151
|
Han Y, Zhu L, Wu W, Zhang H, Hu W, Dai L, Yang Y. Small Molecular Immune Modulators as Anticancer Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:547-618. [PMID: 32185725 DOI: 10.1007/978-981-15-3266-5_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of intense effort, immune checkpoint inhibitors have been conclusively demonstrated to be effective in cancer treatments and thus are revolutionizing the concepts in the treatment of cancers. Immuno-oncology has arrived and will play a key role in cancer treatment in the foreseeable future. However, efforts to find novel methods to improve the immune response to cancer have not ceased. Small-molecule approaches offer inherent advantages over biologic immunotherapies since they can cross cell membranes, penetrate into tumor tissue and tumor microenvironment more easily, and are amenable to be finely controlled than biological agents, which may help reduce immune-related adverse events seen with biologic therapies and provide more flexibility for the combination use with other therapies and superior clinical benefit. On the one hand, small-molecule therapies can modulate the immune response to cancer by restoring the antitumor immunity, promoting more effective cytotoxic lymphocyte responses, and regulating tumor microenvironment, either directly or epigenetically. On the other hand, the combination of different mechanisms of small molecules with antibodies and other biologics demonstrated admirable synergistic effect in clinical settings for cancer treatment and may expand antibodies' usefulness for broader clinical applications. This chapter provides an overview of small-molecule immunotherapeutic approaches either as monotherapy or in combination for the treatment of cancer.
Collapse
Affiliation(s)
- Yongxin Han
- Lapam Capital LLC., 17C1, Tower 2, Xizhimenwai Street, Xicheng District, Beijing, 100044, China.
| | - Li Zhu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Wu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Hui Zhang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Wei Hu
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Liguang Dai
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| | - Yanqing Yang
- PrimeGene (Beijing) Co., Ltd., Fengtai District, Beijing, 100070, China
| |
Collapse
|
152
|
Tan Y, Li Y, Tang F. Oncogenic seRNA functional activation: a novel mechanism of tumorigenesis. Mol Cancer 2020; 19:74. [PMID: 32278350 PMCID: PMC7149907 DOI: 10.1186/s12943-020-01195-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
seRNA is a noncoding RNA (ncRNA) transcribed from active super-enhancer (SE), through which SE exerts biological functions and participates in various physiological and pathological processes. seRNA recruits cofactor, RNA polymerase II and mediator to constitute and stabilize chromatin loop SE and promoter region, which regulates target genes transcription. In tumorigenesis, DNA insertion, deletion, translocation, focal amplification and carcinogen factor mediate oncogenic SE generation, meanwhile, oncogenic SE transcribes into tumor-related seRNA, termed as oncogenic seRNA. Oncogenic seRNA participates in tumorigenesis through activating various signal-pathways. The recent reports showed that oncogenic seRNA implicates in a widespread range of cytopathological processes in cancer progression including cell proliferation, apoptosis, autophagy, epithelial-mesenchymal transition, extracellular matrix stiffness and angiogenesis. In this article, we comprehensively summarized seRNA’s characteristics and functions, and emphatically introduced inducible formation of oncogenic seRNA and its functional mechanisms. Lastly, some research strategies on oncogenic seRNA were introduced, and the perspectives on cancer therapy that targets oncogenic seRNA were also discussed.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yuejin Li
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- Department of Clinical Laboratory and Hunan Key Laboratory of Oncotarget gene, Hunan Cancer Hospital & The affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
153
|
Tang Y, Zhang P, Wang Y, Wang J, Su M, Wang Y, Zhou L, Zhou J, Xiong W, Zeng Z, Zhou Y, Nie S, Liao Q. The Biogenesis, Biology, and Clinical Significance of Exosomal PD-L1 in Cancer. Front Immunol 2020; 11:604. [PMID: 32322256 PMCID: PMC7158891 DOI: 10.3389/fimmu.2020.00604] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
The exosome serves as a trafficking vehicle for transport of programmed death-ligand 1 (PD-L1) into receptor cells. In tumor microenvironment, distant tumor cells can remotely attack activated T cells by exosomal PD-L1. Here, we summerize the biogenesis and transport process of exosomal PD-L1. Then, we focus on the cancer biology of exosomal PD-L1 in immunosuppression and the mechanism by which it inhibits T cells. Finally, we highlight the prospects of exosomal PD-L1 as a tumor biomarker and its significance in immunotherapy. In addition, we discuss the new challenges faced in researching and utilizing exosomal PD-L1. This review may shed light on the exosomal PD-L1 from the bench to the clinic. Exosomes serve as trafficking vehicles for transport of programmed death-ligand 1 (PD-L1) into receptor cells. In tumor microenvironment, distant tumor cells can remotely attack activated T cells through exosomal PD-L1. Here, we have summarized the biogenesis and transport of exosomal PD-L1. Next, we focused on the cancer biology of exosomal PD-L1 in immunosuppression and the mechanism by which it inhibits T cells. Finally, we highlighted the prospects of exosomal PD-L1 as a tumor biomarker and its significance in immunotherapy. In addition, we have discussed the new challenges faced in studying and utilizing exosomal PD-L1. This review may shed light on the translation of exosomal PD-L1 from bench to clinic.
Collapse
Affiliation(s)
- Yanyan Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Ping Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,College of Computer and Information Engineering, Hunan University of Technology and Business, Changsha, China
| | - Yumin Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jinpeng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Urban Vocational College of Sichuan, Chengdu, China
| | - Min Su
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Ying Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Lianqing Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jumei Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Xiong
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shaolin Nie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qianjin Liao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Central Laboratory, The Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, China
| |
Collapse
|
154
|
Deep and Prolonged Response to Aurora A Kinase Inhibitor and Subsequently to Nivolumab in MYCL1-Driven Small-Cell Lung Cancer: Case Report and Literature Review. Case Rep Oncol Med 2020; 2020:8026849. [PMID: 32318301 PMCID: PMC7166265 DOI: 10.1155/2020/8026849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023] Open
Abstract
Small-cell lung carcinoma (SCLC) is one of the most aggressive solid tumors, and the prognosis has not improved significantly in 25 years. Despite a recent understanding of the genomic aberrations seen in SCLC, these insights have not led to any breakthroughs in treatment. We present a patient with SCLC harboring a novel MYCL1 fusion protein who experienced a prolonged disease course due to the use of Aurora A kinase inhibitor and subsequently nivolumab. MYC family genes are master regulators of several cellular pathways including proliferation, differentiation, and apoptosis and recently have been shown to be involved in tumor immune evasion. Large studies have shown that a significant proportion of patients with SCLC have amplification or overexpression of MYC family genes. Preclinical data have exposed vulnerability of MYC-driven tumors to Aurora kinase inhibitors, bromodomain and extraterminal domain inhibitors, and recently to immune checkpoint blockers. Further studies using these agents with selective enrolling of patients with MYC-altered tumors are warranted to exploit these vulnerabilities.
Collapse
|
155
|
Cao J, Yan Q. Cancer Epigenetics, Tumor Immunity, and Immunotherapy. Trends Cancer 2020; 6:580-592. [PMID: 32610068 DOI: 10.1016/j.trecan.2020.02.003] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic mechanisms, including DNA methylation, histone post-translational modifications, and chromatin structure regulation, are critical for the interactions between tumor and immune cells. Emerging evidence shows that tumors commonly hijack various epigenetic mechanisms to escape immune restriction. As a result, the pharmaceutical modulation of epigenetic regulators, including 'writers', 'readers', 'erasers', and 'remodelers', is able to normalize the impaired immunosurveillance and/or trigger antitumor immune responses. Thus, epigenetic targeting agents are attractive immunomodulatory drugs and will have major impacts on immuno-oncology. Here, we discuss epigenetic regulators of the cancer-immunity cycle and current advances in developing epigenetic therapies to boost anticancer immune responses, either alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Jian Cao
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Qin Yan
- Department of Pathology, Yale Cancer Center, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
156
|
Role of BET Inhibitors in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12040784. [PMID: 32218352 PMCID: PMC7226117 DOI: 10.3390/cancers12040784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bromodomain and extraterminal domain (BET) proteins have evolved as key multifunctional super-regulators that control gene expression. These proteins have been shown to upregulate transcriptional machinery leading to over expression of genes involved in cell proliferation and carcinogenesis. Based on favorable preclinical evidence of BET inhibitors in various cancer models; currently, 26 clinical trials are underway in various stages of study on various hematological and solid organ cancers. Unfortunately, preliminary evidence for these clinical studies does not support the application of BET inhibitors as monotherapy in cancer treatment. Furthermore, the combinatorial efficiency of BET inhibitors with other chemo-and immunotherapeutic agents remain elusive. In this review, we will provide a concise summary of the molecular basis and preliminary clinical outcomes of BET inhibitors in cancer therapy, with special focus on triple negative breast cancer.
Collapse
|
157
|
Epigenetic therapies in acute myeloid leukemia: where to from here? Blood 2020; 134:1891-1901. [PMID: 31697822 DOI: 10.1182/blood.2019003262] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 12/11/2022] Open
Abstract
A hallmark of acute myeloid leukemia (AML) is epigenetic dysregulation, which is initiated by recurrent translocations and/or mutations in transcription factors and chromatin regulators. This manifests as a block in myeloid differentiation and an increase in malignant self-renewal. These common features of AML have led to widespread optimism that epigenetic therapies would dramatically change the natural history of this disease. Although preclinical studies with these drugs fueled this optimism, results from early clinical trials have offered a more sobering message. Here, we provide an overview of epigenetic therapies that are currently approved by therapeutic regulatory authorities across the world and those undergoing early-phase clinical trials. We also discuss the conceptual and molecular factors that may explain some of the disparity between the bench and bedside, as well as emerging avenues for combining the current generation of epigenetic therapies with other classes of agents and the development of novel epigenetic therapies. With further research and development of this exciting class of drugs, we may finally be able to dramatically improve outcomes for patients afflicted with this aggressive and often incurable malignancy.
Collapse
|
158
|
Jiao F, Han T, Yuan C, Liang Y, Cui J, Zhuo M, Wang L. Caveolin-2 is regulated by BRD4 and contributes to cell growth in pancreatic cancer. Cancer Cell Int 2020; 20:55. [PMID: 32099528 PMCID: PMC7029443 DOI: 10.1186/s12935-020-1135-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background The bromodomain and extra-terminal domain (BET) family of proteins, especially BRD4 play an important role in epigenetic regulation, and are essential for cell survival and also are promising anticancer targets. This study aims to analyze the effect of BRD4 on the cell growth and progression of pancreatic cancer and novel mechanisms involved. Methods Expression of BRD4 in pancreatic cancer and paired adjacent noncancerous tissues from 76 patients was analyzed by western blotting, immunohistochemistry, and real time PCR. Its correlation with the clinicopathological characteristics and prognosis of pancreatic cancer patients was analyzed. The effects of BRD4 on the cell proliferation were detected by colony formation assay and sulforhodamine B assay. Migration and invasion were determined by Transwell assays, and the effect of BRD4 on subcutaneous tumor formation was verified in nude mice. Cell cycle analysis was detected by flow cytometry. The potential downstream targets of BRD4 and related molecular mechanisms were clarified by RNA sequencing, chromatin immunoprecipitation and dual luciferase reporter assay. Results BRD4 was overexpressed in pancreatic cancer. Biological results showed that BRD4 functioned as tumor promoter, facilitated cell proliferation, migration and invasion in vitro and in vivo. Further, caveolin-2 was selected as the downstream gene of BRD4 by RNA sequencing. Caveolin-2 overexpression can partially reverse the decreased cell growth ability caused by BRD4 knockdown, but did not affect cell migration and invasion. Chromatin immunoprecipitation assay and dual luciferase reporter assay revealed BRD4 could bind to the promoter region of caveolin-2 and upregulate caveolin-2 expression. Clinical data further indicated a positive correlation between BRD4 and caveolin-2 expression. BRD4 (high)/caveolin-2 (high) correlated with shorter overall survival of patients with pancreatic cancer. Multivariate analysis revealed that both BRD4 and caveolin-2 were independent factors. Conclusions Our findings reveal the oncogenic effects of BRD4 in pancreatic cancer and elucidate a possible mechanism by which BRD4 and caveolin-2 act to enhance cell growth. Targeting the BRD4-caveolin-2 interaction by development of BET inhibitors will be a therapeutic strategy for pancreatic cancer.
Collapse
Affiliation(s)
- Feng Jiao
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Ting Han
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Cuncun Yuan
- 2Department of Pathology, Fudan University Eye Ear Nose and Throat Hospital, 83 Fenyang Road, Shanghai, 201114 China
| | - Yiyi Liang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Jiujie Cui
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Meng Zhuo
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| | - Liwei Wang
- 1Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127 China
| |
Collapse
|
159
|
Ju X, Zhang H, Zhou Z, Wang Q. Regulation of PD-L1 expression in cancer and clinical implications in immunotherapy. Am J Cancer Res 2020; 10:1-11. [PMID: 32064150 PMCID: PMC7017746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023] Open
Abstract
PD-1/PD-L1 immune checkpoint blockade therapy has become an effective method for the treatment of cancers in the clinic. It has great clinical advantages and therapeutic effects in the treatment of various cancers. However, a considerable number of cancer patients currently have relatively low response rates and drug resistance to PD-1/PD-L1 immunotherapy. Therefore, an in-depth understanding of the regulatory mechanism of PD-L1 expression in tumor cells will provide new insights into PD-1/PD-L1 immunotherapy. This review will systematically review the regulatory mechanisms of PD-L1 including genomic amplification, epigenetic regulation, transcriptional regulation, translational regulation and posttranslational modification. We will also discuss PD-L1 expression regulation in clinical applications. Finally, we hope to provide new routes for PD-1/PD-L1 immunotherapy in the clinic.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu UniversityZhenjiang, P. R. China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People’s Hospital, Zhongda Hospital Lishui Branch, Southeast UniversityNanjing, P. R. China
| | - Zidi Zhou
- School of Medicine, Jiangsu UniversityZhenjiang, P. R. China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu UniversityZhenjiang, Jiangsu, P. R. China
| |
Collapse
|
160
|
Boumahdi S, de Sauvage FJ. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov 2020; 19:39-56. [PMID: 31601994 DOI: 10.1038/s41573-019-0044-1] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 01/05/2023]
Abstract
The success of targeted therapies in cancer treatment has been impeded by various mechanisms of resistance. Besides the acquisition of resistance-conferring genetic mutations, reversible mechanisms that lead to drug tolerance have emerged. Plasticity in tumour cells drives their transformation towards a phenotypic state that no longer depends on the drug-targeted pathway. These drug-refractory cells constitute a pool of slow-cycling cells that can either regain drug sensitivity upon treatment discontinuation or acquire permanent resistance to therapy and drive relapse. In the past few years, cell plasticity has emerged as a mode of targeted therapy evasion in various cancers, ranging from prostate and lung adenocarcinoma to melanoma and basal cell carcinoma. Our understanding of the mechanisms that control this phenotypic switch has also expanded, revealing the crucial role of reprogramming factors and chromatin remodelling. Further deciphering the molecular basis of tumour cell plasticity has the potential to contribute to new therapeutic strategies which, combined with existing anticancer treatments, could lead to deeper and longer-lasting clinical responses.
Collapse
Affiliation(s)
- Soufiane Boumahdi
- Department of Molecular Oncology, Genentech, South San Francisco, CA, USA
| | | |
Collapse
|
161
|
Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: Mechanisms and therapeutic opportunities. Immunol Rev 2019; 288:178-197. [PMID: 30874346 DOI: 10.1111/imr.12734] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022]
Abstract
The rearrangement of immunoglobulin loci during the germinal center reaction is associated with an increased risk of chromosomal translocations that activate oncogenes such as MYC, BCL2 or BCL6, thus contributing to the development of B-cell lymphomas. MYC and BCL2 activation are initiating events in Burkitt's (BL) and Follicular Lymphoma (FL), respectively, but can occur at later stages in other subtypes such as Diffuse Large-B Cell Lymphoma (DLBCL). MYC can also be activated during the progression of FL to the transformed stage. Thus, either DLBCL or FL can give rise to aggressive double-hit lymphomas (DHL) with concurrent activation of MYC and BCL2. Research over the last three decades has improved our understanding of the functions of these oncogenes and the basis for their cooperative action in lymphomagenesis. MYC, in particular, is a transcription factor that contributes to cell activation, growth and proliferation, while concomitantly sensitizing cells to apoptosis, the latter being blocked by BCL2. Here, we review our current knowledge about the role of MYC in germinal center B-cells and lymphomas, discuss MYC-induced dependencies that can sensitize cancer cells to select pharmacological inhibitors, and illustrate their therapeutic potential in aggressive lymphomas-and in particular in DHL, in combination with BCL2 inhibitors.
Collapse
Affiliation(s)
- Andrea Bisso
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Arianna Sabò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
162
|
Erkes DA, Rosenbaum SR, Field CO, Chervoneva I, Villanueva J, Aplin AE. PLX3397 inhibits the accumulation of intra-tumoral macrophages and improves bromodomain and extra-terminal inhibitor efficacy in melanoma. Pigment Cell Melanoma Res 2019; 33:372-377. [PMID: 31696640 DOI: 10.1111/pcmr.12845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
Bromodomain and extra-terminal inhibitors (BETi) delay tumor growth, in part, through tumor cell intrinsic alterations and initiation of anti-tumor CD8+ T-cell responses. By contrast, BETi effects on pro-tumoral immune responses remain unclear. Here, we show that the next-generation BETi, PLX51107, delayed tumor growth to differing degrees in Braf V600E melanoma syngeneic mouse models. These differential responses were associated with the influx of tumor-associated macrophages during BETi treatment. Tumors that were poorly responsive to PLX51107 showed increased influx of colony-stimulating factor-1 receptor (CSF-1R)-positive tumor-associated macrophages. We depleted CSF-1R+ tumor-associated macrophages with the CSF-1R inhibitor, PLX3397, in combination with PLX51107. Treatment with PLX3397 enhanced the efficacy of PLX51107 in poorly responsive Braf V600E syngeneic melanomas in vivo. These findings suggest that tumor-associated macrophage accumulation limits BETi efficacy and that co-treatment with PLX3397 can improve response to PLX51107, offering a potential novel combination therapy for metastatic melanoma patients.
Collapse
Affiliation(s)
- Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheera R Rosenbaum
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Conroy O Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
163
|
Drug Repurposing of Bromodomain Inhibitors as Potential Novel Therapeutic Leads for Lymphatic Filariasis Guided by Multispecies Transcriptomics. mSystems 2019; 4:4/6/e00596-19. [PMID: 31796568 PMCID: PMC6890932 DOI: 10.1128/msystems.00596-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi. To better understand the transcriptomic interplay of organisms associated with lymphatic filariasis, we conducted multispecies transcriptome sequencing (RNA-Seq) on the filarial nematode Brugia malayi, its Wolbachia endosymbiont wBm, and its laboratory vector Aedes aegypti across the entire B. malayi life cycle. In wBm, transcription of the noncoding 6S RNA suggests that it may be a regulator of bacterial cell growth, as its transcript levels correlate with bacterial replication rates. For A. aegypti, the transcriptional response reflects the stress that B. malayi infection exerts on the mosquito with indicators of increased energy demand. In B. malayi, expression modules associated with adult female samples consistently contained an overrepresentation of genes involved in chromatin remodeling, such as the bromodomain-containing proteins. All bromodomain-containing proteins encoded by B. malayi were observed to be upregulated in the adult female, embryo, and microfilaria life stages, including 2 members of the bromodomain and extraterminal (BET) protein family. The BET inhibitor JQ1(+), originally developed as a cancer therapeutic, caused lethality of adult worms in vitro, suggesting that it may be a potential therapeutic that can be repurposed for treating lymphatic filariasis. IMPORTANCE The current treatment regimen for lymphatic filariasis is mostly microfilaricidal. In an effort to identify new drug candidates for lymphatic filariasis, we conducted a three-way transcriptomics/systems biology study of one of the causative agents of lymphatic filariasis, Brugia malayi, its Wolbachia endosymbiont wBm, and its vector host Aedes aegypti at 16 distinct B. malayi life stages. B. malayi upregulates the expression of bromodomain-containing proteins in the adult female, embryo, and microfilaria stages. In vitro, we find that the existing cancer therapeutic JQ1(+), which is a bromodomain and extraterminal protein inhibitor, has adulticidal activity in B. malayi.
Collapse
|
164
|
Aspeslagh S, Morel D, Soria JC, Postel-Vinay S. Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Ann Oncol 2019; 29:812-824. [PMID: 29432557 DOI: 10.1093/annonc/mdy050] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Immune therapies have revolutionized cancer treatment over the last few years by allowing improvements in overall survival. However, the majority of patients is still primary or secondary resistant to such therapies, and enhancing sensitivity to immune therapies is therefore crucial to improve patient outcome. Several recent lines of evidence suggest that epigenetic modifiers have intrinsic immunomodulatory properties, which could be of therapeutic interest. Material and methods We reviewed preclinical evidence and clinical studies which describe or exploit immunomodulatory properties of epigenetic agents. Experimental approaches, clinical applicability and corresponding ongoing clinical trials are described. Results Several epigenetic modifiers, such as histone deacetylase inhibitors, DNA methyl transferase inhibitors, bromodomain inhibitors, lysine-specific histone demethylase 1 inhibitors and enhancer of zeste homolog 2 inhibitors, display intrinsic immunomodulatory properties. The latter can be achieved through the action of these drugs either on cancer cells (e.g. presentation and generation of neoantigens, induction of immunogenic cell death, modulation of cytokine secretion), on immune cells (e.g. linage, differentiation, activation status and antitumor capability), or on components of the microenvironment (e.g. regulatory T cells and macrophages). Several promising combinations, notably with immune checkpoint blockers or adoptive T-cell therapy, can be envisioned. Dedicated clinically relevant approaches for patient selection and trial design will be required to optimally develop such combinations. Conclusion In an era where immune therapies are becoming a treatment backbone in many tumour types, epigenetic modifiers could play a crucial role in modulating tumours' immunogenicity and sensitivity to immune agents. Optimal trial design, including window of opportunity trials, will be key in the success of this approach, and clinical evaluation is ongoing.
Collapse
Affiliation(s)
- S Aspeslagh
- Department of Medical Oncology, Institut Jules Bordet - ULB, Brussels, Belgium
| | - D Morel
- INSERM, UMR981, Villejuif, France
| | - J-C Soria
- INSERM, UMR981, Villejuif, France; Drug Development Department (DITEP, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - S Postel-Vinay
- INSERM, UMR981, Villejuif, France; Drug Development Department (DITEP, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France.
| |
Collapse
|
165
|
Wu M, Shen J. From Super-Enhancer Non-coding RNA to Immune Checkpoint: Frameworks to Functions. Front Oncol 2019; 9:1307. [PMID: 31824865 PMCID: PMC6883490 DOI: 10.3389/fonc.2019.01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Super-enhancers (SEs) are clusters of enhancers that play a key role in regulating genes that determine cell identity. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancers that function to promote the enhancer's functions via multiple mechanisms, such as recruiting transcription factors to specific enhancers, promoting enhancer-promoter looping, directing chromatin accessibility, interacting with RNA polymerase II and facilitating histone acetylation. Understanding how super-enhancer RNAs (seRNAs) contribute to specific gene regulation has thus become an area of active interest. Immune checkpoint deregulation is one of the key characteristics of tumors and autoimmune diseases, and is also closely related to cell identity. Recent studies revealed a potential pathway for seRNA's involvement in regulating the expression of immune checkpoints. The present study reviews the current knowledge of eRNA function, immune checkpoint blockage mechanism, and its effect. In addition, for the first time, we explore the direct and indirect roles of seRNAs in regulating immune checkpoint expression in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Manqing Wu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Division of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Division of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
166
|
Mao W, Ghasemzadeh A, Freeman ZT, Obradovic A, Chaimowitz MG, Nirschl TR, McKiernan E, Yegnasubramanian S, Drake CG. Immunogenicity of prostate cancer is augmented by BET bromodomain inhibition. J Immunother Cancer 2019; 7:277. [PMID: 31653272 PMCID: PMC6814994 DOI: 10.1186/s40425-019-0758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Prostate cancer responds poorly to current immunotherapies. Epigenetic therapies such as BET Bromodomain inhibition can change the transcriptome of tumor cells, possibly making them more immunogenic and thus susceptible to immune targeting. METHODS We characterized the effects of BET bromodomain inhibition using JQ1 on PD-L1 and HLA-ABC expression in two human prostate cell lines, DU145 and PC3. RNA-Seq was performed to assess changes on a genome-wide level. A cytotoxic T cell killing assay was performed in MC38-OVA cells treated with JQ1 to demonstrate increased immunogenicity. In vivo experiments in the Myc-Cap model were conducted to show the effects of JQ1 administration in concert with anti-CTLA-4 checkpoint blockade. RESULTS Here, we show that targeting BET bromodomains using the small molecule inhibitor JQ1 decreased PD-L1 expression and mitigated tumor progression in prostate cancer models. Mechanistically, BET bromodomain inhibition increased MHC I expression and increased the immunogenicity of tumor cells. Transcriptional profiling showed that BET bromodomain inhibition regulates distinct networks of antigen processing and immune checkpoint molecules. In murine models, treatment with JQ1 was additive with anti-CTLA-4 immunotherapy, resulting in an increased CD8/Treg ratio. CONCLUSIONS BET Bromodomain inhibition can mediate changes in expression at a genome wide level in prostate cancer cells, resulting in an increased susceptibility to CD8 T cell targeting. These data suggest that combining BET bromodomain inhibition with immune checkpoint blockade may have clinical activity in prostate cancer patients.
Collapse
Affiliation(s)
- Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Zachary T Freeman
- Unit for Laboratory Animal Medicine (ULAM), Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aleksandar Obradovic
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
- Columbia University Systems Biology, Herbert Irving Cancer Research Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Matthew G Chaimowitz
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Emily McKiernan
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Charles G Drake
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA.
- Department of Urology, Columbia University Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Division of Hematology / Oncology, Columbia University Medical Center, 177 Fort Washington Avenue, Suite 6GN-435, New York, NY, 10032, USA.
| |
Collapse
|
167
|
Abstract
The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T cell immunity. Blocking the PD-L1/PD-1 pathway has consistently shown remarkable anti-tumor effects in patients with advanced cancers and is recognized as the gold standard for developing new immune checkpoint blockade (ICB) and combination therapies. However, the response rates of anti-PD-L1 have been limited in several solid tumors. Therefore, furthering our understanding of the regulatory mechanisms of PD-L1 can bring substantial benefits to patients with cancer by improving the efficacy of current PD-L1/PD-1 blockade or other ICBs. In this review, we provide current knowledge of PD-L1 regulatory mechanisms at the transcriptional, posttranscriptional, post-translational, and extracellular levels, and discuss the implications of these findings in cancer diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
168
|
Zhao L, Li P, Zhao L, Wang M, Tong D, Meng Z, Zhang Q, Li Q, Zhang F. Expression and clinical value of PD‐L1 which is regulated by BRD4 in tongue squamous cell carcinoma. J Cell Biochem 2019; 121:1855-1869. [DOI: 10.1002/jcb.29420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/08/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Lu Zhao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
- Department of Stomatology Binzhou People's Hospital Binzhou Shandong China
| | - Pengchong Li
- Department of Stomatology Binzhou People's Hospital Binzhou Shandong China
| | - Li Zhao
- Department of Periodontology Dongguan Dental Hospital Dongguan Guangdong China
| | - Miao Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Dongdong Tong
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Zilin Meng
- School of Resources and Environmental Engineering Shandong University of Technology Zibo Shandong China
| | - Qian Zhang
- School of Resources and Environmental Engineering Shandong University of Technology Zibo Shandong China
| | - Qing Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| | - Fenghe Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology Shandong University Jinan Shandong China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Shandong University Jinan Shandong China
| |
Collapse
|
169
|
Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR-ABL Independent Mechanisms of Resistance in Chronic Myeloid Leukemia. Front Oncol 2019; 9:939. [PMID: 31612105 PMCID: PMC6769066 DOI: 10.3389/fonc.2019.00939] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Not all chronic myeloid leukemia (CML) patients are cured with tyrosine kinase inhibitors (TKIs), and a proportion of them develop resistance. Recently, continuous BCR-ABL gene expression has been found in resistant cells with undetectable BCR-ABL protein expression, indicating that resistance may occur through kinase independent mechanisms, mainly due to the persistence of leukemia stem cells (LSCs). LSCs reside in the bone marrow niche in a quiescent state, and are characterized by a high heterogeneity in genetic, epigenetic, and transcriptional mechanisms. New approaches based on single cell genomics have offered the opportunity to identify distinct subpopulations of LSCs at diagnosis and during treatment. In the one hand, TKIs are not able to efficiently kill CML-LSCs, but they may be responsible for the modification of some LSCs characteristics, thus contributing to heterogeneity within the tumor. In the other hand, the bone marrow niche is responsible for the interactions between surrounding stromal cells and LSCs, resulting in the generation of specific signals which could favor LSCs cell cycle arrest and allow them to persist during treatment with TKIs. Additionally, LSCs may themselves alter the niche by expressing various costimulatory molecules and secreting suppressive cytokines, able to target metabolic pathways, create an anti-apoptotic environment, and alter immune system functions. Accordingly, the production of an immunosuppressant milieu may facilitate tumor escape from immune surveillance and induce chemo-resistance. In this review we will focus on BCR-ABL-independent mechanisms, analyzing especially those with a potential clinical impact in the management of CML patients.
Collapse
Affiliation(s)
- Federica Loscocco
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Curti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology L. and A. Seràgnoli, University of Bologna, Bologna, Italy
| | - Alessandro Isidori
- Haematology and Haematopoietic Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| |
Collapse
|
170
|
Hu J, Tian CQ, Damaneh MS, Li Y, Cao D, Lv K, Yu T, Meng T, Chen D, Wang X, Chen L, Li J, Song SS, Huan XJ, Qin L, Shen J, Wang YQ, Miao ZH, Xiong B. Structure-Based Discovery and Development of a Series of Potent and Selective Bromodomain and Extra-Terminal Protein Inhibitors. J Med Chem 2019; 62:8642-8663. [PMID: 31490070 DOI: 10.1021/acs.jmedchem.9b01094] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BRD4 has recently emerged as a promising drug target. Therefore, identifying novel inhibitors with distinct properties could enrich their use in anticancer treatment. Guided by the cocrystal structure of hit compound 4 harboring a five-membered-ring linker motif, we quickly identified lead compound 7, which exhibited good antitumor effects in an MM.1S xenograft model by oral administration. Encouraged by its high potency and interesting scaffold, we performed further lead optimization to generate a novel potent series of bromodomain and extra-terminal (BET) inhibitors with a (1,2,4-triazol-5-yl)-3,4-dihydroquinoxalin-2(1H)-one structure. Among them, compound 19 was found to have the best balance of activity, stability, and antitumor efficacy. After confirming its low brain penetration, we conducted comprehensive preclinical studies, including a multiple-species pharmacokinetics profile, extensive cellular mechanism studies, hERG assay, and in vivo antitumor growth effect testing, and we found that compound 19 is a potential BET protein drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Jianping Hu
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Chang-Qing Tian
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | | | | | | | - Kaikai Lv
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | | | | | | | | | | | | | | | | | - Lihuai Qin
- Center for Chemical Biology and Drug Discovery, Department of Pharmacological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | | | - Ying-Qing Wang
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Ze-Hong Miao
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| | - Bing Xiong
- University of Chinese Academy of Sciences , NO.19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
171
|
Erkes DA, Field CO, Capparelli C, Tiago M, Purwin TJ, Chervoneva I, Berger AC, Hartsough EJ, Villanueva J, Aplin AE. The next-generation BET inhibitor, PLX51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell Melanoma Res 2019; 32:687-696. [PMID: 31063649 PMCID: PMC6697571 DOI: 10.1111/pcmr.12788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T-cell-mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD-L1, FasL, and IDO-1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti-PD-1 therapy; a response associated with decreased Cox2 levels, decreased PD-L1 expression on non-immune cells, and increased intratumoral CD8+ T cells. Thus, next-generation BETi represent a potential first-line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.
Collapse
Affiliation(s)
- Dan A. Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Conroy O. Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C. Berger
- Department of Surgical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward J. Hartsough
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19107
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, PA 19104, USA
| | - Andrew E. Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
172
|
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, Schulenburg A, Rabitsch W, Sperr WR, Wolf D. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci 2019; 20:E4233. [PMID: 31470642 PMCID: PMC6747233 DOI: 10.3390/ijms20174233] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
The concept of leukemic stem cells (LSC) has been developed with the idea to explain the clonal hierarchies and architectures in leukemia, and the more or less curative anti-neoplastic effects of various targeted drugs. It is now widely accepted that curative therapies must have the potential to eliminate or completely suppress LSC, as only these cells can restore and propagate the malignancy for unlimited time periods. Since LSC represent a minor cell fraction in the leukemic clone, little is known about their properties and target expression profiles. Over the past few years, several cell-specific immunotherapy concepts have been developed, including new generations of cell-targeting antibodies, antibody-toxin conjugates, bispecific antibodies, and CAR-T cell-based strategies. Whereas such concepts have been translated and may improve outcomes of therapy in certain lymphoid neoplasms and a few other malignancies, only little is known about immunological targets that are clinically relevant and can be employed to establish such therapies in myeloid neoplasms. In the current article, we provide an overview of the immunologically relevant molecular targets expressed on LSC in patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). In addition, we discuss the current status of antibody-based therapies in these malignancies, their mode of action, and successful examples from the field.
Collapse
MESH Headings
- Acute Disease
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/immunology
- CTLA-4 Antigen/metabolism
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Immunotherapy/trends
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid/immunology
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/therapy
- Molecular Targeted Therapy/methods
- Molecular Targeted Therapy/trends
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Eisenwort
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Bauer
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Herrmann
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Radiotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Axel Schulenburg
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Rabitsch
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
- Division of Blood and Bone Marrow Transplantation, Department of Internal Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Hematology & Oncology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology & Oncology), Medical University of Innsbruck, 1090 Innsbruck, Austria
- Medical Clinic 3, Oncology, Hematology, Immunoncology & Rheumatology, University Clinic Bonn (UKB), 53127 Bonn, Germany
| |
Collapse
|
173
|
BET protein targeting suppresses the PD-1/PD-L1 pathway in triple-negative breast cancer and elicits anti-tumor immune response. Cancer Lett 2019; 465:45-58. [PMID: 31473251 DOI: 10.1016/j.canlet.2019.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic strategies aiming to leverage anti-tumor immunity are being intensively investigated as they show promising results in cancer therapy. The PD-1/PD-L1 pathway constitutes an important target to restore functional anti-tumor immune response. Here, we report that BET protein inhibition suppresses PD-1/PD-L1 in triple-negative breast cancer. BET proteins control PD-1 expression in T cells, and PD-L1 in breast cancer cell models. BET protein targeting reduces T cell-derived interferon-γ production and signaling, thereby suppressing PD-L1 induction in breast cancer cells. Moreover, BET protein inhibition improves tumor cell-specific T cell cytotoxic function. Overall, we demonstrate that BET protein targeting represents a promising strategy to overcome tumor-reactive T cell exhaustion and improve anti-tumor immune responses, by reducing the PD-1/PD-L1 axis in triple-negative breast cancer.
Collapse
|
174
|
Wang X, Zhou Y, Peng Y, Huang T, Xia F, Yang T, Duan Q, Zhang W. Bromodomain-containing protein 4 contributes to renal fibrosis through the induction of epithelial-mesenchymal transition. Exp Cell Res 2019; 383:111507. [PMID: 31356816 DOI: 10.1016/j.yexcr.2019.111507] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023]
Abstract
Fibrosis is a common pathology in renal disease. Hypertensive nephropathy (HN) is one of the most common secondary nephropathies that often progresses to severe renal fibrosis with limited treatment options beyond hypertension control. Bromodomain-containing protein 4 (Brd4) was recently recognized as a target in signaling pathways that underlie the pathologies of inflammatory diseases and tumors. A recently developed inhibitor of Brd4, JQ1, has been shown to exert antifibrotic effects and is being clinically explored as an anti-inflammatory and antitumor drug. Here, using human kidney biopsies and Angiotensin II-induced mouse fibrotic kidney samples, we show that Brd4 was upregulated in renal tissue from HN patients and hypertensive mouse models. In mice, JQ1 alleviated Angiotensin II-induced kidney fibrosis and blocked epithelial-mesenchymal transition (EMT) by altering the expression of EMT-related proteins. Using an in vitro model of HK2 cells exposed to Angiotensin II, we also demonstrated that JQ1 suppressed the protein expression of fibrotic genes in these cells. These results further implicate Brd4 in the fibrotic response in HN and reveal that Brd4 is a potential antifibrotic target. BET inhibitors are currently being investigated in clinical trials as antitumor agents and show potent pharmacological effects. Our findings suggest that BET inhibitors may also be potential translational therapies for HN.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yueyuan Zhou
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Peng
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ting Huang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fan Xia
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Tianlun Yang
- Department of Cardiovascular, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Duan
- Department of Cardiovascular, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Weiru Zhang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
175
|
Tian CQ, Chen L, Chen HD, Huan XJ, Hu JP, Shen JK, Xiong B, Wang YQ, Miao ZH. Inhibition of the BET family reduces its new target gene IDO1 expression and the production of L-kynurenine. Cell Death Dis 2019; 10:557. [PMID: 31324754 PMCID: PMC6642217 DOI: 10.1038/s41419-019-1793-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 12/13/2022]
Abstract
The bromodomain and extra terminal domain (BET) family members, including BRD2, BRD3, and BRD4, act as epigenetic readers to regulate gene expression. Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that participates in tumor immune escape primarily by catalyzing tryptophan to L-kynurenine. Here, we report that IDO1 is a new target gene of the BET family. RNA profiling showed that compound 9, a new BET inhibitor, reduced IDO1 mRNA up to seven times in Ty-82 cells. IDO1 differentially expressed in tumor cells and its expression could be induced with interferon gamma (IFN-γ). BET inhibitors (ABBV-075, JQ1, and OTX015) inhibited both constitutive and IFN-γ-inducible expression of IDO1. Similarly, reduction of BRD2, BRD3, or BRD4 decreased IDO1 expression. All these BET family members bound to the IDO1 promoter via the acetylated histone H3. JQ1 led to their release and reduced enrichment of RNA polymerase II (Pol II) on the promoter. IFN-γ increased the binding of BRD2, BRD3, BRD4, and Pol II on the IDO1 promoter by increasing the acetylation of histone H3, which could be prevented by JQ1 partially or even completely. Furthermore, both JQ1 and OTX015 decreased the production of L-kynurenine. The combination of BET inhibitors with the IDO1 inhibitor further reduced L-kynurenine, though only marginally. Importantly, the BET inhibitor ABBV-075 significantly inhibited the growth of human Ty-82 xenografts in nude mice and reduced both protein and mRNA levels of IDO1 in the xenografts. This finding lays a basis for the potential combination of BET inhibitors and IDO1 inhibitors for the treatment of IDO1-expressing cancers.
Collapse
MESH Headings
- A549 Cells
- Acetylation
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Female
- Gene Expression/drug effects
- HL-60 Cells
- HeLa Cells
- Histones/metabolism
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Promoter Regions, Genetic
- Pyridones/pharmacology
- RNA, Messenger/genetics
- Sulfonamides/pharmacology
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transfection
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chang-Qing Tian
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Lin Chen
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Hua-Dong Chen
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
| | - Xia-Juan Huan
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jian-Ping Hu
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Jing-Kang Shen
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China
| | - Bing Xiong
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Department of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
| | - Ying-Qing Wang
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
| | - Ze-Hong Miao
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203, Shanghai, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, 100049, Beijing, China.
- Open Studio for Drugability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266237, Shandong, China.
| |
Collapse
|
176
|
Abstract
Less than a decade ago, it was shown that bromodomains, acetyl lysine 'reader' modules found in proteins with varied functions, were highly tractable small-molecule targets. This is an unusual property for protein-protein or protein-peptide interaction domains, and it prompted a wave of chemical probe discovery to understand the biological potential of new agents that targeted bromodomains. The original examples, inhibitors of the bromodomain and extra-terminal (BET) class of bromodomains, showed enticing anti-inflammatory and anticancer activities, and several compounds have since advanced to human clinical trials. Here, we review the current state of BET inhibitor biology in relation to clinical development, and we discuss the next wave of bromodomain inhibitors with clinical potential in oncology and non-oncology indications. The lessons learned from BET inhibitor programmes should affect efforts to develop drugs that target non-BET bromodomains and other epigenetic readers.
Collapse
|
177
|
Yang Q, Peng J, Shi K, Xiao Y, Liu Q, Han R, Wei X, Qian Z. Rationally designed peptide-conjugated gold/platinum nanosystem with active tumor-targeting for enhancing tumor photothermal-immunotherapy. J Control Release 2019; 308:29-43. [PMID: 31252039 DOI: 10.1016/j.jconrel.2019.06.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Because of the tumor heterogeneity, poor therapeutic outcome is obtained while the conventional treatments, such as surgery, radiotherapy, or chemotherapy are utilized alone. Herein, combinational therapy strategies have been introduced to solve this problem. Photothermal therapy (PTT) as a non-invasive thermal therapeutic manner has attracting enormous attentions not only for the effective inhibition in primary tumors, but also for producing tumor-associated antigens from ablated tumor cell residues which exhibit the feasibility to enhance the therapeutic outcome of immunotherapy. Here, we report the construction and application of Au@Pt-based nanosystem with rationally designed peptide (LyP-1-PLGVRG-DPPA-1, LMDP) conjugation for cancer photothermal-immunotherapy. The obtained Au@Pt-LMDP nanosystem can serve as a matrix metalloproteinase (MMP) activated tumor targeting agents for effective photothermal therapy together with immune checkpoint blockade immunotherapy by the on-demand release of a D-peptide antagonist of programmed cell death-ligand 1 (PD-L1). The PA imaging demonstrates its effective accumulation in the tumor region by the activated tumor targeting moiety derived from the LMDP. Moreover, in vivo anti-tumor studies reveal that Au@Pt-LMDP nanosystem can effectively eliminate primary tumors via PTT, and further stimulate the activation of cytotoxic T lymphocytes by PD-L1 immune checkpoint blockage, result in inhibiting the growth of distal tumors and alleviating tumor metastasis. The present study provides a promising strategy for the combination treatment of advanced cancer and obtains a valuable therapeutic outcome in tumor photothermal-immunotherapy.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China; School of Pharmacy, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu, 610500, Sichuan, PR China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan, PR China.
| |
Collapse
|
178
|
Shen X, Zhang L, Li J, Li Y, Wang Y, Xu ZX. Recent Findings in the Regulation of Programmed Death Ligand 1 Expression. Front Immunol 2019; 10:1337. [PMID: 31258527 PMCID: PMC6587331 DOI: 10.3389/fimmu.2019.01337] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022] Open
Abstract
With the recent approvals for the application of monoclonal antibodies that target the well-characterized immune checkpoints, immune therapy shows great potential against both solid and hematologic tumors. The use of these therapeutic monoclonal antibodies elicits inspiring clinical results with durable objective responses and improvements in overall survival. Agents targeting programmed cell death protein 1 (PD-1; also known as PDCD1) and its ligand (PD-L1) achieve a great success in immune checkpoints therapy. However, the majority of patients fail to respond to PD-1/PD-L1 axis inhibitors. Expression of PD-L1 on the membrane of tumor and immune cells has been shown to be associated with enhanced objective response rates to PD-1/PD-L1 inhibition. Thus, an improved understanding of how PD-L1 expression is regulated will enable us to better define its role as a predictive marker. In this review, we summarize recent findings in the regulation of PD-L1 expression.
Collapse
Affiliation(s)
- Xiangfeng Shen
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Jicheng Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, China
| |
Collapse
|
179
|
Telomerase and Telomeres Biology in Thyroid Cancer. Int J Mol Sci 2019; 20:ijms20122887. [PMID: 31200515 PMCID: PMC6627113 DOI: 10.3390/ijms20122887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Telomere and telomerase regulation contributes to the onset and evolution of several tumors, including highly aggressive thyroid cancers (TCs). TCs are the most common endocrine malignancies and are generally characterized by a high rate of curability. However, a small but significant percentage develops distant metastasis or progresses into undifferentiated forms associated with bad prognosis and for which poor therapeutic options are available. Mutations in telomerase reverse transcriptase (TERT) promoter are among the most credited prognostic marker of aggressiveness in TCs. Indeed, their frequency progressively increases passing from indolent lesions to aggressive and anaplastic forms. TERT promoter mutations create binding sites for transcription factors, increasing TERT expression and telomerase activity. Furthermore, aggressiveness of TCs is associated with TERT locus amplification. These data encourage investigating telomerase regulating pathways as relevant drivers of TC development and progression to foster the identification of new therapeutics targets. Here, we summarize the current knowledge about telomere regulation and TCs, exploring both canonical and less conventional pathways. We discuss the possible role of telomere homeostasis in mediating response to cancer therapies and the possibility of using epigenetic drugs to re-evaluate the use of telomerase inhibitors. Combined treatments could be of support to currently used therapies still presenting weaknesses.
Collapse
|
180
|
PD-1/PD-L1 expression and interaction by automated quantitative immunofluorescent analysis show adverse prognostic impact in patients with diffuse large B-cell lymphoma having T-cell infiltration: a study from the International DLBCL Consortium Program. Mod Pathol 2019; 32:741-754. [PMID: 30666052 DOI: 10.1038/s41379-018-0193-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/14/2022]
Abstract
Programmed cell death protein 1/programmed cell death protein ligand1 (PD-1/PD-L1) interaction is an important immune checkpoint targeted by anti-PD-1/PD-L1 immunotherapies. However, the observed prognostic significance of PD-1/PD-L1 expression in diffuse large B-cell lymphoma treated with the standard of care has been inconsistent and even contradictory. To clarify the prognostic role of PD-1/PD-L1 expression and interaction in diffuse large B-cell lymphoma, in this study we used 3-marker fluorescent multiplex immunohistochemistry and Automated Quantitative Analysis Technology to assess the CD3+, PD-L1+, and PD-1+CD3+ expression in diagnostic samples and PD-1/PD-L1 interaction as indicated by presence of PD-1+CD3+ cells in the vicinity of PD-L1+ cells, analyzed their prognostic effects in 414 patients with de novo diffuse large B-cell lymphoma, and examined whether PD-1/PD-L1 interaction is required for the prognostic role of PD-1+/PD-L1+ expression. We found that low T-cell tissue cellularity, tissue PD-L1+ expression (irrespective of cell types), PD-1+CD3+ expression, and PD-1/PD-L1 interaction showed hierarchical adverse prognostic effects in the study cohort. PD-1/PD-L1 interaction showed higher sensitivity and specificity than PD-1+ and PD-L1+ expression in predicting inferior prognosis in patients with high CD3+ tissue cellularity ("hot"/inflammatory tumors). However, both PD-1+ and PD-L1+ expression showed adverse prognostic effects independent of PD-1/PD-L1 interaction, and PD-1/PD-L1 interaction showed favorable prognostic effect in PD-L1+ patients without high CD3+ tissue cellularity. Macrophage function and tumor-cell MYC expression may contribute to the PD-1-independent adverse prognostic effect of PD-L1+ expression. In summary, low T-cell tissue cellularity has unfavorable prognostic impact in diffuse large B-cell lymphoma, and tissue PD-L1+ expression and T-cell-derived PD-1+ expression have significant adverse impact only in patients with high T-cell infiltration. PD-1/PD-L1 interaction in tissue is essential but not always responsible for the inhibitory effect of PD-L1+/PD-1+ expression. These results suggest the benefit of PD-1/PD-L1 blockade therapies only in patients with sufficient T-cell infiltration, and the potential of immunofluorescent assays and Automated Quantitative Analysis in the clinical assessment of PD-1/PD-L1 expression and interaction.
Collapse
|
181
|
Imaoka M, Tanese K, Masugi Y, Hayashi M, Sakamoto M. Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells. Cancer Sci 2019; 110:2273-2283. [PMID: 31069878 PMCID: PMC6609804 DOI: 10.1111/cas.14038] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Expression of programmed cell death ligand 1 (PD‐L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ‐Interferon (IFN‐γ) has been reported as a key extrinsic stimulator of PD‐L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD‐L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN‐γ and inhibitors of the MIF‐CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD‐L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN‐γ stimulation, showed upregulation of PD‐L1 levels by IFN‐γ stimulation. This was suppressed by further treatment with the MIF‐CD74 interaction inhibitor, 4‐iodo‐6‐phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD‐L1, CD74, and MIF in its non‐treated state, treatment with 4‐iodo‐6‐phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD‐L1. Together, the results indicated that MIF‐CD74 interaction directly regulated the expression of PD‐L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF‐CD74 interaction could be a therapeutic target in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Masako Imaoka
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Keiji Tanese
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Masugi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mutsumi Hayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
182
|
Napolitano M, Venturelli M, Molinaro E, Toss A. NUT midline carcinoma of the head and neck: current perspectives. Onco Targets Ther 2019; 12:3235-3244. [PMID: 31118674 PMCID: PMC6501778 DOI: 10.2147/ott.s173056] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract: NUT midline carcinoma (NMC) is a rare and aggressive subtype of squamous carcinoma that typically arises from midline supradiaphragmatic structures, frequently from the head and neck area. NMC is genetically driven by a chromosomal rearrangement involving the NUT gene, which forms oncoproteins considered major pathogenic drivers of cellular transformation. Diagnosis of NMC has been made remarkably easier with the availability of a commercial antibody against NUT, and can be established through positive nuclear immunohistochemical staining. Although NMC remains an underrecognized malignancy, in recent years there has appeared to be increasing awareness of disease and frequency of diagnosis in adults. To date, a standard treatment for head and neck NMC has not been established and a multimodal approach with systemic chemotherapy, surgery and radiation therapy is currently adopted in clinical practice. Recently, BET inhibitors and histone deacetylase inhibitors have emerged as two promising classes of targeted agents, currently investigated in clinical trials for adults with head and neck NMC. At the same time, combination approaches and novel targeted agents, such as next-generation BET inhibitors and CDK9 inhibitors, have shown preclinical activity. The present review explores the clinical pathological characteristics of NMC of the head and neck and presents the current state of the art on diagnosis, prognosis, and treatment of this rare but lethal disease.
Collapse
Affiliation(s)
- M Napolitano
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - M Venturelli
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - E Molinaro
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - A Toss
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| |
Collapse
|
183
|
Liu K, Zhou Z, Gao H, Yang F, Qian Y, Jin H, Guo Y, Liu Y, Li H, Zhang C, Guo J, Wan Y, Chen R. JQ1, a BET‐bromodomain inhibitor, inhibits human cancer growth and suppresses PD‐L1 expression. Cell Biol Int 2019; 43:642-650. [PMID: 30958600 DOI: 10.1002/cbin.11139] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Kaisheng Liu
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
- School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong Kong999077 Hong Kong SAR China
| | - Zhifan Zhou
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Hengyuan Gao
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Fang Yang
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Yajun Qian
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Hongtao Jin
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Yaomin Guo
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Ying Liu
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Haili Li
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Cheng Zhang
- School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong Kong999077 Hong Kong SAR China
| | - Jinan Guo
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Yong Wan
- The First Affiliated Hospital of Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University, Shenzhen People's Hospital518020 Guangdong China
| | - Rui Chen
- School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong Kong999077 Hong Kong SAR China
| |
Collapse
|
184
|
Joshi S, Singh AR, Liu KX, Pham TV, Zulcic M, Skola D, Chun HB, Glass CK, Morales GA, Garlich JR, Durden DL. SF2523: Dual PI3K/BRD4 Inhibitor Blocks Tumor Immunosuppression and Promotes Adaptive Immune Responses in Cancer. Mol Cancer Ther 2019; 18:1036-1044. [PMID: 31018997 DOI: 10.1158/1535-7163.mct-18-1206] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/17/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Macrophages (MΘs) are key immune infiltrates in solid tumors and serve as major drivers behind tumor growth, immune suppression, and inhibition of adaptive immune responses in the tumor microenvironment (TME). Bromodomain and extraterminal (BET) protein, BRD4, which binds to acetylated lysine on histone tails, has recently been reported to promote gene transcription of proinflammatory cytokines but has rarely been explored for its role in IL4-driven MΘ transcriptional programming and MΘ-mediated immunosuppression in the TME. Herein, we report that BET bromodomain inhibitor, JQ1, blocks association of BRD4 with promoters of arginase and other IL4-driven MΘ genes, which promote immunosuppression in TME. Pharmacologic inhibition of BRD4 using JQ1 and/or PI3K using dual PI3K/BRD4 inhibitor SF2523 (previously reported by our group as a potent inhibitor to block tumor growth and metastasis in various cancer models) suppresses tumor growth in syngeneic and spontaneous murine cancer models; reduces infiltration of myeloid-derived suppressor cells; blocks polarization of immunosuppressive MΘs; restores CD8+ T-cell activity; and stimulates antitumor immune responses. Finally, our results suggest that BRD4 regulates the immunosuppressive myeloid TME, and BET inhibitors and dual PI3K/BRD4 inhibitors are therapeutic strategies for cancers driven by the MΘ-dependent immunosuppressive TME.
Collapse
Affiliation(s)
- Shweta Joshi
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
| | - Alok R Singh
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Kevin X Liu
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Timothy V Pham
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Muamera Zulcic
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California
| | - Dylan Skola
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Hyun Bae Chun
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | - Christopher K Glass
- Division of Biological Sciences, University of California San Diego, San Diego, California
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California San Diego, San Diego, California.
- SignalRx Pharmaceuticals, San Diego, California
| |
Collapse
|
185
|
Vecchio E, Golino G, Pisano A, Albano F, Falcone C, Ceglia S, Iaccino E, Mimmi S, Fiume G, Giurato G, Britti D, Scala G, Quinto I. IBTK contributes to B-cell lymphomagenesis in Eμ-myc transgenic mice conferring resistance to apoptosis. Cell Death Dis 2019; 10:320. [PMID: 30975981 PMCID: PMC6459904 DOI: 10.1038/s41419-019-1557-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
Increasing evidence supports the involvement of IBTK in cell survival and tumor growth. Previously, we have shown that IBTK RNA interference affects the wide genome expression and RNA splicing in cell-type specific manner. Further, the expression of IBTK gene progressively increases from indolent to aggressive stage of chronic lymphocytic leukemia and decreases in disease remission after therapy. However, the role of IBTK in tumorigenesis has not been elucidated. Here, we report that loss of the murine Ibtk gene raises survival and delays tumor onset in Eμ-myc transgenic mice, a preclinical model of Myc-driven lymphoma. In particular, we found that the number of pre-cancerous B cells of bone marrow and spleen is reduced in Ibtk-/-Eμ-myc mice owing to impaired viability and increased apoptosis, as measured by Annexin V binding, Caspase 3/7 cleavage assays and cell cycle profile analysis. Instead, the proliferation rate of pre-cancerous B cells is unaffected by the loss of Ibtk. We observed a direct correlation between Ibtk and myc expression and demonstrated a Myc-dependent regulation of Ibtk expression in murine B cells, human hematopoietic and nonhematopoietic cell lines by analysis of ChIP-seq data. By tet-repressible Myc system, we confirmed a Myc-dependent expression of IBTK in human B cells. Further, we showed that Ibtk loss affected the main apoptotic pathways dependent on Myc overexpression in pre-cancerous Eμ-myc mice, in particular, MCL-1 and p53. Of note, we found that loss of IBTK impaired cell cycle and increased apoptosis also in a human epithelial cell line, HeLa cells, in Myc-independent manner. Taken together, these results suggest that Ibtk sustains the oncogenic activity of Myc by inhibiting apoptosis of murine pre-cancerous B cells, as a cell-specific mechanism. Our findings could be relevant for the development of IBTK inhibitors sensitizing tumor cells to apoptosis.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy.
| | - Gaetanina Golino
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Antonio Pisano
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Francesco Albano
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Cristina Falcone
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Simona Ceglia
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Domenico Britti
- Department of Health Science, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy.,Interdepartmental Services Centre of Veterinary for Human and Animal Health, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, 88100, Italy.
| |
Collapse
|
186
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
187
|
Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, Senzer N, Nemunaitis J. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA 2019; 5:FSO372. [PMID: 30906568 PMCID: PMC6426170 DOI: 10.4155/fsoa-2018-0115] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 01/18/2023] Open
Abstract
Histone lysine acetylation is critical in regulating transcription. Dysregulation of this process results in aberrant gene expression in various diseases, including cancer. The bromodomain, present in several proteins, recognizes promotor lysine acetylation and recruits other transcription factors. The bromodomain extra-terminal (BET) family of proteins consists of four conserved mammalian members that regulate transcription of oncogenes such as MYC and the NUT fusion oncoprotein. Targeting the acetyl-lysine-binding property of BET proteins is a potential therapeutic approach of cancer. Consequently, following the demonstration that thienotriazolodiazepine small molecules effectively inhibit BET, clinical trials were initiated. We thus discuss the mechanisms of action of various BET inhibitors and the prospects for their clinical use as cancer therapeutics.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Khalil Choucair
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Mushtaq Ashraf
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Danae M Hammouda
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Abduraham Alloghbi
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Talal Khan
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Neil Senzer
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
- ProMedica Health System, Toledo, OH, 43606, USA
| |
Collapse
|
188
|
Deng S, Hu Q, Zhang H, Yang F, Peng C, Huang C. HDAC3 Inhibition Upregulates PD-L1 Expression in B-Cell Lymphomas and Augments the Efficacy of Anti-PD-L1 Therapy. Mol Cancer Ther 2019; 18:900-908. [PMID: 30824609 DOI: 10.1158/1535-7163.mct-18-1068] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Programmed cell-death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) pathway blockade is a promising therapy for the treatment of advanced cancers, including B-cell lymphoma. The clinical response to PD-1/PD-L1 immunotherapy correlates with PD-L1 levels on tumor cells and other cells in the tumor microenvironment. Hence, it is important to understand the molecular mechanisms that regulate PD-L1 expression. Here, we report that histone deacetylase 3 (HDAC3) is a crucial repressor of PD-L1 transcription in B-cell lymphoma. Pan-HDACs or selective HDAC3 inhibitors could rapidly increase histone acetylation and recruitment of bromodomain protein BRD4 at the promoter region of PD-L1 gene, leading to activation of its transcription. Mechanically, HDAC3 and its putative associated corepressor SMRT were recruited to the PD-L1 promoter by the transcriptional repressor BCL6. In addition, HDAC3 inhibition reduced DNA methyltransferase 1 protein levels to indirectly activate PD-L1 transcription. Finally, HDAC3 inhibition increased PD-L1 expression on dendritic cells in the tumor microenvironment. Combining selective HDAC3 inhibitor with anti-PD-L1 immunotherapy enhanced tumor regression in syngeneic murine lymphoma model. Our findings identify HDAC3 as an important epigenetic regulator of PD-L1 expression and implicate combination of HDAC3 inhibition with PD-1/PD-L1 blockade in the treatment of B-cell lymphomas.
Collapse
Affiliation(s)
- Siyu Deng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Hu
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Zhang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Yang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Peng
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chuanxin Huang
- Shanghai Institute of Immunology and Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
189
|
Hu G, He N, Cai C, Cai F, Fan P, Zheng Z, Jin X. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology 2019; 19:383-389. [PMID: 30670333 DOI: 10.1016/j.pan.2019.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the second leading cause of cancer-related deaths worldwide. Despite immune checkpoints based immunotherapy highlights a new therapeutic strategy and achieves a remarkable therapeutic effect in various types of malignant tumors. Pancreatic cancer is one of the non-immunogenic cancers and is resistant to immunotherapy. Programmed death ligand 1 (PD-L1) is expressed on the surface of tumor cells and its level is a key determinant of the checkpoint immunotherapy efficacy. Here, we reported that the specific inhibitor of histone deacetylase 3 (HDAC3) decreased the protein and mRNA level of PD-L1 in pancreatic cancer cells. Furthermore, we showed that HDAC3 was critical for PD-L1 regulation and positively correlated with PD-L1 in PDAC patient specimens. Finally, we demonstrated that HDAC3/signal transducer and activator of transcription 3 (STAT3) pathway transcriptionally regulated PD-L1 expression. Collectively, our data contributes to a better understanding of the function of HDAC3 in cancer immunity and the regulatory mechanism of PD-L1. More importantly, these data suggest that the HDAC3 inhibitors might be used to improve immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Guofu Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nan He
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Fan
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
190
|
Emerging roles of and therapeutic strategies targeting BRD4 in cancer. Cell Immunol 2019; 337:48-53. [PMID: 30832981 DOI: 10.1016/j.cellimm.2019.02.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 12/12/2022]
Abstract
The Bromodomain and Extra-terminal (BET) family of proteins were first recognized as important epigenetic regulators in inflammatory processes; however, there is increasing evidence to support the notion that BET proteins also play a critical role in 'reading' chromatin and recruiting chromatin-regulating enzymes to control gene expression in a number of pathologic processes, including cancer. To this end, the mechanisms by which BET proteins regulate chromatin remodeling and promote tumor-associated inflammation have been heavily studied over the past decade. This article to review the biology of BET protein dysfunction in promoting tumor-associated inflammation and cancer progression and the application of small molecule inhibitors that target specific BET proteins, alone or in combination with immunomodulatory agents as a novel therapeutic strategy for cancer patients.
Collapse
|
191
|
Nikbakht N, Tiago M, Erkes DA, Chervoneva I, Aplin AE. BET Inhibition Modifies Melanoma Infiltrating T Cells and Enhances Response to PD-L1 Blockade. J Invest Dermatol 2019; 139:1612-1615. [PMID: 30703359 DOI: 10.1016/j.jid.2018.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dan A Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inna Chervoneva
- Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew E Aplin
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center at Jefferson, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
192
|
Deng R, Zhang P, Liu W, Zeng X, Ma X, Shi L, Wang T, Yin Y, Chang W, Zhang P, Wang G, Tao K. HDAC is indispensable for IFN-γ-induced B7-H1 expression in gastric cancer. Clin Epigenetics 2018; 10:153. [PMID: 30537988 PMCID: PMC6288935 DOI: 10.1186/s13148-018-0589-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background B7 homolog 1 (B7-H1) overexpression on tumor cells is an important mechanism of immune evasion in gastric cancer (GC). Elucidation of the regulation of B7-H1 expression is urgently required to guide B7-H1-targeted cancer therapy. Interferon gamma (IFN-γ) is thought to be the main driving force behind B7-H1 expression, and epigenetic factors including histone acetylation are recently linked to the process. Here, we investigated the potential role of histone deacetylase (HDAC) in IFN-γ-induced B7-H1 expression in GC. The effect of Vorinostat (SAHA), a small molecular inhibitor of HDAC, on tumor growth and B7-H1 expression in a mouse GC model was also evaluated. Results RNA-seq data from The Cancer Genome Atlas revealed that expression of B7-H1, HDAC1–3, 6–8, and 10 and SIRT1, 3, 5, and 6 was higher, and expression of HDAC5 and SIRT4 was lower in GC compared to that in normal gastric tissues; that HDAC3 and HDAC1 expression level significantly correlated with B7-H1 in GC with a respective r value of 0.42 (p < 0.001) and 0.21 (p < 0.001). HDAC inhibitor (Trichostatin A, SAHA, and sodium butyrate) pretreatment suppressed IFN-γ-induced B7-H1 expression on HGC-27 cells. HDAC1 and HDAC3 gene knockdown had the same effect. SAHA pretreatment or HDAC knockdown resulted in impaired IFN-γ signaling, demonstrated by the reduction of JAK2, p-JAK1, p-JAK2, and p-STAT1 expression and inefficient STAT1 nuclear translocation. Furthermore, SAHA pretreatment compromised IFN-γ-induced upregulation of histone H3 lysine 9 acetylation level in B7-H1 gene promoter. In the grafted mouse GC model, SAHA treatment suppressed tumor growth, inhibited B7-H1 expression, and elevated the percentage of tumor-infiltrating CD8+ T cells. Conclusion HDAC is indispensable for IFN-γ-induced B7-H1 in GC. The study suggests the possibility of targeting B7-H1 using small molecular HDAC inhibitors for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13148-018-0589-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Deng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weilong Chang
- Department of General Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Pei Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
193
|
Middleton SA, Rajpal N, Cutler L, Mander P, Rioja I, Prinjha RK, Rajpal D, Agarwal P, Kumar V. BET Inhibition Improves NASH and Liver Fibrosis. Sci Rep 2018; 8:17257. [PMID: 30467325 PMCID: PMC6250695 DOI: 10.1038/s41598-018-35653-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a leading form of chronic liver disease with large unmet need. Non-alcoholic steatohepatitis (NASH), a progressive variant of NAFLD, can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. To identify potential new therapeutics for NASH, we used a computational approach based on Connectivity Map (CMAP) analysis, which pointed us to bromodomain and extra-terminal motif (BET) inhibitors for treating NASH. To experimentally validate this hypothesis, we tested a small-molecule inhibitor of the BET family of proteins, GSK1210151A (I-BET151), in the STAM mouse NASH model at two different dosing timepoints (onset of NASH and progression to fibrosis). I-BET151 decreased the non-alcoholic fatty liver disease activity score (NAS), a clinical endpoint for assessing the severity of NASH, as well as progression of liver fibrosis and interferon-γ expression. Transcriptional characterization of these mice through RNA-sequencing was consistent with predictions from the CMAP analysis of a human NASH signature and pointed to alterations in molecular mechanisms related to interferon signaling and cholesterol biosynthesis, as well as reversal of gene expression patterns linked to fibrotic markers. Altogether, these results suggest that inhibition of BET proteins may present a novel therapeutic opportunity in the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Sarah A Middleton
- Computational Biology, GSK, 1250 S. Collegeville Road, UP12-100, Collegeville, PA, 19426-0989, USA
| | - Neetu Rajpal
- Computational Biology, GSK, 1250 S. Collegeville Road, UP12-100, Collegeville, PA, 19426-0989, USA
| | - Leanne Cutler
- Quantitative Pharmacology, Immuno-Inflammation Therapy Area, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Palwinder Mander
- Epigenetics DPU, Oncology Therapy Area, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Inmaculada Rioja
- Epigenetics DPU, Oncology Therapy Area, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Rab K Prinjha
- Epigenetics DPU, Oncology Therapy Area, Medicines Research Centre, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Deepak Rajpal
- Computational Biology, GSK, 1250 S. Collegeville Road, UP12-100, Collegeville, PA, 19426-0989, USA
| | - Pankaj Agarwal
- Computational Biology, GSK, 1250 S. Collegeville Road, UP12-100, Collegeville, PA, 19426-0989, USA
| | - Vinod Kumar
- Computational Biology, GSK, 1250 S. Collegeville Road, UP12-100, Collegeville, PA, 19426-0989, USA.
| |
Collapse
|
194
|
Zhang J, Dang F, Ren J, Wei W. Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy. Trends Biochem Sci 2018; 43:1014-1032. [PMID: 30287140 DOI: 10.1016/j.tibs.2018.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
PD-L1, frequently expressed in human cancers, engages with PD-1 on immune cells and contributes to cancer immune evasion. As such, antibodies blocking the PD-1/PD-L1 interaction reactivate cytotoxic T cells to eradicate cancer cells. However, a majority of cancer patients fail to respond to PD-1/PD-L1 blockade with unclear underlying mechanism(s). Recent studies revealed that PD-L1 expression levels on tumor cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for controlling PD-L1 expression will be important to improve the clinical response rate and efficacy of PD-1/PD-L1 blockade. In this review, we primarily focus on summarizing PD-L1 regulation and its potential roles in regulating antitumor immune response, with purpose to optimize anti-PD-1/PD-L1 therapies, benefiting a wider cancer patient population.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Junming Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
195
|
Shi Y. Regulatory mechanisms of PD-L1 expression in cancer cells. Cancer Immunol Immunother 2018; 67:1481-1489. [PMID: 30120503 PMCID: PMC11028058 DOI: 10.1007/s00262-018-2226-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
Abstract
Immunotherapy targeting the PD-L1/PD-1 pathway using antibodies is effective in the clinical treatment of a multitude of cancers. This makes research of the regulatory mechanisms of PD-1 expression in cancer cells intriguing. PD-L1 expression can be categorized into inducible expression, attributed to extrinsic factors in the microenvironment, and constitutive expression, attributed to intrinsic cancer-driving gene alteration. The mechanisms of PD-L1 expression in cancer cells operate at multiple levels, including gene amplification, chromatin modification, transcription, posttranscription, translation and posttranslation. Moreover, some open questions in this field that need to be answered in future research are proposed. Studies of regulatory mechanisms of PD-L1 expression pave the way for the application of more effective approaches in the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
196
|
Ebine K, Kumar K, Pham TN, Shields MA, Collier KA, Shang M, DeCant BT, Urrutia R, Hwang RF, Grimaldo S, Principe DR, Grippo PJ, Bentrem DJ, Munshi HG. Interplay between interferon regulatory factor 1 and BRD4 in the regulation of PD-L1 in pancreatic stellate cells. Sci Rep 2018; 8:13225. [PMID: 30185888 PMCID: PMC6125340 DOI: 10.1038/s41598-018-31658-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 01/18/2023] Open
Abstract
The fibrotic reaction is a characteristic feature of human pancreatic ductal adenocarcinoma (PDAC) tumors. It is associated with activation and proliferation of pancreatic stellate cells (PSCs), which are key regulators of fibrosis in vivo. While there is increasing interest in the regulation of PD-L1 expression in cancer and immune cells, the expression and regulation of PD-L1 in other stromal cells, such as PSCs, has not been fully evaluated. Here we show that PSCs in vitro express higher PD-L1 mRNA and protein levels compared to the levels present in PDAC cells. We show that inhibitors targeting bromodomain and extra-terminal (BET) proteins and BRD4 knockdown decrease interferon-γ (IFN-γ)-induced PD-L1 expression in PSCs. We also show that c-MYC, one of the well-established targets of BET inhibitors, does not mediate IFN-γ-regulated PD-L1 expression in PSCs. Instead we show that interferon regulatory factor 1 (IRF1) mediates IFN-γ-induced PD-L1 expression in PSCs. Finally, while we show that BET inhibitors do not regulate IFN-γ-induced IRF1 expression in PSCs, BET inhibitors decrease binding of IRF1 and BRD4 to the PD-L1 promoter. Together, these results demonstrate the interplay between IRF1 and BRD4 in the regulation of PD-L1 in PSCs.
Collapse
Affiliation(s)
- Kazumi Ebine
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Krishan Kumar
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| | - Thao N Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mario A Shields
- Cold Spring Harbor Laboratory, Cold Spring Harbor, Cold Spring, NY, USA
| | - Katharine A Collier
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Meng Shang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Brian T DeCant
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raul Urrutia
- Laboratory of Epigenetics and Chromatin Dynamics, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rosa F Hwang
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sam Grimaldo
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA
| | - Hidayatullah G Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
197
|
Adeegbe DO, Liu S, Hattersley MM, Bowden M, Zhou CW, Li S, Vlahos R, Grondine M, Dolgalev I, Ivanova EV, Quinn MM, Gao P, Hammerman PS, Bradner JE, Diehl JA, Rustgi AK, Bass AJ, Tsirigos A, Freeman GJ, Chen H, Wong KK. BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in Kras-Mutant Non-Small Cell Lung Cancer. Cancer Immunol Res 2018; 6:1234-1245. [PMID: 30087114 DOI: 10.1158/2326-6066.cir-18-0077] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/22/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022]
Abstract
KRAS mutation is present in approximately 30% of human lung adenocarcinomas. Although recent advances in targeted therapy have shown great promise, effective targeting of KRAS remains elusive, and concurrent alterations in tumor suppressors render KRAS-mutant tumors even more resistant to existing therapies. Contributing to the refractoriness of KRAS-mutant tumors are immunosuppressive mechanisms, such as increased presence of suppressive regulatory T cells (Treg) in tumors and elevated expression of the inhibitory receptor PD-1 on tumor-infiltrating T cells. Treatment with BET bromodomain inhibitors is beneficial for hematologic malignancies, and they have Treg-disruptive effects in a non-small cell lung cancer (NSCLC) model. Targeting PD-1-inhibitory signals through PD-1 antibody blockade also has substantial therapeutic impact in lung cancer, although these outcomes are limited to a minority of patients. We hypothesized that the BET bromodomain inhibitor JQ1 would synergize with PD-1 blockade to promote a robust antitumor response in lung cancer. In the present study, using Kras+/LSL-G12D ; Trp53L/L (KP) mouse models of NSCLC, we identified cooperative effects between JQ1 and PD-1 antibody. The numbers of tumor-infiltrating Tregs were reduced and activation of tumor-infiltrating T cells, which had a T-helper type 1 (Th1) cytokine profile, was enhanced, underlying their improved effector function. Furthermore, lung tumor-bearing mice treated with this combination showed robust and long-lasting antitumor responses compared with either agent alone, culminating in substantial improvement in the overall survival of treated mice. Thus, combining BET bromodomain inhibition with immune checkpoint blockade offers a promising therapeutic approach for solid malignancies such as lung adenocarcinoma. Cancer Immunol Res; 6(10); 1234-45. ©2018 AACR.
Collapse
Affiliation(s)
- Dennis O Adeegbe
- Laura & Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York.
| | - Shengwu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Maureen M Hattersley
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Michaela Bowden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Chensheng W Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Shuai Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Department of Pathology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Raven Vlahos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Michael Grondine
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories and Department of Pathology, New York University School of Medicine, New York, New York
| | - Elena V Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Max M Quinn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Peng Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Peter S Hammerman
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - James E Bradner
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories and Department of Pathology, New York University School of Medicine, New York, New York
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Huawei Chen
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts
| | - Kwok-Kin Wong
- Laura & Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, New York.
| |
Collapse
|
198
|
Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol 2018; 51:198-210. [PMID: 28782607 DOI: 10.1016/j.semcancer.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Over the last decade transcriptional dysregulation and altered epigenetic programs have emerged as a hallmark in the majority of hematological cancers. Several epigenetic regulators are recurrently mutated in many hematological malignancies. In addition, in those cases that lack epigenetic mutations, altered function of epigenetic regulators has been shown to play a central role in the pathobiology of many hematological neoplasms, through mechanisms that are becoming increasingly understood. This, in turn, has led to the development of small molecule inhibitors of dysregulated epigenetic pathways as novel targeted therapies for hematological malignancies. In this review, we will present the most recent advances in our understanding of the role played by dysregulated epigenetic programs in the development and maintenance of hematological neoplasms. We will describe novel therapeutics targeting altered epigenetic programs and outline their mode of action. We will then discuss their use in specific conditions, identify potential limitations and putative toxicities while also providing an update on their current clinical development. Finally, we will highlight the opportunities presented by epigenetically targeted therapies in hematological malignancies and introduce the challenges that need to be tackled by both the research and clinical communities to best translate these novel therapies into clinical practice and to improve patient outcomes.
Collapse
Affiliation(s)
- Paolo Gallipoli
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Brian J P Huntly
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
199
|
Andrieu GP, Shafran JS, Deeney JT, Bharadwaj KR, Rangarajan A, Denis GV. BET proteins in abnormal metabolism, inflammation, and the breast cancer microenvironment. J Leukoc Biol 2018; 104:265-274. [PMID: 29493812 PMCID: PMC6134394 DOI: 10.1002/jlb.5ri0917-380rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/10/2018] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
Obesity and its associated pathology Type 2 diabetes are two chronic metabolic and inflammatory diseases that promote breast cancer progression, metastasis, and poor outcomes. Emerging critical opinion considers unresolved inflammation and abnormal metabolism separately from obesity; settings where they do not co-occur can inform disease mechanism. In breast cancer, the tumor microenvironment is often infiltrated with T effector and T regulatory cells programmed by metabolic signaling. The pathways by which tumor cells evade immune surveillance, immune therapies, and take advantage of antitumor immunity are poorly understood, but likely depend on metabolic inflammation in the microenvironment. Immune functions are abnormal in metabolic disease, and lessons learned from preclinical studies in lean and metabolically normal environments may not translate to patients with obesity and metabolic disease. This problem is made more urgent by the rising incidence of breast cancer among women who are not obese but who have metabolic disease and associated inflammation, a phenotype common in Asia. The somatic BET proteins, comprising BRD2, BRD3, and BRD4, are new critical regulators of metabolism, coactivate transcription of genes that encode proinflammatory cytokines in immune cell subsets infiltrating the microenvironment, and could be important targets in breast cancer immunotherapy. These transcriptional coregulators are well known to regulate tumor cell progression, but only recently identified as critical for metabolism, metastasis, and expression of immune checkpoint molecules. We consider interrelationships among metabolism, inflammation, and breast cancer aggressiveness relevant to the emerging threat of breast cancer among women with metabolic disease, but without obesity.
Collapse
Affiliation(s)
| | - Jordan S. Shafran
- Cancer Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jude T. Deeney
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kishan R. Bharadwaj
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| | - Gerald V. Denis
- Cancer Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
200
|
Zerdes I, Matikas A, Bergh J, Rassidakis GZ, Foukakis T. Genetic, transcriptional and post-translational regulation of the programmed death protein ligand 1 in cancer: biology and clinical correlations. Oncogene 2018; 37:4639-4661. [PMID: 29765155 PMCID: PMC6107481 DOI: 10.1038/s41388-018-0303-3] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
The programmed death protein 1 (PD-1) and its ligand (PD-L1) represent a well-characterized immune checkpoint in cancer, effectively targeted by monoclonal antibodies that are approved for routine clinical use. The regulation of PD-L1 expression is complex, varies between different tumor types and occurs at the genetic, transcriptional and post-transcriptional levels. Copy number alterations of PD-L1 locus have been reported with varying frequency in several tumor types. At the transcriptional level, a number of transcriptional factors seem to regulate PD-L1 expression including HIF-1, STAT3, NF-κΒ, and AP-1. Activation of common oncogenic pathways such as JAK/STAT, RAS/ERK, or PI3K/AKT/MTOR, as well as treatment with cytotoxic agents have also been shown to affect tumoral PD-L1 expression. Correlative studies of clinical trials with PD-1/PD-L1 inhibitors have so far shown markedly discordant results regarding the value of PD-L1 expression as a marker of response to treatment. As the indications for immune checkpoint inhibition broaden, understanding the regulation of PD-L1 in cancer will be of utmost importance for defining its role as predictive marker but also for optimizing strategies for cancer immunotherapy. Here, we review the current knowledge of PD-L1 regulation, and its use as biomarker and as therapeutic target in cancer.
Collapse
Affiliation(s)
- Ioannis Zerdes
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden
| | - George Z Rassidakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet, Stockholm, Sweden.
- Department of Oncology, Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|