151
|
Giovanoli S, Weber-Stadlbauer U, Schedlowski M, Meyer U, Engler H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav Immun 2016; 55:25-38. [PMID: 26408796 DOI: 10.1016/j.bbi.2015.09.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/11/2022] Open
Abstract
Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation.
Collapse
Affiliation(s)
- Sandra Giovanoli
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - Ulrike Weber-Stadlbauer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Urs Meyer
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland; Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
152
|
Eyo UB, Miner SA, Weiner JA, Dailey ME. Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus. Brain Behav Immun 2016; 55:49-59. [PMID: 26576723 PMCID: PMC4864211 DOI: 10.1016/j.bbi.2015.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/09/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
During CNS development, microglia transform from highly mobile amoeboid-like cells to primitive ramified forms and, finally, to highly branched but relatively stationary cells in maturity. The factors that control developmental changes in microglia are largely unknown. Because microglia detect and clear apoptotic cells, developmental changes in microglia may be controlled by neuronal apoptosis. Here, we assessed the extent to which microglial cell density, morphology, motility, and migration are regulated by developmental apoptosis, focusing on the first postnatal week in the mouse hippocampus when the density of apoptotic bodies peaks at postnatal day 4 and declines sharply thereafter. Analysis of microglial form and distribution in situ over the first postnatal week showed that, although there was little change in the number of primary microglial branches, microglial cell density increased significantly, and microglia were often seen near or engulfing apoptotic bodies. Time-lapse imaging in hippocampal slices harvested at different times over the first postnatal week showed differences in microglial motility and migration that correlated with the density of apoptotic bodies. The extent to which these changes in microglia are driven by developmental neuronal apoptosis was assessed in tissues from BAX null mice lacking apoptosis. We found that apoptosis can lead to local microglial accumulation near apoptotic neurons in the pyramidal cell body layer but, unexpectedly, loss of apoptosis did not alter overall microglial cell density in vivo or microglial motility and migration in ex vivo tissue slices. These results demonstrate that developmental changes in microglial form, distribution, motility, and migration occur essentially normally in the absence of developmental apoptosis, indicating that factors other than neuronal apoptosis regulate these features of microglial development.
Collapse
|
153
|
Luo C, Koyama R, Ikegaya Y. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 2016; 64:1508-17. [PMID: 27301702 DOI: 10.1002/glia.23018] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Microglia, which are the brain's resident immune cells, engulf dead neural progenitor cells during adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus (DG). The number of newborn cells in the SGZ increases significantly after status epilepticus (SE), but whether and how microglia regulate the number of newborn cells after SE remain unclear. Here, we show that microglia rapidly eliminate newborn cells after SE by primary phagocytosis, a process by which viable cells are engulfed, thereby regulating the number of newborn cells that are incorporated into the DG. The number of newborn cells in the DG was increased at 5 days after SE in the adult mouse brain but rapidly decreased to the control levels within a week. During this period, microglia in the DG were highly active and engulfed newborn cells. We found that the majority of engulfed newborn cells were caspase-negative viable cells. Finally, inactivation of microglia with minocycline maintained the increase in the number of newborn cells after SE. Furthermore, minocycline treatment after SE induced the emergence of hilar ectopic granule cells. Thus, our findings suggest that microglia may contribute to homeostasis of the dentate neurogenic niche by eliminating excess newborn cells after SE via primary phagocytosis. GLIA 2016;64:1508-1517.
Collapse
Affiliation(s)
- Cong Luo
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| |
Collapse
|
154
|
Tremblay ME, Zhang I, Bisht K, Savage JC, Lecours C, Parent M, Titorenko V, Maysinger D. Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells. J Neuroinflammation 2016; 13:116. [PMID: 27220286 PMCID: PMC4879742 DOI: 10.1186/s12974-016-0580-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
Background Organelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA’s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles. Results We used electron microscopy to analyze at high spatial resolution organelle changes in N9 microglial cells exposed to the proinflammogen LPS, with or without DHA supplementation. Our results revealed that DHA reverses several effects of LPS in organelles. In particular, a large number of very small and grouped LBs was exclusively found in microglial cells exposed to DHA. In contrast, LBs in LPS-stimulated cells in the absence of DHA were sparse and large. LBs formed in the presence of DHA were generally electron-dense, suggesting DHA incorporation into these organelles. The accumulation of LBs in microglial cells from mouse and human was confirmed in situ. In addition, DHA induced numerous contacts between LBs and mitochondria and reversed the frequent disruption of mitochondrial integrity observed upon LPS stimulation. Dilation of the endoplasmic reticulum lumen was also infrequent following DHA treatment, suggesting that DHA reduces oxidative stress and protein misfolding. Lipidomic analysis in N9 microglial cells treated with DHA revealed an increase in phosphatidylserine, indicating the role of this phospholipid in normalization and maintenance of physiological membrane functions. This finding was supported by a marked reduction of microglial filopodia and endosome number and significant reduction of LPS-induced phagocytosis. Conclusions DHA attenuates the inflammatory response in LPS-stimulated microglial cells by remodeling LBs and altering their interplay with mitochondria and other associated organelles. Our findings point towards a mechanism by which omega-3 DHA participates in organelle reorganization and contributes to the maintenance of neural cell homeostasis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0580-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie-Eve Tremblay
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada.
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Kanchan Bisht
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Julie C Savage
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Cynthia Lecours
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, Québec, QC, Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
155
|
Preventive effects of minocycline in a neurodevelopmental two-hit model with relevance to schizophrenia. Transl Psychiatry 2016; 6:e772. [PMID: 27045842 PMCID: PMC4872396 DOI: 10.1038/tp.2016.38] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/23/2015] [Accepted: 02/22/2016] [Indexed: 12/25/2022] Open
Abstract
Maternal immune activation can increase the vulnerability of the offspring to develop neuroimmune and behavioral abnormalities in response to stress in puberty. In offspring of immune-challenged mothers, stress-induced inflammatory processes precede the adult onset of multiple behavioral dysfunctions. Here, we explored whether an early anti-inflammatory intervention during peripubertal stress exposure might prevent the subsequent emergence of adult behavioral pathology. We used an environmental two-hit model in mice, in which prenatal maternal administration of the viral mimetic poly(I:C) served as the first hit, and exposure to sub-chronic unpredictable stress during peripubertal maturation as the second hit. Using this model, we examined the effectiveness of the tetracycline antibiotic minocycline (MINO) given during stress exposure to block stress-induced inflammatory responses and to prevent subsequent behavioral abnormalities. We found that combined exposure to prenatal immune activation and peripubertal stress caused significant deficits in prepulse inhibition and increased sensitivity to the psychotomimetic drugs amphetamine and dizocilpine in adulthood. MINO treatment during stress exposure prevented the emergence of these behavioral dysfunctions. In addition, the pharmacological intervention blocked hippocampal and prefrontal microglia activation and interleukin-1β expression in offspring exposed to prenatal infection and peripubertal stress. Together, these findings demonstrate that presymptomatic MINO treatment can prevent the subsequent emergence of multiple behavioral abnormalities relevant to human neuropsychiatric disorders with onset in early adulthood, including schizophrenia. Our epidemiologically informed two-hit model may thus encourage attempts to explore the use of anti-inflammatory agents in the early course of brain disorders that are characterized by signs of central nervous system inflammation during development.
Collapse
|
156
|
The clearance of dying cells: table for two. Cell Death Differ 2016; 23:915-26. [PMID: 26990661 PMCID: PMC4987729 DOI: 10.1038/cdd.2015.172] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/19/2022] Open
Abstract
Phagocytic cells of the immune system must constantly survey for, recognize, and efficiently clear the billions of cellular corpses that arise as a result of development, stress, infection, or normal homeostasis. This process, termed efferocytosis, is critical for the prevention of autoimmune and inflammatory disorders, and persistence of dead cells in tissue is characteristic of many human autoimmune diseases, notably systemic lupus erythematosus. The most notable characteristic of the efferocytosis of apoptotic cells is its ‘immunologically silent' response. Although the mechanisms by which phagocytes facilitate engulfment of dead cells has been a well-studied area, the pathways that coordinate to process the ingested corpse and direct the subsequent immune response is an area of growing interest. The recently described pathway of LC3 (microtubule-associated protein 1A/1B-light chain 3)-associated phagocytosis (LAP) has shed some light on this issue. LAP is triggered when an extracellular particle, such as a dead cell, engages an extracellular receptor during phagocytosis, induces the translocation of autophagy machinery, and ultimately LC3 to the cargo-containing phagosome, termed the LAPosome. In this review, we will examine efferocytosis and the impact of LAP on efferocytosis, allowing us to reimagine the impact of the autophagy machinery on innate host defense mechanisms.
Collapse
|
157
|
Rea K, Dinan TG, Cryan JF. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol Stress 2016; 4:23-33. [PMID: 27981187 PMCID: PMC5146205 DOI: 10.1016/j.ynstr.2016.03.001] [Citation(s) in RCA: 317] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 02/06/2023] Open
Abstract
There is a growing emphasis on the relationship between the complexity and diversity of the microorganisms that inhabit our gut (human gastrointestinal microbiota) and health/disease, including brain health and disorders of the central nervous system. The microbiota-gut-brain axis is a dynamic matrix of tissues and organs including the brain, glands, gut, immune cells and gastrointestinal microbiota that communicate in a complex multidirectional manner to maintain homeostasis. Changes in this environment can lead to a broad spectrum of physiological and behavioural effects including hypothalamic-pituitary-adrenal (HPA) axis activation, and altered activity of neurotransmitter systems and immune function. While an appropriate, co-ordinated physiological response, such as an immune or stress response are necessary for survival, a dysfunctional response can be detrimental to the host contributing to the development of a number of CNS disorders. In this review, the involvement of the gastrointestinal microbiota in stress-mediated and immune-mediated modulation of neuroendocrine, immune and neurotransmitter systems and the consequential behaviour is considered. We also focus on the mechanisms by which commensal gut microbiota can regulate neuroinflammation and further aim to exploit our understanding of their role in stress-related disorders as a consequence of neuroinflammatory processes.
Collapse
Affiliation(s)
- Kieran Rea
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
158
|
Edmonson CA, Ziats MN, Rennert OM. A Non-inflammatory Role for Microglia in Autism Spectrum Disorders. Front Neurol 2016; 7:9. [PMID: 26869989 PMCID: PMC4734207 DOI: 10.3389/fneur.2016.00009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/19/2016] [Indexed: 12/25/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, difficulties with language, and repetitive/restricted behaviors. The etiology of ASD is still largely unclear, but immune dysfunction and abnormalities in synaptogenesis have repeatedly been implicated as contributing to the disease phenotype. However, an understanding of how and if these two processes are related has not firmly been established. As non-inflammatory roles of microglia become increasingly recognized as critical to normal neurodevelopment, it is important to consider how dysfunction in these processes might explain the seemingly disparate findings of immune dysfunction and aberrant synaptogenesis seen in ASD. In this review, we highlight research demonstrating the importance of microglia to the development of normal neural networks, review recent studies demonstrating abnormal microglia in autism, and discuss how the relationship between these processes may contribute to the development of autism and other neurodevelopmental disorders at the cellular level.
Collapse
Affiliation(s)
- Catherine A Edmonson
- University of Florida College of Medicine, Gainesville, FL, USA; National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mark N Ziats
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Owen M Rennert
- National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, MD , USA
| |
Collapse
|
159
|
Wise LM, Sadowski RN, Kim T, Willing J, Juraska JM. Long-term effects of adolescent exposure to bisphenol A on neuron and glia number in the rat prefrontal cortex: Differences between the sexes and cell type. Neurotoxicology 2016; 53:186-192. [PMID: 26828634 DOI: 10.1016/j.neuro.2016.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 01/28/2023]
Abstract
Bisphenol A (BPA), an endocrine disruptor used in a variety of consumer products, has been found to alter the number of neurons in multiple brain areas in rats following exposure in perinatal development. Both the number of neurons and glia also change in the medial prefrontal cortex (mPFC) during adolescence, and this process is known to be influenced by gonadal hormones which could be altered by BPA. In the current study, we examined Long-Evans male and female rats that were administered BPA (0, 4, 40, or 400μg/kg/day) during adolescent development (postnatal days 27-46). In adulthood (postnatal day 150), the number of neurons and glia in the mPFC were stereologically assessed in methylene blue/azure II stained sections. There were no changes in the number of neurons, but there was a significant dose by sex interaction in number of glia in the mPFC. Pairwise comparisons between controls and each dose showed a significant increase in the number of glia between 0 and 40μg/kg/day in females, and a significant decrease in the number of glia between 0 and 4μg/kg/day in males. In order to determine the type of glial cells that were changing in these groups in response to adolescent BPA administration, adjacent sections were labelled with S100β (astrocytes) and IBA-1 (microglia) in the mPFC of the groups that differed. The number of microglia was significantly higher in females exposed to 40μg/kg/day than controls and lower in males exposed to 4μg/kg/day than controls. There were no significant effects of adolescent exposure to BPA on the number of astrocytes in male or females. Thus, adolescent exposure to BPA produced long-term alterations in the number of microglia in the mPFC of rats, the functional implications of which need to be explored.
Collapse
Affiliation(s)
- Leslie M Wise
- Department of Psychology, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA
| | - Renee N Sadowski
- Neuroscience Program, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA
| | - Taehyeon Kim
- Department of Psychology, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA
| | - Jari Willing
- Department of Psychology, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA
| | - Janice M Juraska
- Department of Psychology, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA; Neuroscience Program, University of Illinois, 603 E Daniel St., Champaign, IL 61820, USA.
| |
Collapse
|
160
|
Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2016; 73:96-103. [PMID: 26777134 DOI: 10.1016/j.mcn.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances.
Collapse
|
161
|
Ślusarczyk J, Trojan E, Chwastek J, Głombik K, Basta-Kaim A. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders. Curr Neuropharmacol 2016; 14:705-20. [PMID: 26893168 PMCID: PMC5050392 DOI: 10.2174/1570159x14666160219131357] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 02/08/2023] Open
Abstract
In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Polish Academy of Sciences, 12 Smętna St. 31-343 Kraków, Poland.
| |
Collapse
|
162
|
Seong KJ, Lee HG, Kook MS, Ko HM, Jung JY, Kim WJ. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:41-51. [PMID: 26807022 PMCID: PMC4722190 DOI: 10.4196/kjpp.2016.20.1.41] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/21/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activatingTLR4-NF-κB signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-κB pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPSinduced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.
Collapse
Affiliation(s)
- Kyung-Joo Seong
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hyun-Gwan Lee
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Min Suk Kook
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Hyun-Mi Ko
- Department of Microbiology, Collage of Medicine, Seonam Universtity, Namwon 55724, Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Won-Jae Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.; Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
163
|
Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015; 59:140-154. [PMID: 26721665 DOI: 10.1016/j.neuro.2015.12.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/25/2022]
Abstract
Accumulating evidence from both human and animal studies show that brain is a target of air pollution. Multiple epidemiological studies have now linked components of air pollution to diagnosis of autism spectrum disorder (ASD), a linkage with plausibility based on the shared mechanisms of inflammation. Additional plausibility appears to be provided by findings from our studies in mice of exposures from postnatal day (PND) 4-7 and 10-13 (human 3rd trimester equivalent), to concentrated ambient ultrafine (UFP) particles, considered the most reactive component of air pollution, at levels consistent with high traffic areas of major U.S. cities and thus highly relevant to human exposures. These exposures, occurring during a period of marked neuro- and gliogenesis, unexpectedly produced a pattern of developmental neurotoxicity notably similar to multiple hypothesized mechanistic underpinnings of ASD, including its greater impact in males. UFP exposures induced inflammation/microglial activation, reductions in size of the corpus callosum (CC) and associated hypomyelination, aberrant white matter development and/or structural integrity with ventriculomegaly (VM), elevated glutamate and excitatory/inhibitory imbalance, increased amygdala astrocytic activation, and repetitive and impulsive behaviors. Collectively, these findings suggest the human 3rd trimester equivalent as a period of potential vulnerability to neurodevelopmental toxicity to UFP, particularly in males, and point to the possibility that UFP air pollution exposure during periods of rapid neuro- and gliogenesis may be a risk factor not only for ASD, but also for other neurodevelopmental disorders that share features with ASD, such as schizophrenia, attention deficit disorder, and periventricular leukomalacia.
Collapse
|
164
|
Phagocytosis of apoptotic cells in homeostasis. Nat Immunol 2015; 16:907-17. [PMID: 26287597 DOI: 10.1038/ni.3253] [Citation(s) in RCA: 611] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023]
Abstract
Human bodies collectively turn over about 200 billion to 300 billion cells every day. Such turnover is an integral part of embryonic and postnatal development, as well as routine tissue homeostasis. This process involves the induction of programmed cell death in specific cells within the tissues and the specific recognition and removal of dying cells by a clearance 'crew' composed of professional, non-professional and specialized phagocytes. In the past few years, considerable progress has been made in identifying many features of apoptotic cell clearance. Some of these new observations challenge the way dying cells themselves are viewed, as well as how healthy cells interact with and respond to dying cells. Here we focus on the homeostatic removal of apoptotic cells in tissues.
Collapse
|
165
|
Ransohoff RM, Schafer D, Vincent A, Blachère NE, Bar-Or A. Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics 2015; 12:896-909. [PMID: 26306439 PMCID: PMC4604183 DOI: 10.1007/s13311-015-0385-3] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation is the response of the central nervous system (CNS) to disturbed homeostasis and typifies all neurological diseases. The main reactive components of the CNS include microglial cells and infiltrating myeloid cells, astrocytes, oligodendrocytes, and the blood-brain barrier, cytokines, and cytokine signaling. Neuroinflammatory responses may be helpful or harmful, as mechanisms associated with neuroinflammation are involved in normal brain development, as well as in neuropathological processes. This review examines the roles of various cell types that contribute to the immune dysregulation associated with neuroinflammation. Microglia enter the CNS very early in embryonic development and, as such, play an essential role in both the healthy and diseased brain. B-cell diversity contributes to CNS disease through both antibody-dependent and antibody-independent mechanisms. The influences of these B-cell mechanisms on other cell types, including myeloid cells and T cells, are reviewed in relationship to antibody-mediated CNS disorders, paraneoplastic neurological diseases, and multiple sclerosis. New insights into neuroinflammation offer exciting opportunities to investigate potential therapeutic targets for debilitating CNS diseases.
Collapse
Affiliation(s)
| | - Dorothy Schafer
- University of Massachusetts Medical School, Amherst, MA, USA
| | | | | | - Amit Bar-Or
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
166
|
Hyperbaric oxygen preconditioning attenuates neuroinflammation after intracerebral hemorrhage in rats by regulating microglia characteristics. Brain Res 2015; 1627:21-30. [PMID: 26301824 DOI: 10.1016/j.brainres.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022]
Abstract
Intracerebral Hemorrhage (ICH) results in a detrimental neurologic disorder with complicated secondary brain injury. Hyperbaric oxygen preconditioning (HBOP) may be a safe and effective therapeutic method for ICH victims. Our previous studies have demonstrated that HBOP induces neuroprotection in cerebral ischemia and traumatic brain injury. This study aimed to investigate whether HBOP could alleviate neuroinflammation by regulating changes in microglia characteristics in a rat model of ICH. ICH was induced by autologous arterial blood injection, and animals were sacrificed at 12, 24, and 72 h post injury. We measured motor function and brain water content to evaluate the extent of inflammation. Fluoro-Jade C and TNF-α staining was used to characterize neuronal degeneration and neuroinflammatory cytokines, and immunofluorescence staining was performed for CD11b to show activated microglia and Iba-1 to show microglia. Our results indicate that motor dysfunction and brain water content are alleviated by HBOP, and Fluoro-Jade C staining demonstrates that neuron degeneration decreased in the HBOP group. The growth of Iba-1-positive microglia decreased in the HBOP group. Moreover, TNF-α was dynamically reduced in the HBOP group compared with the ICH group. CD11b-Iba-1 double staining demonstrated that the ratio of CD11b and Iba-1 was significantly decreased in the HBOP group. Overall, the data demonstrated that HBOP could significantly alleviate the ICH-induced neuroinflammation by regulating microglia characteristics changing. The phenomenon may propel the progress of the relation between microglia and HBOP and represent a novel target for ICH treatment.
Collapse
|
167
|
Filiano AJ, Gadani SP, Kipnis J. Interactions of innate and adaptive immunity in brain development and function. Brain Res 2015; 1617:18-27. [PMID: 25110235 PMCID: PMC4320678 DOI: 10.1016/j.brainres.2014.07.050] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/15/2023]
Abstract
It has been known for decades that the immune system has a tremendous impact on behavior. Most work has described the negative role of immune cells on the central nervous system. However, we and others have demonstrated over the last decade that a well-regulated immune system is needed for proper brain function. Here we discuss several neuro-immune interactions, using examples from brain homeostasis and disease states. We will highlight our understanding of the consequences of malfunctioning immunity on neurodevelopment and will discuss the roles of the innate and adaptive immune system in neurodevelopment and how T cells maintain a proper innate immune balance in the brain surroundings and within its parenchyma. Also, we describe how immune imbalance impairs higher order brain functioning, possibly leading to behavioral and cognitive impairment. Lastly, we propose our hypothesis that some behavioral deficits in neurodevelopmental disorders, such as in autism spectrum disorder, are the consequence of malfunctioning immunity. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease.
Collapse
Affiliation(s)
- Anthony J Filiano
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Sachin P Gadani
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
168
|
Abstract
Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications.
Collapse
|
169
|
Squarzoni P, Thion MS, Garel S. Neuronal and microglial regulators of cortical wiring: usual and novel guideposts. Front Neurosci 2015; 9:248. [PMID: 26236185 PMCID: PMC4505395 DOI: 10.3389/fnins.2015.00248] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/30/2015] [Indexed: 12/17/2022] Open
Abstract
Neocortex functioning relies on the formation of complex networks that begin to be assembled during embryogenesis by highly stereotyped processes of cell migration and axonal navigation. The guidance of cells and axons is driven by extracellular cues, released along by final targets or intermediate targets located along specific pathways. In particular, guidepost cells, originally described in the grasshopper, are considered discrete, specialized cell populations located at crucial decision points along axonal trajectories that regulate tract formation. These cells are usually early-born, transient and act at short-range or via cell-cell contact. The vast majority of guidepost cells initially identified were glial cells, which play a role in the formation of important axonal tracts in the forebrain, such as the corpus callosum, anterior, and post-optic commissures as well as optic chiasm. In the last decades, tangential migrating neurons have also been found to participate in the guidance of principal axonal tracts in the forebrain. This is the case for several examples such as guideposts for the lateral olfactory tract (LOT), corridor cells, which open an internal path for thalamo-cortical axons and Cajal-Retzius cells that have been involved in the formation of the entorhino-hippocampal connections. More recently, microglia, the resident macrophages of the brain, were specifically observed at the crossroads of important neuronal migratory routes and axonal tract pathways during forebrain development. We furthermore found that microglia participate to the shaping of prenatal forebrain circuits, thereby opening novel perspectives on forebrain development and wiring. Here we will review the last findings on already known guidepost cell populations and will discuss the role of microglia as a potentially new class of atypical guidepost cells.
Collapse
Affiliation(s)
- Paola Squarzoni
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Morgane S Thion
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| | - Sonia Garel
- Centre National de la Recherche Scientifique UMR8197, Ecole Normale Supérieure, Institut de Biologie, Institut National de la Santé et de la Recherche Médicale U1024 Paris, France
| |
Collapse
|
170
|
Abstract
Autism spectrum disorder (ASD) is a behaviorally defined and heterogeneous disorder. Biomarkers for ASD offer the opportunity to improve prediction, diagnosis, stratification by severity and subtype, monitoring over time and in response to interventions, and overall understanding of the underlying biology of this disorder. A variety of potential biomarkers, from the level of genes and proteins to network-level interactions, is currently being examined. Many of these biomarkers relate to inhibition, which is of particular interest because in many cases ASD is thought to be a disorder of imbalance between excitation and inhibition. Abnormalities in inhibition at the cellular level lead to emergent properties in networks of neurons. These properties take into account a more complete genetic and cellular background than findings at the level of individual genes or cells, and are able to be measured in live humans, offering additional potential as diagnostic biomarkers and predictors of behaviors. In this review we provide examples of how altered inhibition may inform the search for ASD biomarkers at multiple levels, from genes to cells to networks.
Collapse
Affiliation(s)
- April R Levin
- Department of Neurology, Boston Children's Hospital/Harvard Medical School, Boston, MA, USA,
| | | |
Collapse
|
171
|
Loke YJ, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol 2015; 6:107. [PMID: 26074864 PMCID: PMC4443738 DOI: 10.3389/fneur.2015.00107] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by problems with social communication, social interaction, and repetitive or restricted behaviors. ASD are comorbid with other disorders including attention deficit hyperactivity disorder, epilepsy, Rett syndrome, and Fragile X syndrome. Neither the genetic nor the environmental components have been characterized well enough to aid diagnosis or treatment of non-syndromic ASD. However, genome-wide association studies have amassed evidence suggesting involvement of hundreds of genes and a variety of associated genetic pathways. Recently, investigators have turned to epigenetics, a prime mediator of environmental effects on genomes and phenotype, to characterize changes in ASD that constitute a molecular level on top of DNA sequence. Though in their infancy, such studies have the potential to increase our understanding of the etiology of ASD and may assist in the development of biomarkers for its prediction, diagnosis, prognosis, and eventually in its prevention and intervention. This review focuses on the first few epigenome-wide association studies of ASD and discusses future directions.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| | - Anthony John Hannan
- Melbourne Brain Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne , Parkville, VIC , Australia
| | - Jeffrey Mark Craig
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
172
|
Tremblay MÈ, Lecours C, Samson L, Sánchez-Zafra V, Sierra A. From the Cajal alumni Achúcarro and Río-Hortega to the rediscovery of never-resting microglia. Front Neuroanat 2015; 9:45. [PMID: 25926775 PMCID: PMC4396411 DOI: 10.3389/fnana.2015.00045] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022] Open
Abstract
Under the guidance of Ramón y Cajal, a plethora of students flourished and began to apply his silver impregnation methods to study brain cells other than neurons: the neuroglia. In the first decades of the twentieth century, Nicolás Achúcarro was one of the first researchers to visualize the brain cells with phagocytic capacity that we know today as microglia. Later, his pupil Pío del Río-Hortega developed modifications of Achúcarro's methods and was able to specifically observe the fine morphological intricacies of microglia. These findings contradicted Cajal's own views on cells that he thought belonged to the same class as oligodendroglia (the so called “third element” of the nervous system), leading to a long-standing discussion. It was only in 1924 that Río-Hortega's observations prevailed worldwide, thus recognizing microglia as a unique cell type. This late landing in the Neuroscience arena still has repercussions in the twenty first century, as microglia remain one of the least understood cell populations of the healthy brain. For decades, microglia in normal, physiological conditions in the adult brain were considered to be merely “resting,” and their contribution as “activated” cells to the neuroinflammatory response in pathological conditions mostly detrimental. It was not until microglia were imaged in real time in the intact brain using two-photon in vivo imaging that the extreme motility of their fine processes was revealed. These findings led to a conceptual revolution in the field: “resting” microglia are constantly surveying the brain parenchyma in normal physiological conditions. Today, following Cajal's school of thought, structural and functional investigations of microglial morphology, dynamics, and relationships with neurons and other glial cells are experiencing a renaissance and we stand at the brink of discovering new roles for these unique immune cells in the healthy brain, an essential step to understand their causal relationship to diseases.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Cynthia Lecours
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Louis Samson
- Centre de Recherche du CHU de Québec, Axe Neurosciences Québec, QC, Canada ; Département de médecine moléculaire, Université Laval Québec, QC, Canada
| | - Víctor Sánchez-Zafra
- Achúcarro Basque Center for Neuroscience, Bizkaia Science and Technology Park Zamudio, Spain ; Department of Neurosciences, University of the Basque Country Leioa, Spain
| | - Amanda Sierra
- Achúcarro Basque Center for Neuroscience, Bizkaia Science and Technology Park Zamudio, Spain ; Department of Neurosciences, University of the Basque Country Leioa, Spain ; Ikerbasque Foundation Bilbao, Spain
| |
Collapse
|
173
|
Ma L, Kulesskaya N, Võikar V, Tian L. Differential expression of brain immune genes and schizophrenia-related behavior in C57BL/6N and DBA/2J female mice. Psychiatry Res 2015; 226:211-6. [PMID: 25661533 DOI: 10.1016/j.psychres.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 01/01/2015] [Indexed: 12/21/2022]
Abstract
Mounting evidence suggests the association of immune genes with complex neuropsychiatric diseases, such as schizophrenia. However, immune gene expression in the brain and their involvement in schizophrenia-related behavior in animal models have not been well studied so far. We analyzed the social (resident-intruder) and sensorimotor gating (pre-pulse inhibition (PPI) of acoustic startle) behaviors, and expression profiles of several brain immune genes in adult C57BL/6N and DBA/2J female mice. Compared to C57BL/6N mice, DBA/2J mice exhibited less social interaction in the resident-intruder test and reduced pre-pulse inhibition. The mRNA levels of Il1b and Il6 genes were significantly higher in the cortex and hypothalamus, while the mRNA level of C1qb was lower in the cortex, hippocampus and hypothalamus of DBA/2J mice compared to C57BL/6N mice. Furthermore, Tnfsf13b was up-regulated in the cortex and hippocampus, and so did Cd47 in the hippocampus, while Cx3cl1 was down-regulated in the cortex of DBA/2J mice. Our study demonstrates the differential expression of several immune genes in C57BL/6N and DBA/2J strains and more importantly provides clues on their potential importance in regulating schizophrenia-related endophenotypes in animal models.
Collapse
Affiliation(s)
- Li Ma
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | | | - Vootele Võikar
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Li Tian
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing, China.
| |
Collapse
|
174
|
Madeira MH, Boia R, Santos PF, Ambrósio AF, Santiago AR. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm 2015; 2015:673090. [PMID: 25873768 PMCID: PMC4385698 DOI: 10.1155/2015/673090] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Maria H. Madeira
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Raquel Boia
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| | - Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| |
Collapse
|
175
|
|
176
|
Leckman JF, Vaccarino FM. Editorial commentary: "What does immunology have to do with brain development and neuropsychiatric disorders?". Brain Res 2014; 1617:1-6. [PMID: 25283746 DOI: 10.1016/j.brainres.2014.09.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2014] [Indexed: 12/16/2022]
Affiliation(s)
- James F Leckman
- Child Study Center and the Departments of Psychiatry, Pediatrics, and Psychology, Yale University, New Haven, CT, USA
| | - Flora M Vaccarino
- Program in Neurodevelopment and Regeneration, Yale Kavli Institute for Neuroscience, Child Study Center and Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|