151
|
Nishi R. Balancing act: To be, or not to be ubiquitylated. Mutat Res 2017; 803-805:43-50. [PMID: 28764946 DOI: 10.1016/j.mrfmmm.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/30/2017] [Accepted: 07/17/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious DNA lesions. Appropriate repair of DSB either by homologous recombination or non-homologous end-joining is critical for maintaining genome stability and fitness. DSB repair cooperates with cellular signalling networks, namely DSB response (DDR), which plays pivotal roles in the choice of DSB repair pathway, orchestrating recruitment of DDR factors to site of damage, transcription suppression and cell cycle checkpoint activation. It has been revealed that these mechanisms are strictly regulated, in time and space, by complex and minute ubiquitylation-mediated reactions. Furthermore, balancing the ubiquitylation status of the DDR and DSB repair proteins by deubiquitylation, which is carried out by deubiquitylating enzymes (DUBs), is also found to be important. Recent findings have uncovered that DUBs are involved in various aspects of both DDR and DSB repair by counteracting non-proteolytic ubiquitylations in addition to protecting substrates from proteasomal degradation by removing proteolytic ubiquitylation. An advanced understanding of the detailed molecular mechanisms of the "balancing act" between ubiquitylation and deubiquitylation will provide novel therapeutic targets for diseases caused by dysfunction of DDR and DSB repair.
Collapse
Affiliation(s)
- Ryotaro Nishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
152
|
Shibata A. Regulation of repair pathway choice at two-ended DNA double-strand breaks. Mutat Res 2017; 803-805:51-55. [PMID: 28781144 DOI: 10.1016/j.mrfmmm.2017.07.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022]
Abstract
A DNA double-strand break (DSB) is considered to be a critical DNA lesion because its misrepair can cause severe mutations, such as deletions or chromosomal translocations. For the precise repair of DSBs, the repair pathway that is optimal for the particular circumstance needs to be selected. Non-homologous end joining (NHEJ) functions in G1/S/G2 phase, while homologous recombination (HR) becomes active only in S/G2 phase after DNA replication. DSB end structure is another factor affecting the repair pathway. For example, one-ended DSBs in S phase are mainly repaired by HR due to the lack of a partner DSB end for NHEJ. In contrast, two-ended DSBs, which are mainly induced by ionizing radiation, are repaired by either NHEJ or HR in G2 cells. Under the current model in terms of DSB repair pathway usage in G2 phase, NHEJ repairs ∼70% of two-ended DSBs, whereas HR repairs only ∼30%. Recent studies propose that NHEJ factors can bind all the DSB ends and are then either used to progress that pathway of DSB repair, or the repair proceeds by HR. In addition, molecular regulation by BRCA1 and 53BP1 has also been proposed. At DSB sites, BRCA1 functions to alleviate the 53BP1 barrier to resection by promoting 53BP1 dephosphorylation, followed by RIF1 release and 53BP1 repositioning. This timely 53BP1 repositioning may be important for the establishment of a chromatin environment that promotes the recruitment of EXO1 for resection in HR. This review summarizes current knowledge on factors regulating DSB repair pathway choice in terms of spatiotemporal regulation by focusing on the repair events at two-ended DSBs in G2 cells.
Collapse
Affiliation(s)
- Atsushi Shibata
- Education and Research Support Center, Gunma University and Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
153
|
Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, Mckinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A. Genome Organization Drives Chromosome Fragility. Cell 2017; 170:507-521.e18. [PMID: 28735753 PMCID: PMC6133249 DOI: 10.1016/j.cell.2017.06.034] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/22/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023]
Abstract
In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Andres Canela
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seolkyoung Jung
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyong-Rim Kieffer-Kwon
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Aleksandra Pekowska
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Hongliang Zhang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Suhas S P Rao
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Su-Chen Huang
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Mckinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter D Aplan
- Genetics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, NIH, Bethesda, MD, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
| | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
154
|
A Process of Resection-Dependent Nonhomologous End Joining Involving the Goddess Artemis. Trends Biochem Sci 2017; 42:690-701. [PMID: 28739276 PMCID: PMC5604544 DOI: 10.1016/j.tibs.2017.06.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 01/13/2023]
Abstract
DNA double-strand breaks (DSBs) are a hazardous form of damage that can potentially cause cell death or genomic rearrangements. In mammalian G1- and G2-phase cells, DSBs are repaired with two-component kinetics. In both phases, a fast process uses canonical nonhomologous end joining (c-NHEJ) to repair the majority of DSBs. In G2, slow repair occurs by homologous recombination. The slow repair process in G1 also involves c-NHEJ proteins but additionally requires the nuclease Artemis and DNA end resection. Here, we consider the nature of slow DSB repair in G1 and evaluate factors determining whether DSBs are repaired with fast or slow kinetics. We consider limitations in our current knowledge and present a speculative model for Artemis-dependent c-NHEJ and the environment underlying its usage. A c-NHEJ pathway has been defined involving resection of DSB ends prior to their ligation in G1. Thus, the two main pathways for repairing DSBs in G1 human cells are resection-independent and resection-dependent c-NHEJ. The resection process in G1 uses many of the same factors used for resection during homologous recombination in G2 but orchestrates them in a manner suited to a c-NHEJ process. Since Artemis is the only identified factor involved in the resection process whose loss leads to unrepaired DSBs, we refer to this process as Artemis- and resection-dependent c-NHEJ. Loss of other resection factors prevents the initiation of resection but allows resection-independent c-NHEJ. Artemis- and resection-dependent c-NHEJ makes a major contribution to translocation formation and can lead to previously described microhomology-mediated end joining.
Collapse
|
155
|
Li L, Poon HY, Hildebrandt MR, Monckton EA, Germain DR, Fahlman RP, Godbout R. Role for RIF1-interacting partner DDX1 in BLM recruitment to DNA double-strand breaks. DNA Repair (Amst) 2017; 55:47-63. [DOI: 10.1016/j.dnarep.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/13/2023]
|
156
|
Abstract
The correct duplication and transmission of genetic material to daughter cells is the primary objective of the cell division cycle. DNA replication and chromosome segregation present both challenges and opportunities for DNA repair pathways that safeguard genetic information. As a consequence, there is a profound, two-way connection between DNA repair and cell cycle control. Here, we review how DNA repair processes, and DNA double-strand break repair in particular, are regulated during the cell cycle to optimize genomic integrity.
Collapse
|
157
|
Yalçin Z, Selenz C, Jacobs JJL. Ubiquitination and SUMOylation in Telomere Maintenance and Dysfunction. Front Genet 2017; 8:67. [PMID: 28588610 PMCID: PMC5440461 DOI: 10.3389/fgene.2017.00067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 05/10/2017] [Indexed: 12/14/2022] Open
Abstract
Telomeres are essential nucleoprotein structures at linear chromosomes that maintain genome integrity by protecting chromosome ends from being recognized and processed as damaged DNA. In addition, they limit the cell’s proliferative capacity, as progressive loss of telomeric DNA during successive rounds of cell division eventually causes a state of telomere dysfunction that prevents further cell division. When telomeres become critically short, the cell elicits a DNA damage response resulting in senescence, apoptosis or genomic instability, thereby impacting on aging and tumorigenesis. Over the past years substantial progress has been made in understanding the role of post-translational modifications in telomere-related processes, including telomere maintenance, replication and dysfunction. This review will focus on recent findings that establish an essential role for ubiquitination and SUMOylation at telomeres.
Collapse
Affiliation(s)
- Zeliha Yalçin
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Carolin Selenz
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| | - Jacqueline J L Jacobs
- Department of Molecular Oncology, Netherlands Cancer InstituteAmsterdam, Netherlands
| |
Collapse
|
158
|
Schwertman P, Bekker-Jensen S, Mailand N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 2017; 17:379-94. [PMID: 27211488 DOI: 10.1038/nrm.2016.58] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. The swift recognition and faithful repair of such damage is crucial for the maintenance of genomic stability, as well as for cell and organismal fitness. Signalling by ubiquitin, SUMO and other ubiquitin-like modifiers (UBLs) orchestrates and regulates cellular responses to DSBs at multiple levels, often involving extensive crosstalk between these modifications. Recent findings have revealed compelling insights into the complex mechanisms by which ubiquitin and UBLs regulate protein interactions with DSB sites to promote accurate lesion repair and protection of genome integrity in mammalian cells. These advances offer new therapeutic opportunities for diseases linked to genetic instability.
Collapse
Affiliation(s)
- Petra Schwertman
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
159
|
De Gregoriis G, Ramos JA, Fernandes PV, Vignal GM, Brianese RC, Carraro DM, Monteiro AN, Struchiner CJ, Suarez-Kurtz G, Vianna-Jorge R, de Carvalho MA. DNA repair genes PAXIP1 and TP53BP1 expression is associated with breast cancer prognosis. Cancer Biol Ther 2017; 18:439-449. [PMID: 28475402 DOI: 10.1080/15384047.2017.1323590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable advances in diagnosis, prognosis and treatment, advanced or recurrent breast tumors have limited therapeutic approaches. Many treatment strategies try to explore the limitations of DNA damage response (DDR) in tumor cells to selectively eliminate them. BRCT (BRCA1 C-terminal) domains are present in a superfamily of proteins involved in cell cycle checkpoints and the DDR. Tandem BRCT domains (tBRCT) represent a distinct class of these domains. We investigated the expression profile of 7 tBRCT genes (BARD1, BRCA1, LIG4, ECT2, MDC1, PAXIP1/PTIP and TP53BP1) in breast cancer specimens and observed a high correlation between PAXIP1 and TP53BP1 gene expression in tumor samples. Tumors with worse prognosis (tumor grade 3 and triple negative) showed reduced expression of tBRCT genes, notably, PAXIP1 and TP53BP1. Survival analyses data indicated that tumor status of both genes may impact prognosis. PAXIP1 and 53BP1 protein levels followed gene expression results, i.e., are intrinsically correlated, and also reduced in more advanced tumors. Evaluation of both genes in triple negative breast tumor samples which were characterized for their BRCA1 status showed that PAXIP1 is overexpressed in BRCA1 mutant tumors. Taken together our findings indicate that PAXIP1 status correlates with breast cancer staging, in a manner similar to what has been characterized for TP53BP1.
Collapse
Affiliation(s)
- Giuliana De Gregoriis
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | | | - Giselle Maria Vignal
- c Divisão de Patologia , Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | - Dirce Maria Carraro
- d International Research Center, A. C. Camargo Cancer Center , São Paulo , SP , Brazil
| | - Alvaro N Monteiro
- e Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | | | - Guilherme Suarez-Kurtz
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | - Rosane Vianna-Jorge
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,g Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Marcelo Alex de Carvalho
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,b Instituto Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
160
|
Mutter RW, Riaz N, Ng CK, Delsite R, Piscuoglio S, Edelweiss M, Martelotto LG, Sakr RA, King TA, Giri DD, Drobnjak M, Brogi E, Bindra R, Bernheim G, Lim RS, Blecua P, Desrichard A, Higginson D, Towers R, Jiang R, Lee W, Weigelt B, Reis-Filho JS, Powell SN. Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer. J Pathol 2017; 242:165-177. [PMID: 28299801 DOI: 10.1002/path.4890] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 02/06/2017] [Accepted: 02/20/2017] [Indexed: 01/07/2023]
Abstract
Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert W Mutter
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Ky Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rob Delsite
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rita A Sakr
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tari A King
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dilip D Giri
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Drobnjak
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ranjit Bindra
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Radiation Oncology, Yale, New Haven, CT, USA
| | - Giana Bernheim
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Blecua
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexis Desrichard
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Russell Towers
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruomu Jiang
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - William Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
161
|
Kolinjivadi AM, Sannino V, de Antoni A, Técher H, Baldi G, Costanzo V. Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 2017; 591:1083-1100. [PMID: 28079255 DOI: 10.1002/1873-3468.12556] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/27/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022]
Abstract
Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.
Collapse
Affiliation(s)
| | - Vincenzo Sannino
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Anna de Antoni
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Hervé Técher
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Giorgio Baldi
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| | - Vincenzo Costanzo
- DNA metabolism laboratory, IFOM-The Firc Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
162
|
Youn CK, Kim HB, Wu TT, Park S, Cho SI, Lee JH. 53BP1 contributes to regulation of autophagic clearance of mitochondria. Sci Rep 2017; 7:45290. [PMID: 28345606 PMCID: PMC5366885 DOI: 10.1038/srep45290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
Autophagy, the primary recycling pathway within cells, plays a critical role in mitochondrial quality control under normal growth conditions and in the cellular response to stress. Here we provide evidence that 53BP1, a DNA damage response protein, is involved in regulating mitochondrial clearance from the cell via a type of autophagy termed mitophagy. We found that when either human or mouse cells were 53BP1-deficient, there was an increase in mitochondrial abnormalities, as observed through staining intensity, aggregation, and increased mass. Moreover, a 53BP1-depleted cell population included an increased number of cells with a high mitochondrial membrane potential (ΔΨm) relative to controls, suggesting that the loss of 53BP1 prevents initiation of mitophagy thereby leading to the accumulation of damaged mitochondria. Indeed, both 53BP1 and the mitophagy-associated protein LC3 translocated to mitochondria in response to damage induced by the mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The recruitment of parkin, an E3-ubiquitin ligase, to mitochondria in response to CCCP treatment was significantly decreased in 53BP1-deficient cells. And lastly, using p53-deficient H1299 cells, we confirmed that the role of 53BP1 in mitophagy is independent of p53. These data support a model in which 53BP1 plays an important role in modulating mitochondrial homeostasis and in the clearance of damaged mitochondria.
Collapse
Affiliation(s)
- Cha Kyung Youn
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Hong Beum Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of premedical Sciences, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sanggon Park
- Department of Internal Medicine, Hemato-oncology, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Sung Il Cho
- Department of Otolaryngology-Head and Neck Surgery, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Cancer Mutation Research Center, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 375 Seosuk-dong, Gwangju 61452, Republic of Korea
| |
Collapse
|
163
|
Abstract
Loading of p53-binding protein 1 (53BP1) and receptor-associated protein 80 (RAP80) at DNA double-strand breaks (DSBs) drives cell cycle checkpoint activation but is counterproductive to high-fidelity DNA repair. ring finger protein 169 (RNF169) maintains the balance by limiting the deposition of DNA damage mediator proteins at the damaged chromatin. We report here that this attribute is accomplished, in part, by a predicted nuclear localization signal (NLS) that not only shuttles RNF169 into the nucleus but also promotes its stability by mediating a direct interaction with the ubiquitin-specific protease USP7. Guided by the crystal structure of USP7 in complex with the RNF169 NLS, we uncoupled USP7 binding from its nuclear import function and showed that perturbing the USP7-RNF169 complex destabilized RNF169, compromised high-fidelity DSB repair, and hypersensitized cells to poly (ADP-ribose) polymerase inhibition. Finally, expression of USP7 and RNF169 positively correlated in breast cancer specimens. Collectively, our findings uncover an NLS-mediated bipartite mechanism that supports the nuclear function of a DSB response protein.
Collapse
|
164
|
Drané P, Brault ME, Cui G, Meghani K, Chaubey S, Detappe A, Parnandi N, He Y, Zheng XF, Botuyan MV, Kalousi A, Yewdell WT, Münch C, Harper JW, Chaudhuri J, Soutoglou E, Mer G, Chowdhury D. TIRR regulates 53BP1 by masking its histone methyl-lysine binding function. Nature 2017; 543:211-216. [PMID: 28241136 PMCID: PMC5441565 DOI: 10.1038/nature21358] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023]
Abstract
P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.
Collapse
Affiliation(s)
- Pascal Drané
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Marie-Eve Brault
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Gaofeng Cui
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Khyati Meghani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Shweta Chaubey
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Alexandre Detappe
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Nishita Parnandi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Yizhou He
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | - Xiao-Feng Zheng
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
| | | | - Alkmini Kalousi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - William T Yewdell
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; and Immunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Christian Münch
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065; and Immunology and Microbial Pathogenesis Program, Weill-Cornell Medical School, New York, NY 10065
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Georges Mer
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
- Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
165
|
Yazinski SA, Comaills V, Buisson R, Genois MM, Nguyen HD, Ho CK, Todorova Kwan T, Morris R, Lauffer S, Nussenzweig A, Ramaswamy S, Benes CH, Haber DA, Maheswaran S, Birrer MJ, Zou L. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev 2017; 31:318-332. [PMID: 28242626 PMCID: PMC5358727 DOI: 10.1101/gad.290957.116] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Yazinski et al. show that the functions of BRCA1 in homologous recombination and replication fork protection are sequentially bypassed during the acquisition of PARP inhibitor (PARPi) resistance. Despite the lack of BRCA1, PARPi-resistant cells regain RAD51 loading to DNA double-stranded breaks and stalled forks, enabling two distinct mechanisms of PARPi resistance. Poly-(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cells, but their efficacy in BRCA-deficient patients is limited by drug resistance. Here, we used derived cell lines and cells from patients to investigate how to overcome PARPi resistance. We found that the functions of BRCA1 in homologous recombination (HR) and replication fork protection are sequentially bypassed during the acquisition of PARPi resistance. Despite the lack of BRCA1, PARPi-resistant cells regain RAD51 loading to DNA double-stranded breaks (DSBs) and stalled replication forks, enabling two distinct mechanisms of PARPi resistance. Compared with BRCA1-proficient cells, PARPi-resistant BRCA1-deficient cells are increasingly dependent on ATR for survival. ATR inhibitors (ATRis) disrupt BRCA1-independent RAD51 loading to DSBs and stalled forks in PARPi-resistant BRCA1-deficient cells, overcoming both resistance mechanisms. In tumor cells derived from patients, ATRis also overcome the bypass of BRCA1/2 in fork protection. Thus, ATR inhibition is a unique strategy to overcome the PARPi resistance of BRCA-deficient cancers.
Collapse
Affiliation(s)
- Stephanie A Yazinski
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Rémi Buisson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Marie-Michelle Genois
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Chu Kwen Ho
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Tanya Todorova Kwan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sam Lauffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Massachusetts General Hospital Gillette Center, Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Michael J Birrer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Massachusetts General Hospital Gillette Center, Massachusetts General Hospital, Boston, Massachusetts 02115, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
166
|
Liu Y, Cussiol JR, Dibitetto D, Sims JR, Twayana S, Weiss RS, Freire R, Marini F, Pellicioli A, Smolka MB. TOPBP1 Dpb11 plays a conserved role in homologous recombination DNA repair through the coordinated recruitment of 53BP1 Rad9. J Cell Biol 2017; 216:623-639. [PMID: 28228534 PMCID: PMC5350513 DOI: 10.1083/jcb.201607031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/30/2016] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
The scaffold protein TOPBP1Dpb11 has been implicated in homologous recombination DNA repair, but its function and mechanism of action remain unclear. Liu et al. define a conserved role for TOPBP1Dpb11 in recombination control through regulated, opposing interactions with pro- and anti-resection factors. Genome maintenance and cancer suppression require homologous recombination (HR) DNA repair. In yeast and mammals, the scaffold protein TOPBP1Dpb11 has been implicated in HR, although its precise function and mechanism of action remain elusive. In this study, we show that yeast Dpb11 plays an antagonistic role in recombination control through regulated protein interactions. Dpb11 mediates opposing roles in DNA end resection by coordinating both the stabilization and exclusion of Rad9 from DNA lesions. The Mec1 kinase promotes the pro-resection function of Dpb11 by mediating its interaction with the Slx4 scaffold. Human TOPBP1Dpb11 engages in interactions with the anti-resection factor 53BP1 and the pro-resection factor BRCA1, suggesting that TOPBP1 also mediates opposing functions in HR control. Hyperstabilization of the 53BP1–TOPBP1 interaction enhances the recruitment of 53BP1 to nuclear foci in the S phase, resulting in impaired HR and the accumulation of chromosomal aberrations. Our results support a model in which TOPBP1Dpb11 plays a conserved role in mediating a phosphoregulated circuitry for the control of recombinational DNA repair.
Collapse
Affiliation(s)
- Yi Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - José Renato Cussiol
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Diego Dibitetto
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jennie Rae Sims
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Shyam Twayana
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologias Biomedicas, 38320 Tenerife, Spain
| | - Federica Marini
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | | - Marcus Bustamante Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
167
|
Zhang A, Peng B, Huang P, Chen J, Gong Z. The p53-binding protein 1-Tudor-interacting repair regulator complex participates in the DNA damage response. J Biol Chem 2017; 292:6461-6467. [PMID: 28213517 DOI: 10.1074/jbc.m117.777474] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/14/2017] [Indexed: 11/06/2022] Open
Abstract
The 53BP1-dependent end-joining pathway plays a critical role in double strand break repair and is uniquely responsible for cellular sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi) in BRCA1-deficient cancers. We and others have investigated the downstream effectors of 53BP1, including replication timing regulatory factor 1 (RIF1) and Pax transactivation domain-interacting protein (PTIP), in the past few years to elucidate how loss of the 53BP1-dependent repair pathway results in PARPi resistance in BRCA1 patients. However, questions regarding the upstream regulation of the 53BP1 pathway remain unanswered. In this study, we identified the Tudor-interacting repair regulator (TIRR) that specifically associates with the ionizing radiation-induced foci formation region of 53BP1. 53BP1 and TIRR form a stable complex, which is required for their expression. Moreover, the 53BP1-TIRR complex dissociates after DNA damage, and this dissociation may be ataxia telangiectasia mutated-dependent. Similar to 53BP1, loss of TIRR restores PARPi resistance in BRCA1-deficient cells. Collectively, our data identified a novel 53BP1-TIRR complex in DNA damage response. TIRR may play both positive and negative roles in 53BP1 regulation. On the one hand, it stabilizes 53BP1 and thus positively regulates 53BP1. On the other hand, its association with 53BP1 prevents 53BP1 localization to sites of DNA damage, and thus TIRR is also an inhibitor of 53BP1.
Collapse
Affiliation(s)
- Aili Zhang
- From the Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | - Bo Peng
- From the Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | - Ping Huang
- From the Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | - Junjie Chen
- the Department of Experimental Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Zihua Gong
- From the Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| |
Collapse
|
168
|
Kim HS, Nickoloff JA, Wu Y, Williamson EA, Sidhu GS, Reinert BL, Jaiswal AS, Srinivasan G, Patel B, Kong K, Burma S, Lee SH, Hromas RA. Endonuclease EEPD1 Is a Gatekeeper for Repair of Stressed Replication Forks. J Biol Chem 2017; 292:2795-2804. [PMID: 28049724 PMCID: PMC5314175 DOI: 10.1074/jbc.m116.758235] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/29/2016] [Indexed: 01/21/2023] Open
Abstract
Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5′ end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5′-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5′ end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5′-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5′ end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Yuehan Wu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Elizabeth A Williamson
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gurjit Singh Sidhu
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Brian L Reinert
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Aruna S Jaiswal
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Gayathri Srinivasan
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Bhavita Patel
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Kimi Kong
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| | - Sandeep Burma
- the Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| | - Robert A Hromas
- the Department of Medicine and the Cancer Center, University of Florida Health, Gainesville, Florida 32610, and
| |
Collapse
|
169
|
Wang J, Ding Q, Fujimori H, Motegi A, Miki Y, Masutani M. Loss of CtIP disturbs homologous recombination repair and sensitizes breast cancer cells to PARP inhibitors. Oncotarget 2016; 7:7701-14. [PMID: 26713604 PMCID: PMC4884948 DOI: 10.18632/oncotarget.6715] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/27/2015] [Indexed: 01/12/2023] Open
Abstract
Breast cancer is one of the leading causes of death worldwide, and therefore, new and improved approaches for the treatment of breast cancer are desperately needed. CtIP (RBBP8) is a multifunctional protein that is involved in various cellular functions, including transcription, DNA replication, DNA repair and the G1 and G2 cell cycle checkpoints. CtIP plays an important role in homologous recombination repair by interacting with tumor suppressor protein BRCA1. Here, we analyzed the expression profile of CtIP by data mining using published microarray data sets. We found that CtIP expression is frequently decreased in breast cancer patients, and the patient group with low-expressing CtIP mRNA is associated with a significantly lower survival rate. The knockdown of CtIP in breast cancer MCF7 cells reduced Rad51 foci numbers and enhanced f H2AX foci formation after f-irradiation, suggesting that deficiency of CtIP decreases homologous recombination repair and delays DNA double strand break repair. To explore the effect of CtIP on PARP inhibitor therapy for breast cancer, CtIP-depleted MCF7 cells were treated with PARP inhibitor olaparib (AZD2281) or veliparib (ABT-888). As in BRCA mutated cells, PARP inhibitors showed cytotoxicity to CtIP-depleted cells by preventing cells from repairing DNA damage, leading to decreased cell viability. Further, a xenograft tumor model in mice with MCF7 cells demonstrated significantly increased sensitivity towards PARP inhibition under CtIP deficiency. In summary, this study shows that low level of CtIP expression is associated with poor prognosis in breast cancer, and provides a rationale for establishing CtIP expression as a biomarker of PARP inhibitor response, and consequently offers novel therapeutic options for a significant subset of patients.
Collapse
Affiliation(s)
- Junhui Wang
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Molecular Genetics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hiroaki Fujimori
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Akira Motegi
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Kyoto 606-8501 Japan
| | - Yoshio Miki
- Department of Molecular Genetics, Division of Medical Genomics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Mitsuko Masutani
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, Tokyo 104-0045, Japan.,Department of Frontier Life Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
170
|
Kim HS, Williamson EA, Nickoloff JA, Hromas RA, Lee SH. Metnase Mediates Loading of Exonuclease 1 onto Single Strand Overhang DNA for End Resection at Stalled Replication Forks. J Biol Chem 2016; 292:1414-1425. [PMID: 27974460 DOI: 10.1074/jbc.m116.745646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Stalling at DNA replication forks generates stretches of single-stranded (ss) DNA on both strands that are exposed to nucleolytic degradation, potentially compromising genome stability. One enzyme crucial for DNA replication fork repair and restart of stalled forks in human is Metnase (also known as SETMAR), a chimeric fusion protein consisting of a su(var)3-9, enhancer-of-zeste and trithorax (SET) histone methylase and transposase nuclease domain. We previously showed that Metnase possesses a unique fork cleavage activity necessary for its function in replication restart and that its SET domain is essential for recovery from hydroxyurea-induced DNA damage. However, its exact role in replication restart is unclear. In this study, we show that Metnase associates with exonuclease 1 (Exo1), a 5'-exonuclease crucial for 5'-end resection to mediate DNA processing at stalled forks. Metnase DNA cleavage activity was not required for Exo1 5'-exonuclease activity on the lagging strand daughter DNA, but its DNA binding activity mediated loading of Exo1 onto ssDNA overhangs. Metnase-induced enhancement of Exo1-mediated DNA strand resection required the presence of these overhangs but did not require Metnase's DNA cleavage activity. These results suggest that Metnase enhances Exo1-mediated exonuclease activity on the lagging strand DNA by facilitating Exo1 loading onto a single strand gap at the stalled replication fork.
Collapse
Affiliation(s)
- Hyun-Suk Kim
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Elizabeth A Williamson
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Jac A Nickoloff
- the Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Robert A Hromas
- the Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, and
| | - Suk-Hee Lee
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202,
| |
Collapse
|
171
|
Keller MP, Paul PK, Rabaglia ME, Stapleton DS, Schueler KL, Broman AT, Ye SI, Leng N, Brandon CJ, Neto EC, Plaisier CL, Simonett SP, Kebede MA, Sheynkman GM, Klein MA, Baliga NS, Smith LM, Broman KW, Yandell BS, Kendziorski C, Attie AD. The Transcription Factor Nfatc2 Regulates β-Cell Proliferation and Genes Associated with Type 2 Diabetes in Mouse and Human Islets. PLoS Genet 2016; 12:e1006466. [PMID: 27935966 PMCID: PMC5147809 DOI: 10.1371/journal.pgen.1006466] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Human genome-wide association studies (GWAS) have shown that genetic variation at >130 gene loci is associated with type 2 diabetes (T2D). We asked if the expression of the candidate T2D-associated genes within these loci is regulated by a common locus in pancreatic islets. Using an obese F2 mouse intercross segregating for T2D, we show that the expression of ~40% of the T2D-associated genes is linked to a broad region on mouse chromosome (Chr) 2. As all but 9 of these genes are not physically located on Chr 2, linkage to Chr 2 suggests a genomic factor(s) located on Chr 2 regulates their expression in trans. The transcription factor Nfatc2 is physically located on Chr 2 and its expression demonstrates cis linkage; i.e., its expression maps to itself. When conditioned on the expression of Nfatc2, linkage for the T2D-associated genes was greatly diminished, supporting Nfatc2 as a driver of their expression. Plasma insulin also showed linkage to the same broad region on Chr 2. Overexpression of a constitutively active (ca) form of Nfatc2 induced β-cell proliferation in mouse and human islets, and transcriptionally regulated more than half of the T2D-associated genes. Overexpression of either ca-Nfatc2 or ca-Nfatc1 in mouse islets enhanced insulin secretion, whereas only ca-Nfatc2 was able to promote β-cell proliferation, suggesting distinct molecular pathways mediating insulin secretion vs. β-cell proliferation are regulated by NFAT. Our results suggest that many of the T2D-associated genes are downstream transcriptional targets of NFAT, and may act coordinately in a pathway through which NFAT regulates β-cell proliferation in both mouse and human islets. Genome-wide association studies (GWAS) and linkage studies provide a powerful way to establish a causal connection between a gene locus and a physiological or pathophysiological phenotype. We wondered if candidate genes associated with type 2 diabetes in human populations, in addition to being causal for the disease, could also be intermediate traits in a pathway leading to disease. In addition, we wished to know if there were any regulatory loci that could coordinately drive the expression of these genes in pancreatic islets and thus complete a pathway; i.e. Driver → GWAS candidate expression → type 2 diabetes. Using data from a mouse intercross between a diabetes-susceptible and a diabetes-resistant mouse strain, we found that the expression of ~40% of >130 candidate GWAS genes genetically mapped to a hot spot on mouse chromosome 2. Using a variety of statistical methods, we identified the transcription factor Nfatc2 as the candidate driver. Follow-up experiments showed that overexpression of Nfatc2 does indeed affect the expression of the GWAS genes and regulates β-cell proliferation and insulin secretion. The work shows that in addition to being causal, GWAS candidate genes can be intermediate traits in a pathway leading to disease. Model organisms can be used to explore these novel causal pathways.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Pradyut K. Paul
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mary E. Rabaglia
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Donnie S. Stapleton
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kathryn L. Schueler
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aimee Teo Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Shuyun Isabella Ye
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ning Leng
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christopher J. Brandon
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | | | - Shane P. Simonett
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Melkam A. Kebede
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gloria M. Sheynkman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mark A. Klein
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Karl W. Broman
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brian S. Yandell
- Department of Statistics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Christina Kendziorski
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
172
|
Chroma K, Mistrik M, Moudry P, Gursky J, Liptay M, Strauss R, Skrott Z, Vrtel R, Bartkova J, Kramara J, Bartek J. Tumors overexpressing RNF168 show altered DNA repair and responses to genotoxic treatments, genomic instability and resistance to proteotoxic stress. Oncogene 2016; 36:2405-2422. [DOI: 10.1038/onc.2016.392] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/14/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
173
|
Liu X, Yang X, Li Y, Zhao S, Li C, Ma P, Mao B. Trip12 is an E3 ubiquitin ligase for USP7/HAUSP involved in the DNA damage response. FEBS Lett 2016; 590:4213-4222. [DOI: 10.1002/1873-3468.12471] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaoliang Liu
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Xiangcai Yang
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
- Kunming College of Life Science; University of Chinese Academy of Sciences; China
| | - Shuhua Zhao
- Yunnan Population and Family Planning Research Institute; Kunming China
| | - Chaocui Li
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution; Kunming Institute of Zoology; Chinese Academy of Sciences; China
| |
Collapse
|
174
|
Hansen RK, Mund A, Poulsen SL, Sandoval M, Klement K, Tsouroula K, Tollenaere MAX, Räschle M, Soria R, Offermanns S, Worzfeld T, Grosse R, Brandt DT, Rozell B, Mann M, Cole F, Soutoglou E, Goodarzi AA, Daniel JA, Mailand N, Bekker-Jensen S. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts. Nat Cell Biol 2016; 18:1357-1366. [PMID: 27820601 DOI: 10.1038/ncb3436] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/05/2016] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts.
Collapse
Affiliation(s)
- Rebecca Kring Hansen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Andreas Mund
- Chromatin Structure and Function Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Sara Lund Poulsen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Maria Sandoval
- Epigenetics and Molecular Carcinogenesis Department, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Karolin Klement
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry &Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Katerina Tsouroula
- Institut de Génétique et de Biologie Moléculaire et Celullaire (IGBMC), University of Strasbourg, 67404 Illkirch, France
| | - Maxim A X Tollenaere
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Markus Räschle
- Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Rebeca Soria
- Chromatin Structure and Function Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, 61231 Bad Nauheim, Germany
| | - Thomas Worzfeld
- Max-Planck-Institute for Heart and Lung Research, Department of Pharmacology, 61231 Bad Nauheim, Germany.,Institute of Pharmacology, University of Marburg, 35032 Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, University of Marburg, 35032 Marburg, Germany
| | - Dominique T Brandt
- Institute of Pharmacology, University of Marburg, 35032 Marburg, Germany
| | - Björn Rozell
- Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Francesca Cole
- Epigenetics and Molecular Carcinogenesis Department, The University of Texas MD Anderson Cancer Center, Smithville, Texas 78957, USA
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Celullaire (IGBMC), University of Strasbourg, 67404 Illkirch, France
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Departments of Biochemistry &Molecular Biology and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jeremy A Daniel
- Chromatin Structure and Function Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, Protein Signaling Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
175
|
Annunziato S, Barazas M, Rottenberg S, Jonkers J. Genetic Dissection of Cancer Development, Therapy Response, and Resistance in Mouse Models of Breast Cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 81:141-150. [PMID: 27815543 DOI: 10.1101/sqb.2016.81.030924] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cancer genomics revolution has rapidly expanded the inventory of somatic mutations characterizing human malignancies, highlighting a previously underappreciated extent of molecular variability between and within patients. Also in breast cancer, the most commonly diagnosed malignancy in women, this heterogeneity complicates the understanding of the stepwise sequence of pathogenic events and the design of effective and long-lasting target therapies. To disentangle this complexity and pinpoint which molecular perturbations are crucial to hijack the cellular machinery and lead to tumorigenesis and drug resistance, functional studies are needed in model systems that faithfully and comprehensively recapitulate all the salient aspects of their cognate human counterparts. Mouse models of breast cancer have been instrumental for the study of tumor initiation and drug response but also involve cost and time limitations that represent serious bottlenecks in translational research. To keep pace with the overwhelming amount of hypotheses that warrant in vivo testing, continuous refinement of current breast cancer models and implementation of new technologies is crucial. In this review, we summarize the current state of the art in modeling human breast cancer in mice, and we put forward our vision for future developments.
Collapse
Affiliation(s)
- Stefano Annunziato
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marco Barazas
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.,Cancer Genomics Netherlands, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
176
|
Paul PK, Rabaglia ME, Wang CY, Stapleton DS, Leng N, Kendziorski C, Lewis PW, Keller MP, Attie AD. Histone chaperone ASF1B promotes human β-cell proliferation via recruitment of histone H3.3. Cell Cycle 2016; 15:3191-3202. [PMID: 27753532 DOI: 10.1080/15384101.2016.1241914] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anti-silencing function 1 (ASF1) is a histone H3-H4 chaperone involved in DNA replication and repair, and transcriptional regulation. Here, we identify ASF1B, the mammalian paralog to ASF1, as a proliferation-inducing histone chaperone in human β-cells. Overexpression of ASF1B led to distinct transcriptional signatures consistent with increased cellular proliferation and reduced cellular death. Using multiple methods of monitoring proliferation and mitotic progression, we show that overexpression of ASF1B is sufficient to induce human β-cell proliferation. Co-expression of histone H3.3 further augmented β-cell proliferation, whereas suppression of endogenous H3.3 attenuated the stimulatory effect of ASF1B. Using the histone binding-deficient mutant of ASF1B (V94R), we show that histone binding to ASF1B is required for the induction of β-cell proliferation. In contrast to H3.3, overexpression of histone H3 variants H3.1 and H3.2 did not have an impact on ASF1B-mediated induction of proliferation. Our findings reveal a novel role of ASF1B in human β-cell replication and show that ASF1B and histone H3.3A synergistically stimulate human β-cell proliferation.
Collapse
Affiliation(s)
- Pradyut K Paul
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| | - Mary E Rabaglia
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| | - Chen-Yu Wang
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| | - Donald S Stapleton
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| | - Ning Leng
- b Department of Statistics , University of Wisconsin , Madison , WI , USA
| | - Christina Kendziorski
- c Department of Biostatistics and Medical Informatics , University of Wisconsin , Madison , WI , USA
| | - Peter W Lewis
- d Department of Biomolecular Chemistry , University of Wisconsin , Madison , WI , USA
| | - Mark P Keller
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| | - Alan D Attie
- a Department of Biochemistry , University of Wisconsin , Madison , WI , USA
| |
Collapse
|
177
|
Cuella-Martin R, Oliveira C, Lockstone HE, Snellenberg S, Grolmusova N, Chapman JR. 53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms. Mol Cell 2016; 64:51-64. [PMID: 27546791 PMCID: PMC5065530 DOI: 10.1016/j.molcel.2016.08.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/08/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The tumor suppressor protein 53BP1, a pivotal regulator of DNA double-strand break (DSB) repair, was first identified as a p53-interacting protein over two decades ago. However, its direct contributions to p53-dependent cellular activities remain undefined. Here, we reveal that 53BP1 stimulates genome-wide p53-dependent gene transactivation and repression events in response to ionizing radiation (IR) and synthetic p53 activation. 53BP1-dependent p53 modulation requires both auto-oligomerization and tandem-BRCT domain-mediated bivalent interactions with p53 and the ubiquitin-specific protease USP28. Loss of these activities results in inefficient p53-dependent cell-cycle checkpoint and exit responses. Furthermore, we demonstrate 53BP1-USP28 cooperation to be essential for normal p53-promoter element interactions and gene transactivation-associated events, yet dispensable for 53BP1-dependent DSB repair regulation. Collectively, our data provide a mechanistic explanation for 53BP1-p53 cooperation in controlling anti-tumorigenic cell-fate decisions and reveal these activities to be distinct and separable from 53BP1's regulation of DNA double-strand break repair pathway choice.
Collapse
Affiliation(s)
- Raquel Cuella-Martin
- Chromatin and Genome Integrity Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Catarina Oliveira
- Chromatin and Genome Integrity Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Helen E Lockstone
- Bioinformatics and Statistical Genetics Core, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Suzanne Snellenberg
- Chromatin and Genome Integrity Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Natalia Grolmusova
- Chromatin and Genome Integrity Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - J Ross Chapman
- Chromatin and Genome Integrity Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
178
|
Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer 2016; 23:T1-T17. [PMID: 27530658 DOI: 10.1530/erc-16-0297] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Justine Sitz
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Damien Grapton
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada Department of OncologyMcGill University, Montreal, Canada
| |
Collapse
|
179
|
Malewicz M. The role of 53BP1 protein in homology-directed DNA repair: things get a bit complicated. Cell Death Differ 2016; 23:1902-1903. [PMID: 27689875 PMCID: PMC5136494 DOI: 10.1038/cdd.2016.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
180
|
Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, John S, Day A, Crespo AV, Shen B, Starnes LM, de Ruiter JR, Daniel JA, Konstantinopoulos PA, Cortez D, Cantor SB, Fernandez-Capetillo O, Ge K, Jonkers J, Rottenberg S, Sharan SK, Nussenzweig A. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 2016; 535:382-7. [PMID: 27443740 PMCID: PMC4959813 DOI: 10.1038/nature18325] [Citation(s) in RCA: 704] [Impact Index Per Article: 78.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
Brca1- and Brca2-deficient cells have reduced capacity to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) and consequently are hypersensitive to DNA damaging agents, including cisplatin and poly(ADP-ribose) polymerase (PARP) inhibitors. Here we show that loss of the MLL3/4 complex protein, PTIP, protects Brca1/2-deficient cells from DNA damage and rescues the lethality of Brca2-deficient embryonic stem cells. However, PTIP deficiency does not restore HR activity at DSBs. Instead, its absence inhibits the recruitment of the MRE11 nuclease to stalled replication forks, which in turn protects nascent DNA strands from extensive degradation. More generally, acquisition of PARPi and cisplatin resistance is associated with replication fork (RF) protection in Brca2-deficient tumor cells that do not develop Brca2 reversion mutations. Disruption of multiple proteins, including PARP1 and CHD4, leads to the same end point of RF protection, highlighting the complexities by which tumor cells evade chemotherapeutic interventions and acquire drug resistance.
Collapse
Affiliation(s)
- Arnab Ray Chaudhuri
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xia Ding
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Ewa Gogola
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alexandra A Duarte
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ji-Eun Lee
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vanessa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Jennifer A Calvo
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | - Nicholas J Panzarino
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | - Sam John
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Anna Vidal Crespo
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Binghui Shen
- Department of Radiation Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA
| | - Linda M Starnes
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Julian R de Ruiter
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeremy A Daniel
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Panagiotis A Konstantinopoulos
- Departments of Gynecologic Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, Tennessee 37232, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| | | | - Kai Ge
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology and Cancer Genomics Centre, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.,Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
181
|
Impaired nuclear functions in micronuclei results in genome instability and chromothripsis. Arch Toxicol 2016; 90:2657-2667. [PMID: 27542123 DOI: 10.1007/s00204-016-1818-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/04/2016] [Indexed: 12/25/2022]
Abstract
Micronuclei (MN) have generally been considered a consequence of DNA damage and, as such, have been used as markers of exposure to genotoxic agents. However, advances in DNA sequencing methods and the development of high-resolution microscopy with which to analyse chromosome dynamics in live cells have been fundamental in building a more refined view of the existing links between DNA damage and micronuclei. Here, we review recent progress indicating that defects of micronuclei affect basic nuclear functions, such as DNA repair and replication, generating massive damage in the chromatin of the MN. In addition, the physical isolation of chromosomes within MN offers an attractive mechanistic explanation for chromothripsis, a massive local DNA fragmentation that produces complex rearrangements restricted to only one or a few chromosomes. When micronuclear chromatin is reincorporated in the daughter cell nuclei, the under-replicated, damaged or rearranged micronuclear chromatin might contribute to genome instability. The traditional conception of micronuclei has been overturned, as they have evolved from passive indicators of DNA damage to active players in the formation of DNA lesions, thus unravelling previously unforeseen roles of micronuclei in the origins of chromosome instability.
Collapse
|
182
|
Wan B, Hang LE, Zhao X. Multi-BRCT scaffolds use distinct strategies to support genome maintenance. Cell Cycle 2016; 15:2561-2570. [PMID: 27580271 DOI: 10.1080/15384101.2016.1218102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genome maintenance requires coordinated actions of diverse DNA metabolism processes. Scaffolding proteins, such as those containing multiple BRCT domains, can influence these processes by collaborating with numerous partners. The best-studied examples of multi-BRCT scaffolds are the budding yeast Dpb11 and its homologues in other organisms, which regulate DNA replication, repair, and damage checkpoints. Recent studies have shed light on another group of multi-BRCT scaffolds, including Rtt107 in budding yeast and related proteins in other organisms. These proteins also influence several DNA metabolism pathways, though they use strategies unlike those employed by the Dpb11 family of proteins. Yet, at the same time, these 2 classes of multi-BRCT proteins can collaborate under specific situations. This review summarizes recent advances in our understanding of how these multi-BRCT proteins function in distinct manners and how they collaborate, with a focus on Dpb11 and Rtt107.
Collapse
Affiliation(s)
- Bingbing Wan
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Lisa E Hang
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Xiaolan Zhao
- a Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
183
|
Nakada S. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i33-i40. [PMID: 26983989 PMCID: PMC4990112 DOI: 10.1093/jrr/rrw027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/31/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway.
Collapse
Affiliation(s)
- Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
184
|
Li J, Xu X. DNA double-strand break repair: a tale of pathway choices. Acta Biochim Biophys Sin (Shanghai) 2016; 48:641-6. [PMID: 27217474 DOI: 10.1093/abbs/gmw045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/15/2016] [Indexed: 11/15/2022] Open
Abstract
Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways. DSB repair is critical for genome integrity, cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy. The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts. Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages, downstream effects, and distinct chromosomal histone marks. These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
185
|
Paudyal SC, You Z. Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochim Biophys Sin (Shanghai) 2016; 48:647-57. [PMID: 27174871 DOI: 10.1093/abbs/gmw043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.
Collapse
Affiliation(s)
- Sharad C Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
186
|
Smeenk G, Mailand N. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair. Front Genet 2016; 7:122. [PMID: 27446204 PMCID: PMC4923129 DOI: 10.3389/fgene.2016.00122] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose faulty repair may alter the content and organization of cellular genomes. To counteract this threat, numerous signaling and repair proteins are recruited hierarchically to the chromatin areas surrounding DSBs to facilitate accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance. In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity, as well as cell and organismal fitness.
Collapse
Affiliation(s)
- Godelieve Smeenk
- Ubiquitin Signaling Group, Protein Signaling Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Copenhagen, Denmark
| | - Niels Mailand
- Ubiquitin Signaling Group, Protein Signaling Program, Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
187
|
Piunti A, Shilatifard A. Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 2016; 352:aad9780. [PMID: 27257261 DOI: 10.1126/science.aad9780] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic regulation of gene expression in metazoans is central for establishing cellular diversity, and its deregulation can result in pathological conditions. Although transcription factors are essential for implementing gene expression programs, they do not function in isolation and require the recruitment of various chromatin-modifying and -remodeling machineries. A classic example of developmental chromatin regulation is the balanced activities of the Polycomb group (PcG) proteins within the PRC1 and PRC2 complexes, and the Trithorax group (TrxG) proteins within the COMPASS family, which are highly mutated in a large number of human diseases. In this review, we will discuss the latest findings regarding the properties of the PcG and COMPASS families and the insight they provide into the epigenetic control of transcription under physiological and pathological settings.
Collapse
Affiliation(s)
- Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 East Superior Street, Chicago, IL 60611, USA.
| |
Collapse
|
188
|
Ochs F, Somyajit K, Altmeyer M, Rask MB, Lukas J, Lukas C. 53BP1 fosters fidelity of homology-directed DNA repair. Nat Struct Mol Biol 2016; 23:714-21. [PMID: 27348077 DOI: 10.1038/nsmb.3251] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) in mammals is coordinated by the ubiquitin-dependent accumulation of 53BP1 at DSB-flanking chromatin. Owing to its ability to limit DNA-end processing, 53BP1 is thought to promote nonhomologous end-joining (NHEJ) and to suppress homology-directed repair (HDR). Here, we show that silencing 53BP1 or exhausting its capacity to bind damaged chromatin changes limited DSB resection to hyper-resection and results in a switch from error-free gene conversion by RAD51 to mutagenic single-strand annealing by RAD52. Thus, rather than suppressing HDR, 53BP1 fosters its fidelity. These findings illuminate causes and consequences of synthetic viability acquired through 53BP1 silencing in cells lacking the BRCA1 tumor suppressor. We show that such cells survive DSB assaults at the cost of increasing reliance on RAD52-mediated HDR, which may fuel genome instability. However, our findings suggest that when challenged by DSBs, BRCA1- and 53BP1-deficient cells may become hypersensitive to, and be eliminated by, RAD52 inhibition.
Collapse
Affiliation(s)
- Fena Ochs
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kumar Somyajit
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Altmeyer
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maj-Britt Rask
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
189
|
Su CH, Cheng C, Tzeng TY, Lin IH, Hsu MT. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity. PLoS One 2016; 11:e0156378. [PMID: 27228173 PMCID: PMC4882029 DOI: 10.1371/journal.pone.0156378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/13/2016] [Indexed: 11/19/2022] Open
Abstract
Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity.
Collapse
Affiliation(s)
- Chia-Hsin Su
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Ching Cheng
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Tsai-Yu Tzeng
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei, 11221, Taiwan, Republic of China
| | - I-Hsuan Lin
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
| | - Ming-Ta Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Science, National Yang-Ming University, Taipei, 11221, Taiwan, Republic of China
- VYM Genome Research Center, National Yang-Ming University, University System of Taiwan, Taipei, 11221, Taiwan, Republic of China
- Chien-Tien Hsu Cancer Research Foundation, Taipei, 11221, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
190
|
Stop pulling my strings - what telomeres taught us about the DNA damage response. Nat Rev Mol Cell Biol 2016; 17:364-78. [PMID: 27165790 DOI: 10.1038/nrm.2016.43] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mammalian cells have evolved specialized mechanisms to sense and repair double-strand breaks (DSBs) to maintain genomic stability. However, in certain cases, the activity of these pathways can lead to aberrant DNA repair, genomic instability and tumorigenesis. One such case is DNA repair at the natural ends of linear chromosomes, known as telomeres, which can lead to chromosome-end fusions. Here, we review data obtained over the past decade and discuss the mechanisms that protect mammalian chromosome ends from the DNA damage response. We also discuss how telomere research has helped to uncover key steps in DSB repair. Last, we summarize how dysfunctional telomeres and the ensuing genomic instability drive the progression of cancer.
Collapse
|
191
|
Abstract
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.
Collapse
Affiliation(s)
- Lorraine S Symington
- a Department of Microbiology & Immunology , Columbia University Medical Center , New York , USA
| |
Collapse
|
192
|
Pellegrino S, Altmeyer M. Interplay between Ubiquitin, SUMO, and Poly(ADP-Ribose) in the Cellular Response to Genotoxic Stress. Front Genet 2016; 7:63. [PMID: 27148359 PMCID: PMC4835507 DOI: 10.3389/fgene.2016.00063] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/04/2016] [Indexed: 01/13/2023] Open
Abstract
Cells employ a complex network of molecular pathways to cope with endogenous and exogenous genotoxic stress. This multilayered response ensures that genomic lesions are efficiently detected and faithfully repaired in order to safeguard genome integrity. The molecular choreography at sites of DNA damage relies heavily on post-translational modifications (PTMs). Protein modifications with ubiquitin and the small ubiquitin-like modifier SUMO have recently emerged as important regulatory means to coordinate DNA damage signaling and repair. Both ubiquitylation and SUMOylation can lead to extensive chain-like protein modifications, a feature that is shared with yet another DNA damage-induced PTM, the modification of proteins with poly(ADP-ribose) (PAR). Chains of ubiquitin, SUMO, and PAR all contribute to the multi-protein assemblies found at sites of DNA damage and regulate their spatio-temporal dynamics. Here, we review recent advancements in our understanding of how ubiquitin, SUMO, and PAR coordinate the DNA damage response and highlight emerging examples of an intricate interplay between these chain-like modifications during the cellular response to genotoxic stress.
Collapse
Affiliation(s)
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of ZurichZürich, Switzerland
| |
Collapse
|
193
|
Cekan P, Hasegawa K, Pan Y, Tubman E, Odde D, Chen JQ, Herrmann MA, Kumar S, Kalab P. RCC1-dependent activation of Ran accelerates cell cycle and DNA repair, inhibiting DNA damage-induced cell senescence. Mol Biol Cell 2016; 27:1346-57. [PMID: 26864624 PMCID: PMC4831887 DOI: 10.1091/mbc.e16-01-0025] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/05/2016] [Indexed: 11/11/2022] Open
Abstract
The coordination of cell cycle progression with the repair of DNA damage supports the genomic integrity of dividing cells. The function of many factors involved in DNA damage response (DDR) and the cell cycle depends on their Ran GTPase-regulated nuclear-cytoplasmic transport (NCT). The loading of Ran with GTP, which is mediated by RCC1, the guanine nucleotide exchange factor for Ran, is critical for NCT activity. However, the role of RCC1 or Ran⋅GTP in promoting cell proliferation or DDR is not clear. We show that RCC1 overexpression in normal cells increased cellular Ran⋅GTP levels and accelerated the cell cycle and DNA damage repair. As a result, normal cells overexpressing RCC1 evaded DNA damage-induced cell cycle arrest and senescence, mimicking colorectal carcinoma cells with high endogenous RCC1 levels. The RCC1-induced inhibition of senescence required Ran and exportin 1 and involved the activation of importin β-dependent nuclear import of 53BP1, a large NCT cargo. Our results indicate that changes in the activity of the Ran⋅GTP-regulated NCT modulate the rate of the cell cycle and the efficiency of DNA repair. Through the essential role of RCC1 in regulation of cellular Ran⋅GTP levels and NCT, RCC1 expression enables the proliferation of cells that sustain DNA damage.
Collapse
Affiliation(s)
- Pavol Cekan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Keisuke Hasegawa
- Department of Physics, Grinnell College, Grinnell, IA 50112 Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Yu Pan
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Emily Tubman
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - David Odde
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Michelle A Herrmann
- Collaborative Protein Technology Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Sheetal Kumar
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Petr Kalab
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
194
|
Kalousi A, Soutoglou E. Nuclear compartmentalization of DNA repair. Curr Opin Genet Dev 2016; 37:148-157. [DOI: 10.1016/j.gde.2016.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
|
195
|
Kocyłowski MK, Rey AJ, Stewart GS, Halazonetis TD. Ubiquitin-H2AX fusions render 53BP1 recruitment to DNA damage sites independent of RNF8 or RNF168. Cell Cycle 2016; 14:1748-58. [PMID: 25695757 PMCID: PMC4615105 DOI: 10.1080/15384101.2015.1010918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mammalian E3 ubiquitin ligases RNF8 and RNF168 facilitate recruitment of the DNA damage response protein 53BP1 to sites of DNA double-strand breaks (DSBs). The mechanism involves recruitment of RNF8, followed by recruitment of RNF168, which ubiquitinates histones H2A/H2AX on K15. 53BP1 then binds to nucleosomes at sites of DNA DSBs by recognizing, in addition to methyl marks, histone H2A/H2AX ubiquitinated on K15. We report here that expressing H2AX fusion proteins with N-terminal bulky moieties can rescue 53BP1 recruitment to sites of DNA DSBs in cells lacking RNF8 or RNF168 or in cells treated with proteasome inhibitors, in which histone ubiquitination at sites of DNA DSBs is compromised. The rescue required S139 at the C-terminus of the H2AX fusion protein and was occasionally accompanied by partial rescue of ubiquitination at sites of DNA DSBs. We conclude that recruitment of 53BP1 to sites of DNA DSBs is possible in the absence of RNF8 or RNF168, but still dependent on chromatin ubiquitination.
Collapse
Affiliation(s)
- Maciej K Kocyłowski
- a Department of Molecular Biology; University of Geneva ; Geneva , Switzerland
| | | | | | | |
Collapse
|
196
|
El-Shenawy NS, Loutfy N, Soliman MFM, Tadros MM, Abd El-Azeez AA. Metals bioaccumulation in two edible bivalves and health risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:139. [PMID: 26846289 DOI: 10.1007/s10661-016-5145-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Our aim was to quantify the bioaccumulation of 13 metals in two edible bivalves (Ruditapes decussatus and Paphia undulata) in Lake Timsah, Egypt. A potential human health risk assessment was conducted to evaluate the hazards from bivalve consumption. Fe, Al, Zn, and Sr had the highest concentrations in the bivalve samples. The levels of Cd were much lower than the maximum permissible level, while Pb concentrations in the two bivalves were nearly two times the permissible level. The extent of bioaccumulation factor was site- and species-specific. For low and high bivalve-consuming groups, the estimated daily intake of Pb and Cd ranged from 0.01 to 0.76 μg/kg/day. For low and high bivalve-consuming groups, hazard quotients (HQs) for metals were found to be less than 1 for both bivalve species, except for Co in the high-consuming group. In conclusion, even though there was no apparent risk to bivalve consumers from being exposed to single metals, there is a risk from being exposed to the 13 studied metals together, especially for high bivalve-consuming groups such as fishermen.
Collapse
Affiliation(s)
- Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Naglaa Loutfy
- Plant Protection Department, Faculty of Agriculture, Suez Canal University, Ismailia, 41522, Egypt
| | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Menerva M Tadros
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
197
|
Lottersberger F, Karssemeijer RA, Dimitrova N, de Lange T. 53BP1 and the LINC Complex Promote Microtubule-Dependent DSB Mobility and DNA Repair. Cell 2016; 163:880-93. [PMID: 26544937 DOI: 10.1016/j.cell.2015.09.057] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/14/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023]
Abstract
Increased mobility of chromatin surrounding double-strand breaks (DSBs) has been noted in yeast and mammalian cells but the underlying mechanism and its contribution to DSB repair remain unclear. Here, we use a telomere-based system to track DNA damage foci with high resolution in living cells. We find that the greater mobility of damaged chromatin requires 53BP1, SUN1/2 in the linker of the nucleoskeleton, and cytoskeleton (LINC) complex and dynamic microtubules. The data further demonstrate that the excursions promote non-homologous end joining of dysfunctional telomeres and implicated Nesprin-4 and kinesins in telomere fusion. 53BP1/LINC/microtubule-dependent mobility is also evident at irradiation-induced DSBs and contributes to the mis-rejoining of drug-induced DSBs in BRCA1-deficient cells showing that DSB mobility can be detrimental in cells with numerous DSBs. In contrast, under physiological conditions where cells have only one or a few lesions, DSB mobility is proposed to prevent errors in DNA repair.
Collapse
Affiliation(s)
- Francisca Lottersberger
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Roos Anna Karssemeijer
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nadya Dimitrova
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
198
|
Zhu Q, Sharma N, He J, Wani G, Wani AA. USP7 deubiquitinase promotes ubiquitin-dependent DNA damage signaling by stabilizing RNF168. Cell Cycle 2016; 14:1413-25. [PMID: 25894431 DOI: 10.1080/15384101.2015.1007785] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
During DNA damage response (DDR), histone ubiquitination by RNF168 is a critical event, which orchestrates the recruitment of downstream DDR factors, e.g. BRCA1 and 53BP1. Here, we report USP7 deubiquitinase regulates the stability of RNF168. We showed that USP7 disruption impairs H2A and ultraviolet radiation (UVR)-induced γH2AX monoubiquitination, and decreases the levels of pBmi1, Bmi1, RNF168 and BRCA1. The effect of USP7 disruption was recapitulated by siRNA-mediated USP7 depletion. The USP7 disruption also compromises the formation of UVR-induced foci (UVRIF) and ionizing radiation-induced foci (IRIF) of monoubiquitinated H2A (uH2A) and polyubiquitinated H2AX/A, and subsequently affects UVRIF and IRIF of BRCA1 as well as the IRIF of 53BP1. USP7 was shown to physically bind RNF168 in vitro and in vivo. Overexpression of wild-type USP7, but not its interaction-defective mutant, prevents UVR-induced RNF168 degradation. The USP7 mutant is unable to cleave Ub-conjugates of RNF168 in vivo. Importantly, ectopic expression of RNF168, or both RNF8 and RNF168 together in USP7-disrupted cells, significantly rescue the formation of UVRIF and IRIF of polyubiquitinated H2A and BRCA1. Taken together, these findings reveal an important role of USP7 in regulating ubiquitin-dependent signaling via stabilization of RNF168.
Collapse
Affiliation(s)
- Qianzheng Zhu
- a Department of Radiology ; The Ohio State University ; Columbus , OH USA
| | | | | | | | | |
Collapse
|
199
|
Le W, Qi L, Li J, Wu D, Xu J, Zhang J. Low-dose ionizing irradiation triggers a 53BP1 response to DNA double strand breaks in mouse spermatogonial stem cells. Syst Biol Reprod Med 2016; 62:106-13. [PMID: 26857623 DOI: 10.3109/19396368.2015.1125561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.
Collapse
Affiliation(s)
- Wei Le
- a Department of Urology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China.,b Department of Reproduction , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Lixin Qi
- a Department of Urology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Jiaxuan Li
- a Department of Urology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - DengIong Wu
- a Department of Urology , Tongji Hospital, Tongji University School of Medicine , Shanghai , China
| | - Jun Xu
- c Department of Stem Cells Center , Tongji University School of Medicine , Shanghai , China
| | - Jinfu Zhang
- d Department of Urology , Tongren Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
200
|
Hofstetter C, Kampka JM, Huppertz S, Weber H, Schlosser A, Müller AM, Becker M. Inhibition of KDM6 activity during murine ESC differentiation induces DNA damage. J Cell Sci 2016; 129:788-803. [PMID: 26759175 DOI: 10.1242/jcs.175174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/05/2016] [Indexed: 12/30/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are characterised by their capacity to self-renew indefinitely while maintaining the potential to differentiate into all cell types of an adult organism. Both the undifferentiated and differentiated states are defined by specific gene expression programs that are regulated at the chromatin level. Here, we have analysed the contribution of the H3K27me2- and H3K27me23-specific demethylases KDM6A and KDM6B to murine ESC differentiation by employing the GSK-J4 inhibitor, which is specific for KDM6 proteins, and by targeted gene knockout (KO) and knockdown. We observe that inhibition of the H3K27 demethylase activity induces DNA damage along with activation of the DNA damage response (DDR) and cell death in differentiating but not in undifferentiated ESCs. Laser microirradiation experiments revealed that the H3K27me3 mark, but not the KDM6B protein, colocalise with γH2AX-positive sites of DNA damage in differentiating ESCs. Lack of H3K27me3 attenuates the GSK-J4-induced DDR in differentiating Eed-KO ESCs. Collectively, our findings indicate that differentiating ESCs depend on KDM6 and that the H3K27me3 demethylase activity is crucially involved in DDR and survival of differentiating ESCs.
Collapse
Affiliation(s)
- Christine Hofstetter
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Justyna M Kampka
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Sascha Huppertz
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Heike Weber
- Microarray Core Unit, Interdisciplinary Center for Clinical Science, University of Würzburg, Würzburg 97078, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97078, Germany
| | - Albrecht M Müller
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| | - Matthias Becker
- Institute for Medical Radiation and Cell Research (MSZ) in the Center of Experimental Molecular Medicine (ZEMM), University of Würzburg, Würzburg 97078, Germany
| |
Collapse
|