151
|
Fabbri L, Chakraborty A, Robert C, Vagner S. The plasticity of mRNA translation during cancer progression and therapy resistance. Nat Rev Cancer 2021; 21:558-577. [PMID: 34341537 DOI: 10.1038/s41568-021-00380-y] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Translational control of mRNAs during gene expression allows cells to promptly and dynamically adapt to a variety of stimuli, including in neoplasia in response to aberrant oncogenic signalling (for example, PI3K-AKT-mTOR, RAS-MAPK and MYC) and microenvironmental stress such as low oxygen and nutrient supply. Such translational rewiring allows rapid, specific changes in the cell proteome that shape specific cancer phenotypes to promote cancer onset, progression and resistance to anticancer therapies. In this Review, we illustrate the plasticity of mRNA translation. We first highlight the diverse mechanisms by which it is regulated, including by translation factors (for example, eukaryotic initiation factor 4F (eIF4F) and eIF2), RNA-binding proteins, tRNAs and ribosomal RNAs that are modulated in response to aberrant intracellular pathways or microenvironmental stress. We then describe how translational control can influence tumour behaviour by impacting on the phenotypic plasticity of cancer cells as well as on components of the tumour microenvironment. Finally, we highlight the role of mRNA translation in the cellular response to anticancer therapies and its promise as a key therapeutic target.
Collapse
Affiliation(s)
- Lucilla Fabbri
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France
| | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Sud, Université Paris-Saclay, Kremlin-Bicêtre, France
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR3348, INSERM U1278, Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, INSERM U1278, Orsay, France.
- Equipe Labellisée Ligue Nationale Contre le Cancer, Orsay, France.
- Dermato-Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
152
|
Chen Y, Chen YX. Microbiota-Associated Metabolites and Related Immunoregulation in Colorectal Cancer. Cancers (Basel) 2021; 13:4054. [PMID: 34439208 PMCID: PMC8394439 DOI: 10.3390/cancers13164054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
A growing body of research has found close links between the human gut microbiota and colorectal cancer (CRC), associated with the direct actions of specific bacteria and the activities of microbiota-derived metabolites, which are implicated in complex immune responses, thus influencing carcinogenesis. Diet has a significant impact on the structure of the microbiota and also undergoes microbial metabolism. Some metabolites, such as short-chain fatty acids (SCFAs) and indole derivatives, act as protectors against cancer by regulating immune responses, while others may promote cancer. However, the specific influence of these metabolites on the host is conditional. We reviewed the recent insights on the relationships among diet, microbiota-derived metabolites, and CRC, focusing on their intricate immunomodulatory responses, which might influence the progression of colorectal cancer.
Collapse
Affiliation(s)
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 200001, China;
| |
Collapse
|
153
|
Chao de la Barca JM, Fogazza M, Rugolo M, Chupin S, Del Dotto V, Ghelli AM, Carelli V, Simard G, Procaccio V, Bonneau D, Lenaers G, Reynier P, Zanna C. Metabolomics hallmarks OPA1 variants correlating with their in vitro phenotype and predicting clinical severity. Hum Mol Genet 2021; 29:1319-1329. [PMID: 32202296 PMCID: PMC7254852 DOI: 10.1093/hmg/ddaa047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
Interpretation of variants of uncertain significance is an actual major challenge. We addressed this question on a set of OPA1 missense variants responsible for variable severity of neurological impairments. We used targeted metabolomics to explore the different signatures of OPA1 variants expressed in Opa1 deleted mouse embryonic fibroblasts (Opa1-/- MEFs), grown under selective conditions. Multivariate analyses of data discriminated Opa1+/+ from Opa1-/- MEFs metabolic signatures and classified OPA1 variants according to their in vitro severity. Indeed, the mild p.I382M hypomorphic variant was segregating close to the wild-type allele, while the most severe p.R445H variant was close to Opa1-/- MEFs, and the p.D603H and p.G439V alleles, responsible for isolated and syndromic presentations, respectively, were intermediary between the p.I382M and the p.R445H variants. The most discriminant metabolic features were hydroxyproline, the spermine/spermidine ratio, amino acid pool and several phospholipids, emphasizing proteostasis, endoplasmic reticulum (ER) stress and phospholipid remodeling as the main mechanisms ranking OPA1 allele impacts on metabolism. These results demonstrate the high resolving power of metabolomics in hierarchizing OPA1 missense mutations by their in vitro severity, fitting clinical expressivity. This suggests that our methodological approach can be used to discriminate the pathological significance of variants in genes responsible for other rare metabolic diseases and may be instrumental to select possible compounds eligible for supplementation treatment.
Collapse
Affiliation(s)
- Juan Manuel Chao de la Barca
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Mario Fogazza
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France.,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Michela Rugolo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Valentina Del Dotto
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Anna Maria Ghelli
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| | - Gilles Simard
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France
| | - Vincent Procaccio
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Dominique Bonneau
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Guy Lenaers
- Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Pascal Reynier
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire, 49933 Angers, France.,Equipe Mitolab, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, 49035 Angers, France
| | - Claudia Zanna
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
154
|
Puleston DJ, Baixauli F, Sanin DE, Edwards-Hicks J, Villa M, Kabat AM, Kamiński MM, Stanckzak M, Weiss HJ, Grzes KM, Piletic K, Field CS, Corrado M, Haessler F, Wang C, Musa Y, Schimmelpfennig L, Flachsmann L, Mittler G, Yosef N, Kuchroo VK, Buescher JM, Balabanov S, Pearce EJ, Green DR, Pearce EL. Polyamine metabolism is a central determinant of helper T cell lineage fidelity. Cell 2021; 184:4186-4202.e20. [PMID: 34216540 PMCID: PMC8358979 DOI: 10.1016/j.cell.2021.06.007] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4+ helper T cells (TH) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4+ T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across TH cell subsets. Polyamines control TH differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus TH cell subset fidelity.
Collapse
Affiliation(s)
- Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Agnieszka M Kabat
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Marcin M Kamiński
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michal Stanckzak
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Hauke J Weiss
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Klara Piletic
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yaarub Musa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Lea Flachsmann
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joerg M Buescher
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Stefan Balabanov
- Division of Haematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
155
|
Abstract
Interplay between metabolic and epigenetic remodeling may be key to cell fate control. In this issue of Cell, Puleston et al. and Wagner et al. use metabolomic, computational, and genetic approaches to uncover that polyamine metabolism directs T helper cell lineage choices, epigenetic state, and pathogenic potential in inflammation.
Collapse
Affiliation(s)
- Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
156
|
Natoli G, Pileri F, Gualdrini F, Ghisletti S. Integration of transcriptional and metabolic control in macrophage activation. EMBO Rep 2021; 22:e53251. [PMID: 34328708 DOI: 10.15252/embr.202153251] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Macrophages react to microbial and endogenous danger signals by activating a broad panel of effector and homeostatic responses. Such responses entail rapid and stimulus-specific changes in gene expression programs accompanied by extensive rewiring of metabolism, with alterations in chromatin modifications providing one layer of integration of transcriptional and metabolic regulation. A systematic and mechanistic understanding of the mutual influences between signal-induced metabolic changes and gene expression is still lacking. Here, we discuss current evidence, controversies, knowledge gaps, and future areas of investigation on how metabolic and transcriptional changes are dynamically integrated during macrophage activation. The cross-talk between metabolism and inflammatory gene expression is in part accounted for by alterations in the production, usage, and availability of metabolic intermediates that impact the macrophage epigenome. In addition, stimulus-inducible gene expression changes alter the production of inflammatory mediators, such as nitric oxide, that in turn modulate the activity of metabolic enzymes thus determining complex regulatory loops. Critical issues remain to be understood, notably whether and how metabolic rewiring can bring about gene-specific (as opposed to global) expression changes.
Collapse
Affiliation(s)
- Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy.,Humanitas University, Milan, Italy
| | - Francesco Pileri
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| |
Collapse
|
157
|
Blondeau N. [Fighting stroke by inhibiting an enzyme linked to the polyamine synthesis pathway]. Med Sci (Paris) 2021; 37:575-577. [PMID: 34180811 DOI: 10.1051/medsci/2021068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Blondeau
- Université Côte d'Azur, CNRS, UMR 7275 IPMC, 660 route des Lucioles, Sophia-Antipolis, 06560 Valbonne, France
| |
Collapse
|
158
|
Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. Int J Mol Sci 2021; 22:ijms22136883. [PMID: 34206906 PMCID: PMC8267886 DOI: 10.3390/ijms22136883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Leishmania survival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with Leishmania amazonensis wild type (La-WT) or arginase knocked out (La-arg-), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile. Macrophages showed specific changes in metabolite abundance upon Leishmania infection, as well as in the absence of parasite-arginase. The absence of L. amazonensis-arginase promoted the regulation of both host and parasite urea cycle, glycine and serine metabolism, ammonia recycling, metabolism of arginine, proline, aspartate, glutamate, spermidine, spermine, methylhistidine, and glutathione metabolism. The increased L-arginine, L-citrulline, L-glutamine, oxidized glutathione, S-adenosylmethionine, N-acetylspermidine, trypanothione disulfide, and trypanothione levels were observed in La-WT-infected C57BL/6-macrophage compared to uninfected. The absence of parasite arginase increased L-arginine, argininic acid, and citrulline levels and reduced ornithine, putrescine, S-adenosylmethionine, glutamic acid, proline, N-glutamyl-alanine, glutamyl-arginine, trypanothione disulfide, and trypanothione when compared to La-WT infected macrophage. Moreover, the absence of parasite arginase leads to an increase in NO production levels and a higher infectivity rate at 4 h of infection. The data presented here show a host-dependent regulation of metabolomic profiles of C57BL/6 macrophages compared to the previously observed BALB/c macrophages infected with L. amazonensis, an important fact due to the dual and contrasting macrophage phenotypes of those mice. In addition, the Leishmania-arginase showed interference with the urea cycle, glycine, and glutathione metabolism during host-pathogen interactions.
Collapse
|
159
|
Wang Y, Li N, Zhang X, Horng T. Mitochondrial metabolism regulates macrophage biology. J Biol Chem 2021; 297:100904. [PMID: 34157289 PMCID: PMC8294576 DOI: 10.1016/j.jbc.2021.100904] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondria are critical for regulation of the activation, differentiation, and survival of macrophages and other immune cells. In response to various extracellular signals, such as microbial or viral infection, changes to mitochondrial metabolism and physiology could underlie the corresponding state of macrophage activation. These changes include alterations of oxidative metabolism, mitochondrial membrane potential, and tricarboxylic acid (TCA) cycling, as well as the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) and transformation of the mitochondrial ultrastructure. Here, we provide an updated review of how changes in mitochondrial metabolism and various metabolites such as fumarate, succinate, and itaconate coordinate to guide macrophage activation to distinct cellular states, thus clarifying the vital link between mitochondria metabolism and immunity. We also discuss how in disease settings, mitochondrial dysfunction and oxidative stress contribute to dysregulation of the inflammatory response. Therefore, mitochondria are a vital source of dynamic signals that regulate macrophage biology to fine-tune immune responses.
Collapse
Affiliation(s)
- Yafang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Na Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tiffany Horng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
160
|
Pálfi P, Bakacsy L, Kovács H, Szepesi Á. Hypusination, a Metabolic Posttranslational Modification of eIF5A in Plants during Development and Environmental Stress Responses. PLANTS 2021; 10:plants10071261. [PMID: 34206171 PMCID: PMC8309165 DOI: 10.3390/plants10071261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022]
Abstract
Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.
Collapse
|
161
|
Lindner B, Martin E, Steininger M, Bundalo A, Lenter M, Zuber J, Schuler M. A genome-wide CRISPR/Cas9 screen to identify phagocytosis modulators in monocytic THP-1 cells. Sci Rep 2021; 11:12973. [PMID: 34155263 PMCID: PMC8217514 DOI: 10.1038/s41598-021-92332-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 06/02/2021] [Indexed: 01/23/2023] Open
Abstract
Phagocytosis of microbial pathogens, dying or dead cells, and cell debris is essential to maintain tissue homeostasis. Impairment of these processes is associated with autoimmunity, developmental defects and toxic protein accumulation. However, the underlying molecular mechanisms of phagocytosis remain incompletely understood. Here, we performed a genome-wide CRISPR knockout screen to systematically identify regulators involved in phagocytosis of Staphylococcus (S.) aureus by human monocytic THP-1 cells. The screen identified 75 hits including known regulators of phagocytosis, e.g. members of the actin cytoskeleton regulation Arp2/3 and WAVE complexes, as well as genes previously not associated with phagocytosis. These novel genes are involved in translational control (EIF5A and DHPS) and the UDP glycosylation pathway (SLC35A2, SLC35A3, UGCG and UXS1) and were further validated by single gene knockout experiments. Whereas the knockout of EIF5A and DHPS impaired phagocytosis, knocking out SLC35A2, SLC35A3, UGCG and UXS1 resulted in increased phagocytosis. In addition to S. aureus phagocytosis, the above described genes also modulate phagocytosis of Escherichia coli and yeast-derived zymosan A. In summary, we identified both known and unknown genetic regulators of phagocytosis, the latter providing a valuable resource for future studies dissecting the underlying molecular and cellular mechanisms and their role in human disease.
Collapse
Affiliation(s)
- Benjamin Lindner
- Department of Drug Discovery Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach an der Riss, Germany.
| | - Eva Martin
- Department of Drug Discovery Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach an der Riss, Germany
| | - Monika Steininger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Aleksandra Bundalo
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Martin Lenter
- Department of Drug Discovery Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach an der Riss, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Michael Schuler
- Department of Drug Discovery Science, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach an der Riss, Germany
| |
Collapse
|
162
|
Gassen NC, Papies J, Bajaj T, Emanuel J, Dethloff F, Chua RL, Trimpert J, Heinemann N, Niemeyer C, Weege F, Hönzke K, Aschman T, Heinz DE, Weckmann K, Ebert T, Zellner A, Lennarz M, Wyler E, Schroeder S, Richter A, Niemeyer D, Hoffmann K, Meyer TF, Heppner FL, Corman VM, Landthaler M, Hocke AC, Morkel M, Osterrieder N, Conrad C, Eils R, Radbruch H, Giavalisco P, Drosten C, Müller MA. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat Commun 2021; 12:3818. [PMID: 34155207 PMCID: PMC8217552 DOI: 10.1038/s41467-021-24007-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/29/2021] [Indexed: 02/07/2023] Open
Abstract
Viruses manipulate cellular metabolism and macromolecule recycling processes like autophagy. Dysregulated metabolism might lead to excessive inflammatory and autoimmune responses as observed in severe and long COVID-19 patients. Here we show that SARS-CoV-2 modulates cellular metabolism and reduces autophagy. Accordingly, compound-driven induction of autophagy limits SARS-CoV-2 propagation. In detail, SARS-CoV-2-infected cells show accumulation of key metabolites, activation of autophagy inhibitors (AKT1, SKP2) and reduction of proteins responsible for autophagy initiation (AMPK, TSC2, ULK1), membrane nucleation, and phagophore formation (BECN1, VPS34, ATG14), as well as autophagosome-lysosome fusion (BECN1, ATG14 oligomers). Consequently, phagophore-incorporated autophagy markers LC3B-II and P62 accumulate, which we confirm in a hamster model and lung samples of COVID-19 patients. Single-nucleus and single-cell sequencing of patient-derived lung and mucosal samples show differential transcriptional regulation of autophagy and immune genes depending on cell type, disease duration, and SARS-CoV-2 replication levels. Targeting of autophagic pathways by exogenous administration of the polyamines spermidine and spermine, the selective AKT1 inhibitor MK-2206, and the BECN1-stabilizing anthelmintic drug niclosamide inhibit SARS-CoV-2 propagation in vitro with IC50 values of 136.7, 7.67, 0.11, and 0.13 μM, respectively. Autophagy-inducing compounds reduce SARS-CoV-2 propagation in primary human lung cells and intestinal organoids emphasizing their potential as treatment options against COVID-19.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany.
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Jackson Emanuel
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | | | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Nicolas Heinemann
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Christine Niemeyer
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Friderike Weege
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Katja Hönzke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tom Aschman
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniel E Heinz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Katja Weckmann
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Tim Ebert
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Andreas Zellner
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Martina Lennarz
- Department of Psychiatry and Psychotherapy, University of Bonn, Medical Faculty, Bonn, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Simon Schroeder
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Karen Hoffmann
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, Kiel, Germany
| | - Frank L Heppner
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Molecular Imaging of Immunoregulation, Medizinische Klinik m.S. Infektiologie & Pneumologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Morkel
- Institute for Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolaus Osterrieder
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany
| | - Marcel A Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
- German Center for Infection Research (DZIF), partner site Charité, Berlin, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
163
|
Sagar NA, Tarafdar S, Agarwal S, Tarafdar A, Sharma S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med Sci (Basel) 2021; 9:44. [PMID: 34207607 PMCID: PMC8293435 DOI: 10.3390/medsci9020044] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Putrescine, spermine, and spermidine are the important polyamines (PAs), found in all living organisms. PAs are formed by the decarboxylation of amino acids, and they facilitate cell growth and development via different cellular responses. PAs are the integrated part of the cellular and genetic metabolism and help in transcription, translation, signaling, and post-translational modifications. At the cellular level, PA concentration may influence the condition of various diseases in the body. For instance, a high PA level is detrimental to patients suffering from aging, cognitive impairment, and cancer. The levels of PAs decline with age in humans, which is associated with different health disorders. On the other hand, PAs reduce the risk of many cardiovascular diseases and increase longevity, when taken in an optimum quantity. Therefore, a controlled diet is an easy way to maintain the level of PAs in the body. Based on the nutritional intake of PAs, healthy cell functioning can be maintained. Moreover, several diseases can also be controlled to a higher extend via maintaining the metabolism of PAs. The present review discusses the types, important functions, and metabolism of PAs in humans. It also highlights the nutritional role of PAs in the prevention of various diseases.
Collapse
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
- Food Microbiology Lab, Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India
| | - Swarnava Tarafdar
- Department of Radiodiagnosis and Imaging, All India Institute of Medical Science, Rishikesh 249203, Uttarakhand, India;
| | - Surbhi Agarwal
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India;
| | - Ayon Tarafdar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Uttar Pradesh, India;
| | - Sunil Sharma
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonepat 131028, Haryana, India
| |
Collapse
|
164
|
Kaur J, Goldsmith J, Tankka A, Bustamante Eguiguren S, Gimenez AA, Vick L, Debnath J, Vlahakis A. Atg32-dependent mitophagy sustains spermidine and nitric oxide required for heat-stress tolerance in Saccharomycescerevisiae. J Cell Sci 2021; 134:jcs253781. [PMID: 34096604 PMCID: PMC8214763 DOI: 10.1242/jcs.253781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/06/2021] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the selective autophagic degradation of mitochondria, termed mitophagy, is critically regulated by the adapter protein Atg32. Despite our knowledge about the molecular mechanisms by which Atg32 controls mitophagy, its physiological roles in yeast survival and fitness remains less clear. Here, we demonstrate a requirement for Atg32 in promoting spermidine production during respiratory growth and heat-induced mitochondrial stress. During respiratory growth, mitophagy-deficient yeast exhibit profound heat-stress induced defects in growth and viability due to impaired biosynthesis of spermidine and its biosynthetic precursor S-adenosyl methionine. Moreover, spermidine production is crucial for the induction of cytoprotective nitric oxide (NO) during heat stress. Hence, the re-addition of spermidine to Atg32 mutant yeast is sufficient to both enhance NO production and restore respiratory growth during heat stress. Our findings uncover a previously unrecognized physiological role for yeast mitophagy in spermidine metabolism and illuminate new interconnections between mitophagy, polyamine biosynthesis and NO signaling.
Collapse
|
165
|
Allmeroth K, Kim CS, Annibal A, Pouikli A, Koester J, Derisbourg MJ, Andrés Chacón-Martínez C, Latza C, Antebi A, Tessarz P, Wickström SA, Denzel MS. N1-acetylspermidine is a determinant of hair follicle stem cell fate. J Cell Sci 2021; 134:261953. [PMID: 33973637 PMCID: PMC8182411 DOI: 10.1242/jcs.252767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
Stem cell differentiation is accompanied by increased mRNA translation. The rate of protein biosynthesis is influenced by the polyamines putrescine, spermidine and spermine, which are essential for cell growth and stem cell maintenance. However, the role of polyamines as endogenous effectors of stem cell fate and whether they act through translational control remains obscure. Here, we investigate the function of polyamines in stem cell fate decisions using hair follicle stem cell (HFSC) organoids. Compared to progenitor cells, HFSCs showed lower translation rates, correlating with reduced polyamine levels. Surprisingly, overall polyamine depletion decreased translation but did not affect cell fate. In contrast, specific depletion of natural polyamines mediated by spermidine/spermine N1-acetyltransferase (SSAT; also known as SAT1) activation did not reduce translation but enhanced stemness. These results suggest a translation-independent role of polyamines in cell fate regulation. Indeed, we identified N1-acetylspermidine as a determinant of cell fate that acted through increasing self-renewal, and observed elevated N1-acetylspermidine levels upon depilation-mediated HFSC proliferation and differentiation in vivo. Overall, this study delineates the diverse routes of polyamine metabolism-mediated regulation of stem cell fate decisions. This article has an associated First Person interview with the first author of the paper. Summary: Reduced protein synthesis is required for stem cell functions. Here, we delineate a complex interplay of polyamines and mRNA translation that determines hair follicle stem cell fate decisions.
Collapse
Affiliation(s)
- Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Christine S Kim
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Andromachi Pouikli
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Janis Koester
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Maxime J Derisbourg
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | | | - Christian Latza
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Peter Tessarz
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany
| | - Sara A Wickström
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany.,Helsinki Institute for Life Science, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, Biomedicum Helsinki, Haartmaninkatu 8, FI-00290 Helsinki, Finland
| | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Cologne, Germany.,CECAD - Cluster of Excellence, University of Cologne, Joseph-Stelzmann-Str. 26, D-50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, D-50931 Cologne, Germany
| |
Collapse
|
166
|
Zago G, Saavedra PHV, Keshari KR, Perry JSA. Immunometabolism of Tissue-Resident Macrophages - An Appraisal of the Current Knowledge and Cutting-Edge Methods and Technologies. Front Immunol 2021; 12:665782. [PMID: 34025667 PMCID: PMC8138590 DOI: 10.3389/fimmu.2021.665782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022] Open
Abstract
Tissue-resident macrophages exist in unique environments, or niches, that inform their identity and function. There is an emerging body of literature suggesting that the qualities of this environment, such as the types of cells and debris they eat, the intercellular interactions they form, and the length of time spent in residence, collectively what we call habitare, directly inform their metabolic state. In turn, a tissue-resident macrophage’s metabolic state can inform their function, including whether they resolve inflammation and protect the host from excessive perturbations of homeostasis. In this review, we summarize recent work that seeks to understand the metabolic requirements for tissue-resident macrophage identity and maintenance, for how they respond to inflammatory challenges, and for how they perform homeostatic functions or resolve inflammatory insults. We end with a discussion of the emerging technologies that are enabling, or will enable, in situ study of tissue-resident macrophage metabolism.
Collapse
Affiliation(s)
- Giulia Zago
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Pedro H V Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
167
|
Bourourou M, Gouix E, Melis N, Friard J, Heurteaux C, Tauc M, Blondeau N. Inhibition of eIF5A hypusination pathway as a new pharmacological target for stroke therapy. J Cereb Blood Flow Metab 2021; 41:1080-1090. [PMID: 32615885 PMCID: PMC8054730 DOI: 10.1177/0271678x20928882] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/17/2022]
Abstract
In eukaryotes, the polyamine pathway generates spermidine that activates the hypusination of the translation factor eukaryotic initiation factor 5A (eIF5A). Hypusinated-eIF5A modulates translation, elongation, termination and mitochondrial function. Evidence in model organisms like drosophila suggests that targeting polyamines synthesis might be of interest against ischemia. However, the potential of targeting eIF5A hypusination in stroke, the major therapeutic challenge specific to ischemia, is currently unknown. Using in vitro models of ischemic-related stress, we documented that GC7, a specific inhibitor of a key enzyme in the eIF5A activation pathway, affords neuronal protection. We identified the preservation of mitochondrial function and thereby the prevention of toxic ROS generation as major processes of GC7 protection. To represent a thoughtful opportunity of clinical translation, we explored whether GC7 administration reduces the infarct volume and functional deficits in an in vivo transient focal cerebral ischemia (tFCI) model in mice. A single GC7 pre- or post-treatment significantly reduces the infarct volume post-stroke. Moreover, GC7-post-treatment significantly improves mouse performance in the rotarod and Morris water-maze, highlighting beneficial effects on motor and cognitive post-stroke deficits. Our results identify the targeting of the polyamine-eIF5A-hypusine axis as a new therapeutic opportunity and new paradigm of research in stroke and ischemic diseases.
Collapse
Affiliation(s)
- Miled Bourourou
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | - Elsa Gouix
- CNRS, IPMC, Université Côte d’Azur, Sophia Antipolis, France
| | | | - Jonas Friard
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | | - Michel Tauc
- CNRS, LP2M, Université Côte d’Azur, Nice, France
| | | |
Collapse
|
168
|
Pereira KD, Tamborlin L, de Lima TI, Consonni SR, Silveira LR, Luchessi AD. Alternative human eIF5A protein isoform plays a critical role in mitochondria. J Cell Biochem 2021; 122:549-561. [PMID: 33459432 DOI: 10.1002/jcb.29884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The eukaryotic translation initiation factor 5A (eIF5A) is the only known protein containing the amino acid residue hypusine, essential for its activity. Hypusine residue is produced by a posttranslational modification involving deoxyhypusine synthetase and deoxyhypusine hydroxylase. Herein, we aimed to describe the role of the alternative human isoform A on mitochondrial processes. Isoform A depletion modulates oxidative metabolism in association with the downregulation of mitochondrial biogenesis-related genes. Through positive feedback, it increases cell respiration leading to highly reactive oxygen species production, which impacts mitochondrial bioenergetics. These metabolic changes compromise mitochondrial morphology, increasing its electron density and fission, observed by transmission electron microscopy. This set of changes leads the cells to apoptosis, evidenced by increased DNA fragmentation and proapoptotic BAK protein content increase. Thus, we show that the alternative eIF5A isoform A is crucial for energy metabolism controlled by mitochondria and cellular survival.
Collapse
Affiliation(s)
- Karina D Pereira
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Letícia Tamborlin
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| | - Tanes I de Lima
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Silvio R Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Augusto D Luchessi
- Laboratory of Biotechnology, School of Applied Sciences, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
- Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil
| |
Collapse
|
169
|
Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, McParland V, Swinnen D, Geuzens A, Maifeld A, Krampert L, Vogl M, Mähler A, Wilck N, Markó L, Tilic E, Forslund SK, Binger KJ, Stegbauer J, Dechend R, Kleinewietfeld M, Jantsch J, Kempa S, Müller DN. Salt Transiently Inhibits Mitochondrial Energetics in Mononuclear Phagocytes. Circulation 2021; 144:144-158. [PMID: 33906377 PMCID: PMC8270232 DOI: 10.1161/circulationaha.120.052788] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text. Background: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. Methods: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. Results: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of and respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. Conclusions: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.
Collapse
Affiliation(s)
- Sabrina Geisberger
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Ralf Willebrand
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Christin Zasada
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.)
| | | | - Victoria McParland
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Dries Swinnen
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Anneleen Geuzens
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - András Maifeld
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Luka Krampert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Marion Vogl
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Nicola Wilck
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (N.W.).,Department of Nephrology and Internal Intensive Care Medicine (N.W.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Ekin Tilic
- Institute of Evolutionary Biology, University of Bonn, Germany (T.B., E.T.)
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| | - Katrina J Binger
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia (K.J.B.)
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany (J.S.)
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Department of Cardiology and Nephrology, HELIOS-Klinikum, Berlin, Germany (R.D.)
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research, UHasselt, Campus Diepenbeek, Belgium (R.W., D.S., A.G., M.K.)
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, Germany (P.N., L.K., M.V., J.J.)
| | - Stefan Kempa
- Integrative Proteomics and Metabolomics, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Germany (S.G., C.Z., S.K.)
| | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,German Center for Cardiovascular Research, partner site Berlin (S.G., H.B., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.).,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (H.B., V.M., A. Maifeld, A. Mähler, L.M., S.K.F., R.D., D.N.M.).,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (S.G., H.B., V.M., A. Maifeld, A. Mähler, N.W., L.M., S.K.F., R.D., D.N.M.)
| |
Collapse
|
170
|
Bridges AA, Bassler BL. Inverse regulation of Vibrio cholerae biofilm dispersal by polyamine signals. eLife 2021; 10:e65487. [PMID: 33856344 PMCID: PMC8079147 DOI: 10.7554/elife.65487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The global pathogen Vibrio cholerae undergoes cycles of biofilm formation and dispersal in the environment and the human host. Little is understood about biofilm dispersal. Here, we show that MbaA, a periplasmic polyamine sensor, and PotD1, a polyamine importer, regulate V. cholerae biofilm dispersal. Spermidine, a commonly produced polyamine, drives V. cholerae dispersal, whereas norspermidine, an uncommon polyamine produced by vibrios, inhibits dispersal. Spermidine and norspermidine differ by one methylene group. Both polyamines control dispersal via MbaA detection in the periplasm and subsequent signal relay. Our results suggest that dispersal fails in the absence of PotD1 because endogenously produced norspermidine is not reimported, periplasmic norspermidine accumulates, and it stimulates MbaA signaling. These results suggest that V. cholerae uses MbaA to monitor environmental polyamines, blends of which potentially provide information about numbers of 'self' and 'other'. This information is used to dictate whether or not to disperse from biofilms.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
- The Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
171
|
Liang Y, Piao C, Beuschel CB, Toppe D, Kollipara L, Bogdanow B, Maglione M, Lützkendorf J, See JCK, Huang S, Conrad TOF, Kintscher U, Madeo F, Liu F, Sickmann A, Sigrist SJ. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep 2021; 35:108941. [PMID: 33852845 DOI: 10.1016/j.celrep.2021.108941] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial function declines during brain aging and is suspected to play a key role in age-induced cognitive decline and neurodegeneration. Supplementing levels of spermidine, a body-endogenous metabolite, has been shown to promote mitochondrial respiration and delay aspects of brain aging. Spermidine serves as the amino-butyl group donor for the synthesis of hypusine (Nε-[4-amino-2-hydroxybutyl]-lysine) at a specific lysine residue of the eukaryotic translation initiation factor 5A (eIF5A). Here, we show that in the Drosophila brain, hypusinated eIF5A levels decline with age but can be boosted by dietary spermidine. Several genetic regimes of attenuating eIF5A hypusination all similarly affect brain mitochondrial respiration resembling age-typical mitochondrial decay and also provoke a premature aging of locomotion and memory formation in adult Drosophilae. eIF5A hypusination, conserved through all eukaryotes as an obviously critical effector of spermidine, might thus be an important diagnostic and therapeutic avenue in aspects of brain aging provoked by mitochondrial decline.
Collapse
Affiliation(s)
- YongTian Liang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Christine B Beuschel
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - David Toppe
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund 44139, Germany
| | - Boris Bogdanow
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marta Maglione
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Janine Lützkendorf
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Jason Chun Kit See
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Sheng Huang
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany
| | - Tim O F Conrad
- Institute for Mathematics and Computer Sciences, Freie Universität Berlin, Berlin 14195, Germany; Zuse Institute Berlin, Berlin 14195, Germany
| | - Ulrich Kintscher
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin 10117, Germany; Institute of Pharmacology, Center for Cardiovascular Research, Charité Universitätmedizin Berlin, Berlin 10115, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Fan Liu
- Department of Chemical Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund 44139, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen AB24 3FX, Scotland, UK; Medizinische Fakultät, Medizinische Proteom-Center (MPC), Ruhr-Universität Bochum, Bochum 44801, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin 14195, Germany; NeuroCure Cluster of Excellence, Charité Universitätmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
172
|
Schroeder S, Hofer SJ, Zimmermann A, Pechlaner R, Dammbrueck C, Pendl T, Marcello GM, Pogatschnigg V, Bergmann M, Müller M, Gschiel V, Ristic S, Tadic J, Iwata K, Richter G, Farzi A, Üçal M, Schäfer U, Poglitsch M, Royer P, Mekis R, Agreiter M, Tölle RC, Sótonyi P, Willeit J, Mairhofer B, Niederkofler H, Pallhuber I, Rungger G, Tilg H, Defrancesco M, Marksteiner J, Sinner F, Magnes C, Pieber TR, Holzer P, Kroemer G, Carmona-Gutierrez D, Scorrano L, Dengjel J, Madl T, Sedej S, Sigrist SJ, Rácz B, Kiechl S, Eisenberg T, Madeo F. Dietary spermidine improves cognitive function. Cell Rep 2021; 35:108985. [PMID: 33852843 DOI: 10.1016/j.celrep.2021.108985] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/08/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Decreased cognitive performance is a hallmark of brain aging, but the underlying mechanisms and potential therapeutic avenues remain poorly understood. Recent studies have revealed health-protective and lifespan-extending effects of dietary spermidine, a natural autophagy-promoting polyamine. Here, we show that dietary spermidine passes the blood-brain barrier in mice and increases hippocampal eIF5A hypusination and mitochondrial function. Spermidine feeding in aged mice affects behavior in homecage environment tasks, improves spatial learning, and increases hippocampal respiratory competence. In a Drosophila aging model, spermidine boosts mitochondrial respiratory capacity, an effect that requires the autophagy regulator Atg7 and the mitophagy mediators Parkin and Pink1. Neuron-specific Pink1 knockdown abolishes spermidine-induced improvement of olfactory associative learning. This suggests that the maintenance of mitochondrial and autophagic function is essential for enhanced cognition by spermidine feeding. Finally, we show large-scale prospective data linking higher dietary spermidine intake with a reduced risk for cognitive impairment in humans.
Collapse
Affiliation(s)
- Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Raimund Pechlaner
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - G Mark Marcello
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Viktoria Pogatschnigg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Melanie Müller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Verena Gschiel
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Selena Ristic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| | - Keiko Iwata
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Research Center for Child Mental Development, University of Fukui, 910-1193 Fukui, Japan; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Gesa Richter
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Aitak Farzi
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Muammer Üçal
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Ute Schäfer
- Department of Neurosurgery, RU Experimental Neurotraumatology, Medical University Graz, 8036 Graz, Austria
| | - Michael Poglitsch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Ronald Mekis
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Marlene Agreiter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Regine C Tölle
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Péter Sótonyi
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Johann Willeit
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | | | | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Defrancesco
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Josef Marksteiner
- Department of Psychiatry and Psychotherapy A, Hall State Hospital, 6060 Hall in Tirol, Austria
| | - Frank Sinner
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Magnes
- HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Thomas R Pieber
- BioTechMed-Graz, 8010 Graz, Austria; HEALTH-Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, 8010 Graz, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Peter Holzer
- Otto Loewi Research Center (for Vascular Biology, Immunology and Inflammation), Division of Pharmacology, Medical University of Graz (MUG), 8010 Graz, Austria
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Descartes, Université Paris Diderot, Université Sorbonne Paris Cité, INSERM U1138, Centre de Recherche des Cordeliers, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94 805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Suzhou Institute for Systems Biology, Chinese Academy of Sciences, 215123 Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | | | - Luca Scorrano
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Biology, University of Padova, 35121 Padova, Italy
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Tobias Madl
- BioTechMed-Graz, 8010 Graz, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry Medical University of Graz, 8010 Graz, Austria
| | - Simon Sedej
- BioTechMed-Graz, 8010 Graz, Austria; Department of Cardiology, Medical University of Graz, 8036 Graz, Austria; Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Stephan J Sigrist
- Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine Budapest, 1078 Budapest, Hungary
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria; VASCage, Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria.
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria.
| |
Collapse
|
173
|
Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 2021; 12:2105. [PMID: 33833232 PMCID: PMC8032791 DOI: 10.1038/s41467-021-22212-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbiota-derived metabolites have biological importance for the host. Polyamines, such as putrescine and spermidine, are produced by the intestinal microbiota and regulate multiple biological processes. Increased colonic luminal polyamines promote longevity in mice. However, no direct evidence has shown that microbial polyamines are incorporated into host cells to regulate cellular responses. Here, we show that microbial polyamines reinforce colonic epithelial proliferation and regulate macrophage differentiation. Colonisation by wild-type, but not polyamine biosynthesis-deficient, Escherichia coli in germ-free mice raises intracellular polyamine levels in colonocytes, accelerating epithelial renewal. Commensal bacterium-derived putrescine increases the abundance of anti-inflammatory macrophages in the colon. The bacterial polyamines ameliorate symptoms of dextran sulfate sodium-induced colitis in mice. These effects mainly result from enhanced hypusination of eukaryotic initiation translation factor. We conclude that bacterial putrescine functions as a substrate for symbiotic metabolism and is further absorbed and metabolised by the host, thus helping maintain mucosal homoeostasis in the intestine.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masayoshi Onuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Aiko Kume
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Kurokawa, Toyama, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- The Francis Crick Institute, London, UK
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Shinji Saiki
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
174
|
Abstract
Macrophages are instrumental for the repair of organs that become injured due to ischemia, yet their potential for healing is sensitive to the availability of metabolites from the surrounding milieu. This sensitivity extends beyond anabolic and catabolic reactions, as metabolites are also leveraged to control production of secreted factors that direct intercellular crosstalk. In response to limiting extracellular oxygen, acute-phase macrophages activate hypoxia-inducible transcription factors that repurpose cellular metabolism. Subsequent repair-phase macrophages secrete cytokines to activate stromal cells, the latter which contribute to matrix deposition and scarring. As we now appreciate, these distinct functions are calibrated by directing flux of carbons and cofactors into specific metabolic shunts. This occurs through glycolysis, the pentose phosphate shunt, the tricarboxylic acid cycle, oxidative phosphorylation, nicotinamide adenine dinucleotides, lipids, amino acids, and through lesser understood pathways. The integration of metabolism with macrophage function is particularly important during injury to the ischemic heart, as glucose and lipid imbalance lead to inefficient repair and permanent loss of non-regenerative muscle. Here we review macrophage metabolic signaling under ischemic stress with implications for cardiac repair.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
175
|
Abstract
Billions of cells undergo apoptosis daily and are swiftly removed by macrophages through an evolutionarily conserved program termed "efferocytosis". Consequently, macromolecules within an apoptotic cell significantly burden a phagocyte with nutrients, such as lipids, oligonucleotides, and amino acids. In response to this nutrient overload, metabolic reprogramming must occur for the process of efferocytosis to remain non-phlogistic and to execute successive rounds of efferocytosis. The inability to undergo metabolic reprogramming after efferocytosis drives inflammation and impairs its resolution, often promoting many chronic inflammatory diseases. This is particularly evident for atherosclerosis, as metabolic reprogramming alters macrophage function in every stage of atherosclerosis, from the early formation of benign lesions to the progression of clinically relevant atheromas and during atherosclerosis regression upon aggressive lipid-lowering. This Review focuses on the metabolic pathways utilized upon apoptotic cell ingestion, the consequences of these metabolic pathways in macrophage function thereafter, and the role of metabolic reprogramming during atherosclerosis. Due to the growing interest in this new field, I introduce a new term, "efferotabolism", as a means to define the process by which macrophages break down, metabolize, and respond to AC-derived macromolecules. Understanding these aspects of efferotabolism will shed light on novel strategies to combat atherosclerosis and compromised inflammation resolution.
Collapse
|
176
|
Cougnon M, Carcy R, Melis N, Rubera I, Duranton C, Dumas K, Tanti JF, Pons C, Soubeiran N, Shkreli M, Hauet T, Pellerin L, Giraud S, Blondeau N, Tauc M, Pisani DF. Inhibition of eIF5A hypusination reprogrammes metabolism and glucose handling in mouse kidney. Cell Death Dis 2021; 12:283. [PMID: 33731685 PMCID: PMC7969969 DOI: 10.1038/s41419-021-03577-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inhibition of the eukaryotic initiation factor 5A activation by the spermidine analogue GC7 has been shown to protect proximal cells and whole kidneys against an acute episode of ischaemia. The highlighted mechanism involves a metabolic switch from oxidative phosphorylation toward glycolysis allowing cells to be transiently independent of oxygen supply. Here we show that GC7 decreases protein expression of the renal GLUT1 glucose transporter leading to a decrease in transcellular glucose flux. At the same time, GC7 modifies the native energy source of the proximal cells from glutamine toward glucose use. Thus, GC7 acutely and reversibly reprogrammes function and metabolism of kidney cells to make glucose its single substrate, and thus allowing cells to be oxygen independent through anaerobic glycolysis. The physiological consequences are an increase in the renal excretion of glucose and lactate reflecting a decrease in glucose reabsorption and an increased glycolysis. Such a reversible reprogramming of glucose handling and oxygen dependence of kidney cells by GC7 represents a pharmacological opportunity in ischaemic as well as hyperglycaemia-associated pathologies from renal origin.
Collapse
Affiliation(s)
- Marc Cougnon
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | - Romain Carcy
- CHU Nice, Hôpital Pasteur 2, Service de Réanimation Polyvalente et Service de Réanimation des Urgences Vitales, Nice, France
| | - Nicolas Melis
- Université Côte d'Azur, CNRS, LP2M, Nice, France
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | | | | | - Karine Dumas
- Université Côte d'Azur, INSERM, C3M, Nice, France
| | | | - Catherine Pons
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | | | - Marina Shkreli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Thierry Hauet
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | - Luc Pellerin
- Université de Poitiers, INSERM, IRTOMIT, CHU de Poitiers, La Milétrie, Poitiers, France
| | | | | | - Michel Tauc
- Université Côte d'Azur, CNRS, LP2M, Nice, France.
| | | |
Collapse
|
177
|
Rampler E, Hermann G, Grabmann G, El Abiead Y, Schoeny H, Baumgartinger C, Köcher T, Koellensperger G. Benchmarking Non-Targeted Metabolomics Using Yeast-Derived Libraries. Metabolites 2021; 11:metabo11030160. [PMID: 33802096 PMCID: PMC7998801 DOI: 10.3390/metabo11030160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Non-targeted analysis by high-resolution mass spectrometry (HRMS) is an essential discovery tool in metabolomics. To date, standardization and validation remain a challenge. Community-wide accepted cost-effective benchmark materials are lacking. In this work, we propose yeast (Pichia pastoris) extracts derived from fully controlled fermentations for this purpose. We established an open-source metabolite library of >200 identified metabolites based on compound identification by accurate mass, matching retention times, and MS/MS, as well as a comprehensive literature search. The library includes metabolites from the classes of (1) organic acids and derivatives (2) nucleosides, nucleotides, and analogs, (3) lipids and lipid-like molecules, (4) organic oxygen compounds, (5) organoheterocyclic compounds, (6) organic nitrogen compounds, and (7) benzoids at expected concentrations ranges of sub-nM to µM. As yeast is a eukaryotic organism, key regulatory elements are highly conserved between yeast and all annotated metabolites were also reported in the human metabolome database (HMDB). Orthogonal state-of-the-art reversed-phase (RP-) and hydrophilic interaction chromatography mass spectrometry (HILIC-MS) non-targeted analysis and authentic standards revealed that 104 out of the 206 confirmed metabolites were reproducibly recovered and stable over the course of three years when stored at −80 °C. Overall, 67 out of these 104 metabolites were identified with comparably stable areas over all three yeast fermentation and are the ideal starting point for benchmarking experiments. The provided yeast benchmark material enabled not only to test for the chemical space and coverage upon method implementation and developments but also allowed in-house routines for instrumental performance tests. Transferring the quality control strategy of proteomics workflows based on the number of protein identification in HeLa extracts, metabolite IDs in the yeast benchmarking material can be used as metabolomics quality control. Finally, the benchmark material opens new avenues for batch-to-batch corrections in large-scale non-targeted metabolomics studies.
Collapse
Affiliation(s)
- Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - Gerrit Hermann
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- ISOtopic Solutions, Währinger Str. 38, 1090 Vienna, Austria
| | - Gerlinde Grabmann
- Metabolomics Core Facility, Vienna BioCenter Core Facilities, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; (G.G.); (T.K.)
| | - Yasin El Abiead
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Christoph Baumgartinger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
| | - Thomas Köcher
- Metabolomics Core Facility, Vienna BioCenter Core Facilities, Dr.-Bohr-Gasse 3, 1030 Vienna, Austria; (G.G.); (T.K.)
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria; (E.R.); (G.H.); (Y.E.A.); (H.S.); (C.B.)
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
178
|
Zimmermann A, Carmona-Gutierrez D, Madeo F. Spermidine supplementation in rare translation-associated disorders. Cell Stress 2021; 5:29-32. [PMID: 33688620 PMCID: PMC7921850 DOI: 10.15698/cst2021.03.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 02/02/2023] Open
Abstract
The polyamine spermidine is essential for protein translation in eukaryotes, both as a substrate for the hypusination of the translation initiation factor eIF5A as well as general translational fidelity. Dwindling spermidine levels during aging have been implicated in reduced immune cell function through insufficient eIF5A hypusination, which can be restored by external supplementation. Recent findings characterize a group of novel Mendelian disorders linked to EIF5A missense and nonsense variants that cause protein translation defects. In model organisms that recapitulate these mutations, spermidine supplementation was able to alleviate at least some of the concomitant protein translation defects. Here, we discuss the role of spermidine in protein translation and possible therapeutic avenues for translation-associated disorders.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Field of Excellence BioHealth – University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
179
|
Dowling JK, Afzal R, Gearing LJ, Cervantes-Silva MP, Annett S, Davis GM, De Santi C, Assmann N, Dettmer K, Gough DJ, Bantug GR, Hamid FI, Nally FK, Duffy CP, Gorman AL, Liddicoat AM, Lavelle EC, Hess C, Oefner PJ, Finlay DK, Davey GP, Robson T, Curtis AM, Hertzog PJ, Williams BRG, McCoy CE. Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages. Nat Commun 2021; 12:1460. [PMID: 33674584 PMCID: PMC7936006 DOI: 10.1038/s41467-021-21617-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1β in vitro. Accordingly, HIF-1α and IL-1β are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.
Collapse
Affiliation(s)
- Jennifer K Dowling
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Remsha Afzal
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Linden J Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Stephanie Annett
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Gavin M Davis
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Chiara De Santi
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Nadine Assmann
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Daniel J Gough
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Fidinny I Hamid
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Frances K Nally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Conor P Duffy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Aoife L Gorman
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Alex M Liddicoat
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Gavin P Davey
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Claire E McCoy
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
- FutureNeuro, SFI Research Centre, Dublin 2, Ireland.
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia.
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
180
|
Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization. FEBS J 2021; 288:3694-3714. [PMID: 33460504 PMCID: PMC8359336 DOI: 10.1111/febs.15715] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
Macrophages represent the first line of defence in innate immune responses and additionally serve important functions for the regulation of host inflammation and tissue homeostasis. The M1/M2 model describes the two extremes of macrophage polarization states, which can be induced by multiple stimuli, most notably by LPS/IFN‐γ and IL‐4/IL‐13. Historically, the expression of two genes encoding for enzymes, which use the same amino acid as their substrate, iNOS and ARG1, has been used to define classically activated M1 (iNOS) and alternatively activated M2 (ARG1) macrophages. This ‘arginine dichotomy’ has recently become a matter of debate; however, in parallel with the emerging field of immunometabolism there is accumulating evidence that these two enzymes and their related metabolites are fundamentally involved in the intrinsic regulation of macrophage polarization and function. The aim of this review is to highlight recent advances in macrophage biology and immunometabolism with a specific focus on amino acid metabolism and their related metabolic pathways: iNOS/ARG1 (arginine), TCA cycle and OXPHOS (glutamine) as well as the one‐carbon metabolism (serine, glycine).
Collapse
Affiliation(s)
- Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| |
Collapse
|
181
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
182
|
Faundes V, Jennings MD, Crilly S, Legraie S, Withers SE, Cuvertino S, Davies SJ, Douglas AGL, Fry AE, Harrison V, Amiel J, Lehalle D, Newman WG, Newkirk P, Ranells J, Splitt M, Cross LA, Saunders CJ, Sullivan BR, Granadillo JL, Gordon CT, Kasher PR, Pavitt GD, Banka S. Impaired eIF5A function causes a Mendelian disorder that is partially rescued in model systems by spermidine. Nat Commun 2021; 12:833. [PMID: 33547280 PMCID: PMC7864902 DOI: 10.1038/s41467-021-21053-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
The structure of proline prevents it from adopting an optimal position for rapid protein synthesis. Poly-proline-tract (PPT) associated ribosomal stalling is resolved by highly conserved eIF5A, the only protein to contain the amino acid hypusine. We show that de novo heterozygous EIF5A variants cause a disorder characterized by variable combinations of developmental delay, microcephaly, micrognathia and dysmorphism. Yeast growth assays, polysome profiling, total/hypusinated eIF5A levels and PPT-reporters studies reveal that the variants impair eIF5A function, reduce eIF5A-ribosome interactions and impair the synthesis of PPT-containing proteins. Supplementation with 1 mM spermidine partially corrects the yeast growth defects, improves the polysome profiles and restores expression of PPT reporters. In zebrafish, knockdown eif5a partly recapitulates the human phenotype that can be rescued with 1 µM spermidine supplementation. In summary, we uncover the role of eIF5A in human development and disease, demonstrate the mechanistic complexity of EIF5A-related disorder and raise possibilities for its treatment.
Collapse
Affiliation(s)
- Víctor Faundes
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratorio de Genética y Enfermedades Metabólicas, Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Siobhan Crilly
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah Legraie
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sarah E Withers
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sara Cuvertino
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sally J Davies
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Victoria Harrison
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Hôpital Necker Enfants Malades, Paris, France
- 1Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Daphné Lehalle
- Department of Genetics, AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - William G Newman
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Patricia Newkirk
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, UK
| | - Judith Ranells
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, FL, UK
| | - Miranda Splitt
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne, UK
| | - Laura A Cross
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO, USA
- Department of Pediatrics, University of Missour-Kansas City, Kansas City, MO, USA
| | - Carol J Saunders
- Center for Pediatric Genomic Medicine Children's Mercy, Kansas City, MO, USA
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy, Kansas City, MO, USA
| | - Bonnie R Sullivan
- Division of Clinical Genetics, Children's Mercy, Kansas City, MO, USA
- Department of Pediatrics, University of Missour-Kansas City, Kansas City, MO, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher T Gordon
- 1Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Paul R Kasher
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK.
| |
Collapse
|
183
|
Miska J, Rashidi A, Lee-Chang C, Gao P, Lopez-Rosas A, Zhang P, Burga R, Castro B, Xiao T, Han Y, Hou D, Sampat S, Cordero A, Stoolman JS, Horbinski CM, Burns M, Reshetnyak YK, Chandel NS, Lesniak MS. Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. SCIENCE ADVANCES 2021; 7:eabc8929. [PMID: 33597238 PMCID: PMC7888943 DOI: 10.1126/sciadv.abc8929] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution.
Collapse
Affiliation(s)
- Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA.
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Gao
- Metabolomics Core Facility, Feinberg School of Medicine, Northwestern University, 710 N Fairbanks Court, Chicago, IL 60611, USA
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Rachel Burga
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Samay Sampat
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Joshua S Stoolman
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| | - Mark Burns
- Aminex Therapeutics Inc., Epsom, NH 03234, USA
| | - Yana K Reshetnyak
- Physics Department, University of Rhode Island, Kingston, RI 02881, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2330, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 676 North St. Clair Street, Suite 2210, Chicago, IL 60611, USA
| |
Collapse
|
184
|
Wirth A, Wolf B, Huang CK, Glage S, Hofer SJ, Bankstahl M, Bär C, Thum T, Kahl KG, Sigrist SJ, Madeo F, Bankstahl JP, Ponimaskin E. Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length. GeroScience 2021; 43:673-690. [PMID: 33517527 PMCID: PMC8110654 DOI: 10.1007/s11357-020-00310-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Ageing provokes a plethora of molecular, cellular and physiological deteriorations, including heart failure, neurodegeneration, metabolic maladaptation, telomere attrition and hair loss. Interestingly, on the molecular level, the capacity to induce autophagy, a cellular recycling and cleaning process, declines with age across a large spectrum of model organisms and is thought to be responsible for a subset of age-induced changes. Here, we show that a 6-month administration of the natural autophagy inducer spermidine in the drinking water to aged mice is sufficient to significantly attenuate distinct age-associated phenotypes. These include modulation of brain glucose metabolism, suppression of distinct cardiac inflammation parameters, decreased number of pathological sights in kidney and liver and decrease of age-induced hair loss. Interestingly, spermidine-mediated age protection was associated with decreased telomere attrition, arguing in favour of a novel cellular mechanism behind the anti-ageing effects of spermidine administration.
Collapse
Affiliation(s)
- Alexander Wirth
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Bettina Wolf
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Silke Glage
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Marion Bankstahl
- Institute for Laboratory Animal Science, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625, Hannover, Germany
| | - Kai G Kahl
- Dept. of Psychiatry; Social Psychiatry and Psychotherapy, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Stephan J Sigrist
- Freie University Berlin, Institute of Biology, Takusstraße 6, 14195, Berlin, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, Karl-Franzens-Universität Graz, Humboldtstraße 50/EG, 8010, Graz, Austria
| | - Jens P Bankstahl
- Preclinical Molecular Imaging, Department of Nuclear Medicine, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hanover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, Gagarin ave. 23, Nizhny Novgorod, Russian Federation, 603950.
| |
Collapse
|
185
|
Cortes-Selva D, Gibbs L, Maschek JA, Nascimento M, Van Ry T, Cox JE, Amiel E, Fairfax KC. Metabolic reprogramming of the myeloid lineage by Schistosoma mansoni infection persists independently of antigen exposure. PLoS Pathog 2021; 17:e1009198. [PMID: 33417618 PMCID: PMC7819610 DOI: 10.1371/journal.ppat.1009198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/21/2021] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model. We demonstrate that bone marrow derived macrophages (BMDM) from S. mansoni infected male ApoE-/- mice have dramatically increased mitochondrial respiration compared to those from uninfected mice. This change is associated with increased glucose and palmitate shuttling into TCA cycle intermediates, increased accumulation of free fatty acids, and decreased accumulation of cellular cholesterol esters, tri and diglycerides, and is dependent on mgll activity. Systemic injection of IL-4 complexes is unable to recapitulate either reductions in systemic glucose AUC or the re-programing of BMDM mitochondrial respiration seen in infected males. Importantly, the metabolic reprogramming of male myeloid cells is transferrable via bone marrow transplantation to an uninfected host, indicating maintenance of reprogramming in the absence of sustained antigen exposure. Finally, schistosome induced metabolic and bone marrow modulation is sex-dependent, with infection protecting male, but not female mice from glucose intolerance and obesity. Our findings identify a transferable, long-lasting sex-dependent reprograming of the metabolic signature of macrophages by helminth infection, providing key mechanistic insight into the factors regulating the beneficial roles of helminth infection in metabolic disease.
Collapse
Affiliation(s)
- Diana Cortes-Selva
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - J Alan Maschek
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, United States of America
| | - Marcia Nascimento
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America
| | - Tyler Van Ry
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - James E Cox
- Metabolomics, Proteomics and Mass Spectrometry Cores, University of Utah, Salt Lake City, Utah, United States of America.,Department of Biochemistry, University of Utah, Salt Lake City Utah, United States of America
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, United States of America
| | - Keke C Fairfax
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City Utah, United States of America.,Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette Indiana, United States of America
| |
Collapse
|
186
|
Kumar A, Patel S, Bhatkar D, Sarode SC, Sharma NK. A novel method to detect intracellular metabolite alterations in MCF-7 cells by doxorubicin induced cell death. Metabolomics 2021; 17:3. [PMID: 33389242 DOI: 10.1007/s11306-020-01755-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metabolic reprogramming within cancer cells has been recognized as a potential barrier to chemotherapy. Additionally, metabolic tumor heterogeneity is the one of factors behind discernible hallmarks such as drug resistance, relapse of the tumor and the formation of secondary tumors. METHODS In this paper, cell-based assays including PI/annexin V staining and immunoblot assay were performed to show the apoptotic cell death in MCF-7 cells treated with DOX. Further, MCF-7 cells were lysed in a hypotonic buffer and the whole cell lysate was purified by a novel and specifically designed metabolite (~ 100 to 1000 Da) fractionation system called vertical tube gel electrophoresis (VTGE). Further, purified intracellular metabolites were subjected to identification by LC-HRMS technique. RESULTS Cleaved PARP 1 in MCF-7 cells treated with DOX was observed in the present study. Concomitantly, data showed the absence of active caspase 3 in MCF-7 cells. Novel findings are to identify key intracellular metabolites assisted by VTGE system that include lipid (CDP-DG, phytosphingosine, dodecanamide), non-lipid (N-acetyl-D-glucosamine, N1-acetylspermidine and gamma-L-glutamyl-L-cysteine) and tripeptide metabolites in MCF-7 cells treated by DOX. Interestingly, we reported the first evidence of doxorubicinone, an aglycone form of DOX in MCF-7 cells that are potentially linked to the mechanism of cell death in MCF-7 cells. CONCLUSION This paper reported novel methods and processes that involve VTGE system based purification of hypotonically lysed novel intracellular metabolites of MCF-7 cells treated by DOX. Here, these identified intracellular metabolites corroborate to caspase 3 independent and mitochondria induced apoptotic cell death in MCF-7 cells. Finally, these findings validate a proof of concept on the applications of novel VTGE assisted purification and analysis of intracellular metabolites from various cell culture models.
Collapse
Affiliation(s)
- Ajay Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Sheetal Patel
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Devyani Bhatkar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Sachin C Sarode
- Department of Oral Pathology and Microbiology, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India.
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth Pune, Pune, MH, 411033, India.
| |
Collapse
|
187
|
O'Brien KL, Assmann N, O'Connor E, Keane C, Walls J, Choi C, Oefner PJ, Gardiner CM, Dettmer K, Finlay DK. De novo polyamine synthesis supports metabolic and functional responses in activated murine NK cells. Eur J Immunol 2021; 51:91-102. [PMID: 32946110 DOI: 10.1002/eji.202048784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
Cellular metabolism is dynamically regulated in NK cells and strongly influences their responses. Metabolic dysfunction is linked to defective NK cell responses in diseases such as obesity and cancer. The transcription factors, sterol regulatory element binding protein (SREBP) and cMyc, are crucial for controlling NK cell metabolic and functional responses, though the mechanisms involved are not fully understood. This study reveals a new role for SREBP in NK cells in supporting de novo polyamine synthesis through facilitating elevated cMyc expression. Polyamines have diverse roles and their de novo synthesis is required for NK cell glycolytic and oxidative metabolism and to support optimal NK cell effector functions. When NK cells with impaired SREBP activity were supplemented with exogenous polyamines, NK cell metabolic defects were not rescued but these NK cells displayed significant improvement in some effector functions. One role for polyamines is in the control of protein translation where spermidine supports the posttranslational hypusination of translation factor eIF5a. Pharmacological inhibition of hypusination also impacts upon NK cell metabolism and effector function. Considering recent evidence that cholesterol-rich tumor microenvironments inhibit SREBP activation and drive lymphocyte dysfunction, this study provides key mechanistic insight into this tumor-evasion strategy.
Collapse
Affiliation(s)
- Katie L O'Brien
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Nadine Assmann
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Eimear O'Connor
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cathal Keane
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Jessica Walls
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
188
|
Pence BD. Recent developments and future perspectives in aging and macrophage immunometabolism. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Aging is the strongest contributor to the development and severity of many chronic and infectious diseases, primarily through age-related increases in low-grade inflammation (inflammaging) and decreases in immune function (immunosenescence). Metabolic reprogramming in immune cells is a significant contributor to functional and phenotypic changes in these cells, but little is known about the direct effect of aging on immunometabolism. This review highlights several recent advances in this field, focusing on mitochondrial dysfunction, NAD+ metabolism, and therapeutic reprogramming in aged monocytes and macrophages. Perspectives on opportunities for future research in this area are also provided. Targeting immunometabolism is a promising strategy for designing therapeutics for a wide variety of age-related diseases.</p>
</abstract>
Collapse
|
189
|
Miyajima M. Amino acids: key sources for immunometabolites and immunotransmitters. Int Immunol 2020; 32:435-446. [PMID: 32383454 DOI: 10.1093/intimm/dxaa019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Immune-cell activation and functional plasticity are closely linked to metabolic reprogramming that is required to supply the energy and substrates for such dynamic transformations. During such processes, immune cells metabolize many kinds of molecules including nucleic acids, sugars and lipids, which is called immunometabolism. This review will mainly focus on amino acids and their derivatives among such metabolites and describe the functions of these molecules in the immune system. Although amino acids are essential for, and well known as, substrates for protein synthesis, they are also metabolized as energy sources and as substrates for functional catabolites. For example, glutamine is metabolized to produce energy through glutaminolysis and tryptophan is consumed to supply nicotinamide adenine dinucleotide, whereas arginine is metabolized to produce nitric acid and polyamine by nitric oxide synthase and arginase, respectively. In addition, serine is catabolized to produce nucleotides and to induce methylation reactions. Furthermore, in addition to their intracellular functions, amino acids and their derivatives are secreted and have extracellular functions as immunotransmitters. Many amino acids and their derivatives have been classified as neurotransmitters and their functions are clear as transmitters between nerve cells, or between nerve cells and immune cells, functioning as immunotransmitters. Thus, this review will describe the intracellular and external functions of amino acid from the perspective of immunometabolism and immunotransmission.
Collapse
Affiliation(s)
- Michio Miyajima
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
190
|
Metabolic Dynamics of In Vitro CD8+ T Cell Activation. Metabolites 2020; 11:metabo11010012. [PMID: 33379404 PMCID: PMC7823996 DOI: 10.3390/metabo11010012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
CD8+ T cells detect and kill infected or cancerous cells. When activated from their naïve state, T cells undergo a complex transition, including major metabolic reprogramming. Detailed resolution of metabolic dynamics is needed to advance the field of immunometabolism. Here, we outline methodologies that when utilized in parallel achieve broad coverage of the metabolome. Specifically, we used a combination of 2 flow injection analysis (FIA) and 3 liquid chromatography (LC) methods in combination with positive and negative mode high-resolution mass spectrometry (MS) to study the transition from naïve to effector T cells with fine-grained time resolution. Depending on the method, between 54% and 98% of measured metabolic features change in a time-dependent manner, with the major changes in both polar metabolites and lipids occurring in the first 48 h. The statistical analysis highlighted the remodeling of the polyamine biosynthesis pathway, with marked differences in the dynamics of precursors, intermediates, and cofactors. Moreover, phosphatidylcholines, the major class of membrane lipids, underwent a drastic shift in acyl chain composition with polyunsaturated species decreasing from 60% to 25% of the total pool and specifically depleting species containing a 20:4 fatty acid. We hope that this data set with a total of over 11,000 features recorded with multiple MS methodologies for 9 time points will be a useful resource for future work.
Collapse
|
191
|
Barba-Aliaga M, Villarroel-Vicente C, Stanciu A, Corman A, Martínez-Pastor MT, Alepuz P. Yeast Translation Elongation Factor eIF5A Expression Is Regulated by Nutrient Availability through Different Signalling Pathways. Int J Mol Sci 2020; 22:E219. [PMID: 33379337 PMCID: PMC7794953 DOI: 10.3390/ijms22010219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.
Collapse
Affiliation(s)
- Marina Barba-Aliaga
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Carlos Villarroel-Vicente
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alice Stanciu
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Alba Corman
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - María Teresa Martínez-Pastor
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| | - Paula Alepuz
- Instituto Biotecmed, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain; (M.B.-A.); (C.V.-V.); (A.S.); (A.C.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/Dr. Moliner 50, E46100 Burjassot, Spain;
| |
Collapse
|
192
|
Alsaleh G, Panse I, Swadling L, Zhang H, Richter FC, Meyer A, Lord J, Barnes E, Klenerman P, Green C, Simon AK. Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. eLife 2020; 9:e57950. [PMID: 33317695 PMCID: PMC7744099 DOI: 10.7554/elife.57950] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Vaccines are powerful tools to develop immune memory to infectious diseases and prevent excess mortality. In older adults, however vaccines are generally less efficacious and the molecular mechanisms that underpin this remain largely unknown. Autophagy, a process known to prevent aging, is critical for the maintenance of immune memory in mice. Here, we show that autophagy is specifically induced in vaccine-induced antigen-specific CD8+ T cells in healthy human volunteers. In addition, reduced IFNγ secretion by RSV-induced T cells in older vaccinees correlates with low autophagy levels. We demonstrate that levels of the endogenous autophagy-inducing metabolite spermidine fall in human T cells with age. Spermidine supplementation in T cells from old donors recovers their autophagy level and function, similar to young donors' cells, in which spermidine biosynthesis has been inhibited. Finally, our data show that endogenous spermidine maintains autophagy via the translation factor eIF5A and transcription factor TFEB. In summary, we have provided evidence for the importance of autophagy in vaccine immunogenicity in older humans and uncovered two novel drug targets that may increase vaccination efficiency in the aging context.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Isabel Panse
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Leo Swadling
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Hanlin Zhang
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Felix Clemens Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| | - Alain Meyer
- Fédération de médecine translationnelle Université de StrasbourgStrasbourgFrance
| | - Janet Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of BirminghamBirminghamUnited Kingdom
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research,Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Translational Gastroenterology Unit, John Radcliffe HospitalOxfordUnited Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe HospitalOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research,Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Translational Gastroenterology Unit, John Radcliffe HospitalOxfordUnited Kingdom
- NIHR Oxford Biomedical Research Centre, John Radcliffe HospitalOxfordUnited Kingdom
| | - Christopher Green
- Oxford Vaccine Group, Department of Paediatrics, University of OxfordOxfordUnited Kingdom
| | - Anna Katharina Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
193
|
Gobert AP, Finley JL, Latour YL, Asim M, Smith TM, Verriere TG, Barry DP, Allaman MM, Delagado AG, Rose KL, Calcutt MW, Schey KL, Sierra JC, Piazuelo MB, Mirmira RG, Wilson KT. Hypusination Orchestrates the Antimicrobial Response of Macrophages. Cell Rep 2020; 33:108510. [PMID: 33326776 PMCID: PMC7812972 DOI: 10.1016/j.celrep.2020.108510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/28/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Innate responses of myeloid cells defend against pathogenic bacteria via inducible effectors. Deoxyhypusine synthase (DHPS) catalyzes the transfer of the N-moiety of spermidine to the lysine-50 residue of eukaryotic translation initiation factor 5A (EIF5A) to form the amino acid hypusine. Hypusinated EIF5A (EIF5AHyp) transports specific mRNAs to ribosomes for translation. We show that DHPS is induced in macrophages by two gastrointestinal pathogens, Helicobacter pylori and Citrobacter rodentium, resulting in enhanced hypusination of EIF5A. EIF5AHyp was also increased in gastric macrophages from patients with H. pylori gastritis. Furthermore, we identify the bacteria-induced immune effectors regulated by hypusination. This set of proteins includes essential constituents of antimicrobial response and autophagy. Mice with myeloid cell-specific deletion of Dhps exhibit reduced EIF5AHyp in macrophages and increased bacterial burden and inflammation. Thus, regulation of translation through hypusination is a critical hallmark of the defense of eukaryotic hosts against pathogenic bacteria.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Jordan L Finley
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yvonne L Latour
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thaddeus M Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas G Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alberto G Delagado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristie L Rose
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - M Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kevin L Schey
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Johanna C Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Raghavendra G Mirmira
- Translational Research Center, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA.
| |
Collapse
|
194
|
Giraud S, Kerforne T, Zely J, Ameteau V, Couturier P, Tauc M, Hauet T. The inhibition of eIF5A hypusination by GC7, a preconditioning protocol to prevent brain death-induced renal injuries in a preclinical porcine kidney transplantation model. Am J Transplant 2020; 20:3326-3340. [PMID: 32400964 DOI: 10.1111/ajt.15994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023]
Abstract
The eIF5A hypusination inhibitor GC7 (N1-guanyl-1,7-diaminoheptane) was shown to protect from ischemic injuries. We hypothesized that GC7 could be useful for preconditioning kidneys from donors before transplantation. Using a preclinical porcine brain death (BD) donation model, we carried out in vivo evaluation of GC7 pretreatment (3 mg/kg iv, 5 minutes after BD) at the beginning of the 4h-donor management, after which kidneys were collected and cold-stored (18h in University of Wisconsin solution) and 1 was allotransplanted. Groups were defined as following (n = 6 per group): healthy (CTL), untreated BD (Vehicle), and GC7-treated BD (Vehicle + GC7). At the end of 4h-management, GC7 treatment decreased BD-induced markers, as radical oxygen species markers. In addition, GC7 increased expression of mitochondrial protective peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC1α) and antioxidant proteins (superoxyde-dismutase-2, heme oxygenase-1, nuclear factor [erythroid-derived 2]-like 2 [NRF2], and sirtuins). At the end of cold storage, GC7 treatment induced an increase of NRF2 and PGC1α mRNA and a better mitochondrial integrity/homeostasis with a decrease of dynamin- related protein-1 activation and increase of mitofusin-2. Moreover, GC7 treatment significantly improved kidney outcome during 90 days follow-up after transplantation (fewer creatininemia and fibrosis). Overall, GC7 treatment was shown to be protective for kidneys against BD-induced injuries during donor management and subsequently appeared to preserve antioxidant defenses and mitochondria homeostasis; these protective effects being accompanied by a better transplantation outcome.
Collapse
Affiliation(s)
- Sebastien Giraud
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France
| | - Thomas Kerforne
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Jeremy Zely
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,Service d'Anesthésie-Réanimation, CHU de Poitiers, Poitiers, France
| | - Virginie Ameteau
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
| | - Pierre Couturier
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France
| | - Michel Tauc
- Université Cote d'Azur, LP2M, CNRS-7370, Nice, France
| | - Thierry Hauet
- INSERM UMR-1082 IRTOMIT, Poitiers, France.,Service de Biochimie, CHU de Poitiers, Poitiers, France.,Faculté de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France.,MOPICT 'plate-forme MOdélisation Préclinique - Innovations Chirurgicale et Technologique', Domaine Expérimental du Magneraud, Surgères, France.,FHU SUPORT 'SUrvival oPtimization in ORgan Transplantation', Poitiers, France
| |
Collapse
|
195
|
Wu R, Chen X, Kang S, Wang T, Gnanaprakasam JR, Yao Y, Liu L, Fan G, Burns MR, Wang R. De novo synthesis and salvage pathway coordinately regulate polyamine homeostasis and determine T cell proliferation and function. SCIENCE ADVANCES 2020; 6:eabc4275. [PMID: 33328226 PMCID: PMC7744078 DOI: 10.1126/sciadv.abc4275] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/22/2020] [Indexed: 05/05/2023]
Abstract
Robust and effective T cell-mediated immune responses require proper allocation of metabolic resources through metabolic pathways to sustain the energetically costly immune response. As an essential class of polycationic metabolites ubiquitously present in all living organisms, the polyamine pool is tightly regulated by biosynthesis and salvage pathway. We demonstrated that arginine is a major carbon donor and glutamine is a minor carbon donor for polyamine biosynthesis in T cells. Accordingly, the dependence of T cells can be partially relieved by replenishing the polyamine pool. In response to the blockage of biosynthesis, T cells can rapidly restore the polyamine pool through a compensatory increase in extracellular polyamine uptake, indicating a layer of metabolic plasticity. Simultaneously blocking synthesis and uptake depletes the intracellular polyamine pool, inhibits T cell proliferation, and suppresses T cell inflammation, indicating the potential therapeutic value of targeting the polyamine pool for managing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ruohan Wu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Xuyong Chen
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Siwen Kang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Tingting Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Jn Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Yufeng Yao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lingling Liu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology and BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH 43205, USA.
| |
Collapse
|
196
|
Huang M, Zhang W, Chen H, Zeng J. Targeting Polyamine Metabolism for Control of Human Viral Diseases. Infect Drug Resist 2020; 13:4335-4346. [PMID: 33293837 PMCID: PMC7718961 DOI: 10.2147/idr.s262024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022] Open
Abstract
A virus is an infectious particle which generally contains nucleic acid genome (DNA or RNA inside a protein shell), except for human immunodeficiency virus (HIV). Viruses have to reproduce by infecting their host cells. Polyamines are ubiquitous compounds in mammalian cells and play key roles in various cellular processes. The metabolic pathways of polyamines have been well studied. Targeting these metabolic pathways can reduce infections caused by viruses. In the study, we systematically reviewed the association of polyamine metabolic pathways and viruses including coxsackievirus B3 (CVB3), enterovirus 71 (EV71), poliovirus (PV), Zika virus (ZKV), hepatitis C virus (HCV), hepatitis B virus (HBV), dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), Ebola virus (EBOV), marburgvirus (MARV), chikungunya virus (CHIKV), sindbis virus (SINV), Semliki Forest virus (SFV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV), human cytomegalovirus (HCMV), vesicular stomatitis virus (VSV), Rabies virus (RABV), Rift Valley fever virus (RVFV), La Crosse virus (LACV), human immunodeficiency virus (HIV), Middle East respiratory syndrome virus (MERS-CoV), and coronavirus disease 2019 (SARS-CoV-2). This review revealed that targeting polyamine metabolic pathways may be a potential approach to control human viral infection.
Collapse
Affiliation(s)
- Mingyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Weijian Zhang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan523808, People’s Republic of China
| | - Haiyong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Key Laboratory of Medical Bioactive Molecular Research for Department of Education of Guangdong Province, Guangdong Medical University, Dongguan523808, People’s Republic of China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong524023, People’s Republic of China
| |
Collapse
|
197
|
Diskin C, Ryan TAJ, O'Neill LAJ. Modification of Proteins by Metabolites in Immunity. Immunity 2020; 54:19-31. [PMID: 33220233 DOI: 10.1016/j.immuni.2020.09.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Immunometabolism has emerged as a key focus for immunologists, with metabolic change in immune cells becoming as important a determinant for specific immune effector responses as discrete signaling pathways. A key output for these changes involves post-translational modification (PTM) of proteins by metabolites. Products of glycolysis and Krebs cycle pathways can mediate these events, as can lipids, amino acids, and polyamines. A rich and diverse set of PTMs in macrophages and T cells has been uncovered, altering phenotype and modulating immunity and inflammation in different contexts. We review the recent findings in this area and speculate whether they could be of use in the effort to develop therapeutics for immune-related diseases.
Collapse
Affiliation(s)
- C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - T A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
198
|
Aloysius A, Saxena S, Seifert AW. Metabolic regulation of innate immune cell phenotypes during wound repair and regeneration. Curr Opin Immunol 2020; 68:72-82. [PMID: 33171376 DOI: 10.1016/j.coi.2020.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Metabolism regulates an array of cellular processes from embryonic development through adulthood. These include proliferation, differentiation and the effector functions of adult cells to maintain homeostasis and repair. It is becoming clear that bioenergetic shifts can control how cells respond to environmental disruptions during tissue injury to initiate a healing response. Specifically, innate immune cells shift their phenotypes to initiate and resolve inflammation, and there is intense interest to understand how these responses might regulate healing outcomes. Here, we review recent literature describing how cellular metabolism and metabolic byproducts regulate phenotype conversions among innate immune cells. Although most studies of this kind do not focus on tissue damage, we discuss how metabolic regulation of these phenotypes promotes tissue repair. In particular, we provide a framework for considering the extent to which altering the innate immune response might shift fibrotic repair towards regenerative healing.
Collapse
Affiliation(s)
- Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Sandeep Saxena
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
199
|
Dumont A, Lee M, Barouillet T, Murphy A, Yvan-Charvet L. Mitochondria orchestrate macrophage effector functions in atherosclerosis. Mol Aspects Med 2020; 77:100922. [PMID: 33162108 DOI: 10.1016/j.mam.2020.100922] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - ManKS Lee
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Thibault Barouillet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France
| | - Andrew Murphy
- Haematopoiesis and Leukocyte Biology, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia; Department of Immunology, Monash University, Melbourne, Victoria, 3165, Australia
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204, Nice, France.
| |
Collapse
|
200
|
The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites 2020; 10:metabo10110426. [PMID: 33114536 PMCID: PMC7693344 DOI: 10.3390/metabo10110426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Immune cells undergo dramatic metabolic reprogramming in response to external stimuli. These metabolic pathways, long considered as simple housekeeping functions, are increasingly understood to critically regulate the immune response, determining the activation, differentiation, and downstream effector functions of both lymphoid and myeloid cells. Within the complex metabolic networks associated with immune activation, several enzymes play key roles in regulating inflammation and represent potential therapeutic targets in human disease. In some cases, these enzymes control flux through pathways required to meet specific energetic or metabolic demands of the immune response. In other cases, key enzymes control the concentrations of immunoactive metabolites with direct roles in signaling. Finally, and perhaps most interestingly, several metabolic enzymes have evolved moonlighting functions, with roles in the immune response that are entirely independent of their conventional enzyme activities. Here, we review key metabolic enzymes that critically regulate inflammation, highlighting mechanistic insights and opportunities for clinical intervention.
Collapse
|