151
|
Bahmanyar S, Schlieker C. Lipid and protein dynamics that shape nuclear envelope identity. Mol Biol Cell 2020; 31:1315-1323. [PMID: 32530796 PMCID: PMC7353140 DOI: 10.1091/mbc.e18-10-0636] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
The nuclear envelope (NE) is continuous with the endoplasmic reticulum (ER), yet the NE carries out many functions distinct from those of bulk ER. This functional specialization depends on a unique protein composition that defines NE identity and must be both established and actively maintained. The NE undergoes extensive remodeling in interphase and mitosis, so mechanisms that seal NE holes and protect its unique composition are critical for maintaining its functions. New evidence shows that closure of NE holes relies on regulated de novo lipid synthesis, providing a link between lipid metabolism and generating and maintaining NE identity. Here, we review regulation of the lipid bilayers of the NE and suggest ways to generate lipid asymmetry across the NE despite its direct continuity with the ER. We also discuss the elusive mechanism of membrane fusion during nuclear pore complex (NPC) biogenesis. We propose a model in which NPC biogenesis is carefully controlled to ensure that a permeability barrier has been established before membrane fusion, thereby avoiding a major threat to compartmentalization.
Collapse
Affiliation(s)
- Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
152
|
Moriel-Carretero M. The hypothetical role of phosphatidic acid in subverting ER membranes during SARS-CoV infection. Traffic 2020; 21:545-551. [PMID: 32424954 PMCID: PMC7276787 DOI: 10.1111/tra.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Positive sense (+) RNA viruses exploit membranes from a variety of cellular organelles to support the amplification of their genomes. This association concurs with the formation of vesicles whose main morphological feature is that of being wrapped by a double membrane. In the case of the SARS‐CoV virus, the outer membrane is not discrete for each vesicle, but seems to be continuous and shared between many individual vesicles, a difference with other +RNA viruses whose nature has remained elusive. I present morphological, biochemical and pharmacological arguments defending the striking analogy of this arrangement and that of entangled, nascent Lipid Droplets whose birth has been aborted by an excess of Phosphatidic Acid. Since Phosphatidic Acid can be targeted with therapeutical purposes, considering this working hypothesis may prove important in tackling SARS‐CoV infection.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), University of Montpellier - CNRS, Montpellier, France
| |
Collapse
|
153
|
Lusk CP, Ader NR. CHMPions of repair: Emerging perspectives on sensing and repairing the nuclear envelope barrier. Curr Opin Cell Biol 2020; 64:25-33. [PMID: 32105978 PMCID: PMC7371540 DOI: 10.1016/j.ceb.2020.01.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022]
Abstract
Understanding how the integrity of the nuclear membranes is protected against internal and external stresses is an emergent challenge. Work reviewed here investigated the mechanisms by which losses of nuclear-cytoplasmic compartmentalization are sensed and ameliorated. Fundamental to these is spatial control over interactions between the endosomal sorting complexes required for transport machinery and LAP2-emerin-MAN1 family inner nuclear membrane proteins, which together promote nuclear envelope sealing in interphase and at the end of mitosis. We suggest that the size of the nuclear envelope hole dictates the mechanism of its repair, with larger holes requiring barrier-to-autointegration factor and the potential triggering of a postmitotic nuclear envelope reassembly pathway in interphase. We also consider why these mechanisms fail at ruptured micronuclei. Together, this work re-emphasizes the need to understand how membrane flow and local lipid metabolism help ensure that the nuclear envelope is refractory to mechanical rupture yet fluid enough to allow its essential dynamics.
Collapse
Affiliation(s)
- C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA.
| | - Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06520, USA
| |
Collapse
|
154
|
King GA, Ünal E. The dynamic nuclear periphery as a facilitator of gamete health and rejuvenation. Curr Genet 2020; 66:487-493. [PMID: 31915924 PMCID: PMC7202962 DOI: 10.1007/s00294-019-01050-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/26/2022]
Abstract
The nuclear periphery is a hotspot for the accumulation of age-induced damage in eukaryotic cells. The types of damage that occur at the periphery and their phenotypic consequences have begun to be characterized; however, the mechanisms by which cells repair or eliminate nuclear damage remain poorly understood. Using budding yeast meiosis as a natural system to study cellular rejuvenation, we recently discovered a novel nuclear quality control event, in which age-induced damage is sequestered away from dividing chromosomes to a discarded nuclear compartment that we term the GUNC (for "Gametogenesis Uninherited Nuclear Compartment"). Interestingly, extensive nuclear remodeling occurs even in young cells, including a surprising modularity of the nuclear pore complex, suggesting a general contribution to gamete fitness. In this review, we discuss these findings in the context of recent evidence that the nuclear periphery is a highly dynamic region critical for cellular health.
Collapse
Affiliation(s)
- Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
155
|
Lee J, Salsman J, Foster J, Dellaire G, Ridgway ND. Lipid-associated PML structures assemble nuclear lipid droplets containing CCTα and Lipin1. Life Sci Alliance 2020; 3:3/8/e202000751. [PMID: 32461215 PMCID: PMC7266991 DOI: 10.26508/lsa.202000751] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022] Open
Abstract
PML proteins assemble into noncanonical lipid-associated PML structures (LAPS) on nuclear lipid droplets, which recruit CCTα and Lipin1 for the synthesis of phosphatidylcholine and triacylglycerol. Nuclear lipid droplets (nLDs) form on the inner nuclear membrane by a mechanism involving promyelocytic leukemia (PML), the protein scaffold of PML nuclear bodies. We report that PML structures on nLDs in oleate-treated U2OS cells, referred to as lipid-associated PML structures (LAPS), differ from canonical PML nuclear bodies by the relative absence of SUMO1, SP100, and DAXX. These nLDs were also enriched in CTP:phosphocholine cytidylyltransferase α (CCTα), the phosphatidic acid phosphatase Lipin1, and DAG. Translocation of CCTα onto nLDs was mediated by its α-helical M-domain but was not correlated with its activator DAG. High-resolution imaging revealed that CCTα and LAPS occupied distinct polarized regions on nLDs. PML knockout U2OS (PML KO) cells lacking LAPS had a 40–50% reduction in nLDs with associated CCTα, and residual nLDs were almost devoid of Lipin1 and DAG. As a result, phosphatidylcholine and triacylglycerol synthesis was inhibited in PML KO cells. We conclude that in response to excess exogenous fatty acids, LAPS are required to assemble nLDs that are competent to recruit CCTα and Lipin1.
Collapse
Affiliation(s)
- Jonghwa Lee
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Jason Foster
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Graham Dellaire
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pathology, Dalhousie University, Halifax, Canada
| | - Neale D Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada .,Department of Pediatrics, Dalhousie University, Halifax, Canada
| |
Collapse
|
156
|
Abstract
The nucleus is enclosed by a double-membrane structure, the nuclear envelope, which separates the nucleoplasm from the cytoplasm. The outer nuclear membrane is continuous with the endoplasmic reticulum (ER), whereas the inner nuclear membrane (INM) is a specialized compartment with a unique proteome. In order to ensure compartmental homeostasis, INM-associated degradation (INMAD) is required for both protein quality control and regulated proteolysis of INM proteins. INMAD shares similarities with ER-associated degradation (ERAD). The mechanism of ERAD is well characterized, whereas the INMAD pathway requires further definition. Here we review the three different branches of INMAD, mediated by their respective E3 ubiquitin ligases: Doa10, Asi1-3, and APC/C. We clarify the distinction between ERAD and INMAD, their substrate recognition signals, and the subsequent processing by their respective degradation machineries. We also discuss the significance of cell-cycle and developmental regulation of protein clearance at the INM, and its relationship to human disease.
Collapse
Affiliation(s)
- Bailey Koch
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| | - Hong-Guo Yu
- a Department of Biological Science, The Florida State University , Tallahassee , FL , USA
| |
Collapse
|
157
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
158
|
Spastin mutations impair coordination between lipid droplet dispersion and reticulum. PLoS Genet 2020; 16:e1008665. [PMID: 32315314 PMCID: PMC7173978 DOI: 10.1371/journal.pgen.1008665] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid droplets (LD) are affected in multiple human disorders. These highly dynamic organelles are involved in many cellular roles. While their intracellular dispersion is crucial to ensure their function and other organelles-contact, underlying mechanisms are still unclear. Here we show that Spastin, one of the major proteins involved in Hereditary Spastic Paraplegia (HSP), controls LD dispersion. Spastin depletion in zebrafish affects metabolic properties and organelle dynamics. These functions are ensured by a conserved complex set of splice variants. M1 isoforms determine LD dispersion in the cell by orchestrating endoplasmic reticulum (ER) shape along microtubules (MTs). To further impact LD fate, Spastin modulates transcripts levels and subcellular location of other HSP key players, notably Seipin and REEP1. In pathological conditions, mutations in human Spastin M1 disrupt this mechanism and impacts LD network. Spastin depletion influences not only other key proteins but also modulates specific neutral lipids and phospholipids, revealing an impact on membrane and organelle components. Altogether our results show that Spastin and its partners converge in a common machinery that coordinates LD dispersion and ER shape along MTs. Any alteration of this system results in HSP clinical features and impacts lipids profile, thus opening new avenues for novel biomarkers of HSP.
Collapse
|
159
|
The Vitamin D Receptor Regulates Glycerolipid and Phospholipid Metabolism in Human Hepatocytes. Biomolecules 2020; 10:biom10030493. [PMID: 32213983 PMCID: PMC7175212 DOI: 10.3390/biom10030493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
The vitamin D receptor (VDR) must be relevant to liver lipid metabolism because VDR deficient mice are protected from hepatosteatosis. Therefore, our objective was to define the role of VDR on the overall lipid metabolism in human hepatocytes. We developed an adenoviral vector for human VDR and performed transcriptomic and metabolomic analyses of cultured human hepatocytes upon VDR activation by vitamin D (VitD). Twenty percent of the VDR responsive genes were related to lipid metabolism, including MOGAT1, LPGAT1, AGPAT2, and DGAT1 (glycerolipid metabolism); CDS1, PCTP, and MAT1A (phospholipid metabolism); and FATP2, SLC6A12, and AQP3 (uptake of fatty acids, betaine, and glycerol, respectively). They were rapidly induced (4–6 h) upon VDR activation by 10 nM VitD or 100 µM lithocholic acid (LCA). Most of these genes were also upregulated by VDR/VitD in mouse livers in vivo. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) metabolomics demonstrated intracellular accumulation of triglycerides, with concomitant decreases in diglycerides and phosphatidates, at 8 and 24 h upon VDR activation. Significant alterations in phosphatidylcholines, increases in lyso-phosphatidylcholines and decreases in phosphatidylethanolamines and phosphatidylethanolamine plasmalogens were also observed. In conclusion, active VitD/VDR signaling in hepatocytes triggers an unanticipated coordinated gene response leading to triglyceride synthesis and to important perturbations in glycerolipids and phospholipids.
Collapse
|
160
|
Sosa Ponce ML, Moradi-Fard S, Zaremberg V, Cobb JA. SUNny Ways: The Role of the SUN-Domain Protein Mps3 Bridging Yeast Nuclear Organization and Lipid Homeostasis. Front Genet 2020; 11:136. [PMID: 32184804 PMCID: PMC7058695 DOI: 10.3389/fgene.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.
Collapse
Affiliation(s)
- Maria Laura Sosa Ponce
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
161
|
Mejhert N, Kuruvilla L, Gabriel KR, Elliott SD, Guie MA, Wang H, Lai ZW, Lane EA, Christiano R, Danial NN, Farese RV, Walther TC. Partitioning of MLX-Family Transcription Factors to Lipid Droplets Regulates Metabolic Gene Expression. Mol Cell 2020; 77:1251-1264.e9. [PMID: 32023484 PMCID: PMC7397554 DOI: 10.1016/j.molcel.2020.01.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/05/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022]
Abstract
Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.
Collapse
Affiliation(s)
- Niklas Mejhert
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Leena Kuruvilla
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Katlyn R Gabriel
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Shane D Elliott
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Marie-Aude Guie
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Huajin Wang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zon Weng Lai
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth A Lane
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Romain Christiano
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nika N Danial
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Robert V Farese
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Tobias C Walther
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
162
|
Zhou H, Xu C, Lee H, Yoon Y, Chen W. Berardinelli-Seip congenital lipodystrophy 2/SEIPIN determines brown adipose tissue maintenance and thermogenic programing. Mol Metab 2020; 36:100971. [PMID: 32246911 PMCID: PMC7136632 DOI: 10.1016/j.molmet.2020.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Objective Understanding the mechanisms that control brown adipose tissue (BAT) mass and functionality is crucial for our understanding of how the disruption of energy homeostasis leads to obesity. Bernerdinali Seip Congenital Lipodystrophy (BSCL) type 2 (BSCL2, a.k.a. SEIPIN), a lipodystrophy-associated protein, has been shown to not be required for brown adipogenesis, but it has been shown to be essential for perinatal BAT development. However, its role in mature BAT maintenance and thermogenic programing remains poorly understood. Methods We subjected Bscl2f/f and Bscl2UCP1-BKO (BKO) mice with a brown adipose-specific loss of BSCL2 through UCP1 promoter-driven Cre to environmental, pharmacological and diet interventions to challenge BAT functionality and reprogramming. We carried out physiological, molecular and transcriptomic analyses of BAT. Results The deletion of BSCL2 in mature brown adipocytes increased sympathetic nervous system-independent cAMP/protein kinase A (PKA) signaling in BAT. Such activation reduced BAT triglyceride content and mass and was sufficient to reduce plasma triglyceride, but not enough to combat thermoneutral and high fat diet-induced obesity. Surprisingly, BKO mice displayed an impaired response to acute and chronic cold challenges despite cAMP/PKA activation. When subjected to chronic cold exposure or the administration of a β3-adrenergic agonist, CL 316,243, BKO mice failed to induce BAT recruitment and underwent dramatic brown adipocyte loss. Transcriptomic analysis revealed pathological BAT remodeling with inflammation and fibrosis, which was further exacerbated by a chronic thermogenic challenge in BKO mice. Mechanistically, we found abnormal mitochondrial shapes and function in BAT of BKO mice housed at 21 °C; as well as mitochondrial DNA depletion and necroptotic-mediated brown adipocyte death after chronic thermogenic insult. Conclusion BSCL2-mediated lipid catabolism within BAT is crucial for mature brown adipocyte function and survival both during times of activation and quiescence. BSCL2 is an important regulator of mature brown adipocyte mitochondrial metabolism, necroptosis and thus adaptive thermogenesis. Mature BAT-specific loss of BSCL2 (Bscl2UCP1-BKO) activates SNS-independent cAMP/PKA signaling. Bscl2UCP1-BKO increases BAT mitochondrial fission and uncoupling. Bscl2UCP1-BKO reduces plasma triglyceride but not adiposity under thermoneutrality or high fat diet. Bscl2UCP1-BKO blunts BAT reprograming and causes cold intolerance. BSCL2 deletion exposes brown adipocyte to necroptosis under chronic thermogenic stress.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Cheng Xu
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Hakjoo Lee
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
163
|
Blunsom NJ, Cockcroft S. CDP-Diacylglycerol Synthases (CDS): Gateway to Phosphatidylinositol and Cardiolipin Synthesis. Front Cell Dev Biol 2020; 8:63. [PMID: 32117988 PMCID: PMC7018664 DOI: 10.3389/fcell.2020.00063] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG) is a key intermediate in the synthesis of phosphatidylinositol (PI) and cardiolipin (CL). Both PI and CL have highly specialized roles in cells. PI can be phosphorylated and these phosphorylated derivatives play major roles in signal transduction, membrane traffic, and maintenance of the actin cytoskeletal network. CL is the signature lipid of mitochondria and has a plethora of functions including maintenance of cristae morphology, mitochondrial fission, and fusion and for electron transport chain super complex formation. Both lipids are synthesized in different organelles although they share the common intermediate, CDP-DAG. CDP-DAG is synthesized from phosphatidic acid (PA) and CTP by enzymes that display CDP-DAG synthase activities. Two families of enzymes, CDS and TAMM41, which bear no sequence or structural relationship, have now been identified. TAMM41 is a peripheral membrane protein localized in the inner mitochondrial membrane required for CL synthesis. CDS enzymes are ancient integral membrane proteins found in all three domains of life. In mammals, they provide CDP-DAG for PI synthesis and for phosphatidylglycerol (PG) and CL synthesis in prokaryotes. CDS enzymes are critical for maintaining phosphoinositide levels during phospholipase C (PLC) signaling. Hydrolysis of PI (4,5) bisphosphate by PLC requires the resynthesis of PI and CDS enzymes catalyze the rate-limiting step in the process. In mammals, the protein products of two CDS genes (CDS1 and CDS2) localize to the ER and it is suggested that CDS2 is the major CDS for this process. Expression of CDS enzymes are regulated by transcription factors and CDS enzymes may also contribute to CL synthesis in mitochondria. Studies of CDS enzymes in protozoa reveal spatial segregation of CDS enzymes from the rest of the machinery required for both PI and CL synthesis identifying a key gap in our understanding of how CDP-DAG can cross the different membrane compartments in protozoa and in mammals.
Collapse
Affiliation(s)
| | - Shamshad Cockcroft
- Division of Biosciences, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
164
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
165
|
Jarc E, Petan T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020; 169:69-87. [DOI: 10.1016/j.biochi.2019.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
|
166
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
167
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
168
|
Henne M, Goodman JM, Hariri H. Spatial compartmentalization of lipid droplet biogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158499. [PMID: 31352131 PMCID: PMC7050823 DOI: 10.1016/j.bbalip.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/18/2022]
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store metabolic energy in the form of neutral lipids (typically triacylglycerols and steryl esters). Beyond being inert energy storage compartments, LDs are dynamic organelles that participate in numerous essential metabolic functions. Cells generate LDs de novo from distinct sub-regions at the endoplasmic reticulum (ER), but what determines sites of LD formation remains a key unanswered question. Here, we review the factors that determine LD formation at the ER, and discuss how they work together to spatially and temporally coordinate LD biogenesis. These factors include lipid synthesis enzymes, assembly proteins, and membrane structural requirements. LDs also make contact with other organelles, and these inter-organelle contacts contribute to defining sites of LD production. Finally, we highlight emerging non-canonical roles for LDs in maintaining cellular homeostasis during stress.
Collapse
Affiliation(s)
- Mike Henne
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Joel M Goodman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Hanaa Hariri
- Department of Cell Biology and Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, United States of America.
| |
Collapse
|
169
|
Aizawa R, Ibayashi M, Tatsumi T, Yamamoto A, Kokubo T, Miyasaka N, Sato K, Ikeda S, Minami N, Tsukamoto S. Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development 2019; 146:dev181925. [PMID: 31772031 DOI: 10.1242/dev.181925] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/23/2019] [Indexed: 10/24/2024]
Abstract
Lipid droplets (LDs), which are ubiquitous organelles consisting of a neutral lipid core coated with a phospholipid monolayer, play key roles in the regulation of cellular lipid metabolism. Although it is well known that mammalian oocytes and embryos contain LDs and that the amount of LDs varies among animal species, their physiological functions remain unclear. In this study, we have developed a method based on two-step centrifugation for efficient removal of almost all LDs from mouse MII oocytes (delipidation). We found that delipidated MII oocytes could be fertilized in vitro, and developed normally to the blastocyst stage even when the embryos were cultured in the absence of a fatty acid supply. LDs were newly synthesized and accumulated soon after delipidation, but chemical inhibition of long chain acyl-CoA synthetases (ACSLs) blocked this process, resulting in severe impairment of early embryonic development. Furthermore, we found that overabundance of LDs is detrimental to early embryonic development. Our findings demonstrate the importance of synthesis and maintenance of LDs, mediated in part by ACSL activity, during preimplantation embryonic development.
Collapse
Affiliation(s)
- Ryutaro Aizawa
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Megumi Ibayashi
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takayuki Tatsumi
- Comprehensive Reproductive Medicine, Regulation of Internal Environment and Reproduction, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Atsushi Yamamoto
- Department of Reproduction Center, Dokkyo Medical University, Koshigaya Hospital, Saitama 343-8555, Japan
| | - Toshiaki Kokubo
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Naoyuki Miyasaka
- Comprehensive Reproductive Medicine, Regulation of Internal Environment and Reproduction, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Shuntaro Ikeda
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Naojiro Minami
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
170
|
Chen L, Chen XW, Huang X, Song BL, Wang Y, Wang Y. Regulation of glucose and lipid metabolism in health and disease. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1420-1458. [PMID: 31686320 DOI: 10.1007/s11427-019-1563-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023]
Abstract
Glucose and fatty acids are the major sources of energy for human body. Cholesterol, the most abundant sterol in mammals, is a key component of cell membranes although it does not generate ATP. The metabolisms of glucose, fatty acids and cholesterol are often intertwined and regulated. For example, glucose can be converted to fatty acids and cholesterol through de novo lipid biosynthesis pathways. Excessive lipids are secreted in lipoproteins or stored in lipid droplets. The metabolites of glucose and lipids are dynamically transported intercellularly and intracellularly, and then converted to other molecules in specific compartments. The disorders of glucose and lipid metabolism result in severe diseases including cardiovascular disease, diabetes and fatty liver. This review summarizes the major metabolic aspects of glucose and lipid, and their regulations in the context of physiology and diseases.
Collapse
Affiliation(s)
- Ligong Chen
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Xiao-Wei Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Yiguo Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
171
|
MUW researcher of the month. Wien Klin Wochenschr 2019; 131:532-533. [PMID: 31620880 DOI: 10.1007/s00508-019-01563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
172
|
Tan Y, Jin Y, Wang Q, Huang J, Wu X, Ren Z. Perilipin 5 Protects against Cellular Oxidative Stress by Enhancing Mitochondrial Function in HepG2 Cells. Cells 2019; 8:cells8101241. [PMID: 31614673 PMCID: PMC6830103 DOI: 10.3390/cells8101241] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. Reactive oxygen species (ROS), as potent oxidants in cells, have been shown to promote the development of NAFLD. Previous studies reported that for ROS-induced cellular oxidative stress, promoting lipid droplet (LD) accumulation is associated with the cellular antioxidation process. However, the regulatory role of LDs in relieving cellular oxidative stress is poorly understood. Here, we showed that Perilipin 5 (PLIN5), a key LD protein related to mitochondria-LD contact, reduced ROS levels and improved mitochondrial function in HepG2 cells. Both mRNA and protein levels of PLIN5 were significantly increased in cells with hydrogen peroxide or lipopolysaccharide (LPS) treatment (p < 0.05). Additionally, the overexpression of PLIN5 promoted LD formation and mitochondria-LD contact, reduced cellular ROS levels and up-regulated mitochondrial function-related genes such as COX and CS. Knockdown PLIN5, meanwhile, showed opposite effects. Furthermore, we identified that cellular oxidative stress up-regulated PLIN5 expression via the JNK-p38-ATF pathway. This study shows that the up-regulation of PLIN5 is a kind of survival strategy for cells in response to stress. PLIN5 can be a potential therapeutic target in NAFLD.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Qian Wang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Jin Huang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Xiang Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
173
|
Barbosa AD, Lim K, Mari M, Edgar JR, Gal L, Sterk P, Jenkins BJ, Koulman A, Savage DB, Schuldiner M, Reggiori F, Wigge PA, Siniossoglou S. Compartmentalized Synthesis of Triacylglycerol at the Inner Nuclear Membrane Regulates Nuclear Organization. Dev Cell 2019; 50:755-766.e6. [PMID: 31422915 PMCID: PMC6859503 DOI: 10.1016/j.devcel.2019.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/08/2023]
Abstract
Cells dynamically adjust organelle organization in response to growth and environmental cues. This requires regulation of synthesis of phospholipids, the building blocks of organelle membranes, or remodeling of their fatty-acyl (FA) composition. FAs are also the main components of triacyglycerols (TGs), which enable energy storage in lipid droplets. How cells coordinate FA metabolism with organelle biogenesis during cell growth remains unclear. Here, we show that Lro1, an acyltransferase that generates TGs from phospholipid-derived FAs in yeast, relocates from the endoplasmic reticulum to a subdomain of the inner nuclear membrane. Lro1 nuclear targeting is regulated by cell cycle and nutrient starvation signals and is inhibited when the nucleus expands. Lro1 is active at this nuclear subdomain, and its compartmentalization is critical for nuclear integrity. These data suggest that Lro1 nuclear targeting provides a site of TG synthesis, which is coupled with nuclear membrane remodeling.
Collapse
Affiliation(s)
- Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Muriel Mari
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Lihi Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter Sterk
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Benjamin J Jenkins
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- NIHR BRC Core Metabolomics and Lipidomics Laboratory and University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research, Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, 9713AV Groningen, Netherlands
| | - Philip A Wigge
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
174
|
Jarc E, Petan T. Lipid Droplets and the Management of Cellular Stress. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:435-452. [PMID: 31543707 PMCID: PMC6747940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Lipid droplets are cytosolic fat storage organelles present in most eukaryotic cells. Long regarded merely as inert fat reservoirs, they are now emerging as major regulators of cellular metabolism. They act as hubs that coordinate the pathways of lipid uptake, distribution, storage, and use in the cell. Recent studies have revealed that they are also essential components of the cellular stress response. One of the hallmark characteristics of lipid droplets is their capacity to buffer excess lipids and to finely tune their subsequent release based on specific cellular requirements. This simple feature of lipid droplet biology, buffering and delayed release of lipids, forms the basis for their pleiotropic roles in the cellular stress response. In stressed cells, lipid droplets maintain energy and redox homeostasis and protect against lipotoxicity by sequestering toxic lipids into their neutral lipid core. Their mobility and dynamic interactions with mitochondria enable an efficient delivery of fatty acids for optimal energy production. Lipid droplets are also involved in the maintenance of membrane and organelle homeostasis by regulating membrane composition, preventing lipid peroxidation and removing damaged proteins and lipids. Finally, they also engage in a symbiotic relationship with autophagy and act as reservoirs of bioactive lipids that regulate inflammation and immunity. Thus, lipid droplets are central managers of lipid metabolism that function as safeguards against various types of cellular stress.
Collapse
Affiliation(s)
- Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia,To whom all correspondence should be addressed: Toni Petan, Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia; Tel: +386 1 477 3713, Fax: +386 1 477 3984,
| |
Collapse
|
175
|
Single-molecule localization microscopy and tracking with red-shifted states of conventional BODIPY conjugates in living cells. Nat Commun 2019; 10:3400. [PMID: 31363088 PMCID: PMC6667493 DOI: 10.1038/s41467-019-11384-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/11/2019] [Indexed: 11/09/2022] Open
Abstract
Single-molecule localization microscopy (SMLM) is a rapidly evolving technique to resolve subcellular structures and single-molecule dynamics at the nanoscale. Here, we employ conventional BODIPY conjugates for live-cell SMLM via their previously reported red-shifted ground-state dimers (DII), which transiently form through bi-molecular encounters and emit bright single-molecule fluorescence. We employ the versatility of DII-state SMLM to resolve the nanoscopic spatial regulation and dynamics of single fatty acid analogs (FAas) and lipid droplets (LDs) in living yeast and mammalian cells with two colors. In fed cells, FAas localize to the endoplasmic reticulum and LDs of ~125 nm diameter. Upon fasting, however, FAas form dense, non-LD clusters of ~100 nm diameter at the plasma membrane and transition from free diffusion to confined immobilization. Our reported SMLM capability of conventional BODIPY conjugates is further demonstrated by imaging lysosomes in mammalian cells and enables simple and versatile live-cell imaging of sub-cellular structures at the nanoscale. Single-molecule localization microscopy (SMLM) requires the use of fluorophores with specific sets of properties. Here the authors employ conventional BODIPY dyes as SMLM fluorophores by making use of rarely reported red-shifted ground state BODIPY dimers to image fatty acids, lipid droplets and lysosomes at single-molecule resolution.
Collapse
|
176
|
The biogenesis of lipid droplets: Lipids take center stage. Prog Lipid Res 2019; 75:100989. [PMID: 31351098 DOI: 10.1016/j.plipres.2019.100989] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 06/27/2019] [Indexed: 11/20/2022]
Abstract
Lipid droplets (LDs) are multi-functional cellular organelles that store energy, and regulate many aspects of cell physiology. However, our understanding of the biogenesis of LDs remains very limited. Originating from the endoplasmic reticulum (ER), LDs are highly unique organelles in that each LD is bounded by a monolayer of amphipathic lipids. Recent progress has unveiled critical roles of non-bilayer lipids in LD formation. For instance, non-bilayer lipids such as lysophospholipids, diacylglycerol and phosphatidic acid (PA) can impact the curvature, surface and line tension of the ER, thereby impacting LD biogenesis. Two well-known regulators of LD formation, FIT2/FITM2 and seipin, have both been implicated in controlling the metabolism and/or distribution of non-bilayer lipids. We summarize and integrate these recent advances and propose that non-bilayer lipids may play a critical role in each step of LD biogenesis.
Collapse
|
177
|
Abstract
Cellular nuclei are bound by two uniformly separated lipid membranes that are fused with each other at numerous donut-shaped pores. These membranes are structurally supported by an array of distinct proteins with distinct mechanical functions. As a result, the nuclear envelope possesses unique mechanical properties, which enables it to resist cytoskeletal forces. Here, we review studies that are beginning to provide quantitative insights into nuclear membrane mechanics. We discuss how the mechanical properties of the fused nuclear membranes mediate their response to mechanical forces exerted on the nucleus and how structural reinforcement by different nuclear proteins protects the nuclear membranes against rupture. We also highlight some open questions in nuclear envelope mechanics, and discuss their relevance in the context of health and disease.
Collapse
Affiliation(s)
- Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
178
|
Zhou H, Lei X, Yan Y, Lydic T, Li J, Weintraub NL, Su H, Chen W. Targeting ATGL to rescue BSCL2 lipodystrophy and its associated cardiomyopathy. JCI Insight 2019; 5:129781. [PMID: 31185001 DOI: 10.1172/jci.insight.129781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in BSCL2 gene underlie human type 2 Berardinelli-Seip Congenital Lipodystrophy (BSCL2) disease. Global Bscl2-/- mice recapitulate human BSCL2 lipodystrophy and develop insulin resistance and hypertrophic cardiomyopathy. The pathological mechanisms underlying the development of lipodystrophy and cardiomyopathy in BSCL2 are controversial. Here we report that Bscl2-/- mice develop cardiac hypertrophy due to increased basal IGF1 receptor (IGF1R)-mediated PI3K/AKT signaling. Bscl2-/- hearts exhibited increased adipose triglyceride lipase (ATGL) protein stability and expression causing drastic reduction of glycerolipids. Excessive fatty acid oxidation was overt in Bscl2-/- hearts, partially attributing to the hyperacetylation of cardiac mitochondrial proteins. Intriguingly, pharmacological inhibition or genetic inactivation of ATGL could rescue adipocyte differentiation and lipodystrophy in Bscl2-/- cells and mice. Restoring a small portion of fat mass by ATGL partial deletion in Bscl2-/- mice not only reversed the systemic insulin resistance, but also ameliorated cardiac protein hyperacetylation, normalized cardiac substrate metabolism and improved contractile function. Collectively, our study uncovers novel pathways underlying lipodystrophy-induced cardiac hypertrophy and metabolic remodeling and pinpoints ATGL as a downstream target of BSCL2 in regulating the development of lipodystrophy and its associated cardiomyopathy.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xinnuo Lei
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Yun Yan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
179
|
Jackson CL. Lipid droplet biogenesis. Curr Opin Cell Biol 2019; 59:88-96. [PMID: 31075519 DOI: 10.1016/j.ceb.2019.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/24/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
Lipid droplets (LDs) store neutral lipids in their core as an energy source when nutrients are scarce. The center of an LD is hydrophobic, and hence it is surrounded by a phospholipid monolayer, unlike other organelles that have an aqueous interior and are bounded by a phospholipid bilayer. LDs arise from the ER, where neutral lipid synthesis enzymes are localized. A combination of biophysical analysis and modeling, in vitro reconstitution and cell biological analyses has provided a great deal of information over the past few years on the process of LD biogenesis from the ER. In addition to lipid composition, four protein families (seipin proteins, perilipins, FIT proteins and ER shaping proteins) are crucial for LD biogenesis. Recent studies have shown that LDs preferentially arise, along with peroxisomes, at special ER sites marked by the reticulon-like Pex30/MCTP2 protein. New functions for perilipins and FIT family proteins have been uncovered, and the cryo-electron microscopy structure of seipin coupled with high resolution imaging in cells has provided a more comprehensive picture of its function in LD biogenesis. Seipin, along with other proteins such as Rab18 and its effector NRZ, have been shown to carry out their functions at least in part through regulation of ER-LD contact sites, whose establishment and maintenance have emerged as an essential component of LD biogenesis and maturation.
Collapse
Affiliation(s)
- Catherine L Jackson
- Institut Jacques Monod, UMR7592 CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
180
|
Patrolling the nucleus: inner nuclear membrane-associated degradation. Curr Genet 2019; 65:1099-1106. [PMID: 31020383 PMCID: PMC6744382 DOI: 10.1007/s00294-019-00971-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein quality control and transport are important for the integrity of organelles such as the endoplasmic reticulum, but it is largely unknown how protein homeostasis is regulated at the nuclear envelope (NE) despite the connection between NE protein function and human disease. Elucidating mechanisms that regulate the NE proteome is key to understanding nuclear processes such as gene expression, DNA replication and repair as NE components, particularly proteins at the inner nuclear membrane (INM), are involved in the maintenance of nuclear structure, nuclear positioning and chromosome organization. Nuclear pore complexes control the entry and exit of proteins in and out of the nucleus, restricting movement across the nuclear membrane based on protein size, or the size of the extraluminal-facing domain of a transmembrane protein, providing one level of INM proteome regulation. Research in budding yeast has identified a protein quality control system that targets mislocalized and misfolded proteins at the INM. Here, we review what is known about INM-associated degradation, including recent evidence suggesting that it not only targets mislocalized or misfolded proteins, but also contributes to homeostasis of resident INM proteins.
Collapse
|
181
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
182
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
183
|
Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. An ESCRT-LEM protein surveillance system is poised to directly monitor the nuclear envelope and nuclear transport system. eLife 2019; 8:e45284. [PMID: 30942170 PMCID: PMC6461442 DOI: 10.7554/elife.45284] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022] Open
Abstract
The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.
Collapse
Affiliation(s)
- David J Thaller
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Matteo Allegretti
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Sapan Borah
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| | - Paolo Ronchi
- Electron Microscopy Core FacilityEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - Martin Beck
- Structural and Computational Biology UnitEuropean Molecular Biology LaboratoryMeyerhofstrasseGermany
| | - C Patrick Lusk
- Department of Cell BiologyYale School of MedicineNew HavenUnited States
| |
Collapse
|
184
|
Abstract
Lipid droplets are storage organelles at the centre of lipid and energy homeostasis. They have a unique architecture consisting of a hydrophobic core of neutral lipids, which is enclosed by a phospholipid monolayer that is decorated by a specific set of proteins. Originating from the endoplasmic reticulum, lipid droplets can associate with most other cellular organelles through membrane contact sites. It is becoming apparent that these contacts between lipid droplets and other organelles are highly dynamic and coupled to the cycles of lipid droplet expansion and shrinkage. Importantly, lipid droplet biogenesis and degradation, as well as their interactions with other organelles, are tightly coupled to cellular metabolism and are critical to buffer the levels of toxic lipid species. Thus, lipid droplets facilitate the coordination and communication between different organelles and act as vital hubs of cellular metabolism.
Collapse
Affiliation(s)
- James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, USA.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
185
|
Mather IH, Masedunskas A, Chen Y, Weigert R. Symposium review: Intravital imaging of the lactating mammary gland in live mice reveals novel aspects of milk-lipid secretion. J Dairy Sci 2019; 102:2760-2782. [PMID: 30471915 PMCID: PMC7094374 DOI: 10.3168/jds.2018-15459] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022]
Abstract
Milk fat comprises membrane-coated droplets of neutral lipid, which constitute the predominant source of lipids for survival of the suckling neonate. From the perspective of the dairy industry, they are the basis for the manufacture of butter and essential ingredients in the production of cheese, yogurt, and specialty dairy produce. To provide mechanistic insight into the assembly and secretion of lipid droplets during lactation, we developed novel intravital imaging techniques using transgenic mice, which express fluorescently tagged marker proteins. The number 4 mammary glands were surgically prepared under a deep plane of anesthesia and the exposed glands positioned as a skin flap with intact vascular supply on the stage of a laser-scanning confocal microscope. Lipid droplets were stained by prior exposure of the glands to hydrophobic fluorescent BODIPY (boron-dipyrromethene) dyes and their formation and secretion monitored by time-lapse subcellular microscopy over periods of 1 to 2 h. Droplets were transported to the cell apex by directed (superdiffusive) motion at relatively slow and intermittent rates (0-2 µm/min). Regardless of size, droplets grew by numerous fusion events during transport and as they were budding from the cell enveloped by apical membranes. Surprisingly, droplet secretion was not constitutive but required an injection of oxytocin to induce contraction of the myoepithelium with subsequent release of droplets into luminal spaces. These novel results are discussed in the context of the current paradigm for milk fat synthesis and secretion and as a template for future innovations in the dairy industry.
Collapse
Affiliation(s)
- Ian H Mather
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742; National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892.
| | - Andrius Masedunskas
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21205
| | - Roberto Weigert
- National Cancer Institute and National Institute of Craniofacial and Dental Research, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
186
|
Sołtysik K, Ohsaki Y, Tatematsu T, Cheng J, Fujimoto T. Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun 2019; 10:473. [PMID: 30692541 PMCID: PMC6349838 DOI: 10.1038/s41467-019-08411-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here we show that nuclear LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs, a precursor to very low-density lipoproprotein (VLDL) generated in the ER lumen by microsomal triglyceride transfer protein. ApoB-free lumenal LDs accumulate under ER stress, grow within the lumen of the type I nucleoplasmic reticulum, and turn into nucleoplasmic LDs by disintegration of the surrounding inner nuclear membrane. Oleic acid with or without tunicamycin significantly increases the formation of nucleoplasmic LDs, to which CTP:phosphocholine cytidylyltransferase α (CCTα) is recruited, resulting in activation of phosphatidylcholine (PC) synthesis. Perilipin-3 competes with CCTα in binding to nucleoplasmic LDs, and thus, knockdown and overexpression of perilipin-3 increases and decreases PC synthesis, respectively. The results indicate that nucleoplasmic LDs in hepatocytes constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress. The origin and physiological significance of lipid droplets (LDs) in the nucleus is not clear. Here authors show that nucleoplasmic LDs in hepatocytes are derived from apolipoprotein B (ApoB)-free lumenal LDs and constitute a feedback mechanism to regulate PC synthesis in accordance with ER stress.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yuki Ohsaki
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyako Tatematsu
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jinglei Cheng
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toyoshi Fujimoto
- Department of Molecular Cell Biology and Anatomy, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
187
|
Salo VT, Ikonen E. Moving out but keeping in touch: contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol 2018; 57:64-70. [PMID: 30476754 DOI: 10.1016/j.ceb.2018.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
The formation of neutral lipid filled and phospholipid monolayer engulfed lipid droplets (LDs) from the bilayer of the endoplasmic reticulum (ER) is an active area of investigation. This process harnesses the biophysical properties of the lipids involved and necessitates cooperation of protein machineries in both organelle membranes. Increasing evidence suggests that once formed, LDs keep close contact to the mother organelle and that this may be achieved via several, morphologically distinct and potentially functionally specialized connections. These may help LDs to dynamically respond to changes in lipid metabolic status sensed by the ER. In this review, we will discuss recent progress in understanding how LDs interact with the ER.
Collapse
Affiliation(s)
- Veijo T Salo
- Faculty of Medicine, Dept. of Anatomy and HiLIFE, Univ. of Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Faculty of Medicine, Dept. of Anatomy and HiLIFE, Univ. of Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
188
|
Abstract
Challenging the idea of the inner nuclear membrane (INM) being an inert compartment, recent work in S. cerevisiae shows that the INM can metabolize lipids and that local lipid metabolism can regulate transcription in response to lipid availability, suggesting a functional role for the INM in cellular lipid homeostasis.
Collapse
|
189
|
Lv X, Liu J, Qin Y, Liu Y, Jin M, Dai J, Chua BT, Yang H, Li P. Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:113-127. [PMID: 30414449 DOI: 10.1016/j.bbalip.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are important organelles involved in energy storage and expenditure. LD dynamics has been investigated using genome-wide image screening methods in yeast and other model organisms. For most studies, genes were identified using two-dimensional images with LD enlargement as readout. Due to imaging limitation, reduction of LD size is seldom explored. Here, we aim to set up a screen that specifically utilizes reduced LD size as the readout. To achieve this, a novel yeast screen is set up to quantitatively and systematically identify genes that regulate LD size through a three-dimensional imaging-based approach. Cidea which promotes LD fusion and growth in mammalian cells was overexpressed in a yeast knockout library to induce large LD formation. Next, an automated, high-throughput image analysis method that monitors LD size was utilized. With this screen, we identified twelve genes that reduced LD size when deleted. The effects of eight of these genes on LD size were further validated in fld1 null strain background. In addition, six genes were previously identified as LD-regulating genes. To conclude, this methodology represents a promising strategy to screen for players in LD size control in both yeast and mammalian cells to aid in the investigation of LD-associated metabolic diseases.
Collapse
Affiliation(s)
- Xuchao Lv
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meijun Jin
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boon Tin Chua
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
190
|
Linkage between lipid droplet formation and nuclear deformation in HeLa human cervical cancer cells. Biochem Biophys Res Commun 2018; 504:485-490. [DOI: 10.1016/j.bbrc.2018.08.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 08/31/2018] [Indexed: 11/19/2022]
|
191
|
Petan T, Jarc E, Jusović M. Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules 2018; 23:molecules23081941. [PMID: 30081476 PMCID: PMC6222695 DOI: 10.3390/molecules23081941] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells possess remarkable abilities to adapt to adverse environmental conditions. Their survival during severe nutrient and oxidative stress depends on their capacity to acquire extracellular lipids and the plasticity of their mechanisms for intracellular lipid synthesis, mobilisation, and recycling. Lipid droplets, cytosolic fat storage organelles present in most cells from yeast to men, are emerging as major regulators of lipid metabolism, trafficking, and signalling in various cells and tissues exposed to stress. Their biogenesis is induced by nutrient and oxidative stress and they accumulate in various cancers. Lipid droplets act as switches that coordinate lipid trafficking and consumption for different purposes in the cell, such as energy production, protection against oxidative stress or membrane biogenesis during rapid cell growth. They sequester toxic lipids, such as fatty acids, cholesterol and ceramides, thereby preventing lipotoxic cell damage and engage in a complex relationship with autophagy. Here, we focus on the emerging mechanisms of stress-induced lipid droplet biogenesis; their roles during nutrient, lipotoxic, and oxidative stress; and the relationship between lipid droplets and autophagy. The recently discovered principles of lipid droplet biology can improve our understanding of the mechanisms that govern cancer cell adaptability and resilience to stress.
Collapse
Affiliation(s)
- Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
| | - Eva Jarc
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| | - Maida Jusović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana SI-1000, Slovenia.
- Jožef Stefan International Postgraduate School, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
192
|
|