151
|
Li X, Yang H, Jin H, Turkez H, Ozturk G, Doganay HL, Zhang C, Nielsen J, Uhlén M, Borén J, Mardinoglu A. The acute effect of different NAD + precursors included in the combined metabolic activators. Free Radic Biol Med 2023; 205:77-89. [PMID: 37271226 DOI: 10.1016/j.freeradbiomed.2023.05.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
NAD+ and glutathione precursors are currently used as metabolic modulators for improving the metabolic conditions associated with various human diseases, including non-alcoholic fatty liver disease, neurodegenerative diseases, mitochondrial myopathy, and age-induced diabetes. Here, we performed a one-day double blinded, placebo-controlled human clinical study to assess the safety and acute effects of six different Combined Metabolic Activators (CMAs) with 1 g of different NAD+ precursors based on global metabolomics analysis. Our integrative analysis showed that the NAD+ salvage pathway is the main source for boosting the NAD+ levels with the administration of CMAs without NAD+ precursors. We observed that incorporation of nicotinamide (Nam) in the CMAs can boost the NAD+ products, followed by niacin (NA), nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), but not flush free niacin (FFN). In addition, the NA administration led to a flushing reaction, accompanied by decreased phospholipids and increased bilirubin and bilirubin derivatives, which could be potentially risky. In conclusion, this study provided a plasma metabolomic landscape of different CMA formulations, and proposed that CMAs with Nam, NMN as well as NR can be administered for boosting NAD+ levels to improve altered metabolic conditions.
Collapse
Affiliation(s)
- Xiangyu Li
- Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Guangzhou Laboratory, Guangzhou, 510005, China.
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey.
| | - Hamdi Levent Doganay
- Gastroenterology and Hepatology Unit, VM Pendik Medicalpark Teaching Hospital, İstanbul, Turkey; Department of Internal Medicine, Bahçeşehir University (BAU), Istanbul, Turkey.
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark.
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
152
|
Skupienski R, Steullet P, Do KQ, Xin L. Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia. Transl Psychiatry 2023; 13:275. [PMID: 37543592 PMCID: PMC10404265 DOI: 10.1038/s41398-023-02568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.
Collapse
Affiliation(s)
- Radek Skupienski
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Switzerland
| | - Lijing Xin
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland.
- Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
153
|
Guo X, Tan S, Wang T, Sun R, Li S, Tian P, Li M, Wang Y, Zhang Y, Yan Y, Dong Z, Yan L, Yue X, Wu Z, Li C, Yamagata K, Gao L, Ma C, Li T, Liang X. NAD + salvage governs mitochondrial metabolism, invigorating natural killer cell antitumor immunity. Hepatology 2023; 78:468-485. [PMID: 35815363 DOI: 10.1002/hep.32658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Natural killer (NK) cells are key players in tumor immunosurveillance, and metabolic adaptation manipulates their fate and functional state. The nicotinamide adenine dinucleotide (NAD + ) has emerged as a vital factor to link cellular metabolism and signaling transduction. Here, we identified NAD + metabolism as a central hub to determine the homeostasis and function of NK cells. APPROACH AND RESULTS NAD + level was elevated in activated NK cells. NAD + supplementation not only enhanced cytokine production and cytotoxicity but also improved the proliferation and viability of NK cells. Intriguingly, the salvage pathway was involved in maintaining NAD + homeostasis in activated NK cells. Genetic ablation or pharmacological blockade of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD + salvage pathway, markedly destroyed the viability and function of NK cells. Mechanistically, NAD + salvage dictated the mitochondrial homeostasis and oxidative phosphorylation activity to support the optimal function of NK cells. However, in human HCC tissues, NAMPT expression and NAD + level were significantly down-regulated in tumor-infiltrating NK cells, which negatively correlated with patient survival. And lactate accumulation in the tumor microenvironment was at least partially responsible for the transcriptional repression of NAMPT in NK cells. Further, deficiency of Nampt in NK cells accelerated the growth of HCC and melanoma. Supplementation of the NAD + precursor nicotinamide mononucleotide (NMN) significantly improved NK antitumor response in both mouse and human cell-derived xenografts. CONCLUSIONS These findings reveal NAD + salvage as an essential factor for NK-cell homeostasis and function, suggesting a potential strategy for invigorating NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Guo
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Siyu Tan
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Tixiao Wang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Renhui Sun
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Shuangjie Li
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Panpan Tian
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Mengzhen Li
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yuzhen Wang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yankun Zhang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Yuchuan Yan
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Zhaoru Dong
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Lunjie Yan
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Xuetian Yue
- Department of Cellular Biology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Zhuanchang Wu
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of the Ministry of Education , Department of Histology and Embryology , School of Basic Medical Sciences , Shandong University , Jinan , China
| | - Kazuya Yamagata
- Department of Medical Biochemistry , Faculty of Life Sciences , Kumamoto University , Kumamoto , Japan
| | - Lifen Gao
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| | - Chunhong Ma
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| | - Tao Li
- Department of General Surgery , Qilu Hospital , Shandong University , Jinan , China
| | - Xiaohong Liang
- Department of Immunology , Key Laboratory for Experimental Teratology of Ministry of Education , Shandong Provincial Key Laboratory of Infection & Immunology , School of Basic Medical Sciences , Shandong University , Jinan , China
- Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy , Jinan , China
| |
Collapse
|
154
|
Perazza LR, Gower AC, Brown-Borg HM, Pajevic PD, Thompson LV. Protectin DX as a therapeutic strategy against frailty in mice. GeroScience 2023; 45:2601-2627. [PMID: 37059838 PMCID: PMC10651819 DOI: 10.1007/s11357-023-00789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters. A set of 22-month-old C57BL/6 male and female mice were assigned to vehicle (Old) or PDX daily gavage treatment for 9 weeks, whereas 6-month-old (Adult) mice received only vehicle. Forelimb and hindlimb strength, endurance, voluntary wheel activity and walking speed determined physical performance and were combined with a frailty index score and body weight loss to determine frailty status. Our data shows that old vehicle-treated mice from both sexes had body weight loss paralleling visceromegaly, and Old females also had impaired insulin clearance as compared to the Adult group. Aging was associated with physical performance decline together with higher odds of frailty development. There was also age-driven mesangial expansion and glomerular hypertrophy as well as bone mineral density loss. All of the in vivo and in vitro impairments observed with aging co-occurred with upregulation of inflammatory pathways and Myc signaling as well as downregulation of genes related to adipogenesis and oxidative phosphorylation in liver. PDX attenuated the age-driven physical performance (strength, exhaustion, walking speed) decline, promoted robustness, prevented bone losses and partially reversed changes in hepatic expression of Myc targets and metabolic genes. In conclusion, our data provides evidence of the beneficial therapeutic effect of PDX against features of frailty in mice. Further studies are warranted to investigate the mechanisms of action and the potential for human translation.
Collapse
Affiliation(s)
- Laís R Perazza
- Department of Physical Therapy, Boston University, Boston, MA, USA.
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University, Boston, MA, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | | |
Collapse
|
155
|
Myakala K, Wang XX, Shults NV, Krawczyk E, Jones BA, Yang X, Rosenberg AZ, Ginley B, Sarder P, Brodsky L, Jang Y, Na CH, Qi Y, Zhang X, Guha U, Wu C, Bansal S, Ma J, Cheema A, Albanese C, Hirschey MD, Yoshida T, Kopp JB, Panov J, Levi M. NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease. J Biol Chem 2023; 299:104975. [PMID: 37429506 PMCID: PMC10413283 DOI: 10.1016/j.jbc.2023.104975] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA.
| | - Nataliia V Shults
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Ewa Krawczyk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA
| | - Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, District of Columbia, USA
| | - Xiaoping Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Avi Z Rosenberg
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandon Ginley
- Departments of Pathology and Anatomical Sciences, SUNY, Buffalo, New York, USA
| | - Pinaki Sarder
- Department of Medicine-Quantitative Health, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, USA
| | - Leonid Brodsky
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Yura Jang
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yue Qi
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Shivani Bansal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington District of Columbia, USA
| | - Matthew D Hirschey
- Division of Endocrinology, Metabolism, and Nutrition, and Pharmacology and Cancer Biology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - Julia Panov
- Tauber Bioinformatics Research Center, University of Haifa, Haifa, Israel
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, District of Columbia, USA.
| |
Collapse
|
156
|
You Y, Liang W. SIRT1 and SIRT6: The role in aging-related diseases. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166815. [PMID: 37499928 DOI: 10.1016/j.bbadis.2023.166815] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Aging is characterized by progressive functional deterioration with increased risk of mortality. It is a complex biological process driven by a multitude of intertwined mechanisms such as increased DNA damage, chronic inflammation, and metabolic dysfunction. Sirtuins (SIRTs) are a family of NAD+-dependent enzymes that regulate fundamental biological functions from genomic stability and lifespan to energy metabolism and tumorigenesis. Of the seven mammalian SIRT isotypes (SIRT1-7), SIRT1 and SIRT6 are well-recognized for regulating signaling pathways related to aging. Herein, we review the protective role of SIRT1 and SIRT6 in aging-related diseases at molecular, cellular, tissue, and whole-organism levels. We also discuss the therapeutic potential of SIRT1 and SIRT6 modulators in the treatment of these diseases and challenges thereof.
Collapse
Affiliation(s)
- Yuzi You
- Department of General Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Wei Liang
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
157
|
Pencina KM, Valderrabano R, Wipper B, Orkaby AR, Reid KF, Storer T, Lin AP, Merugumala S, Wilson L, Latham N, Ghattas-Puylara C, Ozimek NE, Cheng M, Bhargava A, Memish-Beleva Y, Lawney B, Lavu S, Swain PM, Apte RS, Sinclair DA, Livingston D, Bhasin S. Nicotinamide Adenine Dinucleotide Augmentation in Overweight or Obese Middle-Aged and Older Adults: A Physiologic Study. J Clin Endocrinol Metab 2023; 108:1968-1980. [PMID: 36740954 PMCID: PMC11491622 DOI: 10.1210/clinem/dgad027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Indexed: 02/07/2023]
Abstract
CONTEXT Nicotinamide adenine dinucleotide (NAD) levels decline with aging and age-related decline in NAD has been postulated to contribute to age-related diseases. OBJECTIVE We evaluated the safety and physiologic effects of NAD augmentation by administering its precursor, β-nicotinamide mononucleotide (MIB-626, Metro International Biotech, Worcester, MA), in adults at risk for age-related conditions. METHODS Thirty overweight or obese adults, ≥ 45 years, were randomized in a 2:1 ratio to 2 MIB-626 tablets each containing 500 mg of microcrystalline β-nicotinamide mononucleotide or placebo twice daily for 28 days. Study outcomes included safety; NAD and its metabolome; body weight; liver, muscle, and intra-abdominal fat; insulin sensitivity; blood pressure; lipids; physical performance, and muscle bioenergetics. RESULTS Adverse events were similar between groups. MIB-626 treatment substantially increased circulating concentrations of NAD and its metabolites. Body weight (difference -1.9 [-3.3, -0.5] kg, P = .008); diastolic blood pressure (difference -7.01 [-13.44, -0.59] mmHg, P = .034); total cholesterol (difference -26.89 [-44.34, -9.44] mg/dL, P = .004), low-density lipoprotein (LDL) cholesterol (-18.73 [-31.85, -5.60] mg/dL, P = .007), and nonhigh-density lipoprotein cholesterol decreased significantly more in the MIB-626 group than placebo. Changes in muscle strength, muscle fatigability, aerobic capacity, and stair-climbing power did not differ significantly between groups. Insulin sensitivity and hepatic and intra-abdominal fat did not change in either group. CONCLUSIONS MIB-626 administration in overweight or obese, middle-aged and older adults safely increased circulating NAD levels, and significantly reduced total LDL and non-HDL cholesterol, body weight, and diastolic blood pressure. These data provide the rationale for larger trials to assess the efficacy of NAD augmentation in improving cardiometabolic outcomes in older adults.
Collapse
Affiliation(s)
- Karol Mateusz Pencina
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rodrigo Valderrabano
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin Wipper
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ariela R Orkaby
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Kieran F Reid
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Storer
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Sai Merugumala
- Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lauren Wilson
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Latham
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Ghattas-Puylara
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Noelle E Ozimek
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ming Cheng
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Avantika Bhargava
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yusnie Memish-Beleva
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Siva Lavu
- Metro International Biotech, Worcester, MA 01606, USA
| | | | - Rajendra S Apte
- Metro International Biotech, Worcester, MA 01606, USA
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David A Sinclair
- Metro International Biotech, Worcester, MA 01606, USA
- Department of Genetics, and The Paul F. Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
158
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
159
|
Tong Z, Li H, Jin Y, Sheng L, Ying M, Liu Q, Wang C, Teng C. Mechanisms of ferroptosis with immune infiltration and inflammatory response in rotator cuff injury. Genomics 2023; 115:110645. [PMID: 37230182 DOI: 10.1016/j.ygeno.2023.110645] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
The processes driving ferroptosis and rotator cuff (RC) inflammation are yet unknown. The mechanism of ferroptosis and inflammation involved in the development of RC tears was investigated. The Gene Expression Omnibus database was used to obtain the microarray data relevant to the RC tears for further investigation. In this study, we created an RC tears rat model for in vivo experimental validation. For the additional function enrichment analysis, 10 hub ferroptosis-related genes were chosen to construct the correlation regulation network. In RC tears, it was discovered that genes related to hub ferroptosis and hub inflammatory response were strongly correlated. The outcomes of in vivo tests showed that RC tears were related to Cd68-Cxcl13, Acsl4-Sat1, Acsl3-Eno3, Acsl3-Ccr7, and Ccr7-Eno3 pairings in regulating ferroptosis and inflammatory response. Thus, our results show an association between ferroptosis and inflammation, providing a new avenue to explore the clinical treatment of RC tears.
Collapse
Affiliation(s)
- Zhicheng Tong
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Huimin Li
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Yanglei Jin
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Lingchao Sheng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Mingshuai Ying
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Qixue Liu
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Chenhuan Wang
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China
| | - Chong Teng
- Department of Orthopaedic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 32200, China..
| |
Collapse
|
160
|
Tyshkovskiy A, Ma S, Shindyapina AV, Tikhonov S, Lee SG, Bozaykut P, Castro JP, Seluanov A, Schork NJ, Gorbunova V, Dmitriev SE, Miller RA, Gladyshev VN. Distinct longevity mechanisms across and within species and their association with aging. Cell 2023; 186:2929-2949.e20. [PMID: 37269831 PMCID: PMC11192172 DOI: 10.1016/j.cell.2023.05.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2022] [Accepted: 05/02/2023] [Indexed: 06/05/2023]
Abstract
Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.
Collapse
Affiliation(s)
- Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anastasia V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Tikhonov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Perinur Bozaykut
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - José P Castro
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119234, Russia
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
161
|
Warren A, Porter RM, Reyes-Castro O, Ali MM, Marques-Carvalho A, Kim HN, Gatrell LB, Schipani E, Nookaew I, O'Brien CA, Morello R, Almeida M. The NAD salvage pathway in mesenchymal cells is indispensable for skeletal development in mice. Nat Commun 2023; 14:3616. [PMID: 37330524 PMCID: PMC10276814 DOI: 10.1038/s41467-023-39392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/09/2023] [Indexed: 06/19/2023] Open
Abstract
NAD is an essential co-factor for cellular energy metabolism and multiple other processes. Systemic NAD+ deficiency has been implicated in skeletal deformities during development in both humans and mice. NAD levels are maintained by multiple synthetic pathways but which ones are important in bone forming cells is unknown. Here, we generate mice with deletion of Nicotinamide Phosphoribosyltransferase (Nampt), a critical enzyme in the NAD salvage pathway, in all mesenchymal lineage cells of the limbs. At birth, NamptΔPrx1 exhibit dramatic limb shortening due to death of growth plate chondrocytes. Administration of the NAD precursor nicotinamide riboside during pregnancy prevents the majority of in utero defects. Depletion of NAD post-birth also promotes chondrocyte death, preventing further endochondral ossification and joint development. In contrast, osteoblast formation still occurs in knockout mice, in line with distinctly different microenvironments and reliance on redox reactions between chondrocytes and osteoblasts. These findings define a critical role for cell-autonomous NAD homeostasis during endochondral bone formation.
Collapse
Affiliation(s)
- Aaron Warren
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ryan M Porter
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olivia Reyes-Castro
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Md Mohsin Ali
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adriana Marques-Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Ha-Neui Kim
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Landon B Gatrell
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Intawat Nookaew
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roy Morello
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
162
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
163
|
Li Q, Jiang X, Zhou Y, Gu Y, Ding Y, Luo J, Pang N, Sun Y, Pei L, Pan J, Gao M, Ma S, Xiao Y, Hu D, Wu F, Yang L. Improving Mitochondrial Function in Skeletal Muscle Contributes to the Amelioration of Insulin Resistance by Nicotinamide Riboside. Int J Mol Sci 2023; 24:10015. [PMID: 37373163 DOI: 10.3390/ijms241210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR.
Collapse
Affiliation(s)
- Qiuyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuye Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Yujia Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingying Gu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yijie Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Nengzhi Pang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Sun
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Pei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Pan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengqi Gao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Sixi Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - De Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Feilong Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lili Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
164
|
Yang N, Sun R, Zhang X, Wang J, Wang L, Zhu H, Yuan M, Xu Y, Ge C, He J, Wang M. Alternative pathway of bile acid biosynthesis contributes to ameliorate NASH after induction of NAMPT/NAD +/SIRT1 axis. Biomed Pharmacother 2023; 164:114987. [PMID: 37315437 DOI: 10.1016/j.biopha.2023.114987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a serious liver disorder characterized by hepatic steatosis and liver inflammation. Nicotinamide adenine dinucleotide (NAD+) and NAD+-dependent deacetylase, SIRT1, play important roles in lipid metabolism in non-alcoholic fatty liver disease (NAFLD). However, their effects on liver inflammation and homeostasis of bile acids (BAs), the extensively proved pathophysiological actors in NASH, have not been fully understood. NASH animal model was induced by a methionine-choline-deficient (MCD) diet in C57BL/6J mice and intraperitoneally injected with NAD+ precursor, an agonist of upstream rate-limiting enzyme NAMPT or downstream SIRT1, or their vehicle solvents. Free fatty acid (FFA) was applied to HepG2 cells to construct the cell model. Induction of NAMPT/NAD+/SIRT1 axis could remarkably alleviate the aggravated inflammation in the liver of NASH mice, accompanied by decreased levels of total BAs throughout the enterohepatic system and a switch of BA synthesis from the classic pathway to the alternative pathway, resulting in less production of pro-inflammatory 12-OH BAs. The expressions of key enzymes including cyp7a1, cyp8b1, cyp27a1 and cyp7b1 in BA synthesis were significantly modulated after NAMPT/NAD+/SIRT1 axis induction in both animal and cell models. The levels of pro-inflammatory cytokines in liver were significantly negatively correlated with the intermediates in NAD+ metabolism, which may also be related to their regulation on BA homeostasis. Our results indicated that induction of NAMPT/NAD+/SIRT1 axis may be a potential therapeutic strategy for NASH or its complications related with BAs.
Collapse
Affiliation(s)
- Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Xiaoli Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jing Wang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, Jiangsu, China
| | - Lulu Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China
| | - Man Yuan
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Yifan Xu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Chun Ge
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China.
| | - Jun He
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| | - Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, China; Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
165
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
166
|
Yang H, Li X, Jin H, Turkez H, Ozturk G, Doganay HL, Zhang C, Nielsen J, Uhlén M, Borén J, Mardinoglu A. Longitudinal metabolomics analysis reveals the acute effect of cysteine and NAC included in the combined metabolic activators. Free Radic Biol Med 2023:S0891-5849(23)00429-X. [PMID: 37245532 DOI: 10.1016/j.freeradbiomed.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Growing evidence suggests that the depletion of plasma NAD+ and glutathione (GSH) may play an important role in the development of metabolic disorders. The administration of Combined Metabolic Activators (CMA), consisting of GSH and NAD+ precursors, has been explored as a promising therapeutic strategy to target multiple altered pathways associated with the pathogenesis of the diseases. Although studies have examined the therapeutic effect of CMA that contains N-acetyl-l-cysteine (NAC) as a metabolic activator, a system-wide comparison of the metabolic response to the administration of CMA with NAC and cysteine remains lacking. In this placebo-controlled study, we studied the acute effect of the CMA administration with different metabolic activators, including NAC or cysteine with/without nicotinamide or flush free niacin, and performed longitudinal untargeted-metabolomics profiling of plasma obtained from 70 well-characterized healthy volunteers. The time-series metabolomics data revealed the metabolic pathways affected after the administration of CMAs showed high similarity between CMA containing nicotinamide and NAC or cysteine as metabolic activators. Our analysis also showed that CMA with cysteine is well-tolerated and safe in healthy individuals throughout the study. Last, our study systematically provided insights into a complex and dynamics landscape involved in amino acid, lipid and nicotinamide metabolism, reflecting the metabolic responses to CMA administration containing different metabolic activators.
Collapse
Affiliation(s)
- Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Bash Biotech Inc, 600 West Broadway, Suite 700, San Diego, CA, 92101, USA
| | - Han Jin
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Gurkan Ozturk
- Research Institute for Health Sciences and Technologies (SABITA), International School of Medicine, Istanbul Medipol University, 34810, Istanbul, Turkey
| | - Hamdi Levent Doganay
- Gastroenterology and Hepatology Unit, VM Pendik Medicalpark Teaching Hospital, İstanbul, Turkey; Department of Internal Medicine, Bahçeşehir University (BAU), Istanbul, Turkey
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen, Denmark
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
167
|
Fox JJ, Hashimoto T, Navarro HI, Garcia AJ, Shou BL, Goldstein AS. Highly multiplexed immune profiling throughout adulthood reveals kinetics of lymphocyte infiltration in the aging mouse prostate. Aging (Albany NY) 2023; 15:3356-3380. [PMID: 37179121 PMCID: PMC10449296 DOI: 10.18632/aging.204708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Aging is a significant risk factor for disease in several tissues, including the prostate. Defining the kinetics of age-related changes in these tissues is critical for identifying regulators of aging and evaluating interventions to slow the aging process and reduce disease risk. An altered immune microenvironment is characteristic of prostatic aging in mice, but whether features of aging in the prostate emerge predominantly in old age or earlier in adulthood has not previously been established. Using highly multiplexed immune profiling and time-course analysis, we tracked the abundance of 29 immune cell clusters in the aging mouse prostate. Early in adulthood, myeloid cells comprise the vast majority of immune cells in the 3-month-old mouse prostate. Between 6 and 12 months of age, there is a profound shift towards a T and B lymphocyte-dominant mouse prostate immune microenvironment. Comparing the prostate to other urogenital tissues, we found similar features of age-related inflammation in the mouse bladder but not the kidney. In summary, our study offers new insight into the kinetics of prostatic inflammaging and the window when interventions to slow down age-related changes may be most effective.
Collapse
Affiliation(s)
- Jonathan J. Fox
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Current Address: Keck School of Medicine, University of Southern California, Los Angeles, CA 90095, USA
| | - Takao Hashimoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Héctor I. Navarro
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Alejandro J. Garcia
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Benjamin L. Shou
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Current Address: Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew S. Goldstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
168
|
Li HR, Liu Q, Zhu CL, Sun XY, Sun CY, Yu CM, Li P, Deng XM, Wang JF. β-Nicotinamide mononucleotide activates NAD+/SIRT1 pathway and attenuates inflammatory and oxidative responses in the hippocampus regions of septic mice. Redox Biol 2023; 63:102745. [PMID: 37201414 DOI: 10.1016/j.redox.2023.102745] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is one of the common serious complications in sepsis, and the pathogenesis of SAE remains unclear. Sirtuin 1 (SIRT1) has been reported to be downregulated in the hippocampus and SIRT1 agonists can attenuated the cognitive dysfunction in septic mice. Nicotinamide adenine dinucleotide (NAD+) is a key substrate to maintain the deacetylation activity of SIRT1. As an intermediate of NAD+, β-Nicotinamide Mononucleotide (NMN) has been reported to be promising in treating neurodegenerative diseases and cerebral ischemic injury. Thus we sought to investigate the potential role of NMN in SAE treatment. The SAE model was established by cecal ligation and puncture (CLP) in vivo, and neuroinflammation model was established with LPS-treated BV-2 cells in vitro. Memory impairment was assessed by Morris water maze and fear conditioning tests. As a result, the levels of NAD+, SIRT1 and PGC-1α were significantly reduced in the hippocampus of septic mice, while the acetylation of total lysine, phosphorylation of P38 and P65 were enhanced. All these changes induced by sepsis were inverted by NMN. Treating with NMN resulted in improved behavior performance in the fear conditioning tests and Morris water maze. Apoptosis, inflammatory and oxidative responses in the hippocampus of septic mice were attenuated significantly after NMN administration. These protective effect of NMN against memory dysfunction, inflammatory and oxidative injuries were reversed by the SIRT1 inhibitor, EX-527. Similarly, LPS-induced activation of BV-2 cells were attenuated by NMN, EX-527 or SIRT1 knockdown could reverse such effect of NMN in vitro. In conclusion, NMN is protective against sepsis-induced memory dysfunction, and the inflammatory and oxidative injuries in the hippocampus region of septic mice. The NAD+/SIRT1 pathway might be involved in one of the mechanisms of the protective effect.
Collapse
Affiliation(s)
- Hui-Ru Li
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qiang Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cheng-Long Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Yang Sun
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chen-Yan Sun
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chang-Meng Yu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng Li
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China; Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
169
|
Fang J, Chen W, Hou P, Liu Z, Zuo M, Liu S, Feng C, Han Y, Li P, Shi Y, Shao C. NAD + metabolism-based immunoregulation and therapeutic potential. Cell Biosci 2023; 13:81. [PMID: 37165408 PMCID: PMC10171153 DOI: 10.1186/s13578-023-01031-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD+ bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD+ biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD+ research in the development of therapeutics for inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Chen
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Pengbo Hou
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Zhanhong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Muqiu Zuo
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Shisong Liu
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chao Feng
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Yuyi Han
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Experimental Medicine and Biochemical Sciences, TOR, University of Rome Tor Vergata, Rome, Italy
| | - Peishan Li
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, The First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
170
|
Khalimonchuk O, Becker DF. Molecular Determinants of Mitochondrial Shape and Function and Their Role in Glaucoma. Antioxid Redox Signal 2023; 38:896-919. [PMID: 36301938 PMCID: PMC10171965 DOI: 10.1089/ars.2022.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 01/12/2023]
Abstract
Significance: Cells depend on well-functioning mitochondria for essential processes such as energy production, redox signaling, coordination of metabolic pathways, and cofactor biosynthesis. Mitochondrial dysfunction, metabolic decline, and protein stress have been implicated in the etiology of multiple late-onset diseases, including various ataxias, diabetes, sarcopenia, neuromuscular disorders, and neurodegenerative diseases such as parkinsonism, amyotrophic lateral sclerosis, and glaucoma. Recent Advances: New evidence supports that increased energy metabolism protects neuron function during aging. Key energy metabolic enzymes, however, are susceptible to oxidative damage making it imperative that the mitochondrial proteome is protected. More than 40 different enzymes have been identified as important factors for guarding mitochondrial health and maintaining a dynamic pool of mitochondria. Critical Issues: Understanding shared mechanisms of age-related disorders of neurodegenerative diseases such as glaucoma, Alzheimer's disease, and Parkinson's disease is important for developing new therapies. Functional mitochondrial shape and dynamics rely on complex interactions between mitochondrial proteases and membrane proteins. Identifying the sequence of molecular events that lead to mitochondrial dysfunction and metabolic stress is a major challenge. Future Directions: A critical need exists for new strategies that reduce mitochondrial protein stress and promote mitochondrial dynamics in age-related neurological disorders. Discovering how mitochondria-associated degradation is related to proteostatic mechanisms in mitochondrial compartments may reveal new opportunities for therapeutic interventions. Also, little is known about how protein and membrane contacts in the inner and outer mitochondrial membrane are regulated, even though they are pivotal for mitochondrial architecture. Future work will need to delineate the molecular details of these processes.
Collapse
Affiliation(s)
- Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Fred & Pamela Buffett Cancer Center, Omaha, Nebraska, USA
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska–Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
171
|
Arroyo AB, Bernal-Carrión M, Cantón-Sandoval J, Cabas I, Corbalán-Vélez R, Martínez-Menchón T, Ferri B, Cayuela ML, García-Moreno D, Mulero V. NAMPT and PARylation Are Involved in the Pathogenesis of Atopic Dermatitis. Int J Mol Sci 2023; 24:ijms24097992. [PMID: 37175698 PMCID: PMC10178103 DOI: 10.3390/ijms24097992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease of very high prevalence, especially in childhood, with no specific treatment or cure. As its pathogenesis is complex, multifactorial and not fully understood, further research is needed to increase knowledge and develop new targeted therapies. We have recently demonstrated the critical role of NAD+ and poly (ADP-ribose) (PAR) metabolism in oxidative stress and skin inflammation. Specifically, we found that hyperactivation of PARP1 in response to DNA damage induced by reactive oxygen species, and fueled by NAMPT-derived NAD+, mediated inflammation through parthanatos cell death in zebrafish and human organotypic 3D skin models of psoriasis. Furthermore, the aberrant induction of NAMPT and PARP activity was observed in the lesional skin of psoriasis patients, supporting the role of these signaling pathways in psoriasis and pointing to NAMPT and PARP1 as potential novel therapeutic targets in treating skin inflammatory disorders. In the present work, we report, for the first time, altered NAD+ and PAR metabolism in the skin of AD patients and a strong correlation between NAMPT and PARP1 expression and the lesional status of AD. Furthermore, using a human 3D organotypic skin model of AD, we demonstrate that the pharmacological inhibition of NAMPT and PARP reduces pathology-associated biomarkers. These results help to understand the complexity of AD and reveal new potential treatments for AD patients.
Collapse
Affiliation(s)
- Ana B Arroyo
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Martín Bernal-Carrión
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
| | - Joaquín Cantón-Sandoval
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Cabas
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Belén Ferri
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - María L Cayuela
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Diana García-Moreno
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Victoriano Mulero
- Inmunidad, Inflamación y Cáncer, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
172
|
Radford-Smith DE, Yates AG, Rizvi L, Anthony DC, Probert F. HDL and LDL have distinct, opposing effects on LPS-induced brain inflammation. Lipids Health Dis 2023; 22:54. [PMID: 37095493 PMCID: PMC10124044 DOI: 10.1186/s12944-023-01817-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
Endotoxemia and sepsis induce neuroinflammation and increase the risk of neurodegenerative disorders although the mechanism by which peripheral infection leads to brain inflammation is not well understood. While circulating serum lipoproteins are known immunometabolites with the potential to modulate the acute phase response and cross the blood brain barrier, their contribution to neuroinflammation during systemic infection is unknown. The objective of this study was to elucidate the mechanisms by which lipoprotein subclasses modulate lipopolysaccharide (LPS)-induced neuroinflammation. Adult C57BL/6 mice were divided into 6 treatment groups, including a sterile saline vehicle control group (n = 9), an LPS group (n = 11), a premixed LPS + HDL group (n = 6), a premixed LPS + LDL group (n = 5), a HDL only group (n = 6) and an LDL only group (n = 3). In all cases injections were administered intraperitoneally. LPS was administered at 0.5 mg/kg, and lipoproteins were administered at 20 mg/kg. Behavioural testing and tissue collection was performed 6 h post-injection. The magnitude of peripheral and central inflammation was determined by qPCR of pro-inflammatory genes in fresh liver and brain. Metabolite profiles of liver, plasma and brain were determined by 1H NMR. Endotoxin concentration in the brain was measured by the Limulus Amoebocyte Lysate (LAL) assay. Co-administration of LPS + HDL exacerbated both peripheral and central inflammation, whilst LPS + LDL attenuated this inflammation. Metabolomic analysis identified several metabolites significantly associated with LPS-induced inflammation, which were partially rescued by LDL, but not HDL. Endotoxin was detected at significantly greater concentrations in the brains of animals that received LPS + HDL compared to LPS + saline, but not those that received LPS + LDL. These results suggest that HDL may promote neuroinflammation through direct shuttling of endotoxin to the brain. In contrast, LDL was shown to have anti-neuroinflammatory properties in this study. Our results indicate that lipoproteins may be useful targets in neuroinflammation and neurodegeneration associated with endotoxemia and sepsis.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Abi G Yates
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Laila Rizvi
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Daniel C Anthony
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Fay Probert
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
173
|
Chavda V, Lu B. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants (Basel) 2023; 12:895. [PMID: 37107270 PMCID: PMC10135819 DOI: 10.3390/antiox12040895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide. A main cause of brain damage by stroke is ischemia-reperfusion (IR) injury due to the increased production of reactive oxygen species (ROS) and energy failure caused by changes in mitochondrial metabolism. Ischemia causes a build-up of succinate in tissues and changes in the mitochondrial NADH: ubiquinone oxidoreductase (complex I) activity that promote reverse electron transfer (RET), in which a portion of the electrons derived from succinate are redirected from ubiquinol along complex I to reach the NADH dehydrogenase module of complex I, where matrix NAD+ is converted to NADH and excessive ROS is produced. RET has been shown to play a role in macrophage activation in response to bacterial infection, electron transport chain reorganization in response to changes in the energy supply, and carotid body adaptation to changes in the oxygen levels. In addition to stroke, deregulated RET and RET-generated ROS (RET-ROS) have been implicated in tissue damage during organ transplantation, whereas an RET-induced NAD+/NADH ratio decrease has been implicated in aging, age-related neurodegeneration, and cancer. In this review, we provide a historical account of the roles of ROS and oxidative damage in the pathogenesis of ischemic stroke, summarize the latest developments in our understanding of RET biology and RET-associated pathological conditions, and discuss new ways to target ischemic stroke, cancer, aging, and age-related neurodegenerative diseases by modulating RET.
Collapse
Affiliation(s)
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
174
|
Rimal S, Tantray I, Li Y, Pal Khaket T, Li Y, Bhurtel S, Li W, Zeng C, Lu B. Reverse electron transfer is activated during aging and contributes to aging and age-related disease. EMBO Rep 2023; 24:e55548. [PMID: 36794623 PMCID: PMC10074108 DOI: 10.15252/embr.202255548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/18/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.
Collapse
Affiliation(s)
- Suman Rimal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Ishaq Tantray
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yu Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Yanping Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Sunil Bhurtel
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Wen Li
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | | | - Bingwei Lu
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
175
|
Peluso AA, Lundgaard AT, Babaei P, Mousovich-Neto F, Rocha AL, Damgaard MV, Bak EG, Gnanasekaran T, Dollerup OL, Trammell SAJ, Nielsen TS, Kern T, Abild CB, Sulek K, Ma T, Gerhart-Hines Z, Gillum MP, Arumugam M, Ørskov C, McCloskey D, Jessen N, Herrgård MJ, Mori MAS, Treebak JT. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ AGING 2023; 9:7. [PMID: 37012386 PMCID: PMC10070358 DOI: 10.1038/s41514-023-00106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Collapse
Affiliation(s)
- A Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnete T Lundgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mads V Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie G Bak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Abild
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
176
|
Mukherjee M, Jana CK, Das N. Oxidation of biological molecules with age and induced oxidative stress in different growth phases of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2023; 116:353-365. [PMID: 36749507 DOI: 10.1007/s10482-022-01807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
One of the mechanistic approaches for explaining ageing is the oxidative stress theory of ageing. Saccharomyces cerevisiae has been used as a model to study ageing due to many factors. We have attempted to investigate if the differential ability to withstand oxidative stress can be correlated with their lifespans. In all the four strains studied (AP22, 699, 8C, and SP4), there was no age-associated increases in lipid peroxidation levels measured as thiobarbituric acid reactive substances (TBARS). Under induced oxidative stress conditions, there was an increased TBARS level in both the ages assessed with a quantum-fold increase in the stationary phase cells of AP22. In contrast, the late stationary phase cells of 8C exhibited the least susceptibility to induced oxidative stress. The level of TBARS in both exponential and late stationary phase cells of 699 was overall more than that in the other three strains. Protein carbonylation increased with age in 8C and 699. Induced stress increased carbonylation in the exponential cells of SP4 and 699 and the stationary phase cells of all four strains. Protein carbonylation data indicate that the AP22 cells exhibit decreased protein carbonylation vis-à-vis the other strains. Induced stress data showed that while the exponential cells of 699 are susceptible, the late stationary phase cells of 699 are most resistant. Western blotting analysis using anti-HNE antibodies showed two proteins of molecular mass ~ 56 and ~ 84 kDa that were selectively modified with age in all the strains. Under induced stress conditions, an additional protein of ~ 69 kDa was oxidized. Our investigation shows that the difference in lifespan between the four strains of S. cerevisiae may be regulated by oxidative stress. Knowledge of the identity of the oxidized proteins will significantly facilitate a better understanding of the effect of oxidative stress conditions on the cells of S. cerevisiae.
Collapse
Affiliation(s)
- Madhumathan Mukherjee
- Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India
- St. Teresa School, Santiniketan, Dist. Birbhum, 731235, India
| | - Chandan Kumar Jana
- Department of Chemistry, Purash-Kanpur Haridas Nandi Mahavidyalaya, P.O. Kanpur, Howrah, West Bengal, 711410, India
| | - Nilanjana Das
- Department of Biotechnology, Visva-Bharati University, Santiniketan, West Bengal, 731235, India.
| |
Collapse
|
177
|
Cong M, Ren X, Song Y, Pang X, Tian X, Liu Y, Guo P, Wang J. Ochrathinols A and B, two pairs of sulfur-containing racemates from an Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702 inhibit LPS-induced pro-inflammatory cytokines and NO production. PHYTOCHEMISTRY 2023; 208:113593. [PMID: 36709018 DOI: 10.1016/j.phytochem.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/22/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Ochrathinols A and B ((±)-1 and (±)-2), two undescribed sulfur-containing racemates, and ochracids A and B (3 and 4), two unprecedented pyrrolizidine alkaloids, were isolated from an Antarctic soil-derived fungus Aspergillus ochraceopetaliformis SCSIO 05702. Their structures including absolute configurations were determined through extensive spectroscopic analysis, chiral-phase HPLC analysis, quantum ECD calculations, and X-ray single-crystal diffraction. Ochrathinols A and B are unprecedented sulfur natural products featuring a novel 3-methylhexahydro-2H-cyclopenta [b]thiophene core. Interestingly, ochrathinol A ((±)-1) outstandingly suppressed the release of LPS-induced IL-1β, IL-6, and TNF-α inflammatory cytokines with concentration of 10 μM and alleviated the unbalanced NAD+/NADH ratio caused by LPS in RAW264.7 macrophages.
Collapse
Affiliation(s)
- Mengjing Cong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xue Ren
- Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yue Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| | - Peng Guo
- Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medical/Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
178
|
Taing K, Chen L, Weng HR. Emerging roles of GPR109A in regulation of neuroinflammation in neurological diseases and pain. Neural Regen Res 2023; 18:763-768. [PMID: 36204834 PMCID: PMC9700108 DOI: 10.4103/1673-5374.354514] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/28/2022] [Accepted: 06/24/2022] [Indexed: 11/04/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathological process of multiple neurological disorders and pathological pain conditions. GPR109A, a Gi protein-coupled receptor, has emerged as an important therapeutic target for controlling inflammation in various tissues and organs. In this review, we summarized current data about the role of GPR109A in neuroinflammation. Specifically, we focused on the pharmacological features of GPR109A and signaling pathways used by GPR109A to ameliorate neuroinflammation and symptoms in Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, and pathological pain conditions.
Collapse
Affiliation(s)
- Kyle Taing
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Lawrence Chen
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| | - Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA
| |
Collapse
|
179
|
Yin X, Abudupataer M, Ming Y, Xiang B, Lai H, Wang C, Li J, Zhu K. Nicotinamide Mononucleotide Alleviates Angiotensin II-Induced Human Aortic Smooth Muscle Cell Senescence in a Microphysiological Model. J Cardiovasc Pharmacol 2023; 81:280-291. [PMID: 36652727 DOI: 10.1097/fjc.0000000000001400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
ABSTRACT The occurrence and development of aortic aneurysms are accompanied by senescence of human aortic smooth muscle cells (HASMCs). Because the mechanism of HASMC senescence has not been fully elucidated, the efficacy of various antisenescence treatments varies. Decreased nicotinamide adenine dinucleotide (NAD + ) levels are one of the mechanisms of cell senescence, and there is a lack of evidence on whether increasing NAD + levels could alleviate HASMC senescence and further retard the progression of aortic aneurysms.We constructed an HASMC-based organ-on-a-chip microphysiological model. RNA sequencing was performed on cell samples from the vehicle control and angiotensin II groups to explore biological differences. We detected cellular senescence markers and NAD + levels in HASMC-based organ-on-a-chip. Subsequently, we pretreated HASMC using the synthetic precursor of NAD + , nicotinamide mononucleotide, and angiotensin II treatment, and used rhythmic stretching to investigate whether nicotinamide mononucleotide could delay HASMC senescence.The HASMC-based organ-on-a-chip model can simulate the biomechanical microenvironment of HASMCs in vivo, and the use of angiotensin II in the model replicated senescence in HASMCs. The senescence of HASMCs was accompanied by downregulation of the expression level of nicotinamide phosphoribosyltransferase and NAD + . Pretreatment with nicotinamide mononucleotide significantly increased the NAD + level and alleviated the senescence of HASMCs, but did not change the expression level of nicotinamide phosphoribosyltransferase.Our study provides a complementary research platform between traditional cell culture and animal experiments to explore HASMC senescence in aortic aneurysms. Furthermore, it provides evidence for NAD + boosting therapy in the clinical treatment of aortic aneurysms.
Collapse
Affiliation(s)
- Xiujie Yin
- Department of Cardiac Surgery and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, 20032, China
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Wang XX, Mao GH, Li QQ, Tang J, Zhang H, Wang KL, Wang L, Ni H, Sheng R, Qin ZH. Neuroprotection of NAD+ and NBP against ischemia/reperfusion brain injury is associated with restoration of sirtuin-regulated metabolic homeostasis. Front Pharmacol 2023; 14:1096533. [PMID: 37056986 PMCID: PMC10086243 DOI: 10.3389/fphar.2023.1096533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Ischemic stroke seriously threatens human health because of high rates of morbidity, mortality and disability. This study compared the effects of nicotinamide adenine dinucleotide (NAD+) and butylphthalide (NBP) on in vitro and in vivo ischemic stroke models.Methods: Transient middle cerebral artery occlusion/reperfusion (t-MCAO/R) model was established in mice, and the cultured primary cortical neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Cerebral infarct volume, neurobehavioral indices, antioxidant activity, ATP level and lactic acid content were determined. The neuroprotective effects of NAD+ or NBP were compared using sirtuin inhibitor niacinamide (NAM).Results: Intraperitoneal injection of NBP within 4 h or intravenous injection of NAD+ within 1 h after t-MCAO/R significantly reduced the volume of infarcts, cerebral edema, and neurological deficits. Administration of NAD+ and NBP immediately after t-MCAO/R in mice showed similar neuroprotection against acute and long-term ischemic injury. Both NAD+ and NBP significantly inhibited the accumulation of MDA and H2O2 and reduced oxidative stress. NAD+ was superior to NBP in inhibiting lipid oxidation and DNA damage. Furthermore, although both NAD+ and NBP improved the morphology of mitochondrial damage induced by ischemia/reperfusion, NAD+ more effectively reversed the decrease of ATP and increase of lactic acid after ischemia/reperfusion compared with NBP. NAD+ but not NBP treatment significantly upregulated SIRT3 in the brain, but the sirtuin inhibitor NAM could abolish the protective effect of NAD+ and NBP by inhibiting SIRT1 or SIRT3.Conclusions: These results confirmed the protective effects of NAD+ and NBP on cerebral ischemic injury. NBP and NAD+ showed similar antioxidant effects, while NAD+ had better ability in restoring energy metabolism, possibly through upregulating the activity of SIRT1 and SIRT3. The protection provided by NBP against cerebral ischemia/reperfusion may be achieved through SIRT1.
Collapse
Affiliation(s)
- Xin-Xin Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Guang-Hui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Jie Tang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | | | - Lei Wang
- Hefei Knature Bio-pharm Co., Ltd., Hefei, China
| | - Hong Ni
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- *Correspondence: Rui Sheng, ; Zheng-Hong Qin,
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
- *Correspondence: Rui Sheng, ; Zheng-Hong Qin,
| |
Collapse
|
181
|
Escalante-Covarrubias Q, Mendoza-Viveros L, González-Suárez M, Sitten-Olea R, Velázquez-Villegas LA, Becerril-Pérez F, Pacheco-Bernal I, Carreño-Vázquez E, Mass-Sánchez P, Bustamante-Zepeda M, Orozco-Solís R, Aguilar-Arnal L. Time-of-day defines NAD + efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 2023; 14:1685. [PMID: 36973248 PMCID: PMC10043291 DOI: 10.1038/s41467-023-37286-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The circadian clock is an endogenous time-tracking system that anticipates daily environmental changes. Misalignment of the clock can cause obesity, which is accompanied by reduced levels of the clock-controlled, rhythmic metabolite NAD+. Increasing NAD+ is becoming a therapy for metabolic dysfunction; however, the impact of daily NAD+ fluctuations remains unknown. Here, we demonstrate that time-of-day determines the efficacy of NAD+ treatment for diet-induced metabolic disease in mice. Increasing NAD+ prior to the active phase in obese male mice ameliorated metabolic markers including body weight, glucose and insulin tolerance, hepatic inflammation and nutrient sensing pathways. However, raising NAD+ immediately before the rest phase selectively compromised these responses. Remarkably, timed NAD+ adjusted circadian oscillations of the liver clock until completely inverting its oscillatory phase when increased just before the rest period, resulting in misaligned molecular and behavioral rhythms in male and female mice. Our findings unveil the time-of-day dependence of NAD+-based therapies and support a chronobiology-based approach.
Collapse
Affiliation(s)
- Quetzalcoatl Escalante-Covarrubias
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucía Mendoza-Viveros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Mirna González-Suárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Román Sitten-Olea
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14080, Mexico City, Mexico
| | - Fernando Becerril-Pérez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ignacio Pacheco-Bernal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Erick Carreño-Vázquez
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
| | - Paola Mass-Sánchez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Marcia Bustamante-Zepeda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Ricardo Orozco-Solís
- Laboratorio de Cronobiología y Metabolismo, Instituto Nacional de Medicina Genómica, 14610, Mexico City, Mexico
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados, 14330, Mexico City, Mexico
| | - Lorena Aguilar-Arnal
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
182
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
183
|
Navas LE, Blanco-Alcaina E, Suarez-Martinez E, Verdugo-Sivianes EM, Espinosa-Sanchez A, Sanchez-Diaz L, Dominguez-Medina E, Fernandez-Rozadilla C, Carracedo A, Wu LE, Carnero A. NAD pool as an antitumor target against cancer stem cells in head and neck cancer. J Exp Clin Cancer Res 2023; 42:55. [PMID: 36864434 PMCID: PMC9983242 DOI: 10.1186/s13046-023-02631-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that affect different anatomical locations. Despite this heterogeneity, HNSCC treatment depends on the anatomical location, TNM stage and resectability of the tumor. Classical chemotherapy is based on platinum-derived drugs (cisplatin, carboplatin and oxaliplatin), taxanes (docetaxel, paclitaxel) and 5-fluorouracil1. Despite advances in HNSCC treatment, the rate of tumor recurrence and patient mortality remain high. Therefore, the search for new prognostic identifiers and treatments targeting therapy-resistant tumor cells is vital. Our work demonstrates that there are different subgroups with high phenotypic plasticity within the CSC population in HNSCC. CD10, CD184, and CD166 may identify some of these CSC subpopulations with NAMPT as a common metabolic gene for the resilient cells of these subpopulations. We observed that NAMPT reduction causes a decrease in tumorigenic and stemness properties, migration capacity and CSC phenotype through NAD pool depletion. However, NAMPT-inhibited cells can acquire resistance by activating the NAPRT enzyme of the Preiss-Handler pathway. We observed that coadministration of the NAMPT inhibitor with the NAPRT inhibitor cooperated inhibiting tumor growth. The use of an NAPRT inhibitor as an adjuvant improved NAMPT inhibitor efficacy and reduced the dose and toxicity of these inhibitors. Therefore, it seems that the reduction in the NAD pool could have efficacy in tumor therapy. This was confirmed by in vitro assays supplying the cells with products of inhibited enzymes (NA, NMN or NAD) and restoring their tumorigenic and stemness properties. In conclusion, the coinhibition of NAMPT and NAPRT improved the efficacy of antitumor treatment, indicating that the reduction in the NAD pool is important to prevent tumor growth.
Collapse
Affiliation(s)
- Lola E. Navas
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Blanco-Alcaina
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Suarez-Martinez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva M. Verdugo-Sivianes
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Asuncion Espinosa-Sanchez
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Sanchez-Diaz
- grid.9224.d0000 0001 2168 1229Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013 Seville, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Dominguez-Medina
- grid.11794.3a0000000109410645BioFarma-USEF Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ceres Fernandez-Rozadilla
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Angel Carracedo
- grid.488911.d0000 0004 0408 4897Grupo de Medicina Xenómica (USC), Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain ,grid.413448.e0000 0000 9314 1427CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Lindsay E. Wu
- grid.1005.40000 0004 4902 0432School of Medical Sciences, UNSW Sydney, Sydney, NSW Australia
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS)/HUVR/CSIC, Hospital Universitario Virgen del Rocío, Ed. IBIS, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot S/N, 41013, Seville, Spain. .,CIBER de Cancer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
184
|
Feng S, Guo L, Wang H, Yang S, Liu H. Bacterial PncA improves diet-induced NAFLD in mice by enabling the transition from nicotinamide to nicotinic acid. Commun Biol 2023; 6:235. [PMID: 36864222 PMCID: PMC9981684 DOI: 10.1038/s42003-023-04613-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is crucial for energy metabolism, oxidative stress, DNA damage repair, longevity regulation, and several signaling processes. To date, several NAD+ synthesis pathways have been found in microbiota and mammals, but the potential relationship between gut microbiota and their hosts in regulating NAD+ homeostasis remains largely unknown. Here, we showed that an analog of the first-line tuberculosis drug pyrazinamide, which is converted by nicotinamidase/pyrazinamidase (PncA) to its active form, affected NAD+ level in the intestines and liver of mice and disrupted the homeostasis of gut microbiota. Furthermore, by overexpressing modified PncA of Escherichia coli, NAD+ levels in mouse liver were significantly increased, and diet-induced non-alcoholic fatty liver disease (NAFLD) was ameliorated in mice. Overall, the PncA gene in microbiota plays an important role in regulating NAD+ synthesis in the host, thereby providing a potential target for modulating host NAD+ level.
Collapse
Affiliation(s)
- Shengyu Feng
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200123, Shanghai, China
| | - Liuling Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200123, Shanghai, China
| | - Hao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200123, Shanghai, China
| | - Shanshan Yang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200123, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 200123, Shanghai, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, 832003, Shihezi, China.
| |
Collapse
|
185
|
Biotechnological production of reduced and oxidized NAD + precursors. Food Res Int 2023; 165:112560. [PMID: 36869544 DOI: 10.1016/j.foodres.2023.112560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Dysregulation of nicotinamide adenine dinucleotide (NAD+) homeostasis by increased activity of NAD+ consumers or reduced NAD+ biosynthesis plays an important role in the onset of prevalent, often age-related, diseases, such as diabetes, neuropathies or nephropathies. To counteract such dysregulation, NAD+ replenishment strategies can be used. Among these, administration of vitamin B3 derivatives (NAD+ precursors) has garnered attention in recent years. However, the high market price of these compounds and their limited availability, pose important limitations to their use in nutritional or biomedical applications. To overcome these limitations, we have designed an enzymatic method for the synthesis and purification of (1) the oxidized NAD+ precursors nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR), (2) their reduced forms NMNH and NRH, and (3) their deaminated forms nicotinic acid mononucleotide (NaMN) and nicotinic acid riboside (NaR). Starting from NAD+ or NADH as substrates, we use a combination of three highly overexpressed soluble recombinant enzymes; (a) a NAD+ pyrophosphatase, (b) an NMN deamidase, and (c) a 5'-nucleotidase, to produce these six precursors. Finally, we validate the activity of the enzymatically produced molecules as NAD+ enhancers in cell culture.
Collapse
|
186
|
Bu F, Huang S, Yang X, Wei L, Zhang D, Zhang Z, Tian D. Damage-induced NAD release activates intestinal CD4+ and CD8+ T cell via P2X7R signaling. Cell Immunol 2023; 385:104677. [PMID: 36746070 DOI: 10.1016/j.cellimm.2023.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is characterized by the activation of inflammation triggered by tissue damage. Damage-associated molecular patterns (DAMPs) reportedly induce local inflammation after injury. However, the impact of DAMPs on intestinal resident lymphocytes during POI remains poorly elucidated. METHODS POI in mice was induced via intestinal manipulation (IM). The concentration of nicotinamide adenine dinucleotide (NAD) was detected after IM. The gastrointestinal motility of the mice was assessed after IM or NAD injection. Cytokine production and calcium influx in T cells were investigated after NAD stimulation using flow cytometry. RESULTS The concentration of extracellular NAD significantly increased after IM administration, and NAD directly impaired gastrointestinal motility. Intraperitoneal injection of NAD promoted the expression of TNF-α in intestinal CD8+ and CD4+ T cells, but only IFN-γ production by CD8+ T cells was significantly promoted by NAD injection. Granzyme B production in CD8+ and CD4+ T cells decreased after administration. Concordantly, the same results were observed in NAD stimulation of intestinal CD3+ T cells in vitro. Blocking the P2X7R-related membrane enzyme ART2.2 significantly diminished the pro-inflammatory effect of NAD. CONCLUSION IM includes the release of NAD derived from damaged tissues, consequently promoting pro-inflammatory cytokine production in intestinal CD4+ and CD8+ T lymphocytes. NAD-induced intestinal T cells activation may be associated with POI progression in the mouse.
Collapse
Affiliation(s)
- Fandi Bu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shiyang Huang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China
| | - Xiaobao Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Clinical Research Institute, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Dan Tian
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
187
|
Walzik D, Jonas W, Joisten N, Belen S, Wüst RCI, Guillemin G, Zimmer P. Tissue-specific effects of exercise as NAD + -boosting strategy: Current knowledge and future perspectives. Acta Physiol (Oxf) 2023; 237:e13921. [PMID: 36599416 DOI: 10.1111/apha.13921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/21/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an evolutionarily highly conserved coenzyme with multi-faceted cell functions, including energy metabolism, molecular signaling processes, epigenetic regulation, and DNA repair. Since the discovery that lower NAD+ levels are a shared characteristic of various diseases and aging per se, several NAD+ -boosting strategies have emerged. Other than pharmacological and nutritional approaches, exercise is thought to restore NAD+ homeostasis through metabolic adaption to chronically recurring states of increased energy demand. In this review we discuss the impact of acute exercise and exercise training on tissue-specific NAD+ metabolism of rodents and humans to highlight the potential value as NAD+ -boosting strategy. By interconnecting results from different investigations, we aim to draw attention to tissue-specific alterations in NAD+ metabolism and the associated implications for whole-body NAD+ homeostasis. Acute exercise led to profound alterations of intracellular NAD+ metabolism in various investigations, with the magnitude and direction of changes being strongly dependent on the applied exercise modality, cell type, and investigated animal model or human population. Exercise training elevated NAD+ levels and NAD+ metabolism enzymes in various tissues. Based on these results, we discuss molecular mechanisms that might connect acute exercise-induced disruptions of NAD+ /NADH homeostasis to chronic exercise adaptions in NAD+ metabolism. Taking this hypothesis-driven approach, we hope to inspire future research on the molecular mechanisms of exercise as NAD+ -modifying lifestyle intervention, thereby elucidating the potential therapeutic value in NAD+ -related pathologies.
Collapse
Affiliation(s)
- David Walzik
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Wiebke Jonas
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Sergen Belen
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Gilles Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
188
|
Shen C, Chen C, Wang T, Gao TY, Zeng M, Lu YB, Zhang WP. The Depletion of NAMPT Disturbs Mitochondrial Homeostasis and Causes Neuronal Degeneration in Mouse Hippocampus. Mol Neurobiol 2023; 60:1267-1280. [PMID: 36441480 DOI: 10.1007/s12035-022-03142-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the key enzyme in the salvaging synthesis pathway of the nicotinamide adenine dinucleotide (NAD). Both NAMPT and NAD progressively decline upon aging and neurodegenerative diseases. The depletion of NAMPT induces mitochondrial dysfunction in motor neurons and causes bioenergetic stress in neurons. However, the roles of NAMPT in hippocampus neurons need to be further studied. Using floxed Nampt (Namptflox/flox) mice, we knocked out Nampt specifically in the hippocampus CA1 neurons by injecting rAAV-hSyn-Cre-APRE-pA. The depletion of NAMPT in hippocampus neurons induced cognitive deficiency in mice. Nevertheless, no morphological change of hippocampus neurons was observed with immunofluorescent imaging. Under the transmission electron microscope, we observed mitochondrial swollen and mitochondrial number decreasing in the cell body and the neurites of hippocampus neurons. In addition, we found the intracellular Aβ (6E10) increased in the hippocampus CA1 region. The intensity of Aβ42 remained unchanged, but it tended to aggregate. The GFAP level, an astrocyte marker, and the Iba1 level, a microglia marker, significantly increased in the mouse hippocampus. In the primary cultured rat neurons, NAMPT inhibition by FK866 decreased the NAD level of neurons at > 10-9 M. FK866 dropped the mitochondrial membrane potential in the cell body of neurons at > 10-9 M and in the dendrite of neurons at > 10-8 M. FK866 decreased the number and shortened the length of branches of neurons at > 10-7 M. Together, likely due to the injury of mitochondria, the decline of NAMPT level can be a critical risk factor for neurodegeneration.
Collapse
Affiliation(s)
- Chen Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cong Chen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tong Wang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tong-Yao Gao
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Min Zeng
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Yun-Bi Lu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Wei-Ping Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China. .,Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
189
|
Itoh H, Yoshino J. NAD + and mtRNA sensing drive human kidney diseases. Nat Metab 2023; 5:357-359. [PMID: 36914910 DOI: 10.1038/s42255-023-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Hiroshi Itoh
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan.
| | - Jun Yoshino
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
190
|
Fang D, Xu T, Sun J, Shi J, Li F, Yin Y, Wang Z, Liu Y. Nicotinamide Mononucleotide Ameliorates Sleep Deprivation-Induced Gut Microbiota Dysbiosis and Restores Colonization Resistance against Intestinal Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207170. [PMID: 36698264 PMCID: PMC10037695 DOI: 10.1002/advs.202207170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/12/2023]
Abstract
Gut microbiota-mediated colonization resistance (CR) is crucial in protecting the host from intestinal infections. Sleep deprivation (SD) is an important contributor in the disturbances of intestinal homeostasis. However, whether and how SD affects host CR remains largely unknown. Here, it is shown that SD impairs intestinal CR in mice, whereas nicotinamide mononucleotide (NMN) supplementation restores it. Microbial diversity and metabolomic analyses suggest that gut microbiota and metabolite profiles in SD-treated mice are highly shaped, whereas NMN reprograms these differences. Specifically, the altered gut microbiota in SD mice further incurs the disorder of secondary bile acids pool accompanied by a decrease in deoxycholic acid (DCA). Conversely, NMN supplementation retakes the potential benefits of DCA, which is associated with specific gut microbiota involved in primary bile acids metabolic flux. In animal models of infection, DCA is effective in preventing and treating bacterial infections when used alone or in combination with antibiotics. Mechanistically, DCA alone disrupts membrane permeability and aggravates oxidative damage, thereby reducing intestinal pathogen burden. Meanwhile, exogenous DCA promotes antibiotic accumulation and destroys oxidant-antioxidant system, thus potentiating antibiotic efficacy. Overall, this work highlights the important roles of gut microbiota and bile acid metabolism in the maintenance of intestinal CR.
Collapse
Affiliation(s)
- Dan Fang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Tianqi Xu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingyi Sun
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Jingru Shi
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Fulei Li
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yanqing Yin
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Zhiqiang Wang
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| | - Yuan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhou225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesJoint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education of ChinaYangzhou UniversityYangzhou225009P. R. China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009P. R. China
| |
Collapse
|
191
|
Nicotinamide adenine dinucleotide metabolism and arterial stiffness after long-term nicotinamide mononucleotide supplementation: a randomized, double-blind, placebo-controlled trial. Sci Rep 2023; 13:2786. [PMID: 36797393 PMCID: PMC9935856 DOI: 10.1038/s41598-023-29787-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Many animal studies have shown that oral administration of the nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide mononucleotide (NMN) prevents the reduction of NAD+ levels in organs and tissues, helping alleviate aging-related diseases. However, there are very few clinical reports of NMN supplementation in humans. Thus, this study aimed to investigate the influence of a 12-week NMN oral supplementation on biochemical and metabolic health parameters. A 12-week randomized, double-blind, placebo-controlled, parallel-group clinical trial was conducted. A total of 36 healthy middle-aged participants received one capsule of either 125 mg NMN or placebo twice a day. Among the NAD+ metabolites, the levels of nicotinamide in the serum were significantly higher in the NMN intake group than in the placebo group. Pulse wave velocity values indicating arterial stiffness tended to decrease in the NMN intake group. However, no significant difference was found between the two groups. Long-term NMN supplementation at 250 mg/day was well tolerated and did not cause adverse events. NMN safely and effectively elevated NAD+ metabolism in healthy middle-aged adults. Additionally, NMN supplementation showed potential in alleviating arterial stiffness.
Collapse
|
192
|
The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells 2023; 12:cells12040595. [PMID: 36831262 PMCID: PMC9954496 DOI: 10.3390/cells12040595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is a major risk factor for the leading causes of mortality, and the incidence of age-related diseases including cardiovascular disease, kidney disease and metabolic disease increases with age. NAD+ is a classic coenzyme that exists in all species, and that plays a crucial role in oxidation-reduction reactions. It is also involved in the regulation of many cellular functions including inflammation, oxidative stress and differentiation. NAD+ declines with aging in various organs, and the reduction in NAD+ is possibly involved in the development of age-related cellular dysfunction in cardiorenal metabolic organs through the accumulation of inflammation and oxidative stress. Levels of NAD+ are regulated by the balance between its synthesis and degradation. CD38 is the main NAD+-degrading enzyme, and CD38 is activated in response to inflammation with aging, which is associated with the reduction in NAD+ levels. In this review, focusing on CD38, we discuss the role of CD38 in aging and the pathogenesis of age-related diseases, including cardiorenal metabolic disease.
Collapse
|
193
|
Campagna R, Vignini A. NAD + Homeostasis and NAD +-Consuming Enzymes: Implications for Vascular Health. Antioxidants (Basel) 2023; 12:376. [PMID: 36829935 PMCID: PMC9952603 DOI: 10.3390/antiox12020376] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that takes part in many key redox reactions. NAD+ biosynthesis and NAD+-consuming enzymes have been attracting markedly increasing interest since they have been demonstrated to be involved in several crucial biological pathways, impacting genes transcription, cellular signaling, and cell cycle regulation. As a consequence, many pathological conditions are associated with an impairment of intracellular NAD+ levels, directly or indirectly, which include cardiovascular diseases, obesity, neurodegenerative diseases, cancer, and aging. In this review, we describe the general pathways involved in the NAD+ biosynthesis starting from the different precursors, analyzing the actual state-of-art of the administration of NAD+ precursors or blocking NAD+-dependent enzymes as strategies to increase the intracellular NAD+ levels or to counteract the decline in NAD+ levels associated with ageing. Subsequently, we focus on the disease-related and age-related alterations of NAD+ homeostasis and NAD+-dependent enzymes in endothelium and the consequent vascular dysfunction, which significantly contributes to a wide group of pathological disorders.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
194
|
Poljšak B, Kovač V, Špalj S, Milisav I. The Central Role of the NAD+ Molecule in the Development of Aging and the Prevention of Chronic Age-Related Diseases: Strategies for NAD+ Modulation. Int J Mol Sci 2023; 24:2959. [PMID: 36769283 PMCID: PMC9917998 DOI: 10.3390/ijms24032959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The molecule NAD+ is a coenzyme for enzymes catalyzing cellular redox reactions in several metabolic pathways, encompassing glycolysis, TCA cycle, and oxidative phosphorylation, and is a substrate for NAD+-dependent enzymes. In addition to a hydride and electron transfer in redox reactions, NAD+ is a substrate for sirtuins and poly(adenosine diphosphate-ribose) polymerases and even moderate decreases in its cellular concentrations modify signaling of NAD+-consuming enzymes. Age-related reduction in cellular NAD+ concentrations results in metabolic and aging-associated disorders, while the consequences of increased NAD+ production or decreased degradation seem beneficial. This article reviews the NAD+ molecule in the development of aging and the prevention of chronic age-related diseases and discusses the strategies of NAD+ modulation for healthy aging and longevity.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vito Kovač
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stjepan Špalj
- Department of Orthodontics, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
195
|
Marra PS, Yamanashi T, Crutchley KJ, Wahba NE, Anderson ZEM, Modukuri M, Chang G, Tran T, Iwata M, Cho HR, Shinozaki G. Metformin use history and genome-wide DNA methylation profile: potential molecular mechanism for aging and longevity. Aging (Albany NY) 2023; 15:601-616. [PMID: 36734879 PMCID: PMC9970305 DOI: 10.18632/aging.204498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Metformin, a commonly prescribed anti-diabetic medication, has repeatedly been shown to hinder aging in pre-clinical models and to be associated with lower mortality for humans. It is, however, not well understood how metformin can potentially prolong lifespan from a biological standpoint. We hypothesized that metformin's potential mechanism of action for longevity is through its epigenetic modifications. METHODS To test our hypothesis, we conducted a post-hoc analysis of available genome-wide DNA methylation (DNAm) data obtained from whole blood collected from inpatients with and without a history of metformin use. We assessed the methylation profile of 171 patients (first run) and only among 63 diabetic patients (second run) and compared the DNAm rates between metformin users and nonusers. RESULTS Enrichment analysis from the Kyoto Encyclopedia of Genes and Genome (KEGG) showed pathways relevant to metformin's mechanism of action, such as longevity, AMPK, and inflammatory pathways. We also identified several pathways related to delirium whose risk factor is aging. Moreover, top hits from the Gene Ontology (GO) included HIF-1α pathways. However, no individual CpG site showed genome-wide statistical significance (p < 5E-08). CONCLUSION This study may elucidate metformin's potential role in longevity through epigenetic modifications and other possible mechanisms of action.
Collapse
Affiliation(s)
- Pedro S. Marra
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Takehiko Yamanashi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori 680-8550, Japan
| | - Kaitlyn J. Crutchley
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA,University of Nebraska Medical Center College of Medicine, Omaha, NE 68131, USA
| | - Nadia E. Wahba
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA,Department of Psychiatry, Oregon Health and Science University School of Medicine, Portland, OR 97239, USA
| | - Zoe-Ella M. Anderson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Manisha Modukuri
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Gloria Chang
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tammy Tran
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Masaaki Iwata
- Department of Neuropsychiatry, Tottori University Faculty of Medicine, Yonago-shi, Tottori 680-8550, Japan
| | - Hyunkeun Ryan Cho
- Department of Biostatistics, University of Iowa College of Public Health, Iowa City, IA 52242, USA
| | - Gen Shinozaki
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA,Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
196
|
Li W, Gao M, Hu C, Chen X, Zhou Y. NMNAT2: An important metabolic enzyme affecting the disease progression. Biomed Pharmacother 2023; 158:114143. [PMID: 36528916 DOI: 10.1016/j.biopha.2022.114143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is an evolutionarily conserved nicotinamide adenine dinucleotide (NAD+) synthase located in the cytoplasm and Golgi apparatus. NMNAT2 has an important role in neurodegenerative diseases, malignant tumors, and other diseases that seriously endanger human health. NMNAT2 exerts a neuroprotective function through its NAD synthase activity and chaperone function. Among them, the NMNAT2-NAD+-Sterile alpha and Toll/interleukin-1 receptor motif-containing 1 (SARM1) axis is closely related to Wallerian degeneration. Physical injury or pathological stimulation will cause a decrease in NMNAT2, which activates SARM1, leading to axonal degeneration and the occurrence of amyotrophic lateral sclerosis (ALS), Alzheimer's disease, peripheral neuropathy, and other neurodegenerative diseases. In addition, NMNAT2 exerts a cancer-promoting role in solid tumors, including colorectal cancer, lung cancer, ovarian cancer, and glioma, and is closely related to tumor occurrence and development. This paper reviews the chromosomal and subcellular localization of NMNAT2 and its basic biological functions. We also summarize the NMNAT2-related signal transduction pathway and the role of NMNAT2 in diseases. We aimed to provide a new perspective to comprehensively understand the relationship between NMNAT2 and its associated diseases.
Collapse
Affiliation(s)
- Wentao Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Mengxiang Gao
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Chunhui Hu
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiuwen Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, Hunan 410013, China.
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
197
|
He Y, Su Y, Duan C, Wang S, He W, Zhang Y, An X, He M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res Rev 2023; 84:101833. [PMID: 36565959 DOI: 10.1016/j.arr.2022.101833] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
With the aging of global population, the incidence of nonalcoholic fatty liver disease (NAFLD) has surged in recent decades. NAFLD is a multifactorial disease that follows a progressive course, ranging from simple fatty liver, nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma (HCC). It is well established that aging induces pathological changes in liver and potentiates the occurrence and progression of NAFLD, HCC and other age-related liver diseases. Studies of senescent cells also indicate a pivotal engagement in the development of NAFLD via diverse mechanisms. Moreover, nicotinamide adenine dinucleotide (NAD+), silence information regulator protein family (sirtuins), and mechanistic target of rapamycin (mTOR) are three vital and broadly studied targets involved in aging process and NAFLD. Nevertheless, the crucial role of these aging-associated factors in aging-related NAFLD remains underestimated. Here, we reviewed the current research on the roles of aging, cellular senescence and three aging-related factors in the evolution of NAFLD to HCC, aiming at inspiring promising therapeutic targets for aging-related NAFLD and its progression.
Collapse
Affiliation(s)
- Yongyuan He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghong Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengcheng Duan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Basic Medicine, Kunming Medical University, China
| | - Yingting Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofei An
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
198
|
Yi L, Maier AB, Tao R, Lin Z, Vaidya A, Pendse S, Thasma S, Andhalkar N, Avhad G, Kumbhar V. The efficacy and safety of β-nicotinamide mononucleotide (NMN) supplementation in healthy middle-aged adults: a randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial. GeroScience 2023; 45:29-43. [PMID: 36482258 PMCID: PMC9735188 DOI: 10.1007/s11357-022-00705-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
In animal studies, β-nicotinamide mononucleotide (NMN) supplementation increases nicotinamide adenine dinucleotide (NAD) concentrations and improves healthspan and lifespan with great safety. However, it is unclear if these effects can be transferred to humans. This randomized, multicenter, double-blind, placebo-controlled, parallel-group, dose-dependent clinical trial included 80 middle-aged healthy adults being randomized for a 60-day clinical trial with once daily oral dosing of placebo, 300 mg, 600 mg, or 900 mg NMN. The primary objective was to evaluate blood NAD concentration with dose-dependent regimens. The secondary objectives were to assess the safety and tolerability of NMN supplementation, next to the evaluation of clinical efficacy by measuring physical performance (six-minute walking test), blood biological age (Aging.Ai 3.0 calculator), Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and subjective general health assessment [36-Item Short Form Survey Instrument (SF-36)]. Statistical analysis was performed using the Per Protocol analysis with significant level set at p = 0.05. All 80 participants completed the trial without trial protocol violation. Blood NAD concentrations were statistically significantly increased among all NMN-treated groups at day 30 and day 60 when compared to both placebo and baseline (all p ≤ 0.001). Blood NAD concentrations were highest in the groups taking 600 mg and 900 mg NMN. No safety issues, based on monitoring adverse events (AEs), laboratory and clinical measures, were found, and NMN supplementation was well tolerated. Walking distance increase during the six-minute walking test was statistically significantly higher in the 300 mg, 600 mg, and 900 mg groups compared to placebo at both days 30 and 60 (all p < 0.01), with longest walking distances measured in the 600 mg and 900 mg groups. The blood biological age increased significantly in the placebo group and stayed unchanged in all NMN-treated groups at day 60, which resulted in a significant difference between the treated groups and placebo (all p < 0.05). The HOMA-IR showed no statistically significant differences for all NMN-treated groups as compared to placebo at day 60. The change of SF-36 scores at day 30 and day 60 indicated statistically significantly better health of all three treated groups when compared to the placebo group (p < 0.05), except for the SF-36 score change in the 300 mg group at day 30. NMN supplementation increases blood NAD concentrations and is safe and well tolerated with oral dosing up to 900 mg NMN daily. Clinical efficacy expressed by blood NAD concentration and physical performance reaches highest at a dose of 600 mg daily oral intake. This trial was registered with ClinicalTrials.gov, NCT04823260, and Clinical Trial Registry - India, CTRI/2021/03/032421.
Collapse
Affiliation(s)
- Lin Yi
- Abinopharm, Inc, 3 Enterprise Drive, Suite 407, Shelton, CT, 06484, USA.
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, 28 Medical Drive, Singapore, 117456, Singapore
| | - Rongsheng Tao
- Huzhou Yihui Biotechnology Co., Ltd, 1366 Hong Feng Road, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Zhigang Lin
- ABA Chemicals Corporation, 67 Libing Road, Building 4, Zhangjian Hi-Tech Park, Shanghai, 201203, People's Republic of China
| | - Aditi Vaidya
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra, 411052, India
| | - Sohal Pendse
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra, 411052, India
| | - Sornaraja Thasma
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra, 411052, India
| | - Niranjan Andhalkar
- ProRelix Services LLP, 102 A/B, Park Plaza, Karve Road, Karve Nagar, Pune, Maharashtra, 411052, India
| | - Ganesh Avhad
- Lotus Healthcare & Aesthetics Clinic, 5 Bramha Chambers, 2010 Sadashivpeth, Tilak Road, Pune, Maharashtra, India
| | - Vidyadhar Kumbhar
- Sunad Ayurved, Siddhivinayak Apart, Jeevan Nagar, Maharashtra, 411033, Chinchwad, Pune, India
| |
Collapse
|
199
|
Grout MM, Mitchell KB. Disulfiram-Mitigating Unintended Effects. Antibiotics (Basel) 2023; 12:antibiotics12020262. [PMID: 36830172 PMCID: PMC9952438 DOI: 10.3390/antibiotics12020262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Lyme disease caused by infection with a multitude of vector-borne organisms can sometimes be successfully treated in its very early stages. However, if diagnosis is delayed, this infection can become disseminated and, like another spirochetal infection syphilis, can affect multiple organ systems in the body, causing a wide variety of life-altering symptoms. Conventional antibiotic therapy may not be effective in eradicating the symptoms of the disease we know as Lyme disease. The recent literature has suggested that disulfiram (DSM) may be a potent drug in the armamentarium of physicians who treat chronic Lyme disease. The use of disulfiram in the treatment of Lyme disease started with a researcher who determined that DSM is bactericidal to spirochete. Encouraged by published case reports of apparent recovery from chronic Lyme disease, having prescribed DSM ourselves in the past for alcoholics who had a desire to stop drinking and prescribing it now for patients with chronic Lyme disease, we observed both predictable and potentially avoidable side effects not necessarily related to the ingestion of alcohol. We reviewed the published literature in PubMed and Google Scholar, using the following key words: Lyme Disease; Borrelia burgdorferi treatment; and disulfiram toxicity. This paper outlines the results of that research to help avoid some of the pitfalls inherent in this novel use of an old and established medication in the practice of clinical medicine.
Collapse
Affiliation(s)
- Martha M. Grout
- Arizona Center for Advanced Medicine, Scottsdale, AZ 85258, USA
- Correspondence: ; Tel.: +1-480-240-2600
| | | |
Collapse
|
200
|
Shu DY, Chaudhary S, Cho KS, Lennikov A, Miller WP, Thorn DC, Yang M, McKay TB. Role of Oxidative Stress in Ocular Diseases: A Balancing Act. Metabolites 2023; 13:187. [PMID: 36837806 PMCID: PMC9960073 DOI: 10.3390/metabo13020187] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Suman Chaudhary
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - William P. Miller
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - David C. Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|