Gastaut Syndrome: Treatment Algorithms and Practical Considerations. Front Neurol 2017; 8:505. [PMID: 29085326 PMCID: PMC5649136 DOI: 10.3389/fneur.2017.00505] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Lennox–Gastaut syndrome (LGS) is a severe epileptic and developmental encephalopathy that is associated with a high rate of morbidity and mortality. It is characterized by multiple seizure types, abnormal electroencephalographic features, and intellectual disability. Although intellectual disability and associated behavioral problems are characteristic of LGS, they are not necessarily present at its outset and are therefore not part of its diagnostic criteria. LGS is typically treated with a variety of pharmacological and non-pharmacological therapies, often in combination. Management and treatment decisions can be challenging, due to the multiple seizure types and comorbidities associated with the condition. A panel of five epileptologists met to discuss consensus recommendations for LGS management, based on the latest available evidence from literature review and clinical experience. Treatment algorithms were formulated. Current evidence favors the continued use of sodium valproate (VPA) as the first-line treatment for patients with newly diagnosed de novo LGS. If VPA is ineffective alone, evidence supports lamotrigine, or subsequently rufinamide, as adjunctive therapy. If seizure control remains inadequate, the choice of next adjunctive antiepileptic drug (AED) should be discussed with the patient/parent/caregiver/clinical team, as current evidence is limited. Non-pharmacological therapies, including resective surgery, the ketogenic diet, vagus nerve stimulation, and callosotomy, should be considered for use alongside AED therapy from the outset of treatment. For patients with LGS that has evolved from another type of epilepsy who are already being treated with an AED other than VPA, VPA therapy should be considered if not trialed previously. Thereafter, the approach for a de novo patient should be followed. Where possible, no more than two AEDs should be used concomitantly. Patients with established LGS should undergo review by a neurologist specialized in epilepsy on at least an annual basis, including a thorough reassessment of their diagnosis and treatment plan. Clinicians should always be vigilant to the possibility of treatable etiologies and alert to the possibility that a patient’s diagnosis may change, since the seizure types and electroencephalographic features that characterize LGS evolve over time. To date, available treatments are unlikely to lead to seizure remission in the majority of patients and therefore the primary focus of treatment should always be optimization of learning, behavioral management, and overall quality of life.
Collapse
Affiliation(s)
- J Helen Cross
- Clinical Neurosciences Section, UCL Institute of Child Health, ERN EpiCARE, London, United Kingdom
| | | | - Mercè Falip
- Epilepsy Unit, Neurology Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, G. Gaslini Institute, Genoa, Italy
| | - Alexis Arzimanoglou
- Epilepsy Unit, Child Neurology Department, Hospital San Juan de Déu, ERN EpiCARE, Barcelona, Spain.,Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| |
Collapse
|