151
|
Sun X, Cui Y, Su Y, Gao Z, Diao X, Li J, Zhu X, Li D, Li Z, Wang C, Shi Y. Dietary Fiber Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Function Damage in Piglets by Modulation of Intestinal Microbiome. mSystems 2021; 6:e01374-20. [PMID: 33824201 PMCID: PMC8547013 DOI: 10.1128/msystems.01374-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Weaning of piglets is accompanied by intestinal inflammation, impaired intestinal barrier function, and intestinal microflora disorder. Regulating intestinal microflora structure can directly or indirectly affect intestinal health and host growth and development. However, whether dietary fiber (DF) affects the inflammatory response and barrier function by affecting the intestinal microflora and its metabolites is unclear. In this study, we investigated the role of intestinal microflora in relieving immune stress and maintaining homeostasis using piglets with lipopolysaccharide (LPS)-induced intestinal injury as a model. DF improved intestinal morphology and barrier function, inhibited the expression of inflammatory signal pathways (Toll-like receptor 2 [TLR2], TLR4, and NF-κB) and proinflammatory cytokines (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor alpha [TNF-α]), and upregulated the expression of barrier-related genes (encoding claudin-1, occludin, and ZO-1). The contents of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and the activity of diamine oxidase in plasma were decreased. Meanwhile, DF had a strong effect on the composition and function of intestinal microflora at different taxonomic levels, the relative abundances of cellulolytic bacteria and anti-inflammatory bacteria were increased, and the concentrations of propionate, butyrate, and total short-chain fatty acids (SCFAs) in intestinal contents were increased. In addition, the correlation analysis also revealed the potential relationship between metabolites and certain intestinal microflora, as well as the relationship between metabolites and intestinal morphology, intestinal gene expression, and plasma cytokine levels. These results indicate that DF improves intestinal barrier function, in part, by altering intestinal microbiota composition and increasing the synthesis of SCFAs, which subsequently alleviate local and systemic inflammation.IMPORTANCE Adding DF to the diet of LPS-challenged piglets alleviated intestinal and systemic inflammation, improved intestinal barrier function, and ultimately alleviated the growth retardation of piglets. In addition, the addition of DF significantly increased the relative abundance of SCFA-producing bacteria and the production of SCFAs. We believe that the improvement of growth performance of piglets with LPS-induced injury can be attributed to the beneficial effects of DF on intestinal microflora and SCFAs, which reduced the inflammatory response in piglets, improving intestinal barrier function and enhancing body health. These research results provide a theoretical basis and guidance for the use of specific fiber sources in the diet to improve intestinal health and growth performance of piglets and thus alleviate weaning stress. Our data also provide insights for studying the role of DF in regulating gastrointestinal function in human infants.
Collapse
Affiliation(s)
- Xiao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yingying Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zimin Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinying Diao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Xinzheng, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Defeng Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Zhentian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Chengzhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| |
Collapse
|
152
|
Abstract
Microbial roles in cancer formation, diagnosis, prognosis, and treatment have been disputed for centuries. Recent studies have provocatively claimed that bacteria, viruses, and/or fungi are pervasive among cancers, key actors in cancer immunotherapy, and engineerable to treat metastases. Despite these findings, the number of microbes known to directly cause carcinogenesis remains small. Critically evaluating and building frameworks for such evidence in light of modern cancer biology is an important task. In this Review, we delineate between causal and complicit roles of microbes in cancer and trace common themes of their influence through the host's immune system, herein defined as the immuno-oncology-microbiome axis. We further review evidence for intratumoral microbes and approaches that manipulate the host's gut or tumor microbiome while projecting the next phase of experimental discovery.
Collapse
Affiliation(s)
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jeff Hasty
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
- Molecular Biology Section, Division of Biological Science, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
153
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
154
|
Intestine-on-a-chip: Next level in vitro research model of the human intestine. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
155
|
Aitfella Lahlou R, Bounechada M, Mohammedi A, Silva LR, Alves G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Cui H, Zhu X, Wang Z, Fang J, Yuan T. A Purified Glucomannan Oligosaccharide from Amorphophallus konjac Improves Colonic Mucosal Barrier Function via Enhancing Butyrate Production and Histone Protein H3 and H4 Acetylation. JOURNAL OF NATURAL PRODUCTS 2021; 84:427-435. [PMID: 33587639 DOI: 10.1021/acs.jnatprod.0c01125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A structurally defined konjac glucomannan oligosaccharide (KGMOS) with a relatively high molecular weight and narrow molecular weight distribution (molecular weight ranging from 3000 to 4000 Da, degree of polymerization (dp) 8-11) was prepared from native konjac glucomannan (KGM), and the beneficial effects and molecular mechanisms of KGMOS on colonic functions were investigated in C57BL/6 mice. The results are the first to reveal that KGMOS regulated intestinal microflora composition to facilitate the production of colonic butyrate. Elevated butyrate production further increased the acetylation of histone proteins H3 and H4 and thus enhanced the transcription of the major colonic mucin gene Muc2 and the secretion of mucin elements, which represents a new molecular mechanism of KGM oligosaccharide consumption. The findings indicate that KGM oligosaccharides with specific molecular sizes have highly desirable functional properties and potentially could improve gut health by promoting the barrier function of the colonic mucosa.
Collapse
Affiliation(s)
- Hao Cui
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Xinying Zhu
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhaoguang Wang
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Jianping Fang
- GlycoNovo Technologies Co., Ltd., Shanghai 201318, People's Republic of China
| | - Tao Yuan
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, College of Life Science, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| |
Collapse
|
157
|
Morris NL, Choudhry MA. Maintenance of gut barrier integrity after injury: Trust your gut microRNAs. J Leukoc Biol 2021; 110:979-986. [PMID: 33577717 DOI: 10.1002/jlb.3ru0120-090rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a highly dynamic structure essential for digestion, nutrient absorption, and providing an interface to prevent gut bacterial translocation. In order to maintain the barrier function, the gut utilizes many defense mechanisms including proliferation, apoptosis, and apical junctional complexes. Disruption of any of these parameters due to injury or disease could negatively impact the intestinal barrier function and homeostasis resulting in increased intestine inflammation, permeability, bacterial dysbiosis, and tissue damage. MicroRNAs are small noncoding RNA sequences that are master regulators of normal cellular homeostasis. These regulatory molecules affect cellular signaling pathways and potentially serve as candidates for providing a mechanism of impaired gut barrier integrity following GI-related pathologic conditions, ethanol exposure, or trauma such as burn injury. MicroRNAs influence cellular apoptosis, proliferation, apical junction complex expression, inflammation, and the microbiome. Due to their widespread functional affiliations, altered expression of microRNAs are associated with many pathologic conditions. This review explores the role of microRNAs in regulation of intestinal barrier integrity. The studies reviewed demonstrate that microRNAs largely impact intestine barrier function and provide insight behind the observed adverse effects following ethanol and burn injury. Furthermore, these studies suggest that microRNAs are excellent candidates for therapeutic intervention or for biomarkers to manage gut barrier integrity following trauma such as burn injury and other GI-related pathologic conditions.
Collapse
Affiliation(s)
- Niya L Morris
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Current address: Department of Medicine: Pulmonary, Allergy, Critical Care and Sleep, Emory University/Atlanta VA Medical Center, Decatur, Geogia, USA
| | - Mashkoor A Choudhry
- Alcohol Research Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Burn & Shock Trauma Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Integrative Cell Biology Program, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA.,Department of Surgery, Loyola University Chicago Health Sciences Division, Maywood, Illinois, USA
| |
Collapse
|
158
|
Jalili-Firoozinezhad S, Miranda CC, Cabral JMS. Modeling the Human Body on Microfluidic Chips. Trends Biotechnol 2021; 39:838-852. [PMID: 33581889 DOI: 10.1016/j.tibtech.2021.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Animals often fail to faithfully mimic human diseases and drug toxicities, and most in vitro models are not complex enough to recapitulate human body function and pathophysiology. Organ-on-chip culture technology, however, offers a promising tool for the study of tissue development and homeostasis, which has brought us one step closer to performing human experimentation in vitro. To recapitulate the complex functionality of multiple organs at once, their respective on-chip models can be linked to create a functional human body-on-chip platform. Here, we highlight the advantages and translational potentials of body-on-chip platforms in disease modeling, therapeutic development, and personalized medicine. We provide the reader with current limitations of the body-on-chip approach and new ideas to address the pending issues moving forwards.
Collapse
Affiliation(s)
- Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cláudia C Miranda
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| |
Collapse
|
159
|
Autophagy and proinflammatory cytokine expression in the intestinal mucosa and mesenteric fat tissue of patients with Crohn's disease. JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1016/j.jcol.2012.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Background Recently, mesenteric fat has been proposed to play a role in the pathophysiol- ogy of Crohn's disease (CD), as fat hypertrophy is detected close to the affected intestinal area; however, there are few studies regarding autophagy and creeping fat tissue in CD.
Objective Evaluate autophagy-related proteins and proinflammatory cytokines in intestinal mucosa and mesenteric fat in patients with CD and controls.
Patients and methods Ten patients with CD, eight with non-inflammatory disease who underwent surgery, and eight with normal ileocolonoscopy were studied. The expression of LC3-II, TNF-α and IL-23 was determined by immunoblot of protein extracts. In addition, total RNA of LC3 and Atg16-L1 were determined using RT-PCR.
Results The expression of LC3-II was significantly lower in the mesenteric tissue of CD when compared to controls (p < 0.05). In contrast, the intestinal mucosa of the CD group had higher levels of LC3-II (p < 0.05). However, mRNA expression of autophagy-related pro- teins was similar when compared to mesenteric fat groups. TNF-α and IL-23 expressions were higher in intestinal mucosa of CD than in control (p < 0.05).
Conclusion These findings suggest a defect in the autophagic activity of the creeping fat tissue in CD, which could be involved with the maintenance of the inflammatory process in the intestinal mucosa.
Collapse
|
160
|
Chorawala MR, Chauhan S, Patel R, Shah G. Cell Wall Contents of Probiotics (Lactobacillus species) Protect Against Lipopolysaccharide (LPS)-Induced Murine Colitis by Limiting Immuno-inflammation and Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:1005-1017. [PMID: 33544362 DOI: 10.1007/s12602-020-09738-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Currently, there are no effective therapeutic agents to limit intestinal mucosal damage associated with inflammatory bowel disease (IBD). Based on several clinical studies, probiotics have emerged as a possible novel therapeutic strategy for IBD; however, their possible mechanisms are still poorly understood. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the protective effects of cell wall contents of three Lactobacillus species in lipopolysaccharide (LPS)-induced colitis rats. LPS-sensitized rats were rendered colitic by colonic instillation of LPS (500 µg/rat) for 14 consecutive days. Concurrently, cell wall contents isolated from 106 CFU of L. casei (LC), L. acidophilus (LA), and L. rhamnosus (LA) was given subcutaneously for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight, and histological analysis. Colonic inflammatory markers (myeloperoxidase activity, C-reactive protein, and pro-inflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione, and nitric oxide) were also assayed. Cell wall contents of LC, LA, and LR significantly ameliorated the severity of colitis by reducing body weight loss and diarrhea and bleeding incidence, improving food intake, colon weight/length, spleen weight, and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted anti-oxidant molecule. In conclusion, cell wall contents of LC, LA, and LR attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Sweta Chauhan
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Rakesh Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
161
|
Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Front Immunol 2021; 11:623691. [PMID: 33584726 PMCID: PMC7874163 DOI: 10.3389/fimmu.2020.623691] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian intestine is the largest immune organ that contains the intestinal stem cells (ISC), differentiated epithelial cells (enterocytes, Paneth cells, goblet cells, tuft cells, etc.), and gut resident-immune cells (T cells, B cells, dendritic cells, innate lymphoid cell, etc.). Inflammatory bowel disease (IBD), a chronic inflammatory disease characterized by mucosa damage and inflammation, threatens the integrity of the intestine. The continuous renewal and repair of intestinal mucosal epithelium after injury depend on ISCs. Inflamed mucosa healing could be a new target for the improvement of clinical symptoms, disease recurrence, and resection-free survival in IBD treated patients. The knowledge about the connections between ISC and immune cells is expanding with the development of in vitro intestinal organoid culture and single-cell RNA sequencing technology. Recent findings implicate that immune cells such as T cells, ILCs, dendritic cells, and macrophages and cytokines secreted by these cells are critical in the regeneration of ISCs and intestinal epithelium. Transplantation of ISC to the inflamed mucosa may be a new therapeutic approach to reconstruct the epithelial barrier in IBD. Considering the links between ISC and immune cells, we predict that the integration of biological agents and ISC transplantation will revolutionize the future therapy of IBD patients.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
162
|
Keogh CE, Rude KM, Gareau MG. Role of pattern recognition receptors and the microbiota in neurological disorders. J Physiol 2021; 599:1379-1389. [PMID: 33404072 DOI: 10.1113/jp279771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the gut microbiota has been increasingly implicated in the development of many extraintestinal disorders, including neurodevelopmental and neurodegenerative disorders. Despite this growing connection, our understanding of the precise mechanisms behind these effects is currently lacking. Pattern recognition receptors (PRRs) are important innate immune proteins expressed on the surface and within the cytoplasm of a multitude of cells, both immune and otherwise, including epithelial, endothelial and neuronal. PRRs comprise four major subfamilies: the Toll-like receptors (TLRs), the nucleotide-binding oligomerization domain leucine rich repeats-containing receptors (NLRs), the retinoic acid inducible gene 1-like receptors and the C-type lectin receptors. Recognition of commensal bacteria by PRRs is critical for maintaining host-microbe interactions and homeostasis, including behaviour. The expression of PRRs on multiple cell types makes them a highly interesting and novel target for regulation of host-microbe signalling, which may lead to gut-brain signalling. Emerging evidence indicates that two of the four known families of PRRs (the NLRs and the TLRs) are involved in the pathogenesis of neurodevelopmental and neurodegenerative disorders via the gut-brain axis. Taken together, increasing evidence supports a role for these PRRs in the development of neurological disorders, including Alzheimer's disease, Parkinson's disease and multiple sclerosis, via the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Ciara E Keogh
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kavi M Rude
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mélanie G Gareau
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
163
|
Tao S, Xiong Y, Han D, Pi Y, Zhang H, Wang J. N-(3-oxododecanoyl)-l-homoserine lactone disrupts intestinal epithelial barrier through triggering apoptosis and collapsing extracellular matrix and tight junction. J Cell Physiol 2021; 236:5771-5784. [PMID: 33400297 DOI: 10.1002/jcp.30261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Microbes employ autoinducers of quorum sensing (QS) for population communication. Although the autoinducer of Pseudomonas aeruginosa LasI-LasR system, N-(3-oxododecanoyl)- l-homoserine lactone (3OC12), has been reported with deleterious effects on host cells, its biological effects on integrity of the intestinal epithelium and epithelial barrier are still unclear and need further investigation. In the present study, flow cytometry, transcriptome analysis and western blot technology have been adopted to investigate the potential molecular mechanisms of 3OC12 and its structurally similar analogs damage to intestinal epithelial cells. Our results indicated that 3OC12 and 3OC14 trigger apoptosis rather than necrosis and ferroptosis in intestinal epithelial cells. RNA-sequencing combined with bioinformatics analysis showed that 3OC12 and 3OC14 reduced the expression of genes from extracellular matrix (ECM)-receptor interaction pathway. Consistently, protein expressions from ECM and tight junction-associated pathway were significantly reduced after 3OC12 and 3OC14 challenge. In addition, 3OC12 and 3OC14 led to blocked cell cycle, decreased mitochondrial membrane potential, increased reactive oxygen species level and elevated Ca2+ concentration. Reversely, the antioxidant NAC could effectively mitigate the reduced expression of ECM and tight junction proteins caused by 3OC12 and 3OC14 challenge. Collectively, this study demonstrated that QS autoinducer exposure to intestinal epithelial cells ablates the ECM and tight junctions by triggering oxidative stress and apoptosis, and finally disrupts the intestinal epithelial barrier. These findings provide a rationale for defensing QS-dependent bacterial infections and potential role of NAC for alleviating the syndrome.
Collapse
Affiliation(s)
- Shiyu Tao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Hanlu Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
164
|
Ye S, Matthan NR, Lamon-Fava S, Aguilar GS, Turner JR, Walker ME, Chai Z, Lakshman S, Urban JF, Lichtenstein AH. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem 2020; 90:108577. [PMID: 33388349 PMCID: PMC8982565 DOI: 10.1016/j.jnutbio.2020.108577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Diet quality and statin therapy are established modulators of coronary artery disease (CAD) progression, but their effect on the gastrointestinal tract and subsequent sequelae that could affect CAD progression are relatively unexplored. To address this gap, Ossabaw pigs (N = 32) were randomly assigned to receive isocaloric amounts of a Western-type diet (WD; high in saturated fat, refined carbohydrate, and cholesterol, and low in fiber) or a heart healthy-type diet (HHD; high in unsaturated fat, whole grains, fruits and vegetables, supplemented with fish oil, and low in cholesterol), with or without atorvastatin, for 6 months. At the end of the study, RNA sequencing with 100 base pair single end reads on NextSeq 500 platform was conducted in isolated pig jejunal mucosa. A two-factor edgeR analysis revealed that the dietary patterns resulted in three differentially expressed genes related to lipid metabolism (SCD, FADS1, and SQLE). The expression of these genes was associated with cardiometabolic risk factors and atherosclerotic lesion severity. Subsequent gene enrichment analysis indicated the WD, compared to the HHD, resulted in higher interferon signaling and inflammation, with some of these genes being significantly associated with serum TNF-α and/or hsCRP concentrations, but not atherosclerotic lesion severity. No significant effect of atorvastatin therapy on gene expression, nor its interaction with dietary patterns, was identified. In conclusion, Western and heart healthy-type dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling, and inflammation in the jejunum of Ossabaw pigs.
Collapse
Affiliation(s)
- Shumao Ye
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gloria Solano Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Walker
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Chai
- Intercollege Graduate Degree Program in Physiology, Department of Nutritional Science, Pennsylvania State University, University Park, PA, USA
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
165
|
Weindl G. Immunocompetent Human Intestinal Models in Preclinical Drug Development. Handb Exp Pharmacol 2020; 265:219-233. [PMID: 33349897 DOI: 10.1007/164_2020_429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The intestinal epithelial barrier, together with the microbiome and local immune system, is a critical component that maintains intestinal homeostasis. Dysfunction may lead to chronic inflammation, as observed in inflammatory bowel diseases. Animal models have historically been used in preclinical research to identify and validate new drug targets in intestinal inflammatory diseases. Yet, limitations about their biological relevance to humans and advances in tissue engineering have forced the development of more complex three-dimensional reconstructed intestinal epithelium. By introducing immune and commensal microbial cells, these models more accurately mimic the gut's physiology and the pathophysiological changes occurring in vivo in the inflamed intestine. Specific advantages and limitations of two-dimensional (2D) and three-dimensional (3D) intestinal models such as coculture systems, organoids, and microfluidic devices to study inflammatory and immune-related responses are highlighted. While current cell culture models lack the cellular and molecular complexity observed in vivo, the emphasis is put on how these models can be used to improve preclinical drug development for inflammatory diseases of the intestine.
Collapse
Affiliation(s)
- Günther Weindl
- Pharmacology and Toxicology Section, Pharmaceutical Institute, University of Bonn, Bonn, Germany.
| |
Collapse
|
166
|
Chen Z, Ceballos-Francisco D, Guardiola FA, Huang D, Esteban MÁ. The alleviation of skin wound-induced intestinal barrier dysfunction via modulation of TLR signalling using arginine in gilthead seabream (Sparus aurata L). FISH & SHELLFISH IMMUNOLOGY 2020; 107:519-528. [PMID: 33217564 DOI: 10.1016/j.fsi.2020.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/18/2020] [Accepted: 11/15/2020] [Indexed: 06/11/2023]
Abstract
The present study sought to investigate the effect of arginine on the involvement of toll-like receptors (TLRs) in skin wound-induced intestinal barrier dysfunction in gilthead seabream (Sparus aurata L.). Two replicates of fish (n = 8) were fed a commercial diet (CON, total 2.75% arginine), CON diet enriched with 1% arginine (ARG1, total 3.65% arginine) and 2% arginine (ARG2, total 4.53% arginine) for 30 days. Half of the fish were sampled, whereas the others were injured and sampled 7 days post-wounding. The intestinal histology results showed that a more intense infiltration of mixed leucocytes was evident in the wounded fish, which was remarkably reduced in fish that were fed the ARG1 diet. Serum IgM levels were significantly higher in the ARG1 group than levels in the CON group at 7 days post-wounding. Compared with the fish in the CON group after wounding, dietary administration of 1% arginine markedly downregulated the gene expression of TLRs (TLR2 and TLR5), MyD88, and proinflammatory cytokines (CSF1R, IL-1β, and TNFα), but significantly enhanced the gene expression of IκBα, the anti-inflammatory cytokine TGF-β1, and tight junction proteins (tricellulin and occludin) in wounded fish. Furthermore, the ARG2 diet demonstrated no additional benefits on intestinal cells, compared to both the ARG1 and the CON diets, and it even appeared to induce negative effects. In summary, dietary administration of 1% arginine significantly inhibited intestinal inflammatory response and tight junction disruption in skin-wounded gilthead seabream by modulating TLR signalling in the intestine.
Collapse
Affiliation(s)
- Zhichu Chen
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Diana Ceballos-Francisco
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture) & the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, 266003, PR China
| | - M Ángeles Esteban
- Immunobiology for Aquaculture, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
167
|
Negroni MA, Segers FHID, Vogelweith F, Foitzik S. Immune challenge reduces gut microbial diversity and triggers fertility-dependent gene expression changes in a social insect. BMC Genomics 2020; 21:816. [PMID: 33225893 PMCID: PMC7682046 DOI: 10.1186/s12864-020-07191-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023] Open
Abstract
Background The gut microbiome can influence life history traits associated with host fitness such as fecundity and longevity. In most organisms, these two life history traits are traded-off, while they are positively linked in social insects. In ants, highly fecund queens can live for decades, while their non-reproducing workers exhibit much shorter lifespans. Yet, when fertility is induced in workers by death or removal of the queen, worker lifespan can increase. It is unclear how this positive link between fecundity and longevity is achieved and what role the gut microbiome and the immune system play in this. To gain insights into the molecular regulation of lifespan in social insects, we investigated fat body gene expression and gut microbiome composition in workers of the ant Temnothorax rugatulus in response to an experimental induction of fertility and an immune challenge. Results Fertile workers upregulated several molecular repair mechanisms, which could explain their extended lifespan. The immune challenge altered the expression of several thousand genes in the fat body, including many immune genes, and, interestingly, this transcriptomic response depended on worker fertility. For example, only fertile, immune-challenged workers upregulated genes involved in the synthesis of alpha-ketoglutarate, an immune system regulator, which extends the lifespan in Caenorhabditis elegans by down-regulating the TOR pathway and reducing oxidant production. Additionally, we observed a dramatic loss in bacterial diversity in the guts of the ants within a day of the immune challenge. Yet, bacterial density did not change, so that the gut microbiomes of many immune challenged workers consisted of only a single or a few bacterial strains. Moreover, the expression of immune genes was linked to the gut microbiome composition, suggesting that the ant host can regulate the microbiome in its gut. Conclusions Immune system flare-ups can have negative consequence on gut microbiome diversity, pointing to a previously underrated cost of immunity. Moreover, our results provide important insights into shifts in the molecular regulation of fertility and longevity associated with insect sociality.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| | - Francisca H I D Segers
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,Department for Applied Bioinformatics, Inst. of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany.,LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Fanny Vogelweith
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.,M2i Biocontrol, Parnac, France
| | - Susanne Foitzik
- Institute of Molecular and Organismic Evolution, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany.
| |
Collapse
|
168
|
Mutual Interplay of Host Immune System and Gut Microbiota in the Immunopathology of Atherosclerosis. Int J Mol Sci 2020; 21:ijms21228729. [PMID: 33227973 PMCID: PMC7699263 DOI: 10.3390/ijms21228729] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is the key for the initiation and progression of atherosclerosis. Accumulating evidence has revealed that an altered gut microbiome (dysbiosis) triggers both local and systemic inflammation to cause chronic inflammatory diseases, including atherosclerosis. There have been some microbiome-relevant pro-inflammatory mechanisms proposed to link the relationships between dysbiosis and atherosclerosis such as gut permeability disruption, trigger of innate immunity from lipopolysaccharide (LPS), and generation of proatherogenic metabolites, such as trimethylamine N-oxide (TMAO). Meanwhile, immune responses, such as inflammasome activation and cytokine production, could reshape both composition and function of the microbiota. In fact, the immune system delicately modulates the interplay between microbiota and atherogenesis. Recent clinical trials have suggested the potential of immunomodulation as a treatment strategy of atherosclerosis. Here in this review, we present current knowledge regarding to the roles of microbiota in contributing atherosclerotic pathogenesis and highlight translational perspectives by discussing the mutual interplay between microbiota and immune system on atherogenesis.
Collapse
|
169
|
Hu L, Chen H, Zhang X, Feng Z, Zhang H, Meng Q. Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-α production. JOURNAL OF RADIATION RESEARCH 2020; 61:842-850. [PMID: 32876675 PMCID: PMC7674707 DOI: 10.1093/jrr/rraa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/08/2020] [Indexed: 02/05/2023]
Abstract
Radiation-induced acute intestinal injury is a common and serious occurrence following abdominal and pelvic irradiation. The Nod-like receptor protein 3 (NLRP3)-dependant inflammasome and inflammation activation is crucial in this process. In a pre-experimental design of radiation-induced intestinal injury, we found that rosiglitazone inhibited caspase-1 which is a key marker of inflammasome activation. The purpose of the present study was to clarify the inhibitory effect of rosiglitazone on the NLRP3 inflammasome both in vivo and in vitro. Radiation-induced intestinal injury after rosiglitazone treatment, and the expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), caspase-1 and NLRP3 in a radiation-induced intestinal injury model in a rat and macrophages were observed. We found that rosiglitazone ameliorated radiation-induced intestinal injury in rats by suppressing the expression of caspase-1, NLRP3, IL-1β and TNF-α. Treatment with rosiglitazone in vitro reduced the expression of NLRP3, and the NLRP3 activator monosodium urate (MSU) reversed the inhibition of IL-1β and TNF-α by rosiglitazone in macrophages. MSU reversed the protective effect of rosiglitazone on radiation-induced intestinal injury in rats by reversing the rosiglitazone-induced inhibition of IL-1β and TNF-α. Taken together, these findings indicate that the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, rosiglitazone, ameliorates radiation-induced intestine inflammation in rats via inhibiting the induction of the NLRP3-dependent inflammasome in macrophages.
Collapse
Affiliation(s)
- Liqiong Hu
- Department of Intensive Care Unit of Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 51000, China
| | - Hao Chen
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, China
| | | | - Zhencheng Feng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 51000, China
| | - Qingqi Meng
- Guangzhou institute of traumatic surgery, Guangzhou Red Cross hospital, Medical College, Jinan University, Guangzhou 510000, China
| |
Collapse
|
170
|
Hassan B, Siddiqui JA, Xu Y. Vertically Transmitted Gut Bacteria and Nutrition Influence the Immunity and Fitness of Bactrocera dorsalis Larvae. Front Microbiol 2020; 11:596352. [PMID: 33193277 PMCID: PMC7661685 DOI: 10.3389/fmicb.2020.596352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/12/2020] [Indexed: 01/12/2023] Open
Abstract
Symbiotic bacterial communities that colonize the digestive tract of tephritid fruit flies interact with nutrient intake to improve the flies' fitness and immunity. Some bacterial species consistently inhabit the tephritid guts and are transmitted to the next generation vertically. These species contribute significantly to some aspects of their host's physiology. In the current study, we examined the role of four vertically transmitted bacteria (Citrobacter, Enterobacter, Klebsiella, and Providencia) on the fitness parameters and immunity of Bactrocera dorsalis larvae that were fed a nutritionally manipulated diet. For this purpose, eggs were collected from axenic, gnotobiotic, and symbiotic adult flies, and larvae were reared on four types of diets in which carbohydrate and/or protein contents were reduced and then compared with larvae raised on a control diet. The diet and bacterial interactions significantly affected the fitness and immunity of B. dorsalis. Larvae of axenic flies grew slower and displayed weaker immune-based responses (PO activity, antibacterial activity, survival) than larvae of gnotobiotic and symbiotic flies. Overall, larvae reared on the low-protein diet grew slower than those reared on the control or low-carbohydrate diets. Survival, PO activity, and antibacterial activity were significantly lower in the hemolymph of larvae reared on low-protein diets. Our results also revealed that the levels of hemolymph protein, glucose, trehalose, and triglyceride in larvae from axenic flies were significantly lower than those in larvae of the symbiotic group after they fed on most of the tested diets. These results strongly infer that diet and vertically transmitted bacteria are both essential contributors to the fitness and immunity of B. dorsalis.
Collapse
Affiliation(s)
- Babar Hassan
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Junaid Ali Siddiqui
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
171
|
Knobler R, Arenberger P, Arun A, Assaf C, Bagot M, Berlin G, Bohbot A, Calzavara-Pinton P, Child F, Cho A, French LE, Gennery AR, Gniadecki R, Gollnick HPM, Guenova E, Jaksch P, Jantschitsch C, Klemke C, Ludvigsson J, Papadavid E, Scarisbrick J, Schwarz T, Stadler R, Wolf P, Zic J, Zouboulis C, Zuckermann A, Greinix H. European dermatology forum - updated guidelines on the use of extracorporeal photopheresis 2020 - part 1. J Eur Acad Dermatol Venereol 2020; 34:2693-2716. [PMID: 33025659 PMCID: PMC7820969 DOI: 10.1111/jdv.16890] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/06/2020] [Indexed: 01/01/2023]
Abstract
Background Following the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T‐cell lymphoma published in 1983, this technology has received continued use and further recognition for additional earlier as well as refractory forms. After the publication of the first guidelines for this technology in the JEADV in 2014, this technology has maintained additional promise in the treatment of other severe and refractory conditions in a multi‐disciplinary setting. It has confirmed recognition in well‐known documented conditions such as graft‐versus‐host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection including lung, heart and liver and to a lesser extent inflammatory bowel disease. Materials and methods In order to further provide recognized expert practical guidelines for the use of this technology for all indications, the European Dermatology Forum (EDF) again proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. All authors had the opportunity to review each contribution as it was added. Results and conclusion These updated 2020 guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. The guidelines are divided in two parts: PART I covers cutaneous T‐cell lymphoma, chronic graft‐versus‐host disease and acute graft‐versus‐host disease while PART II will cover scleroderma, solid organ transplantation, Crohn's disease, use of ECP in paediatrics practice, atopic dermatitis, type 1 diabetes, pemphigus, epidermolysis bullosa acquisita and erosive oral lichen planus.
Collapse
Affiliation(s)
- R Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - P Arenberger
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Arun
- FRCPath, The Rotherham NHA Foundation Trust, Rotherham, UK
| | - C Assaf
- Department of Dermatology and Venerology, Helios Klinikum Krefeld, Krefeld, Germany
| | - M Bagot
- Hospital Saint Louis, Université de Paris, Paris, France
| | - G Berlin
- Department of Clinical Immunology and Transfusion Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - A Bohbot
- Onco-Hematology Department, Hautepierre Hospital, Strasbourg, France
| | | | - F Child
- FRCP, St John's Institution of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - A Cho
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - L E French
- Department of Dermatology, University Hospital, München, Germany
| | - A R Gennery
- Translational and Clinical Research Institute, Newcastle University Great North Children's Hospital Newcastle upon Tyne, Newcastle University, Newcastle upon Tyne, UK
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - H P M Gollnick
- Dept. Dermatology & Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - E Guenova
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - P Jaksch
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - C Jantschitsch
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Klemke
- Hautklinik Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - J Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, University Hospital, Linköping University, Linköping, Sweden
| | - E Papadavid
- National and Kapodistrian University of Athens, Athens, Greece
| | | | - T Schwarz
- Department of Dermatology, University Clinics Schleswig-Holstein, Kiel, Germany
| | - R Stadler
- University Clinic for Dermatology Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - J Zic
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - A Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - H Greinix
- Division of Haematology, LKH-Univ. Klinikum Graz, Medical University of Graz, Graz, Austria
| |
Collapse
|
172
|
Deng Z, Luo XM, Liu J, Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 2020; 10:538077. [PMID: 33102249 PMCID: PMC7546212 DOI: 10.3389/fcimb.2020.538077] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The intestine is a particularly dynamic environment in which the host constantly interacts with trillions of symbiotic bacteria called the microbiota. Using quorum sensing (QS) communication, bacteria can coordinate their social behavior and influence host cell activities in a non-invasive manner. Nowadays, a large amount of research has greatly spurred the understanding of how bacterial QS communication regulates bacterial cooperative behaviors due to coexistence and host-microbe interactions. In this review, we discuss bacterial QS in the gut and its role in biofilm formation. As a biological barrier, the mucosal immune system can effectively prevent pathogenic microorganisms and other immunogenic components from entering the internal environment of the host. We focus on the relationship between biofilm and intestinal mucosal immunity, and how probiotic bacteria may regulate them. This review is to provide a theoretical basis for the development of new techniques including probiotics targeting the intestinal barrier function, thereby improving gut health.
Collapse
Affiliation(s)
- Zhaoxi Deng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Haifeng Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Haifeng Wang
| |
Collapse
|
173
|
Janney A, Powrie F, Mann EH. Host–microbiota maladaptation in colorectal cancer. Nature 2020; 585:509-517. [DOI: 10.1038/s41586-020-2729-3] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
174
|
Knobler R, Arenberger P, Arun A, Assaf C, Bagot M, Berlin G, Bohbot A, Calzavara-Pinton P, Child F, Cho A, French LE, Gennery AR, Gniadecki R, Gollnick HPM, Guenova E, Jaksch P, Jantschitsch C, Klemke C, Ludvigsson J, Papadavid E, Scarisbrick J, Schwarz T, Stadler R, Wolf P, Zic J, Zouboulis C, Zuckermann A, Greinix H. European dermatology forum: Updated guidelines on the use of extracorporeal photopheresis 2020 - Part 2. J Eur Acad Dermatol Venereol 2020; 35:27-49. [PMID: 32964529 PMCID: PMC7821314 DOI: 10.1111/jdv.16889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022]
Abstract
Background Following the first investigational study on the use of extracorporeal photopheresis for the treatment of cutaneous T‐cell lymphoma published in 1983, this technology has received continued use and further recognition for additional earlier as well as refractory forms. After the publication of the first guidelines for this technology in the JEADV in 2014, this technology has maintained additional promise in the treatment of other severe and refractory conditions in a multidisciplinary setting. It has confirmed recognition in well‐known documented conditions such as graft‐vs.‐host disease after allogeneic bone marrow transplantation, systemic sclerosis, solid organ transplant rejection including lung, heart and liver and to a lesser extent inflammatory bowel disease. Materials and methods In order to further provide recognized expert practical guidelines for the use of this technology for all indications, the European Dermatology Forum (EDF) again proceeded to address these questions in the hands of the recognized experts within and outside the field of dermatology. This was done using the recognized and approved guidelines of EDF for this task. All authors had the opportunity to review each contribution as it was added. Results and conclusion These updated 2020 guidelines provide at present the most comprehensive available expert recommendations for the use of extracorporeal photopheresis based on the available published literature and expert consensus opinion. The guidelines were divided into two parts: PART I covers Cutaneous T‐cell lymphoma, chronic graft‐vs.‐host disease and acute graft‐vs.‐host disease, while PART II will cover scleroderma, solid organ transplantation, Crohn’s disease, use of ECP in paediatric patients, atopic dermatitis, type 1 diabetes, pemphigus, epidermolysis bullosa acquisita and erosive oral lichen planus.
Collapse
Affiliation(s)
- R Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - P Arenberger
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Arun
- FRCPath, The Rotherham NHA Foundation Trust, Rotherham, United Kingdom
| | - C Assaf
- Department of Dermatology and Venerology, Helios Klinikum Krefeld, Krefeld, Germany
| | - M Bagot
- Hospital Saint Louis, Université de Paris, Paris, France
| | - G Berlin
- Department of Clinical Immunology and Transfusion Medicine, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - A Bohbot
- Onco-Hematology Department, Hautepierre Hospital, Strasbourg, France
| | | | - F Child
- FRCP, St John's Institution of Dermatology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - A Cho
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - L E French
- Department of Dermatology, University Hospital, München, Germany
| | - A R Gennery
- Translational and Clinical Research Institute Newcastle University Great North Children's Hospital Newcastle upon Tyne, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - R Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, Canada
| | - H P M Gollnick
- Department Dermatology & Venereology Otto-von-Guericke University, Magdeburg, Germany
| | - E Guenova
- Faculty of Biology and Medicine, University of Lausanne and Department of Dermatology, Lausanne University Hospital CHUV, Lausanne, Switzerland
| | - P Jaksch
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
| | - C Jantschitsch
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C Klemke
- Hautklinik Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - J Ludvigsson
- Crown Princess Victoria Children's Hospital and Division of Pediatrics, Department of Biomedical and Clinical Sciences, University Hospital, Linköping University, Linköping, Sweden
| | - E Papadavid
- National and Kapodistrian University of Athens, Athens, Greece
| | - J Scarisbrick
- University Hospital Birmingham, Birmingham, United Kingdom
| | - T Schwarz
- Department of Dermatology, University Clinics Schleswig-Holstein, Kiel, Germany
| | - R Stadler
- University Clinic for Dermatology Johannes Wesling Medical Centre, UKRUB, University of Bochum, Minden, Germany
| | - P Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - J Zic
- Vanderbilt University Medical Center Department of Dermatology, Nashville, Tennessee, USA
| | - C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - A Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - H Greinix
- LKH-Univ. Klinikum Graz, Division of Haematology, Medical University of Graz, Graz, Austria
| |
Collapse
|
175
|
Swafford D, Shanmugam A, Ranganathan P, Manoharan I, Hussein MS, Patel N, Sifuentes H, Koni PA, Prasad PD, Thangaraju M, Manicassamy S. The Wnt-β-Catenin-IL-10 Signaling Axis in Intestinal APCs Protects Mice from Colitis-Associated Colon Cancer in Response to Gut Microbiota. THE JOURNAL OF IMMUNOLOGY 2020; 205:2265-2275. [PMID: 32917787 DOI: 10.4049/jimmunol.1901376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/17/2020] [Indexed: 12/21/2022]
Abstract
Loss of immune tolerance to gut microflora is inextricably linked to chronic intestinal inflammation and colitis-associated colorectal cancer (CAC). The LRP5/6 signaling cascade in APCs contributes to immune homeostasis in the gut, but whether this pathway in APCs protects against CAC is not known. In the current study, using a mouse model of CAC, we show that the LRP5/6-β-catenin-IL-10 signaling axis in intestinal CD11c+ APCs protects mice from CAC by regulating the expression of tumor-promoting inflammatory factors in response to commensal flora. Genetic deletion of LRP5/6 in CD11c+ APCs in mice (LRP5/6ΔCD11c) resulted in enhanced susceptibility to CAC. This is due to a microbiota-dependent increased expression of proinflammatory factors and decreased expression of the immunosuppressive cytokine IL-10. This condition could be improved in LRP5/6ΔCD11c mice by depleting the gut flora, indicating the importance of LRP5/6 in mediating immune tolerance to the gut flora. Moreover, mechanistic studies show that LRP5/6 suppresses the expression of tumor-promoting inflammatory factors in CD11c+ APCs via the β-catenin-IL-10 axis. Accordingly, conditional activation of β-catenin specifically in CD11c+ APCs or in vivo administration of IL-10 protected LRP5/6ΔCD11c mice from CAC by suppressing the expression of inflammatory factors. In summary, in this study, we identify a key role for the LRP5/6-β-catenin-IL-10 signaling pathway in intestinal APCs in resolving chronic intestinal inflammation and protecting against CAC in response to the commensal flora.
Collapse
Affiliation(s)
- Daniel Swafford
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Arulkumaran Shanmugam
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | | | - Indumathi Manoharan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Mohamed S Hussein
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Nikhil Patel
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Humberto Sifuentes
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Pandelakis A Koni
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129; and
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912; .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912
| |
Collapse
|
176
|
YAP in epithelium senses gut barrier loss to deploy defenses against pathogens. PLoS Pathog 2020; 16:e1008766. [PMID: 32857822 PMCID: PMC7454999 DOI: 10.1371/journal.ppat.1008766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Pathogens commonly disrupt the intestinal epithelial barrier; however, how the epithelial immune system senses the loss of intestinal barrier as a danger signal to activate self-defense is unclear. Through an unbiased approach in the model nematode Caenorhabditis elegans, we found that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) were activated when the intestinal barrier was disrupted by infections with the pathogenic bacterium Pseudomonas aeruginosa PA14. Gene Ontology enrichment analysis of the genes containing the TEAD-binding sites revealed that “innate immune response” and “defense response to Gram-negative bacterium” were two top significantly overrepresented terms. Genetic inactivation of yap-1 and egl-44 significantly reduced the survival rate and promoted bacterial accumulation in worms after bacterial infections. Furthermore, we found that disturbance of the E-cadherin-based adherens junction triggered the nuclear translocation and activation of YAP-1/YAP in the gut of worms. Although YAP is a major downstream effector of the Hippo signaling, our study revealed that the activation of YAP-1/YAP was independent of the Hippo pathway during disruption of intestinal barrier. After screening 10 serine/threonine phosphatases, we identified that PP2A phosphatase was involved in the activation of YAP-1/YAP after intestinal barrier loss induced by bacterial infections. Additionally, our study demonstrated that the function of YAP was evolutionarily conserved in mice. Our study highlights how the intestinal epithelium recognizes the loss of the epithelial barrier as a danger signal to deploy defenses against pathogens, uncovering an immune surveillance program in the intestinal epithelium. The intestinal epithelial barrier is an important line of defense against pathogenic bacteria infecting the intestine. Persistent bacterial infections can cause disruption of the intestinal barrier; however, how the epithelia immune system recognizes the loss of intestinal barrier as a danger signal to activate self-defense against pathogens is unclear. Using the nematode Caenorhabditis elegans as a model animal, we show that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) are activated when the intestinal barrier is disrupted by bacterial infections. Gene Ontology enrichment reveals that EGL-44/TEAD orchestrates a complex host response composed of innate immune response and defense response to Gram-negative bacteria. Furthermore, our data demonstrate that YAP-1/YAP and EGL-44/TEAD are required for resistance to infections with pathogenic bacteria when the intestinal barrier is disrupted in worms and mice. Our study reveals a novel strategy for the intestinal epithelium to sense danger through its internal architecture and initiate innate immunity.
Collapse
|
177
|
Chao YX, Gulam MY, Chia NSJ, Feng L, Rotzschke O, Tan EK. Gut-Brain Axis: Potential Factors Involved in the Pathogenesis of Parkinson's Disease. Front Neurol 2020; 11:849. [PMID: 32982910 PMCID: PMC7477379 DOI: 10.3389/fneur.2020.00849] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests an association between gastrointestinal (GI) disorders and susceptibility and progress of Parkinson's disease (PD). Gut-brain axis has been proposed to play important roles in the pathogenesis of PD, though the exact pathophysiologic mechanism has yet to be elucidated. Here, we discuss the common factors involved in both PD and GI disorders, including genes, altered gut microbiota, diet, environmental toxins, and altered mucosal immunity. Large-scale prospective clinical studies are needed to define the exact relationship between dietary factors, microbiome, and genetic factors in PD. Identification of early diagnostic markers and demonstration of the efficacy of diet modulation and regulation of gut microbiome through specific therapeutics can potentially change the treatment paradigm for PD.
Collapse
Affiliation(s)
- Yin-Xia Chao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| | | | | | - Lei Feng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Department of Neurology, Singapore General Hospital, Singapore, Singapore.,Duke NUS Medical School, Singapore, Singapore
| |
Collapse
|
178
|
Chénard T, Prévost K, Dubé J, Massé E. Immune System Modulations by Products of the Gut Microbiota. Vaccines (Basel) 2020; 8:vaccines8030461. [PMID: 32825559 PMCID: PMC7565937 DOI: 10.3390/vaccines8030461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota, which consists of all bacteria, viruses, fungus, and protozoa living in the intestine, and the immune system have co-evolved in a symbiotic relationship since the origin of the immune system. The bacterial community forming the microbiota plays an important role in the regulation of multiple aspects of the immune system. This regulation depends, among other things, on the production of a variety of metabolites by the microbiota. These metabolites range from small molecules to large macro-molecules. All types of immune cells from the host interact with these metabolites resulting in the activation of different pathways, which result in either positive or negative responses. The understanding of these pathways and their modulations will help establish the microbiota as a therapeutic target in the prevention and treatment of a variety of immune-related diseases.
Collapse
|
179
|
Gerlach K, Lechner K, Popp V, Offensperger L, Zundler S, Wiendl M, Becker E, Atreya R, Rath T, Neurath MF, Weigmann B. The JAK1/3 inhibitor tofacitinib suppresses T cell homing and activation in chronic intestinal inflammation. J Crohns Colitis 2020; 15:jjaa162. [PMID: 32808031 DOI: 10.1093/ecco-jcc/jjaa162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The molecular mechanism of action of the Janus kinase (JAK) inhibitor tofacitinib is poorly understood. METHODS Here, we analysed the inhibitory effect of tofacitinib on mucosal and blood T cells from patients with ulcerative colitis (UC). Furthermore tofacitinib treatment was analysed in experimental colitis models and wound healing. Additionally, tofacitinib effects were analysed in bioassays. RESULTS Tofacitinib significantly reduced T cell derived inflammatory cytokine production (Th2, Th9, Th17) in patients with active UC. Additionally, impaired expression of the homing receptors alpha4/beta1 and alpha4/beta7 as well as reduced gut homing capacity of T cells in a humanized mouse model of colitis were observed. Tofacitinib suppressed acute and chronic oxazolone colitis compared to untreated wild-type mice associated with downregulation of cytokines produced by Th2, Th9 and Th17 cells. Functionally, tofacitinib induced apoptosis of intestinal epithelial cells and prevented mucosal wound healing in vivo at higher concentration. Thus, our findings suggest that tofacitinib is quite effective in protecting from colitis by inhibition of a bundle of T cell derived cytokines like IL-5, IL-6, IL-9, IL-13 and IL-17A. CONCLUSION Application of tofacitinib emerges as an attractive concept for treatment of chronic intestinal inflammation at lower concentrations, whereas higher concentrations require attention due to prolonged wound healing.
Collapse
Affiliation(s)
- Katharina Gerlach
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Kristina Lechner
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Vanessa Popp
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Laura Offensperger
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Maximilian Wiendl
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Emily Becker
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Timo Rath
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine, University Clinic of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
180
|
Dang PMC, Rolas L, El-Benna J. The Dual Role of Reactive Oxygen Species-Generating Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Gastrointestinal Inflammation and Therapeutic Perspectives. Antioxid Redox Signal 2020; 33:354-373. [PMID: 31968991 DOI: 10.1089/ars.2020.8018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Despite their intrinsic cytotoxic properties, mounting evidence indicates that reactive oxygen species (ROS) physiologically produced by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) of epithelial cells (NOX1, dual oxidase [DUOX]2) and phagocytes (NOX2) are critical for innate immune response and homeostasis of the intestinal mucosa. However, dysregulated ROS production could be a driving factor in inflammatory bowel diseases (IBDs). Recent Advances: In addition to NOX2, recent studies have demonstrated that NOX1- and DUOX2-derived ROS can regulate intestinal innate immune defense and homeostasis by impacting many processes, including bacterial virulence, expression of bacteriostatic proteins, epithelial renewal and restitution, and microbiota composition. Moreover, the antibacterial role of DUOX2 is a function conserved in evolution as it has been described in invertebrates, and lower and higher vertebrates. In humans, variants of the NOX2, NOX1, and DUOX2 genes, which are associated with impaired ROS production, have been identified in very early onset IBD, but overexpression of NOX/DUOX, especially DUOX2, has also been described in IBD, suggesting that loss-of-function or excessive activity of the ROS-generating enzymes could contribute to disease progression. Critical Issues: Therapeutic perspectives aiming at targeting NOX/DUOX in IBD should take into account the two sides of NOX/DUOX-derived ROS in intestinal inflammation. Hence, NOX/DUOX inhibitors or ROS inducers should be considered as a function of the disease context. Future Directions: A thorough understanding of the physiological and pathological regulation of NOX/DUOX in the gastrointestinal tract is an absolute pre-requisite for the development of therapeutic strategies that can modulate ROS levels in space and time.
Collapse
Affiliation(s)
- Pham My-Chan Dang
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| | - Loïc Rolas
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France
| | - Jamel El-Benna
- INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Paris, France.,Faculté de Médecine, Laboratoire d'Excellence Inflamex, DHU FIRE, Université de Paris, Paris, France
| |
Collapse
|
181
|
Steinway SN, Saleh J, Koo BK, Delacour D, Kim DH. Human Microphysiological Models of Intestinal Tissue and Gut Microbiome. Front Bioeng Biotechnol 2020; 8:725. [PMID: 32850690 PMCID: PMC7411353 DOI: 10.3389/fbioe.2020.00725] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract is a complex system responsible for nutrient absorption, digestion, secretion, and elimination of waste products that also hosts immune surveillance, the intestinal microbiome, and interfaces with the nervous system. Traditional in vitro systems cannot harness the architectural and functional complexity of the GI tract. Recent advances in organoid engineering, microfluidic organs-on-a-chip technology, and microfabrication allows us to create better in vitro models of human organs/tissues. These micro-physiological systems could integrate the numerous cell types involved in GI development and physiology, including intestinal epithelium, endothelium (vascular), nerve cells, immune cells, and their interplay/cooperativity with the microbiome. In this review, we report recent progress in developing micro-physiological models of the GI systems. We also discuss how these models could be used to study normal intestinal physiology such as nutrient absorption, digestion, and secretion as well as GI infection, inflammation, cancer, and metabolism.
Collapse
Affiliation(s)
- Steven N. Steinway
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jad Saleh
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR 7592, Paris Diderot University, Paris, France
| | - Deok-Ho Kim
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
182
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
183
|
Effects of Aqueous and Methanolic Extracts of Stem Bark of Alstonia boonei De Wild. (Apocynaceae) on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4918453. [PMID: 32565862 PMCID: PMC7277065 DOI: 10.1155/2020/4918453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/04/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
Among the most exploited species in Cameroon, Alstonia boonei is widely used in African medicine for the relief of several pathologies including gastrointestinal disorders. This study was conducted in order to assess the effects of aqueous and methanol stem-bark extracts of Alstonia boonei on DSS- (dextran sodium sulfate-) induced intestinal colitis and to determine its antioxidant potential. The classes of secondary metabolites present in these extracts were determined by chemical screening. The production of TNF-α, IL-6, IL-1β, and PGE2 was performed by in vitro ELISA analysis. Anticolitis effects were determined using an in vivo model of ulcerative colitis induced by DSS. The colitis was induced with a double dose of DSS (3% and 1%), and the aqueous and methanol extracts were administered orally from the 6th day after commencement of induction. The phytochemical screening revealed the presence of six classes of secondary metabolites in these crude extracts: tannins, saponins, alkaloids, steroids, flavonoids, and phenols. Methanol and aqueous extracts of Alstonia boonei significantly (P < 0.001) inhibited TNF-α, IL-6, IL-1β, and PGE2 production stimulated by LPS. Both extracts at all doses significantly reduced (P < 0.01, P < 0.001) the signs of DSS-induced colitis in the Wistar rats by decreasing inflammation and chronic colon damage. In addition, the extracts significantly (P < 0.001) reduced malondialdehyde and nitric oxide levels in the colon and significantly (P < 0.01) increased superoxide dismutase and catalase and reduced glutathione (P < 0.05). Both extracts showed greater activity than the reference substance (prednisolone 4 mg/kg) used in this study. This study has demonstrated that aqueous and methanol extracts of Alstonia boonei stem bark have healing properties against colitis experimentally induced by DSS in rats.
Collapse
|
184
|
Ju JK, Cho YN, Park KJ, Kwak HD, Jin HM, Park SY, Kim HS, Kee SJ, Park YW. Activation, Deficiency, and Reduced IFN-γ Production of Mucosal-Associated Invariant T Cells in Patients with Inflammatory Bowel Disease. J Innate Immun 2020; 12:422-434. [PMID: 32535589 DOI: 10.1159/000507931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can activate either in response to T-cell receptor (TCR) engagement or through activating cytokines and play an important role in autoimmune disorders. The study examined the level and function of MAIT cells in patients with inflammatory bowel disease (IBD). Circulating MAIT cell levels were significantly reduced in IBD patients. This MAIT cell deficiency was correlated with IBD disease activity grades, hemoglobin, and CRP. IFN-γ production of circulating MAIT cells in response to both MHC class 1b-like related protein (MR1)-dependent and -independent stimulations was decreased in IBD patients, which was partially associated with reduced activation of nuclear factor of activated T cells 1 (NFAT1) transcription factor, a main regulator of IFN-γ production. Expression levels of CD69, programmed death-1 (PD-1), and annexin V in MAIT cells were elevated in IBD patients. CCL20, CXCL10, CXCL16, and CCL25 were expressed higher in inflamed intestinal tissues than in noninflamed tissues. This study demonstrates that circulating MAIT cells are activated and numerically and functionally deficient in IBD patients. Furthermore, activated MAIT cells have the potential to migrate to inflamed tissues. These findings suggest an important role of MAIT cells in mucosal immunity in IBD.
Collapse
Affiliation(s)
- Jae Kyun Ju
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Han Deok Kwak
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hye-Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seon-Young Park
- Department of Gastroenterology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun Soo Kim
- Department of Gastroenterology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea,
| |
Collapse
|
185
|
Atabati H, Esmaeili SA, Saburi E, Akhlaghi M, Raoofi A, Rezaei N, Momtazi-Borojeni AA. Probiotics with ameliorating effects on the severity of skin inflammation in psoriasis: Evidence from experimental and clinical studies. J Cell Physiol 2020; 235:8925-8937. [PMID: 32346892 DOI: 10.1002/jcp.29737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Experimental and clinical studies have confirmed safety and the medical benefits of probiotics as immunomodulatory medications. Recent advances have emphasized the critical effect of gastrointestinal bacteria in the pathology of inflammatory disorders, even, outside the gut. Probiotics have shown promising results for curing skin-influencing inflammatory disorders through modulating the immune response by manipulating the gut microbiome. Psoriasis is a complex inflammatory skin disease, which exhibits a microbiome distinct from the normal skin. In the present review, we considered the impact of gastrointestinal microbiota on the psoriasis pathogenesis, and through literature survey, attempted to explore probiotic species utilized for psoriasis treatment.
Collapse
Affiliation(s)
- Hadi Atabati
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Saburi
- Clinical Research Development Center, Imam Hasan Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Akhlaghi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology and Biology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
186
|
Abstract
The intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion. Although the microbiota is required for intestinal immune development, immune responses regulate the structure and composition of the intestinal microbiota by evolving unique immune adaptations that manage this high-bacterial load. The immune mechanisms work together to ensure that commensal bacteria rarely breach the intestinal barrier and that any that do invade should be killed rapidly to prevent penetration to systemic sites. The communication between microbiota and the immune system is mediated by the interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various antigen-presenting cells resulting in activation of both innate and adaptive immune responses. Interaction between the microbial community and host plays a crucial role in the mucosal homeostasis and health status of the host. In addition to providing a home to numerous microbial inhabitants, the intestinal tract is an active immunological organ, with more resident immune cells than anywhere else in the body, organized in lymphoid structures called Peyer's patches and isolated lymphoid follicles such as the cecal tonsils. Macrophages, dendritic cells, various subsets of T cells, B cells and the secretory immunoglobulin A (IgA) they produce, all contribute to the generation of a proper immune response to invading pathogens while keeping the resident microbial community in check without generating an overt inflammatory response to it. IgA-producing plasma cells, intraepithelial lymphocytes, and γδT cell receptor-expressing T cells are lymphocytes that are uniquely present in the mucosa. In addition, of the γδT cells in the intestinal lamina propria, there are significant numbers of IL-17-producing T cells and regulatory T cells. The accumulation and function of these mucosal leukocytes are regulated by the presence of intestinal microbiota, which regulate these immune cells and enhance the mucosal barrier function allowing the host to mount robust immune responses against invading pathogens, and simultaneously maintains immune homeostasis.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA.
| | - Annah Lee
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, 77845 USA; Department of Poultry Science, Texas A&M University, College Station, TX, 77845 USA
| | - Elizabeth Santin
- Universidade Federal Do Paraná, Department of Veterinary Medicine, Curitiba, 80035-050 Brazil
| |
Collapse
|
187
|
Jing B, Wang ZA, Zhang C, Deng Q, Wei J, Luo Y, Zhang X, Li J, Du Y. Establishment and Application of Peristaltic Human Gut-Vessel Microsystem for Studying Host-Microbial Interaction. Front Bioeng Biotechnol 2020; 8:272. [PMID: 32296697 PMCID: PMC7137556 DOI: 10.3389/fbioe.2020.00272] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Intestinal floras influence a lot of biological functions of the organism. Although animal model are strong tools for researches on the relationship between host and microbe, a physiologically relevant in vitro human gut model was still required. Here, a novel human gut-vessel microfluidic system was established to study the host–microbial interaction. Peristaltic motion of the cells on the chip was driven by a pneumatic pump. When intestinal epithelial cells (Caco2) were co-cultured with vascular endothelial cells (HUVECs) on the peristaltic microfluidic chip, Caco2 showed normal barrier and absorption functions after 5 days cultivation, which generally took 21 days in static Transwell models. Intestinal microvilli and glycocalyx layer were seen after 4 days cultivation, and Lactobacillus casei was successfully co-cultured for a week in the intestinal cavity. A model for intestinal damage and inflammatory responses caused by E. coli was set up on this chip, which were successfully suppressed by Lactobacillus casei or antibiotic. In summary, this human gut-vessel microfluidic system showed a good potential for investigating the host–microbial interaction and the effect and mechanism of microbiome on intestinal diseases in vitro.
Collapse
Affiliation(s)
- Bolin Jing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.,Department of Chemistry, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo A Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Chen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Quanfeng Deng
- Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Jinhua Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yong Luo
- Key Laboratory of Fine Chemicals, Department of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Xiuli Zhang
- College of Pharmaceutical Sciences, Soochow University, Soochow, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
188
|
Kim J, Yang YL, Jeong Y, Jang YS. Middle East Respiratory Syndrome-Coronavirus Infection into Established hDPP4-Transgenic Mice Accelerates Lung Damage Via Activation of the Pro-Inflammatory Response and Pulmonary Fibrosis. J Microbiol Biotechnol 2020; 30:427-438. [PMID: 31838832 PMCID: PMC9728294 DOI: 10.4014/jmb.1910.10055] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects the lower respiratory airway of humans, leading to severe acute respiratory failure. Unlike human dipeptidyl peptidase 4 (hDPP4), a receptor for MERS-CoV, mouse DPP4 (mDPP4) failed to support MERS-CoV infection. Consequently, diverse transgenic mouse models expressing hDPP4 have been developed using diverse methods, although some models show no mortality and/or only transient and mild-to-moderate clinical signs following MERS-CoV infection. Additionally, overexpressed hDPP4 is associated with neurological complications and breeding difficulties in some transgenic mice, resulting in impeding further studies. Here, we generated stable hDPP4-transgenic mice that were sufficiently susceptible to MERS-CoV infection. The transgenic mice showed weight loss, decreased pulmonary function, and increased mortality with minimal perturbation of overexpressed hDPP4 after MERS-CoV infection. In addition, we observed histopathological signs indicative of progressive pulmonary fibrosis, including thickened alveolar septa, infiltration of inflammatory monocytes, and macrophage polarization as well as elevated expression of profibrotic molecules and acute inflammatory response in the lung of MERS-CoV-infected hDPP4-transgenic mice. Collectively, we suggest that this hDPP4-transgenic mouse is useful in understanding the pathogenesis of MERS-CoV infection and for antiviral research and vaccine development against the virus.
Collapse
Affiliation(s)
- Ju Kim
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ye Lin Yang
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yongsu Jeong
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yong-Suk Jang
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea,Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea,Corresponding author Phone: +82-63-270-3343 Fax: +82-63-270-4312 E-mail:
| |
Collapse
|
189
|
Gu W, Liu S, Chen L, Liu Y, Gu C, Ren HQ, Wu B. Single-Cell RNA Sequencing Reveals Size-Dependent Effects of Polystyrene Microplastics on Immune and Secretory Cell Populations from Zebrafish Intestines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3417-3427. [PMID: 32092251 DOI: 10.1021/acs.est.9b06386] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microplastics (MPs) as widespread contamination pose a high risk for aquatic organisms. However, the current understanding of MP toxicity is based on cell population-averaged measurements. Our aim was to gain a comprehensive understanding of the size-dependent effects of polystyrene MPs (PS-MPs) on intestinal cell populations in zebrafish and characterize the interplay of MPs, intestinal cells, and intestinal microbiota. Here, we used single-cell RNA sequencing to determine the transcriptome heterogeneity of 12 000 intestinal cells obtained from zebrafish exposed to 100 nm, 5 μm, and 200 μm PS-MPs for 21 days. Eight intestinal cell populations were identified. Combined with changes in intestinal microbiota, our findings highlight a previously unrecognized end point that all three sizes of PS-MPs induced dysfunction of intestinal immune cells (including effects on phagosomes and the regulation of immune system processes) and increased the abundance of pathogenic bacteria. However, only 100 nm PS-MPs altered the expression of genes related to phagocyte-produced reactive oxygen species (ROS) generation and increased mucus secretion by secretory cells. Microsize PS-MPs specifically changed the lysosome (5 μm) and cell surface receptor signaling (200 μm) processes of the macrophages. Our findings pinpoint to cell-specific and size-dependent responses to PS-MPs in fish intestine, which can provide a reference for future study directions.
Collapse
Affiliation(s)
- Weiqing Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
- Department of Environmental Science, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu 211198, P.R. China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
| | - Yuxuan Liu
- College of Environment, Hohai University, Nanjing, Jiangsu 210098, P.R. China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
190
|
Kathania M, Tsakem EL, Theiss AL, Venuprasad K. Gut Microbiota Contributes to Spontaneous Colitis in E3 Ligase Itch-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2020; 204:2277-2284. [PMID: 32169841 DOI: 10.4049/jimmunol.1701478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases are associated with complex shifts in microbiota composition. However, it remains unclear whether specific subsets of commensal bacteria induce inflammatory bowel diseases in genetically susceptible hosts. In this study, we found that deficiency of the E3 ligase Itch, which leads to spontaneous colitis and rectal prolapse, is associated with alteration of the gut microbiota. 16S rRNA sequencing showed expansion of colitogenic Bacteroides sp. in Itch-/- mice. Treatment with broad-spectrum antibiotics substantially reduced colonic inflammation in Itch-/- mice. Microbiota of Itch-/- mice failed to induce spontaneous colitis upon transfer to Itch+/+ mice but aggravated chemically induced colitis. Furthermore, we found that Bacteroides vulgatus, which is expanded in Itch-/- mice, was sufficient to induce colon inflammation in Itch-/- mice.
Collapse
Affiliation(s)
- Mahesh Kathania
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Elviche L Tsakem
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, School of Medicine at the Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - K Venuprasad
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
191
|
Shah RM, McKenzie EJ, Rosin MT, Jadhav SR, Gondalia SV, Rosendale D, Beale DJ. An Integrated Multi-Disciplinary Perspectivefor Addressing Challenges of the Human Gut Microbiome. Metabolites 2020; 10:E94. [PMID: 32155792 PMCID: PMC7143645 DOI: 10.3390/metabo10030094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the human gut microbiome has grown exponentially. Advances in genome sequencing technologies and metagenomics analysis have enabled researchers to study microbial communities and their potential function within the context of a range of human gut related diseases and disorders. However, up until recently, much of this research has focused on characterizing the gut microbiological community structure and understanding its potential through system wide (meta) genomic and transcriptomic-based studies. Thus far, the functional output of these microbiomes, in terms of protein and metabolite expression, and within the broader context of host-gut microbiome interactions, has been limited. Furthermore, these studies highlight our need to address the issues of individual variation, and of samples as proxies. Here we provide a perspective review of the recent literature that focuses on the challenges of exploring the human gut microbiome, with a strong focus on an integrated perspective applied to these themes. In doing so, we contextualize the experimental and technical challenges of undertaking such studies and provide a framework for capitalizing on the breadth of insight such approaches afford. An integrated perspective of the human gut microbiome and the linkages to human health will pave the way forward for delivering against the objectives of precision medicine, which is targeted to specific individuals and addresses the issues and mechanisms in situ.
Collapse
Affiliation(s)
- Rohan M. Shah
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| | - Elizabeth J. McKenzie
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Magda T. Rosin
- Liggins Institute, The University of Auckland, Grafton, Auckland 1142, New Zealand; (E.J.M.); (M.T.R.)
| | - Snehal R. Jadhav
- Centre for Advanced Sensory Science, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia;
| | - Shakuntla V. Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | | | - David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organization (CSIRO), Dutton Park, QLD 4102, Australia
| |
Collapse
|
192
|
|
193
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
194
|
Response of the Litopenaeus vananmei intestinal bacteria and antioxidant system to rearing density and exposure to Vibrio paraheamolyticus E1. J Invertebr Pathol 2020; 170:107326. [DOI: 10.1016/j.jip.2020.107326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
|
195
|
Chu H, Tao X, Sun Z, Hao W, Wei X. Galactooligosaccharides protects against DSS-induced murine colitis through regulating intestinal flora and inhibiting NF-κB pathway. Life Sci 2020; 242:117220. [DOI: 10.1016/j.lfs.2019.117220] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/22/2019] [Indexed: 02/08/2023]
|
196
|
Wang R, Deng Y, Deng Q, Sun D, Fang Z, Sun L, Wang Y, Gooneratne R. Vibrio parahaemolyticus Infection in Mice Reduces Protective Gut Microbiota, Augmenting Disease Pathways. Front Microbiol 2020; 11:73. [PMID: 32082289 PMCID: PMC7002474 DOI: 10.3389/fmicb.2020.00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Abstract
Vibrio parahaemolyticus (Vp), a major food-borne pathogen, is responsible for severe infections such as gastroenteritis and septicemia, which may be accompanied by life-threatening complications. While studies have evaluated factors that affect the virulence of the pathogen, none have investigated the interaction of Vp with gut microbiota. To address this knowledge gap, we compared the effect of Vp on gut bacterial community structure, immunity, liver and kidney function, in pseudo germ-free (PGF) mice and normal (control) mice. Significant damage to the ileum was observed in normal mice compared with the PGF mice. The inflammatory factors IL-1β, IL-6, and TNF-α in normal mice were ∼2.5-fold higher than in the PGF mice, and liver (ALT, AST, ALP) and kidney (BUN) function indices were ∼1.6-fold higher. The Vp infection substantially reduced species composition and richness of the gut microbial communities. In particular, there was a shift in keystone taxa, from protective species of genera Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia in the gut of control mice to opportunistic pathogens Enterobacteriaceae, Proteus, Prevotella, and Sutterella in Vp-infected mice, thus affecting microbiota-related biological functions in the mice. Specifically, pathways involved in infectious diseases and ion channels were significantly augmented in infected mice, while the pathways involved in metabolism, digestion and cell growth declined. We propose that the normal mice are more prone to Vp infection because of the alteration in gut-microbe-mediated functions. All these effects reduce intestinal resistance, with marked damage to the gut lining and pathogen leakage into the blood culminating in liver and kidney damage. These findings greatly advance our understanding of the mechanisms underlying interactions between Vp, the gut microbiota and the infected host.
Collapse
Affiliation(s)
- Rundong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, China
| | - Yijia Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Dongfang Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
197
|
Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, Potts DE, Chen Z, Paik D, Soualhi S, Yan Y, Misra A, Goldstein K, Lagomarsino VN, Nordstrom A, Sivanathan KN, Wallrapp A, Kuchroo VK, Nowarski R, Starnbach MN, Shi H, Surana NK, An D, Wu C, Huh JR, Rao M, Chiu IM. Gut-Innervating Nociceptor Neurons Regulate Peyer's Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell 2020; 180:33-49.e22. [PMID: 31813624 PMCID: PMC6954329 DOI: 10.1016/j.cell.2019.11.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.
Collapse
Affiliation(s)
- Nicole Y Lai
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Musser
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Jacobson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Pingchuan Ma
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Potts
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuojia Chen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donggi Paik
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yiqing Yan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlin Goldstein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anja Nordstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Hailian Shi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Neeraj K Surana
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chuan Wu
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
198
|
Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103641] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
199
|
Baffy G. Gut Microbiota and Cancer of the Host: Colliding Interests. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:93-107. [PMID: 32130695 DOI: 10.1007/978-3-030-34025-4_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer develops in multicellular organisms from cells that ignore the rules of cooperation and escape the mechanisms of anti-cancer surveillance. Tumorigenesis is jointly encountered by the host and microbiota, a vast collection of microorganisms that live on the external and internal epithelial surfaces of the body. The largest community of human microbiota resides in the gastrointestinal tract where commensal, symbiotic and pathogenic microorganisms interact with the intestinal barrier and gut mucosal lymphoid tissue, creating a tumor microenvironment in which cancer cells thrive or perish. Aberrant composition and function of the gut microbiota (dysbiosis) has been associated with tumorigenesis by inducing inflammation, promoting cell growth and proliferation, weakening immunosurveillance, and altering food and drug metabolism or other biochemical functions of the host. However, recent research has also identified several mechanisms through which gut microbiota support the host in the fight against cancer. These mechanisms include the use of antigenic mimicry, biotransformation of chemotherapeutic agents, and other mechanisms to boost anti-cancer immune responses and improve the efficacy of cancer immunotherapy. Further research in this rapidly advancing field is expected to identify additional microbial metabolites with tumor suppressing properties, map the complex interactions of host-microbe 'transkingdom network' with cancer cells, and elucidate cellular and molecular pathways underlying the impact of specific intestinal microbial configurations on immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Gyorgy Baffy
- Department of Medicine, VA Boston Healthcare System and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
200
|
Gao J, Azad MAK, Han H, Wan D, Li T. Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Curr Pharm Des 2020; 26:2630-2641. [PMID: 32066357 DOI: 10.2174/1381612826666200211121916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
In animals, the gastrointestinal microbiota are reported to play a major role in digestion, nutrient absorption and the release of energy through metabolism of food. Therefore, microbiota may be a factor for association between diet and enteric diseases and oxidative stress. The gut microbial composition and concentration are affected by diet throughout the life of an animal, and respond rapidly and efficiently to dietary alterations, in particular to the use of prebiotics. Prebiotics, which play an important role in mammalian nutrition, are defined as dietary ingredients that lead to specific changes in both the composition and activity of the gastrointestinal microbiota through suppressing the proliferation of pathogens and by modifying the growth of beneficial microorganisms in the host intestine. A review of the evidence suggests possible beneficial effects of prebiotics on host intestinal health, including immune stimulation, gut barrier enhancement and the alteration of the gastrointestinal microbiota, and these effects appear to be dependent on alteration of the bacterial composition and short-chain fatty acid (SCFA) production. The production of SCFAs depends on the microbes available in the gut and the type of prebiotics available. The SCFAs most abundantly generated by gastrointestinal microbiota are acetate, butyrate and propionate, which are reported to have physiological effects on the health of the host. Nowadays, prebiotics are widely used in a range of food products to improve the intestinal microbiome and stimulate significant changes to the immune system. Thus, a diet with prebiotic supplements may help prevent enteric disease and oxidative stress by promoting a microbiome associated with better growth performance. This paper provides an overview of the hypothesis that a combination of ingestible prebiotics, chitosan, fructooligosaccharides and inulin will help relieve the dysbiosis of the gut and the oxidative stress of the host.
Collapse
Affiliation(s)
- Jing Gao
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Md A K Azad
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Han
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Wan
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| | - TieJun Li
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Changsha, Hunan, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production,
Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|