151
|
Mortezaee K, Majidpoor J, Kharazinejad E. The impact of hypoxia on tumor-mediated bypassing anti-PD-(L)1 therapy. Biomed Pharmacother 2023; 162:114646. [PMID: 37011483 DOI: 10.1016/j.biopha.2023.114646] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Extending the durability of response is the current focus in cancer immunotherapy with immune checkpoint inhibitors (ICIs). However, factors like non-immunogenic tumor microenvironment (TME) along with aberrant angiogenesis and dysregulated metabolic systems are negative contributors. Hypoxia is a key TME condition and a critical promoter of tumor hallmarks. It acts on immune and non-immune cells within TME in order for promoting immune evasion and therapy resistance. Extreme hypoxia is a major promoter of resistance to the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitor therapy. Hypoxia inducible factor-1 (HIF-1) acts as a key mediator of hypoxia and a critical promoter of resistance to the anti-PD-(L)1. Targeting hypoxia or HIF-1 can thus be an effective strategy for reinvigoration of cellular immunity against cancer. Among various strategies presented so far, the key focus is over vascular normalization, which is an approach highly effective for reducing the rate of hypoxia, increasing drug delivery into the tumor area, and boosting the efficacy of anti-PD-(L)1.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Islamic Republic of Iran
| | - Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Islamic Republic of Iran.
| |
Collapse
|
152
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
153
|
Egan H, Treacy O, Lynch K, Leonard NA, O'Malley G, Reidy E, O'Neill A, Corry SM, De Veirman K, Vanderkerken K, Egan LJ, Ritter T, Hogan AM, Redmond K, Peng L, Che J, Gatlin W, Jayaraman P, Sheehan M, Canney A, Hynes SO, Kerr EM, Dunne PD, O'Dwyer ME, Ryan AE. Targeting stromal cell sialylation reverses T cell-mediated immunosuppression in the tumor microenvironment. Cell Rep 2023; 42:112475. [PMID: 37167967 DOI: 10.1016/j.celrep.2023.112475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/03/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
Immunosuppressive tumor microenvironments (TMEs) reduce the effectiveness of immune responses in cancer. Mesenchymal stromal cells (MSCs), precursors to cancer-associated fibroblasts (CAFs), promote tumor progression by enhancing immune cell suppression in colorectal cancer (CRC). Hyper-sialylation of glycans promotes immune evasion in cancer through binding of sialic acids to their receptors, Siglecs, expressed on immune cells, which results in inhibition of effector functions. The role of sialylation in shaping MSC/CAF immunosuppression in the TME is not well characterized. In this study, we show that tumor-conditioned stromal cells have increased sialyltransferase expression, α2,3/6-linked sialic acid, and Siglec ligands. Tumor-conditioned stromal cells and CAFs induce exhausted immunomodulatory CD8+ PD1+ and CD8+ Siglec-7+/Siglec-9+ T cell phenotypes. In vivo, targeting stromal cell sialylation reverses stromal cell-mediated immunosuppression, as shown by infiltration of CD25 and granzyme B-expressing CD8+ T cells in the tumor and draining lymph node. Targeting stromal cell sialylation may overcome immunosuppression in the CRC TME.
Collapse
Affiliation(s)
- Hannah Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Niamh A Leonard
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Eileen Reidy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aoise O'Neill
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Shania M Corry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Kim De Veirman
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karin Vanderkerken
- Laboratory for Haematology and Immunology (HEIM), Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laurence J Egan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Aisling M Hogan
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Department of Colorectal Surgery, Galway University Hospital, Galway, Ireland
| | - Keara Redmond
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Li Peng
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | - Jenny Che
- Palleon Pharmaceuticals, Waltham, MA 02451, USA
| | | | | | - Margaret Sheehan
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Aoife Canney
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland
| | - Sean O Hynes
- Division of Anatomical Pathology, Galway University Hospital, Galway, Ireland; Discipline of Pathology, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Emma M Kerr
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Philip D Dunne
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK; Cancer Research UK Beatson Institute, Glasgow, UK
| | - Michael E O'Dwyer
- Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Blood Cancer Network of Ireland (BCNI), Galway, Ireland; Department of Hematology, Galway University Hospital, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; Lambe Institute for Translational Research, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
154
|
Du F, Yang LH, Liu J, Wang J, Fan L, Duangmano S, Liu H, Liu M, Wang J, Zhong X, Zhang Z, Wang F. The role of mitochondria in the resistance of melanoma to PD-1 inhibitors. J Transl Med 2023; 21:345. [PMID: 37221594 DOI: 10.1186/s12967-023-04200-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
Malignant melanoma is one of the most common tumours and has the highest mortality rate of all types of skin cancers worldwide. Traditional and novel therapeutic approaches, including surgery, targeted therapy and immunotherapy, have shown good efficacy in the treatment of melanoma. At present, the mainstay of treatment for melanoma is immunotherapy combined with other treatment strategies. However, immune checkpoint inhibitors, such as PD-1 inhibitors, are not particularly effective in the clinical treatment of patients with melanoma. Changes in mitochondrial function may affect the development of melanoma and the efficacy of PD-1 inhibitors. To elucidate the role of mitochondria in the resistance of melanoma to PD-1 inhibitors, this review comprehensively summarises the role of mitochondria in the occurrence and development of melanoma, targets related to the function of mitochondria in melanoma cells and changes in mitochondrial function in different cells in melanoma resistant to PD-1 inhibitors. This review may help to develop therapeutic strategies for improving the clinical response rate of PD-1 inhibitors and prolonging the survival of patients by activating mitochondrial function in tumour and T cells.
Collapse
Affiliation(s)
- Fei Du
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lu-Han Yang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jian Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Lianpeng Fan
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suwit Duangmano
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hao Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Minghua Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jun Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaolin Zhong
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhuo Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Fang Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
155
|
van Gulijk M, van Krimpen A, Schetters S, Eterman M, van Elsas M, Mankor J, Klaase L, de Bruijn M, van Nimwegen M, van Tienhoven T, van Ijcken W, Boon L, van der Schoot J, Verdoes M, Scheeren F, van der Burg SH, Lambrecht BN, Stadhouders R, Dammeijer F, Aerts J, van Hall T. PD-L1 checkpoint blockade promotes regulatory T cell activity that underlies therapy resistance. Sci Immunol 2023; 8:eabn6173. [PMID: 37205768 DOI: 10.1126/sciimmunol.abn6173] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Despite the clinical success of immune checkpoint blockade (ICB), in certain cancer types, most patients with cancer do not respond well. Furthermore, in patients for whom ICB is initially successful, this is often short-lived because of the development of resistance to ICB. The mechanisms underlying primary or secondary ICB resistance are incompletely understood. Here, we identified preferential activation and enhanced suppressive capacity of regulatory T cells (Treg cells) in αPD-L1 therapy-resistant solid tumor-bearing mice. Treg cell depletion reversed resistance to αPD-L1 with concomitant expansion of effector T cells. Moreover, we found that tumor-infiltrating Treg cells in human patients with skin cancer, and in patients with non-small cell lung cancer, up-regulated a suppressive transcriptional gene program after ICB treatment, which correlated with lack of treatment response. αPD-1/PD-L1-induced PD-1+ Treg cell activation was also seen in peripheral blood of patients with lung cancer and mesothelioma, especially in nonresponders. Together, these data reveal that treatment with αPD-1 and αPD-L1 unleashes the immunosuppressive role of Treg cells, resulting in therapy resistance, suggesting that Treg cell targeting is an important adjunct strategy to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sjoerd Schetters
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Mike Eterman
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marit van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Joanne Mankor
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjolein de Bruijn
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Tim van Tienhoven
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wilfred van Ijcken
- Department of Biomics, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Johan van der Schoot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Institute for Chemical Immunology, Nijmegen, Netherlands
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Bart N Lambrecht
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Cell Biology, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, Rotterdam, Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
156
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
157
|
Dolina JS, Lee J, Brightman SE, McArdle S, Hall SM, Thota RR, Lanka M, Premlal ALR, Greenbaum JA, Cohen EEW, Peters B, Schoenberger SP. Linked CD4 + /CD8 + T cell neoantigen vaccination overcomes immune checkpoint blockade resistance and enables tumor regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539290. [PMID: 37205330 PMCID: PMC10187312 DOI: 10.1101/2023.05.06.539290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Therapeutic benefit to immune checkpoint blockade (ICB) is currently limited to the subset of cancers thought to possess a sufficient tumor mutational burden (TMB) to allow for the spontaneous recognition of neoantigens (NeoAg) by autologous T cells. We explored whether the response of an aggressive low TMB squamous cell tumor to ICB could be improved through combination immunotherapy using functionally defined NeoAg as targets for endogenous CD4 + and CD8 + T cells. We found that, whereas vaccination with CD4 + or CD8 + NeoAg alone did not offer prophylactic or therapeutic immunity, vaccines containing NeoAg recognized by both subsets overcame ICB resistance and led to the eradication of large established tumors that contained a subset of PD-L1 + tumor-initiating cancer stem cells (tCSC), provided the relevant epitopes were physically linked. Therapeutic CD4 + /CD8 + T cell NeoAg vaccination produced a modified tumor microenvironment (TME) with increased numbers of NeoAg-specific CD8 + T cells existing in progenitor and intermediate exhausted states enabled by combination ICB-mediated intermolecular epitope spreading. The concepts explored herein should be exploited for the development of more potent personalized cancer vaccines that can expand the range of tumors treatable with ICB.
Collapse
|
158
|
Piersiala K, Hjalmarsson E, da Silva PFN, Lagebro V, Kolev A, Starkhammar M, Elliot A, Marklund L, Munck-Wikland E, Margolin G, Georén SK, Cardell LO. Regulatory B cells producing IL-10 are increased in human tumor draining lymph nodes. Int J Cancer 2023. [PMID: 37144812 DOI: 10.1002/ijc.34555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/23/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
The contribution of different immune cell subsets, especially T cells, in anti-tumor immune response is well established. In contrast to T cells, the anti-tumor contribution of B cells has been scarcely investigated. B-cells are often overlooked, even though they are important players in a fully integrated immune response and constitute a substantial fraction of tumor draining lymph nodes (TDLNs) known also as Sentinel Nodes. In this project, samples including TDLNs, non-TDLNs (nTDLNs) and metastatic lymph nodes from 21 patients with oral squamous cell carcinoma were analyzed by flow cytometry. TDLNs were characterized by a significantly higher proportion of B cells compared with nTDLNs (P = .0127). TDLNs-associated B cells contained high percentages of naïve B cells, in contrary to nTDLNs which contained significantly higher percentages of memory B cells. Patients having metastases in TDLNs showed a significantly higher presence of immunosuppressive B regulatory cells compared with metastasis-free patients (P = .0008). Elevated levels of regulatory B cells in TDLNs were associated with the advancement of the disease. B cells in TDLNs were characterized by significantly higher expression of an immunosuppressive cytokine-IL-10 compared with nTDLNs (P = .0077). Our data indicate that B cells in human TDLNs differ from B cells in nTDLNs and exhibit more naïve and immunosuppressive phenotypes. We identified a high accumulation of regulatory B cells within TDLNs which may be a potential obstacle in achieving response to novel cancer immunotherapies (ICIs) in head and neck cancer.
Collapse
Affiliation(s)
- Krzysztof Piersiala
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric Hjalmarsson
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | - Vilma Lagebro
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Aeneas Kolev
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Starkhammar
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Elliot
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Marklund
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
- Department of Surgical Sciences, Section of Otolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Eva Munck-Wikland
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Gregori Margolin
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
- Medical unit Head Neck, Lung and skin Cancer, Karolinska University Hospital, Stockholm, Sweden
| | - Susanna Kumlien Georén
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olaf Cardell
- Division of ENT Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
159
|
Yeo AT, Shah R, Aliazis K, Pal R, Xu T, Zhang P, Rawal S, Rose CM, Varn FS, Appleman VA, Yoon J, Varma H, Gygi SP, Verhaak RG, Boussiotis VA, Charest A. Driver Mutations Dictate the Immunologic Landscape and Response to Checkpoint Immunotherapy of Glioblastoma. Cancer Immunol Res 2023; 11:629-645. [PMID: 36881002 PMCID: PMC10155040 DOI: 10.1158/2326-6066.cir-22-0655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/20/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
The composition of the tumor immune microenvironment (TIME) is considered a key determinant of patients' response to immunotherapy. The mechanisms underlying TIME formation and development over time are poorly understood. Glioblastoma (GBM) is a lethal primary brain cancer for which there are no curative treatments. GBMs are immunologically heterogeneous and impervious to checkpoint blockade immunotherapies. Utilizing clinically relevant genetic mouse models of GBM, we identified distinct immune landscapes associated with expression of EGFR wild-type and mutant EGFRvIII cancer driver mutations. Over time, accumulation of polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) was more pronounced in EGFRvIII-driven GBMs and was correlated with resistance to PD-1 and CTLA-4 combination checkpoint blockade immunotherapy. We determined that GBM-secreted CXCL1/2/3 and PMN-MDSC-expressed CXCR2 formed an axis regulating output of PMN-MDSCs from the bone marrow leading to systemic increase in these cells in the spleen and GBM tumor-draining lymph nodes. Pharmacologic targeting of this axis induced a systemic decrease in the numbers of PMN-MDSC, facilitated responses to PD-1 and CTLA-4 combination checkpoint blocking immunotherapy, and prolonged survival in mice bearing EGFRvIII-driven GBM. Our results uncover a relationship between cancer driver mutations, TIME composition, and sensitivity to checkpoint blockade in GBM and support the stratification of patients with GBM for checkpoint blockade therapy based on integrated genotypic and immunologic profiles.
Collapse
Affiliation(s)
- Alan T. Yeo
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Sackler School of Graduate Studies, Tufts University School of Medicine, Boston, Massachusetts
| | - Rushil Shah
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Konstantinos Aliazis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rinku Pal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tuoye Xu
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Piyan Zhang
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Shruti Rawal
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Frederick S. Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vicky A. Appleman
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Joon Yoon
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Hemant Varma
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Vassiliki A. Boussiotis
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Al Charest
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
160
|
Yoo S, Jeong YH, Choi HH, Chae S, Hwang D, Shin SJ, Ha SJ. Chronic LCMV infection regulates the effector T cell response by inducing the generation of less immunogenic dendritic cells. Exp Mol Med 2023:10.1038/s12276-023-00991-5. [PMID: 37121977 DOI: 10.1038/s12276-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 05/02/2023] Open
Abstract
Chronic viral infection impairs systemic immunity in the host; however, the mechanism underlying the dysfunction of immune cells in chronic viral infection is incompletely understood. In this study, we studied the lineage differentiation of hematopoietic stem cells (HSCs) during chronic viral infection to elucidate the changes in dendritic cell (DC) differentiation and subsequent impact on T cell functionality using a chronic lymphocytic choriomeningitis virus (LCMV) infection model. We first investigated the lineage differentiation of HSCs in the bone marrow (BM) to elucidate the modulation of immune cell differentiation and found that the populations highly restrained in their differentiation were common myeloid progenitors (CMPs) and common dendritic cell progenitors (CDPs). Of interest, the main immune cells infected with LCMV Clone 13 (CL13) in the BM were CD11b/c+ myeloid DCs. We next characterized CD11b+ DCs that differentiated during chronic LCMV infection. These DCs displayed a less immunogenic phenotype than DCs in naive or acutely infected mice, showing low expression of CD80 but high expression of PD-L1, B7-H4, IDO, TGF-β, and IL-10. Consequently, these CD11b+ DCs induced less effective CD8+ T cells and more Foxp3+ regulatory T (Treg) cells. Furthermore, CD11b+ DCs generated during CL13 infection could not induce effective CD8+ T cells specific to the antigens of newly invading pathogens. Our findings demonstrate that DCs generated from the BM during chronic viral infection cannot activate fully functional effector CD8+ T cells specific to newly incoming antigens as well as persistent antigens themselves, suggesting a potential cause of the functional alterations in the T cell immune response during chronic viral infection.
Collapse
Affiliation(s)
- Seungbo Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yun Hee Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sehyun Chae
- Korea Brain Bank, Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
161
|
Hope JL, Otero DC, Bae EA, Stairiker CJ, Palete AB, Faso HA, Lin M, Henriquez ML, Roy S, Seo H, Lei X, Wang ES, Chow S, Tinoco R, Daniels GA, Yip K, Campos AR, Yin J, Adams PD, Rao A, Bradley LM. PSGL-1 attenuates early TCR signaling to suppress CD8 + T cell progenitor differentiation and elicit terminal CD8 + T cell exhaustion. Cell Rep 2023; 42:112436. [PMID: 37115668 PMCID: PMC10403047 DOI: 10.1016/j.celrep.2023.112436] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
PSGL-1 (P-selectin glycoprotein-1) is a T cell-intrinsic checkpoint regulator of exhaustion with an unknown mechanism of action. Here, we show that PSGL-1 acts upstream of PD-1 and requires co-ligation with the T cell receptor (TCR) to attenuate activation of mouse and human CD8+ T cells and drive terminal T cell exhaustion. PSGL-1 directly restrains TCR signaling via Zap70 and maintains expression of the Zap70 inhibitor Sts-1. PSGL-1 deficiency empowers CD8+ T cells to respond to low-affinity TCR ligands and inhibit growth of PD-1-blockade-resistant melanoma by enabling tumor-infiltrating T cells to sustain an elevated metabolic gene signature supportive of increased glycolysis and glucose uptake to promote effector function. This outcome is coupled to an increased abundance of CD8+ T cell stem cell-like progenitors that maintain effector functions. Additionally, pharmacologic blockade of PSGL-1 curtails T cell exhaustion, indicating that PSGL-1 represents an immunotherapeutic target for PD-1-blockade-resistant tumors.
Collapse
Affiliation(s)
- Jennifer L Hope
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Dennis C Otero
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eun-Ah Bae
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Christopher J Stairiker
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ashley B Palete
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hannah A Faso
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michelle Lin
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Monique L Henriquez
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sreeja Roy
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hyungseok Seo
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xue Lei
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Eric S Wang
- Cancer Molecular Therapeutics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Savio Chow
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Roberto Tinoco
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregory A Daniels
- Department of Medicine, Moores Cancer Center at UC San Diego Health, La Jolla, CA 92037, USA
| | - Kevin Yip
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Rosa Campos
- Proteomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Linda M Bradley
- Cancer Metabolism and Microenvironment, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
162
|
Pai JA, Hellmann MD, Sauter JL, Mattar M, Rizvi H, Woo HJ, Shah N, Nguyen EM, Uddin FZ, Quintanal-Villalonga A, Chan JM, Manoj P, Allaj V, Baine MK, Bhanot UK, Jain M, Linkov I, Meng F, Brown D, Chaft JE, Plodkowski AJ, Gigoux M, Won HH, Sen T, Wells DK, Donoghue MTA, de Stanchina E, Wolchok JD, Loomis B, Merghoub T, Rudin CM, Chow A, Satpathy AT. Lineage tracing reveals clonal progenitors and long-term persistence of tumor-specific T cells during immune checkpoint blockade. Cancer Cell 2023; 41:776-790.e7. [PMID: 37001526 PMCID: PMC10563767 DOI: 10.1016/j.ccell.2023.03.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/21/2022] [Accepted: 03/07/2023] [Indexed: 04/12/2023]
Abstract
Paired single-cell RNA and T cell receptor sequencing (scRNA/TCR-seq) has allowed for enhanced resolution of clonal T cell dynamics in cancer. Here, we report a scRNA/TCR-seq analysis of 187,650 T cells from 31 tissue regions, including tumor, adjacent normal tissues, and lymph nodes (LN), from three patients with non-small cell lung cancer after immune checkpoint blockade (ICB). Regions with viable cancer cells are enriched for exhausted CD8+ T cells, regulatory CD4+ T cells (Treg), and follicular helper CD4+ T cells (TFH). Tracking T cell clonotypes across tissues, combined with neoantigen specificity assays, reveals that TFH and tumor-specific exhausted CD8+ T cells are clonally linked to TCF7+SELL+ progenitors in tumor draining LNs, and progressive exhaustion trajectories of CD8+ T, Treg, and TFH cells with proximity to the tumor microenvironment. Finally, longitudinal tracking of tumor-specific CD8+ and CD4+ T cell clones reveals persistence in the peripheral blood for years after ICB therapy.
Collapse
Affiliation(s)
- Joy A Pai
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Program, Stanford University, Stanford, CA, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer L Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marissa Mattar
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nisargbhai Shah
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evelyn M Nguyen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cancer Biology Program, Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fathema Z Uddin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Joseph M Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viola Allaj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marina K Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umesh K Bhanot
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mala Jain
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Linkov
- Precision Pathology Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanli Meng
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Brown
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie E Chaft
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mathieu Gigoux
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helen H Won
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triparna Sen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Santa Ana Bio, Alameda, CA, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Loomis
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Taha Merghoub
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew Chow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Program, Stanford University, Stanford, CA, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA.
| |
Collapse
|
163
|
Zander R, Cui W. Exhausted CD8 + T cells face a developmental fork in the road. Trends Immunol 2023; 44:276-286. [PMID: 36907685 PMCID: PMC10569258 DOI: 10.1016/j.it.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/13/2023]
Abstract
Reinvigorating the function of exhausted CD8+ T cells during chronic viral infection and cancer is a major goal of current immunotherapy regimens. Here, we discuss recent advances in our understanding of exhausted CD8+ T cell heterogeneity as well as the potential differentiation trajectories that exhausted T cells follow during chronic infection and/or cancer. We highlight surmounting evidence suggesting that some T cell clones are divergent in nature and can develop into either terminally differentiated effector or exhausted CD8+ T cells. Lastly, we consider the potential therapeutic implications of such a bifurcation model of CD8+ T cell differentiation, including the intriguing hypothesis that redirecting progenitor CD8+ T cell differentiation along an effector pathway may serve as a novel approach to mitigate T cell exhaustion.
Collapse
Affiliation(s)
- Ryan Zander
- Department of Microbiology and Immunology, University of Iowa, 431 Newton Road, Iowa City, IA 52242, USA.
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Ave, Chicago, IL 60611, USA.
| |
Collapse
|
164
|
van Gulijk M, Belderbos B, Dumoulin D, Cornelissen R, Bezemer K, Klaase L, Dammeijer F, Aerts J. Combination of PD-1/PD-L1 checkpoint inhibition and dendritic cell therapy in mice models and in patients with mesothelioma. Int J Cancer 2023; 152:1438-1443. [PMID: 36104949 PMCID: PMC10092125 DOI: 10.1002/ijc.34293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 02/03/2023]
Abstract
Immunotherapy with anti-PD1/PD-L1 is effective in only a subgroup of patients with malignant pleural mesothelioma (MPM). We investigated the efficacy of a combination of anti-PD1/PD-L1 and dendritic cell (DC) therapy to optimally induce effective anti-tumor immunity in MPM in both humans and mice. Data of nine MPM patients treated with DC therapy and sequential anti-PD1 treatment were collected and analyzed for progression-free survival (PFS) and overall survival (OS). Survival and T-cell responses were monitored in AC29 mesothelioma-bearing mice treated concurrently with the combination therapy; additionally, the role of the tumor-draining lymph node (TDLN) was investigated. The combination therapy resulted in a median OS and PFS of 17.7 and 8.0 months, respectively. Grade 3 to 4 treatment-related adverse events had not been reported. Survival of the mesothelioma-bearing mice treated with the combination therapy was longer than that of untreated mice, and coincided with improved T-cell activation in peripheral blood and less T-cell exhaustion in end stage tumors. Comparable results were obtained when solely the TDLN was targeted. We concluded that this combination therapy is safe and shows promising OS and PFS. The murine data support that PD-L1 treatment may reinvigorate the T-cell responses induced by DC therapy, which may primarily be the result of TDLN targeting.
Collapse
Affiliation(s)
- Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bob Belderbos
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daphne Dumoulin
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
165
|
Cao C, Lu X, Guo X, Zhao H, Gao Y. Patient-derived models: Promising tools for accelerating the clinical translation of breast cancer research findings. Exp Cell Res 2023; 425:113538. [PMID: 36871856 DOI: 10.1016/j.yexcr.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Breast cancer has become the highest incidence of cancer in women. It was extensively and deeply studied by biologists and medical workers worldwide. However, the meaningful results in lab researches cannot be realized in clinical, and a part of new drugs in clinical experiments do not obtain as good results as the preclinical researches. It is urgently that promote a kind of breast cancer research models that can get study results closer to the physiological condition of the human body. Patient-derived models (PDMs) originating from clinical tumor, contain primary elements of tumor and maintain key clinical features of tumor. So they are promising research models to facilitate laboratory researches translate to clinical application, and predict the treatment outcome of patients. In this review, we summarize the establishment of PDMs of breast cancer, reviewed the application of PDMs in clinical translational researches and personalized precision medicine with breast cancer as an example, to improve the understanding of PDMs among researchers and clinician, facilitate them to use PDMs on a large scale of breast cancer researches and promote the clinical translation of laboratory research and new drug development.
Collapse
Affiliation(s)
- Changqing Cao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China; State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Xiyan Lu
- Department of Outpatient, The Second Affiliated Hospital of Air Force Medical University, China
| | - Xinyan Guo
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, China.
| |
Collapse
|
166
|
Han S, Quach T, Hu L, Lim SF, Zheng D, Leong NJ, Sharma G, Bonner D, Simpson JS, Trevaskis NL, Porter CJH. Increasing Linker Chain Length and Intestinal Stability Enhances Lymphatic Transport and Lymph Node Exposure of Triglyceride Mimetic Prodrugs of a Model Immunomodulator Mycophenolic Acid. Mol Pharm 2023; 20:2675-2685. [PMID: 36996486 DOI: 10.1021/acs.molpharmaceut.3c00099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.
Collapse
Affiliation(s)
| | - Tim Quach
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | | | | | | | | | | | - Daniel Bonner
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | - Jamie S Simpson
- PureTech Health, 6 Tide Street, Boston, Massachusetts 02210, United States
| | | | | |
Collapse
|
167
|
Rahim MK, Okholm TLH, Jones KB, McCarthy EE, Liu CC, Yee JL, Tamaki SJ, Marquez DM, Tenvooren I, Wai K, Cheung A, Davidson BR, Johri V, Samad B, O'Gorman WE, Krummel MF, van Zante A, Combes AJ, Angelo M, Fong L, Algazi AP, Ha P, Spitzer MH. Dynamic CD8 + T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes. Cell 2023; 186:1127-1143.e18. [PMID: 36931243 PMCID: PMC10348701 DOI: 10.1016/j.cell.2023.02.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/28/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.
Collapse
Affiliation(s)
- Maha K Rahim
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Trine Line H Okholm
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyle B Jones
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Pharma Technical Cell and Gene Therapy, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Elizabeth E McCarthy
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Candace C Liu
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Jacqueline L Yee
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stanley J Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Cheung
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brittany R Davidson
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vrinda Johri
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bushra Samad
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA
| | - William E O'Gorman
- Department of Translational Medicine, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Matthew F Krummel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Annemieke van Zante
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Angelo
- Department of Pathology, Stanford University, Stanford, CA 94304, USA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Alain P Algazi
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
168
|
30-color full spectrum flow cytometry panel for deep immunophenotyping of T cell subsets in murine tumor tissue. J Immunol Methods 2023; 516:113459. [PMID: 36931458 DOI: 10.1016/j.jim.2023.113459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
This 30-color full spectrum flow cytometry panel was developed and optimized for in-depth analysis T cells immunophenotype in tumor microenvironment and peripheral lymphoid organs. The panel presented here first identify the main cell subsets including myeloid cells, B cells, NKT cells, γδ T cells, CD4+ T cells and CD8+ T cells. For CD4+ T cells or CD8+ T cells, the panel includes markers for further characterization by including a selection of activation status(CD44, CD62L, CD69, Ki67, CD127, KLRG1 and CXCR3), costimulatory/co-inhibitory molecules (ICOS, OX-40, PD-1, LAG3, TIM-3, CTLA-4 and TIGIT), pro-inflammatory/anti-inflammatory cytokines (IFN-γ, TNF-α and IL-10) and cytotoxic molecules (Perforin, Granzymes B and CD107a). The panel has been tested on the tumor infiltrating T cells and corresponding spleen T cells in B16-F10 murine melanoma models.
Collapse
|
169
|
Klement JD, Redd PS, Lu C, Merting AD, Poschel DB, Yang D, Savage NM, Zhou G, Munn DH, Fallon PG, Liu K. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell 2023; 41:620-636.e9. [PMID: 36917954 PMCID: PMC10150625 DOI: 10.1016/j.ccell.2023.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023]
Abstract
The cellular and molecular mechanisms underlying tumor cell PD-L1 (tPD-L1) function in tumor immune evasion are incompletely understood. We report here that tPD-L1 does not suppress cytotoxic T lymphocyte (CTL) activity in co-cultures of tumor cells and tumor-specific CTLs and exhibits no effect on primary tumor growth. However, deleting tPD-L1 decreases lung metastasis in a CTL-dependent manner in tumor-bearing mice. Depletion of myeloid cells or knocking out PD-1 in myeloid cells (mPD-1) impairs tPD-L1 promotion of tumor lung metastasis in mice. Single-cell RNA sequencing (scRNA-seq) reveals that tPD-L1 engages mPD-1 to activate SHP2 to antagonize the type I interferon (IFN-I) and STAT1 pathway to repress Cxcl9 and impair CTL recruitment to lung metastases. Human cancer patient response to PD-1 blockade immunotherapy correlates with IFN-I response in myeloid cells. Our findings determine that tPD-L1 engages mPD-1 to activate SHP2 to suppress the IFN-I-STAT1-CXCL9 pathway to impair CTL tumor recruitment in lung metastasis.
Collapse
Affiliation(s)
- John D Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Priscilla S Redd
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Chunwan Lu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dakota B Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Augusta, GA 30912, USA
| | | | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA; Georgia Cancer Center, Augusta, GA 30912, USA; Charlie Norwood VA Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
170
|
Li T, Jiang N, Bai Y, Liu T, Zhao Z, Xu X, Zhang Y, Wei F, Sun R, Liu S, Li J, Guo H, Yang R. Prediction of immune infiltration and prognosis for patients with urothelial bladder cancer based on the DNA damage repair-related genes signature. Heliyon 2023; 9:e13661. [PMID: 36873527 PMCID: PMC9976330 DOI: 10.1016/j.heliyon.2023.e13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Objectives To analyze the correlations between the expression and effect of DNA damage repair genes and the immune status and clinical outcomes of urothelial bladder cancer (BLCA) patients. In addition, we evaluate the efficacy and value of utilizing the DNA damage repair genes signature as a prognosis model for BLCA. Methods Two subtype groups (C1 and C2) were produced based on the varied expression of DNA damage repair genes. Significantly differentiated genes and predicted enriched gene pathways were obtained between the two subtypes. Seven key genes were obtained from the DNA damage repair-related genes and a 7-gene signature prognosis model was established based on the key genes. The efficacy and accuracy of this model in prognosis prediction was evaluated and verified in two independent databases. Also, the difference in biological functions, drug sensitivity, immune infiltration and affinity between the high-risk group and low-risk group was analyzed. Results The DNA damage repair gene signature could significantly differentiate the BLCA into two molecular subgroups with varied genetic expression and enriched gene pathways. Seven key genes were screened out from the 232 candidate genes for prognosis prediction and a 7-gene signature prognosis model was established based on them. Two independent patient cohorts (TCGA cohort and GEO cohort) were utilized to validate the efficacy of the prognosis model, which demonstrated an effective capability to differentiate and predict the overall survival of BLCA patients. Also, the high-risk group and low-risk group derived from the 7-gene model exhibited significantly differences in drug sensitivity, immune infiltration status and biological pathways enrichment. Conclusions Our established 7-gene signature model based on the DNA damage repair genes could serve as a novel prognosis predictive tool for BLCA. The differentiation of BLCA patients based on the 7-gene signature model may be of great value for the appropriate selection of specific chemotherapy agents and immune-checkpoint blockade therapy administration.
Collapse
Affiliation(s)
- Tianhang Li
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Ning Jiang
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Yuhao Bai
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zihan Zhao
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Xinyan Xu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Yulin Zhang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Fayun Wei
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rui Sun
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Siyang Liu
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Jiazheng Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
171
|
Fitzgerald KN, Motzer RJ, Lee CH. Adjuvant therapy options in renal cell carcinoma - targeting the metastatic cascade. Nat Rev Urol 2023; 20:179-193. [PMID: 36369389 PMCID: PMC10921989 DOI: 10.1038/s41585-022-00666-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
Localized renal cell carcinoma (RCC) is primarily managed with nephrectomy, which is performed with curative intent. However, disease recurs in ~20% of patients. Treatment with adjuvant therapies is used after surgery with the intention of curing additional patients by disrupting the establishment, maturation or survival of micrometastases, processes collectively referred to as the metastatic cascade. Immune checkpoint inhibitors and vascular endothelial growth factor receptor (VEGFR)-targeting tyrosine kinase inhibitors (TKIs) have shown efficacy in the treatment of metastatic RCC, increasing the interest in the utility of these agents in the adjuvant setting. Pembrolizumab, an inhibitor of the immune checkpoint PD1, is now approved by the FDA and is under review by European regulatory agencies for the adjuvant treatment of patients with localized resected clear cell RCC based on the results of the KEYNOTE-564 trial. However, the optimal use of immunotherapy and VEGFR-targeting TKIs for adjuvant treatment of RCC is not completely understood. These agents disrupt the metastatic cascade at multiple steps, providing biological rationale for further investigating the applications of these therapeutics in the adjuvant setting. Clinical trials to evaluate adjuvant therapeutics in RCC are ongoing, and clinical considerations must guide the practical use of immunotherapy and TKI agents for the adjuvant treatment of localized resected RCC.
Collapse
Affiliation(s)
- Kelly N Fitzgerald
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
172
|
At the crossroads of immunotherapy for oncogene-addicted subsets of NSCLC. Nat Rev Clin Oncol 2023; 20:143-159. [PMID: 36639452 DOI: 10.1038/s41571-022-00718-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/15/2023]
Abstract
Non-small-cell lung cancer (NSCLC) has become a paradigm of precision medicine, with the discovery of numerous disease subtypes defined by specific oncogenic driver mutations leading to the development of a range of molecularly targeted therapies. Over the past decade, rapid progress has also been made in the development of immune-checkpoint inhibitors (ICIs), especially antagonistic antibodies targeting the PD-L1-PD-1 axis, for the treatment of NSCLC. Although many of the major oncogenic drivers of NSCLC are associated with intrinsic resistance to ICIs, patients with certain oncogene-driven subtypes of the disease that are highly responsive to specific targeted therapies might also derive benefit from immunotherapy. However, the development of effective immunotherapy approaches for oncogene-addicted NSCLC has been challenged by a lack of predictive biomarkers for patient selection and limited knowledge of how ICIs and oncogene-directed targeted therapies should be combined. Therefore, whether ICIs alone or with chemotherapy or even in combination with molecularly targeted agents would offer comparable benefit in the context of selected oncogenic driver alterations to that observed in the general unselected NSCLC population remains an open question. In this Review, we discuss the effects of oncogenic driver mutations on the efficacy of ICIs and the immune tumour microenvironment as well as the potential vulnerabilities that could be exploited to overcome the challenges of immunotherapy for oncogene-addicted NSCLC.
Collapse
|
173
|
Wang L, Jia Q, Chu Q, Zhu B. Targeting tumor microenvironment for non-small cell lung cancer immunotherapy. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:18-29. [PMID: 39170874 PMCID: PMC11332857 DOI: 10.1016/j.pccm.2022.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 11/23/2022] [Indexed: 08/23/2024]
Abstract
The tumor microenvironment (TME) is composed of different cellular and non-cellular elements. Constant interactions between tumor cells and the TME are responsible for tumor initiation, tumor progression, and responses to therapies. Immune cells in the TME can be classified into two broad categories, namely adaptive and innate immunity. Targeting these immune cells has attracted substantial research and clinical interest. Current research focuses on identifying key molecular players and developing targeted therapies. These approaches may offer more efficient ways of treating different cancers. In this review, we explore the heterogeneity of the TME in non-small cell lung cancer, summarize progress made in targeting the TME in preclinical and clinical studies, discuss the potential predictive value of the TME in immunotherapy, and highlight the promising effects of bispecific antibodies in the era of immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
- Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
174
|
De Leon-Rodríguez SG, Aguilar-Flores C, Gajón JA, Mantilla A, Gerson-Cwilich R, Martínez-Herrera JF, Rodríguez-Soto BE, Gutiérrez-Quiroz CT, Pérez-Koldenkova V, Muñoz-Cruz S, Bonifaz LC, Fuentes-Pananá EM. Acral Melanoma Is Infiltrated with cDC1s and Functional Exhausted CD8 T Cells Similar to the Cutaneous Melanoma of Sun-Exposed Skin. Int J Mol Sci 2023; 24:4786. [PMID: 36902214 PMCID: PMC10003718 DOI: 10.3390/ijms24054786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Acral melanoma (AM) is the most common melanoma in non-Caucasian populations, yet it remains largely understudied. As AM lacks the UV-radiation mutational signatures that characterize other cutaneous melanomas, it is considered devoid of immunogenicity and is rarely included in clinical trials assessing novel immunotherapeutic regimes aiming to recover the antitumor function of immune cells. We studied a Mexican cohort of melanoma patients from the Mexican Institute of Social Security (IMSS) (n = 38) and found an overrepresentation of AM (73.9%). We developed a multiparametric immunofluorescence technique coupled with a machine learning image analysis to evaluate the presence of conventional type 1 dendritic cells (cDC1) and CD8 T cells in the stroma of melanoma, two of the most relevant immune cell types for antitumor responses. We observed that both cell types infiltrate AM at similar and even higher levels than other cutaneous melanomas. Both melanoma types harbored programmed cell death protein 1 (PD-1+) CD8 T cells and PD-1 ligand (PD-L1+) cDC1s. Despite this, CD8 T cells appeared to preserve their effector function and expanding capacity as they expressed interferon-γ (IFN-γ) and KI-67. The density of cDC1s and CD8 T cells significantly decreased in advanced stage III and IV melanomas, supporting these cells' capacity to control tumor progression. These data also argue that AM could respond to anti-PD-1-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Saraí G. De Leon-Rodríguez
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Cristina Aguilar-Flores
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Julián A. Gajón
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alejandra Mantilla
- Servicio de Patología, Hospital de Oncología Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | | | - José Fabián Martínez-Herrera
- Cancer Center, Medical Center American British Cowdray, Mexico City 01120, Mexico
- Latin American Network for Cancer Research (LAN-CANCER), Lima 11702, Peru
| | | | | | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada-IMSS, División de Desarrollo de la Investigación, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Samira Muñoz-Cruz
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
| | - Laura C. Bonifaz
- UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Unidad de Investigación Médica en Inmunoquímica, Mexico City 06720, Mexico
- Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
175
|
Bruno G, Nastasi N, Subbiani A, Boaretto A, Ciullini Mannurita S, Mattei G, Nardini P, Della Bella C, Magi A, Pini A, De Marco E, Tondo A, Favre C, Calvani M. β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Ther 2023:10.1038/s41417-023-00599-x. [PMID: 36854895 DOI: 10.1038/s41417-023-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/27/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma (NB) is a heterogeneous extracranial tumor occurring in childhood. A distinctive feature of NB tumors is their neuroendocrine ability to secrete catecholamines, which in turn, via β-adrenergic receptors ligation, may affect different signaling pathways in tumor microenvironment (TME). It was previously demonstrated that specific antagonism of β3-adrenergic receptor (β3-AR) on NB tumor cells affected tumor growth and progression. Here, in a murine syngeneic model of NB, we aimed to investigate whether the β3-AR modulation influenced the host immune system response against tumor. Results demonstrated that β3-AR antagonism lead to an immune response reactivation, partially dependent on the PD-1/PD-L1 signaling axis involvement. Indeed, β3-AR blockade on tumor-infiltrating lymphocytes (TILs) dampened their ability to secrete IFN-γ, which in turn reduced the PD-L1 expression, caused by TILs infiltration, on NB tumor cells. Further investigations, through a genomic analysis on NB patients, showed that high ADRB3 gene expression correlates with worse clinical outcome compared to the low expression group, and that ADRB3 gene expression affects different immune-related pathways. Overall, results indicate that β3-AR in NB TME is able to modulate the interaction between tumor and host immune system, and that its antagonism hits multiple pro-tumoral signaling pathways.
Collapse
Affiliation(s)
- Gennaro Bruno
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy. .,Department of Health Sciences, University of Florence, Florence, Italy.
| | - Nicoletta Nastasi
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Angela Subbiani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Alessia Boaretto
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Sara Ciullini Mannurita
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Emanuela De Marco
- Pediatric Hematology and Oncology, University Hospital of Pisa, Pisa, Italy
| | - Annalisa Tondo
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Claudio Favre
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| | - Maura Calvani
- Department of Pediatric Hematology-Oncology, A. Meyer Children's Hospital IRCCS, Florence, Italy
| |
Collapse
|
176
|
Identification of fibrocyte cluster in tumors reveals the role in antitumor immunity by PD-L1 blockade. Cell Rep 2023; 42:112162. [PMID: 36870329 DOI: 10.1016/j.celrep.2023.112162] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Recent clinical trials revealed that immune checkpoint inhibitors and antiangiogenic reagent combination therapy improved the prognosis of various cancers. We investigated the roles of fibrocytes, collagen-producing monocyte-derived cells, in combination immunotherapy. Anti-VEGF (vascular endothelial growth factor) antibody increases tumor-infiltrating fibrocytes and enhances the antitumor effects of anti-PD-L1 (programmed death ligand 1) antibody in vivo. Single-cell RNA sequencing of tumor-infiltrating CD45+ cells identifies a distinct "fibrocyte cluster" from "macrophage clusters" in vivo and in lung adenocarcinoma patients. A sub-clustering analysis reveals a fibrocyte sub-cluster that highly expresses co-stimulatory molecules. CD8+ T cell-costimulatory activity of tumor-infiltrating CD45+CD34+ fibrocytes is enhanced by anti-PD-L1 antibody. Peritumoral implantation of fibrocytes enhances the antitumor effect of PD-L1 blockade in vivo; CD86-/- fibrocytes do not. Tumor-infiltrating fibrocytes acquire myofibroblast-like phenotypes through transforming growth factor β (TGF-β)/small mothers against decapentaplegic (SMAD) signaling. Thus, TGF-βR/SMAD inhibitor enhances the antitumor effects of dual VEGF and PD-L1 blockade by regulating fibrocyte differentiation. Fibrocytes are highlighted as regulators of the response to programmed death 1 (PD-1)/PD-L1 blockade.
Collapse
|
177
|
Kennedy BC, Dean I, Withers DR. Migration of stem-like CD8 T cells between tissue microenvironments underpins successful anti-tumour immune responses. DISCOVERY IMMUNOLOGY 2023; 2:kyad004. [PMID: 37008996 PMCID: PMC10052398 DOI: 10.1093/discim/kyad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 02/19/2023]
Abstract
The clinical success of immune checkpoint blockade in some patients has transformed treatment approaches in cancer and offers the hope of durable curative responses. Building from studies of chronic infection, the composition of tumour infiltrating lymphocytes and in particular, the spectrum of exhausted CD8 T cells has now been characterized in detail, profiling the phenotype, function, transcriptional regulation and even the epigenetic changes. However, what remains less clear is how intratumoural immune cells interface with populations in the periphery, both in terms of sustaining the response in cancer, but also in establishing systemic memory responses that can provide long-term protection. Here we will succinctly review the current understanding of the anti-tumour response, consider the tissue microenvironments that support key cellular subsets and the extent to which cellular migration between these sites impacts the response.
Collapse
Affiliation(s)
- Bethany C Kennedy
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
178
|
Abstract
The theory that cancer-associated fibroblasts (CAFs) are immunosuppressive cells has prevailed throughout the past decade. However, recent high-throughput, high-resolution mesenchyme-directed single-cell studies have harnessed computational advances to functionally characterize cell states, highlighting the existence of immunostimulatory CAFs. Our group and others have uncovered and experimentally substantiated key functions of cancer antigen-presenting CAFs in T cell immunity, both in vitro and in vivo, refuting the conventional assumption that CAFs impede adaptive immune rejection of tumours. In this Perspective, I unify the follicular and non-follicular, non-endothelial stroma of tumours under the 'peripheral adaptive immune mesenchyme' framework and position subsets of CAFs as direct positive regulators of the adaptive immune system. Building on the understanding of cancer antigen presentation by CAFs and the second touch hypothesis, which postulates that full T cell polarization requires interaction with antigen-presenting cells in the non-lymphoid tissue where the antigen resides, I re-design the 'cancer-immunity cycle' to incorporate intratumoural activation of cancer-specific CD4+ T cells. Lastly, a road map to therapeutic harnessing of immunostimulatory CAF states is proposed.
Collapse
Affiliation(s)
- Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| |
Collapse
|
179
|
Katakai T. Yin and yang roles of B lymphocytes in solid tumors: Balance between antitumor immunity and immune tolerance/immunosuppression in tumor-draining lymph nodes. Front Oncol 2023; 13:1088129. [PMID: 36761946 PMCID: PMC9902938 DOI: 10.3389/fonc.2023.1088129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
The role of B cells in antitumor immunity has been reported to be either promotive or suppressive, but the specific mechanism remains to be comprehensively understood. However, this complicated situation likely depends on the temporal and spatial relationship between the developing tumor and B cells that recognize tumor antigens. Unlike responses against microbial or pathogenic infections, tumor cells are derived from autologous cells that have mutated and become aberrant; thus, elimination by the adaptive immune system is essentially inefficient. If tumor cells can evade immune attack at an early stage, non-destructive responses, such as tolerance and immunosuppression, are established over time. In tumor-draining lymph nodes (TDLNs), tumor antigen-reactive B cells potentially acquire immunoregulatory phenotypes and contribute to an immunosuppressive microenvironment. Therefore, triggering and enhancing antitumor responses by immunotherapies require selective control of these regulatory B cell subsets in TDLNs. In contrast, B cell infiltration and formation of tertiary lymphoid structures in tumors are positively correlated with therapeutic prognosis, suggesting that tumor antigen-specific activation of B cells and antibody production are advantageous for antitumor immunity in mid- to late-stage tumors. Given that the presence of B cells in tumor tissues may reflect the ongoing antitumor response in TDLNs, therapeutic induction and enhancement of these lymphocytes are expected to increase the overall effectiveness of immunotherapy. Therefore, B cells are promising targets, but the spatiotemporal balance of the subsets that exhibit opposite characteristics, that is, the protumor or antitumor state in TDLNs, should be understood, and strategies to separately control their functions should be developed to maximize the clinical outcome.
Collapse
|
180
|
Preventive effect of tertiary lymphoid structures on lymph node metastasis of lung adenocarcinoma. Cancer Immunol Immunother 2023; 72:1823-1834. [PMID: 36688996 DOI: 10.1007/s00262-022-03353-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/07/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Ectopic lymphoid formations are called tertiary lymphoid structures (TLSs). TLSs in cancer have been reported to be associated with good prognosis and immunotherapy response. However, the relationship between TLSs and lymph node (LN) metastasis is unclear. METHODS We analyzed 218 patients with radically resected lung adenocarcinoma. TLSs were defined as the overlap of T cell zone and B cell zone. Granzyme B + cells were defined as cytotoxic lymphocytes. We evaluated phenotypes of lymphocytes in TLSs, tumor-infiltrating lymphocytes (TILs) and LNs by immunohistochemistry. We divided the patients into mature TLS (DC-Lamp high) and immature TLS (DC-Lamp low) groups. The relationship between TLS maturation and clinicopathological factors was analyzed. RESULTS The mature TLS group was associated with significantly lower frequency of LN metastasis (P < 0.0001) and early cancer stage (P = 0.0049). The mature TLS group had significantly more CD8 + (P = 0.0203) and Foxp3 + (P = 0.0141) cells in TILs than the immature TLS group had. Mature TLSs were independently associated with a favorable overall survival (hazard ratio [HR] = 0.17, P = 0.0220) and disease-free survival (HR = 0.54, P = 0.0436). Multivariate analysis showed that mature TLS was an independent low-risk factor for LN metastasis (odds ratio = 0.06, P = 0.0003). The number of cytotoxic lymphocytes in LNs was higher in the mature TLS group than in the immature group (20.0 vs. 15.1, P = 0.017). CONCLUSION Mature TLSs were associated with an increased number of cytotoxic lymphocytes in draining LNs, a lower frequency of LN metastasis, and favorable outcomes. Mature TLSs may support antitumor immunity by lymphocyte activation.
Collapse
|
181
|
Veinalde R, Pidelaserra-Martí G, Moulin C, Tan CL, Schäfer TE, Kang N, Ball CR, Leichsenring J, Stenzinger A, Kaderali L, Jäger D, Ungerechts G, Engeland CE. Virotherapy combined with anti-PD-1 transiently reshapes the tumor immune environment and induces anti-tumor immunity in a preclinical PDAC model. Front Immunol 2023; 13:1096162. [PMID: 36726983 PMCID: PMC9886093 DOI: 10.3389/fimmu.2022.1096162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model. Methods We characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity. Results Combination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity. Discussion Our results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy.
Collapse
Affiliation(s)
- Rūta Veinalde
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gemma Pidelaserra-Martí
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Coline Moulin
- Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chin Leng Tan
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany,Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Theresa E. Schäfer
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Na Kang
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia R. Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany,Center for Personalized Oncology, National Center for Tumor Diseases (NCT) Dresden and University Hospital Carl Gustav Carus, Faculty of Medicine and Technische Universität Dresden, Dresden, Germany
| | - Jonas Leichsenring
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institut für Pathologie, Zytologie und molekulare Diagnostik, Regiomed Klinikum Coburg, Coburg, Germany
| | | | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Guy Ungerechts
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Christine E. Engeland
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany,Faculty of Health, School of Medicine, Center for Biomedical Research and Education (ZBAF), Institute of Virology and Microbiology, Witten/Herdecke University, Witten, Germany,Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany,*Correspondence: Christine E. Engeland, ;
| |
Collapse
|
182
|
Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, Reyes Moon A, Gregorova P, delBalzo L, Greenwald R, Bilen MA, Alemozaffar M, Joshi S, Cimmino C, Larsen C, Master V, Sanda M, Kissick H. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 2023; 56:107-124.e5. [PMID: 36580918 PMCID: PMC10266440 DOI: 10.1016/j.immuni.2022.12.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/11/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
Improvements in tumor immunotherapies depend on better understanding of the anti-tumor T cell response. By studying human tumor-draining lymph nodes (TDLNs), we found that activated CD8+ T cells in TDLNs shared functional, transcriptional, and epigenetic traits with TCF1+ stem-like cells in the tumor. The phenotype and TCR overlap suggested that these TDLN cells were precursors to tumor-resident stem-like CD8+ T cells. Murine tumor models revealed that tumor-specific CD8+ T cells were activated in TDLNs but lacked an effector phenotype. These stem-like cells migrated into the tumor, where additional co-stimulation from antigen-presenting cells drove effector differentiation. This model of CD8+ T cell activation in response to cancer is different from that of canonical CD8+ T cell activation to acute viruses, and it proposes two stages of tumor-specific CD8+ T cell activation: initial activation in TDLNs and subsequent effector program acquisition within the tumor after additional co-stimulation.
Collapse
Affiliation(s)
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin G Barwick
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Caroline Jansen
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Adriana Reyes Moon
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Petra Gregorova
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Luke delBalzo
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rachel Greenwald
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehrdad Alemozaffar
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Shreyas Joshi
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Cara Cimmino
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Christian Larsen
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj Master
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Martin Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haydn Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
183
|
Yu I, Dakwar A, Takabe K. Immunotherapy: Recent Advances and Its Future as a Neoadjuvant, Adjuvant, and Primary Treatment in Colorectal Cancer. Cells 2023; 12:cells12020258. [PMID: 36672193 PMCID: PMC9856401 DOI: 10.3390/cells12020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy in colorectal cancer (CRC) has made great strides within the past decade. Immune checkpoint inhibitors are a class of immunotherapy and have been shown to greatly improve patient outcomes in mismatch repair-deficient (dMMR) CRC. Now, they are part of the standard of care for this subset of CRC. Because of this, there has been a growing interest in the efficacy and timing of immunotherapy for other subsets of CRC, including locally advanced, metastatic, and microsatellite stable (MSS). In this review, we aim to examine the three main classes of immunotherapy for CRC-immune checkpoint inhibitors (ICIs), adoptive cell transfer therapy (ACT), and tumor vaccines-and discuss the most recent advances and future directions for each.
Collapse
Affiliation(s)
- Irene Yu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Anthony Dakwar
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214, USA
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Breast Surgery, Fukushima Medical University, Fukushima 960-1295, Japan
- Correspondence: ; Tel.: +1-716-845-5128
| |
Collapse
|
184
|
García Melián MF, Moreno M, Cerecetto H, Calzada V. Aptamer-Based Immunotheranostic Strategies. Cancer Biother Radiopharm 2023; 38:246-255. [PMID: 36603108 DOI: 10.1089/cbr.2022.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The escape from immune surveillance is a hallmark of cancer progression. The classic immune checkpoint molecules PD-1, PD-L1, CTLA-4, LAG-3, TIM-3 novel ones are part of a sophisticated system of up- and downmodulation of the immune system, which is unregulated in cancer. In recent years, there have been remarkable advances in the development of targeting strategies, focused principally on immunotherapies aiming at blocking those molecules involved in the evasion of the immune system. However, there are still challenges to predicting their efficacy due to the wide heterogeneity of clinical responses. Thus, there is a need to develop new strategies, and theranostics has much to contribute in this field. Besides that, aptamers have emerged as promising molecules with the potential to generate a huge impact in the immunotheranostic field. They are single-stranded oligonucleotides with a unique self-folding tridimensional structure, with high affinity and specificity for the target. In particular, their small size and physicochemical characteristics make them a versatile tool for designing theranostic strategies. Here, we review the progress in theranostic strategies based on aptamers against immune checkpoints, and highlight the potential of those approaches.
Collapse
Affiliation(s)
- María Fernanda García Melián
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Hugo Cerecetto
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Victoria Calzada
- Área de Radiofarmacia, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
185
|
Knopf P, Stowbur D, Hoffmann SHL, Fransen MF, Schwenck J, Pichler BJ, Kneilling M. Preclinical Identification Of Tumor-Draining Lymph Nodes Using a Multimodal Non-invasive In vivo Imaging Approach. Mol Imaging Biol 2023; 25:606-618. [PMID: 36600172 PMCID: PMC10172276 DOI: 10.1007/s11307-022-01797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Resection of the tumor-draining lymph -node (TDLN) represents a standard method to identify metastasis for several malignancies. Interestingly, recent preclinical studies indicate that TDLN resection diminishes the efficacy of immune checkpoint inhibitor-based cancer immunotherapies. Thus, accurate preclinical identification of TDLNs is pivotal to uncovering the underlying immunological mechanisms. Therefore, we validated preclinically, and clinically available non-invasive in vivo imaging approaches for precise TDLN identification. PROCEDURES For visualization of the lymphatic drainage into the TDLNs by non-invasive in vivo optical imaging, we injected the optical imaging contrast agents Patent Blue V (582.7 g mol-1) and IRDye® 800CW polyethylene glycol (PEG; 25,000-60,000 g mol-1), subcutaneously (s.c.) in close proximity to MC38 adenocarcinomas at the right flank of experimental mice. For determination of the lymphatic drainage and the glucose metabolism in TDLNs by non-invasive in vivo PET/magnetic resonance imaging (PET/MRI), we injected the positron emission tomography (PET) tracer (2-deoxy-2[18F]fluoro-D-glucose (18F-FDG) [181.1 g mol-1]) in a similar manner. For ex vivo cross-correlation, we isolated TDLNs and contralateral nontumor-draining lymph nodes (NTDLNs) and performed optical imaging, biodistribution, and autoradiography analysis. RESULTS The clinically well-established Patent Blue V was superior for intraoperative macroscopic identification of the TDLNs compared with IRDye® 800CW PEG but was not sensitive enough for non-invasive in vivo detection by optical imaging. Ex vivo Patent Blue V biodistribution analysis clearly identified the right accessory axillary and the proper axillary lymph node (LN) as TDLNs, whereas ex vivo IRDye® 800CW PEG completely failed. In contrast, functional non-invasive in vivo 18F-FDG PET/MRI identified a significantly elevated uptake exclusively within the ipsilateral accessory axillary TDLN of experimental mice and was able to differentiate between the accessory axillary and the proper LN. Ex vivo biodistribution and autoradiography confirmed our in vivo 18F-FDG PET/MRI results. CONCLUSIONS When taken together, our results demonstrate the feasibility of 18F-FDG-PET/MRI as a valid method for non-invasive in vivo, intraoperative, and ex vivo identification of the lymphatic drainage and glucose metabolism within the TDLNs. In addition, using Patent Blue V provides additive value for the macroscopic localization of the lymphatic drainage both visually and by ex vivo optical imaging analysis. Thus, both methods are valuable, easy to implement, and cost-effective for preclinical identification of the TDLN.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dimitri Stowbur
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany.,Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center, Heidelberg, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany. .,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076, Tübingen, Germany. .,Department of Dermatology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
186
|
PD-1/PD-L1 inhibitor plus chemotherapy versus standard of care in the first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2023; 280:1-9. [PMID: 35907001 DOI: 10.1007/s00405-022-07571-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE This study aimed to evaluate the efficacy and safety of programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) inhibitor plus chemotherapy vs standard of care (SoC) treatment in the first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma (R/M-SCCHN). METHODS Randomized controlled trials (RCTs) that investigated PD-1/PD-L1 inhibitor plus chemotherapy vs SoC as first-line treatment for R/M-SCCHN were searched from electronic databases (PubMed, Embase and Cochrane Library). The primary outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs). RESULTS In total, three phase 3 RCTs (KEYNOTE-048, CAPTAIN-1st, and JUPITER-02; n = 1120) with three PD-1 inhibitors (pembrolizumab, camrelizumab and toripalimab) were included in the analysis. Compared with SoC, PD-1 inhibitor plus chemotherapy significantly prolonged PFS (hazard ratio [HR] 0.66, 95% CI 0.40-0.93, p < 0.001) and OS (HR 0.73, 95% CI 0.60-0.86, p < 0.001) of patients. There was no statistical differences in ORR (odds ratio [OR] 1.26; 95% CI 0.97-1.64, p = 0.086), grade 3 or higher AEs (OR 0.77, 95% CI 0.50-1.17, p = 0.221), and treatment-related deaths (OR 1.34, 95% CI 0.60-2.98, p = 0.470) between the two groups. CONCLUSION PD-1 inhibitor plus chemotherapy showed more survival benefit than SoC in the first-line treatment for R/M-SCCHN, with a similar safety profile.
Collapse
|
187
|
Borm FJ, Smit J, Bakker J, Wondergem M, Smit EF, de Langen AJ, de Gruijl TD. Early response evaluation of PD-1 blockade in NSCLC patients through FDG-PET-CT and T cell profiling of tumor-draining lymph nodes. Oncoimmunology 2023; 12:2204745. [PMID: 37123045 PMCID: PMC10142313 DOI: 10.1080/2162402x.2023.2204745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Better biomarkers for programmed death - (ligand) 1 (PD-(L)1) checkpoint blockade in non-small cell lung cancer (NSCLC) are needed. We explored the predictive value of early response evaluation using Fluor-18-deoxyglucose positron emission tomography and pre- and on-treatment flowcytometric T-cell profiling in peripheral blood and tumor-draining lymph nodes (TDLN). The on-treatment evaluation was performed 7-14 days after the start of PD-1 blockade in NSCLC patients. These data were related to (pathological) tumor response, progression-free survival, and overall survival (OS). We found that increases in total lesion glycolysis (TLG) had a strong reverse correlation with OS (r = -0.93, p = 0.022). Additionally, responders showed decreased progressors and increased Treg frequencies on-treatment. Frequencies of detectable PD-1-expressing CD8+ T cells decreased in responders but remained stable in progressors. This was especially found in the TDLN. Changes in activated Treg rates in TDLN were strongly but, due to low numbers of data points, non-significantly correlated with ΔTLG and reversely correlated with OS.
Collapse
Affiliation(s)
- Frank J. Borm
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
- CONTACT Frank J. Borm Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden2333 ZA, The Netherlands
| | - Jasper Smit
- Department of Thoracic Oncology, NKI-AvL, Amsterdam, The Netherlands
| | - Joyce Bakker
- Amsterdam UMC Location Vrije Universiteit, Medical Oncology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| | | | - Egbert F. Smit
- Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Thoracic Oncology, NKI-AvL, Amsterdam, The Netherlands
| | | | - Tanja D. de Gruijl
- Amsterdam UMC Location Vrije Universiteit, Medical Oncology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunology, Amsterdam, Netherlands
| |
Collapse
|
188
|
Tao Y, Biau J, Sun XS, Sire C, Martin L, Alfonsi M, Prevost JB, Modesto A, Lafond C, Tourani JM, Miroir J, Kaminsky MC, Coutte A, Liem X, Chautard E, Vauleon E, Drouet F, Ruffier A, Ramee JF, Waksi G, Péchery A, Wanneveich M, Guigay J, Aupérin A, Bourhis J. Pembrolizumab versus cetuximab concurrent with radiotherapy in patients with locally advanced squamous cell carcinoma of head and neck unfit for cisplatin (GORTEC 2015-01 PembroRad): a multicenter, randomized, phase II trial. Ann Oncol 2023; 34:101-110. [PMID: 36522816 DOI: 10.1016/j.annonc.2022.10.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND To evaluate potential synergistic effect of pembrolizumab with radiotherapy (RT) compared with a standard-of-care (SOC) cetuximab-RT in patients with locally advanced-squamous cell carcinoma of head and neck (LA-SCCHN). PATIENTS AND METHODS Patients with nonoperated stage III-IV SCC of oral cavity, oropharynx, hypopharynx, and larynx and unfit for receiving high-dose cisplatin were enrolled. Patients received once-daily RT up to 69.96 Gy in 33 fractions with weekly cetuximab (cetuximab-RT arm) or 200 mg Q3W pembrolizumab during RT (pembrolizumab-RT arm). The primary endpoint was locoregional control (LRC) rate 15 months after RT. To detect a difference between arms of 60%-80% in 15-month LRC, inclusion of 66 patients per arm was required to achieve a power of at least 0.85 at two-sided significance level of 0.20. RESULTS Between May 2016 and October 2017, 133 patients were randomized to cetuximab-RT (n = 66) and pembrolizumab-RT (n = 67). Two patients (one in each arm) were not included in the analysis (a consent withdrawal and a progression before treatment start). The median age was 65 years (interquartile range 60-70 years), 92% were smokers, 60% were oropharynx (46% of oropharynx with p16+) and 75% were stage IV. Median follow-up was 25 months in both arms. The 15-month LRC rate was 59% with cetuximab-RT and 60% with pembrolizumab-RT ]odds ratio 1.05, 95% confidence interval (CI) 0.43-2.59; P = 0.91]. There was no significant difference between arms for progression-free survival (hazard ratio 0.85, 95% CI 0.55-1.32; P = 0.47) and for overall survival (hazard ratio 0.83, 95% CI 0.49-1.40; P = 0.49). Toxicity was lower in the pembrolizumab-RT arm than in the cetuximab-RT arm: 74% versus 92% patients with at least one grade ≥3 adverse events (P = 0.006), mainly due to mucositis, radiodermatitis, and rash. CONCLUSION Compared with the SOC cetuximab-RT, pembrolizumab concomitant with RT did not improve the tumor control and survival but appeared less toxic in unfit patients with LA-SCCHN.
Collapse
Affiliation(s)
- Y Tao
- Gustave-Roussy Institute, Villejuif, France
| | - J Biau
- Centre Jean Perrin, Clermont Ferrand, France
| | - X S Sun
- Hôpital Nord Franche-Comté, Montbéliard and CHU Besançon, Montbéliard, France
| | - C Sire
- Centre Hospitalier de Bretagne Sud, Lorient, France
| | - L Martin
- Clinique des Ormeaux, Le Havre, France
| | - M Alfonsi
- Clinique Sainte Catherine, Avignon, France
| | | | - A Modesto
- Institut Claudius Regaud, Toulouse, France
| | - C Lafond
- Clinique Victor Hugo-Centre Jean Bernard, Le Mans, France
| | - J M Tourani
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - J Miroir
- Centre Jean Perrin, Clermont Ferrand, France
| | - M C Kaminsky
- Institut de Cancérologie de Lorraine, Nancy, France
| | - A Coutte
- Centre Hospitalier Universitaire Amiens-Picardie, Amiens, France
| | - X Liem
- Centre Oscar Lambret, Lille, France
| | - E Chautard
- Centre Jean Perrin, Clermont Ferrand, France
| | - E Vauleon
- Centre Eugène Marquis, Rennes, France
| | - F Drouet
- Clinique Mutualiste de l'estuaire, Saint-Nazaire, France
| | - A Ruffier
- Gustave-Roussy Institute, Villejuif, France; Clinique Victor Hugo-Centre Jean Bernard, Le Mans, France
| | - J F Ramee
- Centre Hospitalier Départemental de Vendée, La Roche sur Yon, France
| | | | | | | | - J Guigay
- Centre Antoine Lacassagne, FHU OncoAge, University Côte d'Azur, Nice, France
| | - A Aupérin
- Unit of Biostatistics and Epidemiology, Gustave Roussy, Oncostat 1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | - J Bourhis
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
189
|
Brunell AE, Lahesmaa R, Autio A, Thotakura AK. Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Front Immunol 2023; 14:1151632. [PMID: 37122741 PMCID: PMC10140554 DOI: 10.3389/fimmu.2023.1151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
T cell exhaustion is an alternative differentiation path of T cells, sometimes described as a dysfunction. During the last decade, insights of T cell exhaustion acting as a bottle neck in the field of cancer immunotherapy have undoubtedly provoked attention. One of the main drivers of T cell exhaustion is prolonged antigen presentation, a prerequisite in the cancer-immunity cycle. The umbrella term "T cell exhaustion" comprises various stages of T cell functionalities, describing the dynamic, one-way exhaustion process. Together these qualities of T cells at the exhaustion continuum can enable tumor clearance, but if the exhaustion acquired timeframe is exceeded, tumor cells have increased possibilities of escaping immune system surveillance. This could be considered a tipping point where exhausted T cells switch from an asset to a liability. In this review, the contrary role of exhausted T cells is discussed.
Collapse
Affiliation(s)
- Anna E. Brunell
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Anu Autio
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Anil K. Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
- *Correspondence: Anil K. Thotakura,
| |
Collapse
|
190
|
Barham W, Hsu M, Liu X, Harrington SM, Hirdler JB, Gicobi JK, Zhu X, Zeng H, Pavelko KD, Yan Y, Mansfield AS, Dong H. A Novel Humanized PD-1/PD-L1 Mouse Model Permits Direct Comparison of Antitumor Immunity Generated by Food and Drug Administration-Approved PD-1 and PD-L1 Inhibitors. Immunohorizons 2023; 7:125-139. [PMID: 36656137 PMCID: PMC10106088 DOI: 10.4049/immunohorizons.2200054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Seven different anti-PD-1 and PD-L1 mAbs are now widely used in the United States to treat a variety of cancer types, but no clinical trials have compared them directly. Furthermore, because many of these Abs do not cross-react between mouse and human proteins, no preclinical models exist in which to consider these types of questions. Thus, we produced humanized PD-1 and PD-L1 mice in which the extracellular domains of both mouse PD-1 and PD-L1 were replaced with the corresponding human sequences. Using this new model, we sought to compare the strength of the immune response generated by Food and Drug Administration-approved Abs. To do this, we performed an in vivo T cell priming assay in which anti-PD-1/L1 therapies were given at the time of T cell priming against surrogate tumor Ag (OVA), followed by subsequent B16-OVA tumor challenge. Surprisingly, both control and Ab-treated mice formed an equally robust OVA-specific T cell response at the time of priming. Despite this, anti-PD-1/L1-treated mice exhibited significantly better tumor rejection versus controls, with avelumab generating the best protection. To determine what could be mediating this, we identified the increased production of CX3CR1+PD-1+CD8+ cytotoxic T cells in the avelumab-treated mice, the same phenotype of effector T cells known to increase in clinical responders to PD-1/L1 therapy. Thus, our model permits the direct comparison of Food and Drug Administration-approved anti-PD-1/L1 mAbs and further correlates successful tumor rejection with the level of CX3CR1+PD-1+CD8 + T cells, making this model a critical tool for optimizing and better utilizing anti-PD-1/L1 therapeutics.
Collapse
Affiliation(s)
- Whitney Barham
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Michelle Hsu
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Xin Liu
- Department of Urology, Mayo Clinic, Rochester, MN
| | | | | | - Joanina K. Gicobi
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Xingxing Zhu
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | - Hu Zeng
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN; and
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
| | - Yiyi Yan
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Aaron S. Mansfield
- Division of Medical Oncology, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Haidong Dong
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN
- Department of Urology, Mayo Clinic, Rochester, MN
| |
Collapse
|
191
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
192
|
Chen C, Wang Z, Ding Y, Qin Y. Manipulating T-cell metabolism to enhance immunotherapy in solid tumor. Front Immunol 2022; 13:1090429. [PMID: 36618408 PMCID: PMC9812959 DOI: 10.3389/fimmu.2022.1090429] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolism is not only essential for tumor cells to sustain their rapid growth and proliferation, but also crucial to maintain T cell fitness and robust immunity. Dysregulated metabolism has been recognized as a hallmark of cancer, which provides survival advantages for tumor cells under stress conditions. Also, emerging evidence suggests that metabolic reprogramming impacts the activation, differentiation, function, and exhaustion of T cells. Normal stimulation of resting T cells promotes the conversion of catabolic and oxidative metabolism to aerobic glycolysis in effector T cells, and subsequently back to oxidative metabolism in memory T cells. These metabolic transitions profoundly affect the trajectories of T-cell differentiation and fate. However, these metabolic events of T cells could be dysregulated by their interplays with tumor or the tumor microenvironment (TME). Importantly, metabolic competition in the tumor ecosystem is a new mechanism resulting in strong suppression of effector T cells. It is appreciated that targeting metabolic reprogramming is a promising way to disrupt the hypermetabolic state of tumor cells and enhance the capacity of immune cells to obtain nutrients. Furthermore, immunotherapies, such as immune checkpoint inhibitor (ICI), adoptive cell therapy (ACT), and oncolytic virus (OV) therapy, have significantly refashioned the clinical management of solid tumors, they are not sufficiently effective for all patients. Understanding how immunotherapy affects T cell metabolism provides a bright avenue to better modulate T cell anti-tumor response. In this review, we provide an overview of the cellular metabolism of tumor and T cells, provide evidence on their dynamic interaction, highlight how metabolic reprogramming of tumor and T cells regulate the anti-tumor responses, describe T cell metabolic patterns in the context of ICI, ACT, and OV, and propose hypothetical combination strategies to favor potent T cell functionality.
Collapse
|
193
|
Leete JC, Zager MG, Musante CJ, Shtylla B, Qiao W. Sources of inter-individual variability leading to significant changes in anti-PD-1 and anti-PD-L1 efficacy identified in mouse tumor models using a QSP framework. Front Pharmacol 2022; 13:1056365. [PMID: 36545310 PMCID: PMC9760747 DOI: 10.3389/fphar.2022.1056365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/08/2022] Open
Abstract
While anti-PD-1 and anti-PD-L1 [anti-PD-(L)1] monotherapies are effective treatments for many types of cancer, high variability in patient responses is observed in clinical trials. Understanding the sources of response variability can help prospectively identify potential responsive patient populations. Preclinical data may offer insights to this point and, in combination with modeling, may be predictive of sources of variability and their impact on efficacy. Herein, a quantitative systems pharmacology (QSP) model of anti-PD-(L)1 was developed to account for the known pharmacokinetic properties of anti-PD-(L)1 antibodies, their impact on CD8+ T cell activation and influx into the tumor microenvironment, and subsequent anti-tumor effects in CT26 tumor syngeneic mouse model. The QSP model was sufficient to describe the variability inherent in the anti-tumor responses post anti-PD-(L)1 treatments. Local sensitivity analysis identified tumor cell proliferation rate, PD-1 expression on CD8+ T cells, PD-L1 expression on tumor cells, and the binding affinity of PD-1:PD-L1 as strong influencers of tumor growth. It also suggested that treatment-mediated tumor growth inhibition is sensitive to T cell properties including the CD8+ T cell proliferation half-life, CD8+ T cell half-life, cytotoxic T-lymphocyte (CTL)-mediated tumor cell killing rate, and maximum rate of CD8+ T cell influx into the tumor microenvironment. Each of these parameters alone could not predict anti-PD-(L)1 treatment response but they could shift an individual mouse's treatment response when perturbed. The presented preclinical QSP modeling framework provides a path to incorporate potential sources of response variability in human translation modeling of anti-PD-(L)1.
Collapse
Affiliation(s)
- Jessica C. Leete
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, MA, United States
- Translational Modeling and Simulation, BioMedicine Design, Pfizer Inc., Cambridge, MA, United States
| | - Michael G. Zager
- Translational Modeling and Simulation, BioMedicine Design, Pfizer Inc., La Jolla, CA, United States
| | - Cynthia J. Musante
- Quantitative Systems Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, MA, United States
| | - Blerta Shtylla
- Quantitative Systems Pharmacology, Early Clinical Development, Pfizer Inc., La Jolla, CA, United States
| | - Wenlian Qiao
- Clinical Pharmacology, Early Clinical Development, Pfizer Inc., Cambridge, MA, United States
- Translational Modeling and Simulation, BioMedicine Design, Pfizer Inc., Cambridge, MA, United States
| |
Collapse
|
194
|
Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat Rev Clin Oncol 2022; 19:775-790. [PMID: 36216928 PMCID: PMC10984554 DOI: 10.1038/s41571-022-00689-z] [Citation(s) in RCA: 301] [Impact Index Per Article: 150.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 12/12/2022]
Abstract
Immunotherapy has been a remarkable clinical advancement in the treatment of cancer. T cells are pivotal to the efficacy of current cancer immunotherapies, including immune-checkpoint inhibitors and adoptive cell therapies. However, cancer is associated with T cell exhaustion, a hypofunctional state characterized by progressive loss of T cell effector functions and self-renewal capacity. The 'un-exhausting' of T cells in the tumour microenvironment is commonly regarded as a key mechanism of action for immune-checkpoint inhibitors, and T cell exhaustion is considered a pathway of resistance for cellular immunotherapies. Several elegant studies have provided important insights into the transcriptional and epigenetic programmes that govern T cell exhaustion. In this Review, we highlight recent discoveries related to the immunobiology of T cell exhaustion that offer a more nuanced perspective beyond this hypofunctional state being entirely undesirable. We review evidence that T cell exhaustion might be as much a reflection as it is the cause of poor tumour control. Furthermore, we hypothesize that, in certain contexts of chronic antigen stimulation, interruption of the exhaustion programme might impair T cell persistence. Therefore, the prioritization of interventions that mitigate the development of T cell exhaustion, including orthogonal cytoreduction therapies and novel cellular engineering strategies, might ultimately confer superior clinical outcomes and the greatest advances in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew Chow
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher A Klebanoff
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
195
|
Huang Q, Wu X, Wang Z, Chen X, Sun B, Xu L, Tang Z, Ye L. <bold>The primordial differentiation of tumor specific memory CD8</bold><sup><bold>+</bold></sup><bold> T cells as </bold><bold><italic>bona fide</italic></bold><bold> responders to PD-1/PD-L1 blockade in draining lymph nodes</bold>. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-1018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
196
|
Cao Y, Liang W, Fang L, Liu M, Zuo J, Peng Y, Shan J, Sun R, Zhao J, Wang J. PD-L1/PD-L1 signalling promotes colorectal cancer cell migration ability through RAS/MEK/ERK. Clin Exp Pharmacol Physiol 2022; 49:1281-1293. [PMID: 36050267 PMCID: PMC9826327 DOI: 10.1111/1440-1681.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
Programmed death ligand 1 (PD-L1) is widely known as an immune checkpoint, and immunotherapy through the inhibition of checkpoint molecules has become an important component in the successful treatment of tumours via programmed death 1 (PD-1)/PD-L1 signalling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) are elusive. We previously found that PD-L1 can bind to PD-L1 and cause cell detachment. However, the detailed molecular mechanisms of how PD-L1 binds to PD-L1 and how it transmits signals to the cell remain unclear. In this study, we disclosed that PD-L1 expression was dramatically upregulated in CRC compared to normal tissues. Ectopic expression of PD-L1 inhibits cell adhesive capacity and promotes cell migration in CRC cell lines, while silencing PD-L1 had the opposite effects and suppressed invasion and proliferation. Mechanistically, PD-L1 was found to promote epithelial-mesenchymal transition (EMT) through the ERK signalling molecule pathway and interacted with the 1-86 aa fragment of KRAS to transduce signals. Collectively, our study demonstrated the role of PD-L1 after binding to PD-L1 in CRC, thereby providing a new theoretical basis for further improving immunotherapy with anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Yihui Cao
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Weiye Liang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Lian Fang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ming‐kai Liu
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia Zuo
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying‐long Peng
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia‐jie Shan
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Rui‐xia Sun
- Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| | - Jie Zhao
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jian Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina,Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina,Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| |
Collapse
|
197
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
198
|
Zhang Y, Wang J, Hu T, Wang H, Long M, Liang B. Adverse Events of PD-1 or PD-L1 Inhibitors in Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Life (Basel) 2022; 12:1990. [PMID: 36556355 PMCID: PMC9787874 DOI: 10.3390/life12121990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: This study aimed to develop a comprehensive understanding of the treatment-related adverse events when using PD-1 or PD-L1 inhibitors in triple-negative breast cancer (TNBC). (2) Methods: We conducted a meta-analysis of Phase II/III randomized clinical trials. Studies were searched for using PubMed, Embase, and Cochrane Library from 1 March 1980 till 30 June 2022. Data on adverse events were mainly extracted from ClinicalTrials.gov and published articles. A generalized linear mixed model with the logit transformation was employed to obtain the overall incidence of adverse events across all studies. For serious adverse events with low incidences, the Peto method was used to calculate the odds ratio (OR) and 95% confidence interval (95%CI) in the PD-1 or PD-L1 inhibitors groups compared to the control groups. (3) Results: Nine studies were included in the meta-analysis, including a total of 2941 TNBC patients treated with PD-1 or PD-L1 inhibitors (including atezolizumab, pembrolizumab and durvalumab) and 2339 patients in the control groups. Chemotherapy alone was the control group in all studies. The average incidences of all serious immune-related adverse events of interest (hypothyroidism, hyperthyroidism, pneumonitis, pruritus, rash) were less than 1%, except for adrenal insufficiency (1.70%, 95%CI: 0.50-5.61%) in the PD-1 or PD-L1 groups. PD-1 or PD-L1 inhibitors significantly increased the risk of serious pneumonitis (OR = 2.52, 95%CI: 1.02-6.26), hypothyroidism (OR = 5.92, 95%CI: 1.22-28.86), alanine aminotransferase (ALT) elevation (OR = 1.66, 95%CI: 1.12-2.45), and adrenal insufficiency (OR = 18.81, 95%CI: 3.42-103.40). For non-serious adverse events, the patients treated with PD-1 or PD-L1 inhibitors had higher risk of aspartate aminotransferase (AST) elevation (OR =1.26, 95%CI: 1.02-1.57), hypothyroidism (OR = 3.63, 95%CI: 2.92-4.51), pruritus (OR = 1.84, 95%CI: 1.30-2.59), rash (OR = 1.29, 95%CI: 1.08-1.55), and fever (OR = 1.77, 95%CI: 1.13-2.77), compared with chemotherapy alone. (4) Conclusions: The incidence of serious immune-related adverse events in PD-1 or PD-L1 inhibitors groups is low but significantly higher than in chemotherapy groups. When using PD-1 or PD-L1 inhibitors for the treatment of TNBC, serious pneumonitis, hypothyroidism, ALT elevation, and adrenal insufficiency should be considered. Non-serious adverse events, such as AST elevation, rash, and fever, should also be taken into consideration.
Collapse
Affiliation(s)
- Yixi Zhang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jingyuan Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Taobo Hu
- Department of Breast Surgery, Peking University People’s Hospital, Beijing 100044, China
| | - Huina Wang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Mengping Long
- Department of Pathology, Peking University Cancer Hospital, Beijing 100083, China
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
199
|
A Novel m7G-Related Gene Signature Predicts the Prognosis of Colon Cancer. Cancers (Basel) 2022; 14:cancers14225527. [PMID: 36428620 PMCID: PMC9688272 DOI: 10.3390/cancers14225527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Colon cancer (CC), one of the most common malignancies worldwide, lacks an effective prognostic prediction biomarker. N7-methylguanosine (m7G) methylation is a common RNA modification type and has been proven to influence tumorigenesis. However, the correlation between m7G-related genes and CC remains unclear. The gene expression levels and clinical information of CC patients were downloaded from public databases. Twenty-nine m7G-related genes were obtained from the published literature. Via unsupervised clustering based on the expression levels of m7G-related genes, CC patients were divided into three m7G clusters. Based on differentially expressed genes (DEGs) from the above three groups, CC patients were further divided into three gene clusters. The m7G score, a prognostic model, was established using principal component analysis (PCA) based on 15 prognosis-associated m7G genes. KM curve analysis demonstrated that the overall survival rate was remarkably higher in the high-m7G score group, which was much more significant in advanced CC patients as confirmed by subgroup analysis. Correlation analysis indicated that the m7G score was associated with tumor mutational burden (TMB), PD-L1 expression, immune infiltration, and drug sensitivity. The expression level of prognosis-related m7G genes was further confirmed in human CC cell lines and samples. This study established an m7G gene-based prognostic model (m7G score), which demonstrated the important roles of m7G-related genes during CC initiation and progression. The m7G score could be a practical biomarker to predict immunotherapy response and prognosis in CC patients.
Collapse
|
200
|
Xie L, Li J, Wang L, Dai Y. Engineering metal‐phenolic networks for enhancing cancer therapy by tumor microenvironment modulation. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1864. [PMID: 36333962 DOI: 10.1002/wnan.1864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022]
Abstract
The complicated tumor microenvironment (TME) is featured by low pH values, high redox status, and hypoxia, which greatly supports the genesis, development, and metastasis of tumors, leading to drug resistance and clinical failure. Moreover, a lot of immunosuppressive cells infiltrate in such TME, resulting in depressing immunotherapy. Therefore, the development of TME-responsive nanoplatforms has shown great significance in enhancing cancer therapeutics. Metal-phenolic networks (MPNs)-based nanosystems, which self-assemble via coordination of phenolic materials and metal ions, have emerged as excellent TME theranostic nanoplatforms. MPNs have unique properties including fast preparation, tunable morphologies, pH response, and biocompatibility. Besides, functionalization and surface modification can endow MPNs with specific functions for application requirements. Here, the representative engineering strategies of various polyphenols are first introduced, followed by the introduction of the engineering mechanisms of polyphenolic nanosystems, fabrication, and distinct properties of MPNs. Then, their advances in TME modulation are highlighted, such as antiangiogenesis, hypoxia relief, combination therapy sensitization, and immunosuppressive TME reversion. Finally, we will discuss the challenges and future perspectives of MPNs-based nanosystems for enhancing cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Lisi Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine Medical Research Center, Sun Yat‐Sen Memorial Hospital, Sun Yat‐Sen University Guangzhou China
| | - Jie Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Nanjing Tech University (NanjingTech) Nanjing China
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering Southern Medical University Guangzhou Guangdong China
| | - Yunlu Dai
- Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences University of Macau Macau China
- MOE Frontiers Science Center for Precision Oncology University of Macau Macau China
| |
Collapse
|