151
|
Miorin L, Maestre AM, Fernandez-Sesma A, García-Sastre A. Antagonism of type I interferon by flaviviruses. Biochem Biophys Res Commun 2017; 492:587-596. [PMID: 28576494 PMCID: PMC5626595 DOI: 10.1016/j.bbrc.2017.05.146] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/20/2017] [Accepted: 05/24/2017] [Indexed: 12/24/2022]
Abstract
The prompt and tightly controlled induction of type I interferon is a central event of the immune defense against viral infection. Flaviviruses comprise a large family of arthropod-borne positive-stranded RNA viruses, many of which represent a serious threat to global human health due to their high rates of morbidity and mortality. All flaviviruses studied so far have been shown to counteract the host's immune response to establish a productive infection and facilitate viral spread. Here, we review the current knowledge on the main strategies that human pathogenic flaviviruses utilize to escape both type I IFN induction and effector pathways. A better understanding of the specific mechanisms by which flaviviruses activate and evade innate immune responses is critical for the development of better therapeutics and vaccines.
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana M Maestre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
152
|
Yan C, Xiao J, Li J, Chen H, Liu J, Wang C, Feng C, Feng H. TBK1 of black carp plays an important role in host innate immune response against SVCV and GCRV. FISH & SHELLFISH IMMUNOLOGY 2017; 69:108-118. [PMID: 28821402 DOI: 10.1016/j.fsi.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/05/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Tank-binding kinase 1 (TBK1) plays a pivotal role in the induction of type I IFNs in higher vertebrates. To explore the function of TBK1 in teleost, TBK1 of black carp (Mylopharyngodon Piceus) was cloned and characterized in this paper. The full-length cDNA of black carp TBK1 (bcTBK1) consists of 2857 nucleotides and the predicted bcTBK1 protein contains 727 amino acids, which includes an N-terminal kinase domain (KD), an ubiquitin-like domain (ULD) and two C-terminal coiled-coils. The transcription of bcTBK1 was constitutively detected in all the selected tissues and bcTBK1 mRNA level was increased in all selected tissues in response to SVCV or GCRV infection except that in muscle post GCRV invasion. The transcription of bcTBK1 in Mylopharyngodon Piceus fin (MPF) cells was up-regulated by the stimulation of SVCV, GCRV or poly (I:C) but not by LPS treatment. bcTBK1 migrated around 80 kDa in immunoblot assay and was identified as a cytosolic protein by immunofluorescence staining. bcTBK1 showed strong IFN-inducing ability in reporter assay and presented strong antiviral activity against both GCRV and SVCV in EPC cells. The reporter assay demonstrated that TRAF6 of black carp (bcTRAF6) up-regulated bcTBK1-induced IFN expression and the subcellular distribution of bcTBK1 overlapped with that of bcTRAF6 when these two proteins were co-expressed in EPC cells. Taken together, our study support the conclusion that bcTBK1 plays an important role in the antiviral innate immune response of black carp against SVCV and GCRV, in which its activity was positively regulated by bcTRAF6.
Collapse
Affiliation(s)
- Chuanzhe Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Hui Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Chaoliang Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
153
|
Activation of the Innate Immune Receptors: Guardians of the Micro Galaxy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:1-35. [DOI: 10.1007/978-981-10-5987-2_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
154
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
155
|
Zhang Q, Zeng LP, Zhou P, Irving AT, Li S, Shi ZL, Wang LF. IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS One 2017; 12:e0182866. [PMID: 28793350 PMCID: PMC5549907 DOI: 10.1371/journal.pone.0182866] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/25/2017] [Indexed: 12/01/2022] Open
Abstract
Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lei-Ping Zeng
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Aaron T. Irving
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
| | - Shang Li
- Programme in Cancer and Stem Cell Biology, Duke–National University of Singapore Medical School, Singapore, Singapore
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail:
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke–National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
156
|
Zhao H, Wang Y, Liu J, Shao Y, Li J, Chai H, Xing M. Retracted: Molecular Characterization and Biological Activity of Interferon-α in Indian Peafowl (Pavo cristatus). DNA Cell Biol 2017; 36:10.1089/dna.2017.3798. [PMID: 28783371 DOI: 10.1089/dna.2017.3798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
DNA and Cell Biology (DNA&CB) is officially retracting the paper by Zhao H, Wang Y, Liu J, Shao Y, Li J, Chai H, Xing M, entitled, "Molecular Characterization and Biological activity of Interferon-α in Indian Peafowl (Pavo cristatus)," [Epub ahead of print]; 2017, DOI: 10.1089/dna.2017.3798. The Editor-in-Chief of DNA&CB, Dr. Carol Shoshkes Reiss, was alerted to a discrepancy between the findings in the article by Zhao et al., and those of others, about the absence of expression of ISG15 in chickens. Dr. Reiss requested from the authors a clarification in their observations and inquired about the failure to include relevant citations in the reference section of the paper. Based on the response from the authors, it appeared that they did not have the confidence in the data as they were not able to repeat the experiments, and were also unsure of the molecular probes that were used in the study. Therefore, the Editor has determined that the paper should be officially retracted from DNA and Cell Biology.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Jinglun Li
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Hongliang Chai
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University , Harbin Heilongjiang, People's Republic of China
| |
Collapse
|
157
|
Assetta B, Atwood WJ. The biology of JC polyomavirus. Biol Chem 2017; 398:839-855. [PMID: 28493815 DOI: 10.1515/hsz-2016-0345] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.
Collapse
|
158
|
Aloia AL, Calvert JK, Clarke JN, Davies LT, Helbig KJ, Pitson SM, Carr JM. Investigation of sphingosine kinase 1 in interferon responses during dengue virus infection. Clin Transl Immunology 2017; 6:e151. [PMID: 28791126 PMCID: PMC5539417 DOI: 10.1038/cti.2017.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) regulates sphingosine kinase (SK)-1 activity and chemical inhibition of SK1 reduces DENV infection. In primary murine embryonic fibroblasts (pMEFs) lacking SK1 however, DENV infection is enhanced and this is associated with induction of normal levels of interferon beta (IFN-β) but reduced levels of IFN-stimulated genes (ISGs). We have further investigated this link between SK1 and type I IFN responses. DENV infection downregulates cell-surface IFN-alpha receptor (IFNAR)1 in both wild-type (WT) and SK1-/- pMEF, but, consistent with poor ISG responses, shows reduced induction of phosphorylated (p)-STAT1 and key IFN regulatory factors (IRF)1 and -7 in SK1-/- pMEF. Direct IFN stimulation induced ISGs (viperin, IFIT1), CXCL10, IRF1 and -7 and p-STAT1. Responses, however, were significantly reduced in SK1-/- pMEF, except for IFN-stimulated CXCL10 and IRF7. Poor IFN responses in SK1-/- pMEF were associated with a small reduction in basal cell-surface IFNAR1 and IRF1 mRNA in uninfected SK1-/- compared with WT pMEF. In contrast, treatment of cells with the SK1 inhibitor, SK1-I or expression of an inhibitory SK1 short hairpin RNA (shRNA), both of which reduce DENV infection, does not alter basal IRF1 mRNA or affect type I IFN stimulation of p-STAT1. Thus, cells genetically lacking SK1 can induce many responses normally following DENV infection, but have adaptive changes in IFNAR1 and IRF1 that compromise DENV-induced type I IFN responses. This suggests a biological link between SK1 and IFN-stimulated pathways. Other approaches to reduce SK1 activity, however, do not influence these important antiviral pathways but reduce infection and may be useful antiviral strategies.
Collapse
Affiliation(s)
- Amanda L Aloia
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Julie K Calvert
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Jennifer N Clarke
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| | - Lorena T Davies
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jillian M Carr
- Department of Microbiology and Infectious Diseases, School of Medicine, Flinders Medical Centre, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
159
|
McGowan DC, Herschke F, Pauwels F, Stoops B, Smyej I, Last S, Pieters S, Embrechts W, Khamlichi MD, Thoné T, Van Schoubroeck B, Mostmans W, Wuyts D, Verstappen D, Scholliers A, De Pooter D, Dhuyvetter D, Borghys H, Tuefferd M, Arnoult E, Hong J, Fanning G, Bollekens J, Urmaliya V, Teisman A, Horton H, Jonckers THM, Raboisson P. Identification and Optimization of Pyrrolo[3,2-d]pyrimidine Toll-like Receptor 7 (TLR7) Selective Agonists for the Treatment of Hepatitis B. J Med Chem 2017; 60:6137-6151. [PMID: 28671847 DOI: 10.1021/acs.jmedchem.7b00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pyrrolo[3,2-d]pyrimidines were identified as a new series of potent and selective TLR7 agonists. Compounds were optimized for their activity and selectivity over TLR8. This presents an advantage over recently described scaffolds that have residual TLR8 activity, which may be detrimental to the tolerability of the candidate drug. Oral administration of the lead compound 54 effectively induced a transient interferon stimulated gene (ISG) response in mice and cynomolgus monkeys. We aimed for a high first pass effect, limiting cytokine induction systemically, and demonstrated the potential for the immunotherapy of viral hepatitis.
Collapse
Affiliation(s)
- David C McGowan
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Florence Herschke
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Frederik Pauwels
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Bart Stoops
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ilham Smyej
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Stefaan Last
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Serge Pieters
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Werner Embrechts
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Mourad Daoubi Khamlichi
- Villapharma Research S.L. , Parque Tecnológico de Fuente Álamo, Ctra. El Estrecho-Lobosillo, Km. 2.5-Av. Azul, 30320 Fuente Álamo de Murcia, Murcia, Spain
| | - Tine Thoné
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Wendy Mostmans
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Debbie Wuyts
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dorien Verstappen
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Annick Scholliers
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dorien De Pooter
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | - Herman Borghys
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marianne Tuefferd
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Eric Arnoult
- Janssen Research & Development L.L.C. , 1400 McKean Road, Spring House, Pennsylvania 19454, United States
| | - Jin Hong
- Alios Biopharma, Inc. , 260 East Grand Avenue, South San Francisco, California 94080, United States
| | - Gregory Fanning
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Jacques Bollekens
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vijay Urmaliya
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Ard Teisman
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Helen Horton
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Tim H M Jonckers
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Pierre Raboisson
- Janssen Pharmaceutica , N. V. Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
160
|
Liu J, Li J, Xiao J, Chen H, Lu L, Wang X, Tian Y, Feng H. The antiviral signaling mediated by black carp MDA5 is positively regulated by LGP2. FISH & SHELLFISH IMMUNOLOGY 2017; 66:360-371. [PMID: 28526571 DOI: 10.1016/j.fsi.2017.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 06/07/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) belongs to RIG-I like receptor (RLR) family, which detects cytosolic viral RNA component in immune response. In this study, MDA5 orthologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The full-length cDNA of black carp MDA5 (bcMDA5) comprises 3244 nucleotides and the predicted bcMDA5 protein contains 984 amino acids. The constitutive transcription of bcMDA5 was extremely low in all the tested tissues, which included gill, skin, muscle, intestine, kidney, spleen, liver and heart. However, bcMDA5 mRNA level was much enhanced in most selected tissues in response to GCRV or SVCV infection. bcMDA5 migrated around 120 KDa in immunoblot and was identified as a cytosolic protein by immunofluorescent staining in both EPC and HeLa cells. Expressing bcMDA5 in EPC cells resulted in the induction of promoter activity of zebrafish IFN3 or fathead minnow IFN. The EPC cells expressing bcMDA5 obtained improved antiviral ability against both SVCV and GCRV. When EPC cells were co-transfected with plasmids expressing bcMDA5 and bcLGP2, the induced IFN expression by bcMDA5 was obviously enhanced. EPC cells expressing both bcMDA5 and bcLGP2 owned much improved antiviral ability than those cells expressing only bcMDA5 or bcLGP2. In general, our data support the conclusion that bcMDA5 plays an important role in the antiviral innate immune response of black carp and bcLGP2 acts as a positive regulator in bcMDA5 mediated signaling.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Liang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xu Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yu Tian
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, 410081, China; College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
161
|
Izuogu AO, McNally KL, Harris SE, Youseff BH, Presloid JB, Burlak C, Munshi-South J, Best SM, Taylor RT. Interferon signaling in Peromyscus leucopus confers a potent and specific restriction to vector-borne flaviviruses. PLoS One 2017; 12:e0179781. [PMID: 28650973 PMCID: PMC5484488 DOI: 10.1371/journal.pone.0179781] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs), including Powassan virus and tick-borne encephalitis virus cause encephalitis or hemorrhagic fevers in humans with case-fatality rates ranging from 1-30%. Despite severe disease in humans, TBFV infection of natural rodent hosts has little noticeable effect. Currently, the basis for resistance to disease is not known. We hypothesize that the coevolution of flaviviruses with their respective hosts has shaped the evolution of potent antiviral factors that suppress virus replication and protect the host from lethal infection. In the current study, we compared virus infection between reservoir host cells and related susceptible species. Infection of primary fibroblasts from the white-footed mouse (Peromyscus leucopus, a representative host) with a panel of vector-borne flaviviruses showed up to a 10,000-fold reduction in virus titer compared to control Mus musculus cells. Replication of vesicular stomatitis virus was equivalent in P. leucopus and M. musculus cells suggesting that restriction was flavivirus-specific. Step-wise comparison of the virus infection cycle revealed a significant block to viral RNA replication, but not virus entry, in P. leucopus cells. To understand the role of the type I interferon (IFN) response in virus restriction, we knocked down signal transducer and activator of transcription 1 (STAT1) or the type I IFN receptor (IFNAR1) by RNA interference. Loss of IFNAR1 or STAT1 significantly relieved the block in virus replication in P. leucopus cells. The major IFN antagonist encoded by TBFV, nonstructural protein 5, was functional in P. leucopus cells, thus ruling out ineffective viral antagonism of the host IFN response. Collectively, this work demonstrates that the IFN response of P. leucopus imparts a strong and virus-specific barrier to flavivirus replication. Future identification of the IFN-stimulated genes responsible for virus restriction specifically in P. leucopus will yield mechanistic insight into efficient control of virus replication and may inform the development of antiviral therapeutics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/genetics
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/virology
- Host Specificity/genetics
- Host Specificity/immunology
- Host-Pathogen Interactions/genetics
- Host-Pathogen Interactions/immunology
- Humans
- Interferon Type I/antagonists & inhibitors
- Interferon Type I/immunology
- Mice
- Peromyscus/genetics
- Peromyscus/immunology
- Peromyscus/virology
- RNA, Small Interfering/genetics
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- STAT1 Transcription Factor/antagonists & inhibitors
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Viral Nonstructural Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Adaeze O. Izuogu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Kristin L. McNally
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - Stephen E. Harris
- The Graduate Center, City University of New York, New York, New York, United States of America
| | - Brian H. Youseff
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - John B. Presloid
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| | - Christopher Burlak
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jason Munshi-South
- Louis Calder Center-Biological Field Station, Fordham University, Armonk, New York, United States of America
| | - Sonja M. Best
- Innate Immunity and Pathogenesis Unit, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH, Hamilton, Montana, United States of America
| | - R. Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, United States of America
| |
Collapse
|
162
|
Abstract
Antiviral transcriptional responses and regulated cell death are crucial components of the host response to virus infection. However, in contrast to the signaling pathways that promote antiviral transcription, those that initiate cell death following virus infection are less understood. Several recent studies have identified pattern recognition receptors (PRRs) of the mammalian innate immune system that activate cell death pathways. These same receptors also have established roles in the induction of antiviral gene expression. In this review we discuss the mechanisms by which PRRs can serve dual roles as initiators of inflammatory gene expression and as inducers of apoptosis and necroptosis following virus infection.
Collapse
Affiliation(s)
- Megan H Orzalli
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
163
|
Vijayan M, Xia C, Song YE, Ngo H, Studstill CJ, Drews K, Fox TE, Johnson MC, Hiscott J, Kester M, Alexander S, Hahm B. Sphingosine 1-Phosphate Lyase Enhances the Activation of IKKε To Promote Type I IFN-Mediated Innate Immune Responses to Influenza A Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:677-687. [PMID: 28600291 DOI: 10.4049/jimmunol.1601959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/12/2017] [Indexed: 12/28/2022]
Abstract
Sphingosine 1-phosphate (S1P) lyase (SPL) is an intracellular enzyme that mediates the irreversible degradation of the bioactive lipid S1P. We have previously reported that overexpressed SPL displays anti-influenza viral activity; however, the underlying mechanism is incompletely understood. In this study, we demonstrate that SPL functions as a positive regulator of IKKε to propel type I IFN-mediated innate immune responses against viral infection. Exogenous SPL expression inhibited influenza A virus replication, which correlated with an increase in type I IFN production and IFN-stimulated gene accumulation upon infection. In contrast, the lack of SPL expression led to an elevated cellular susceptibility to influenza A virus infection. In support of this, SPL-deficient cells were defective in mounting an effective IFN response when stimulated by influenza viral RNAs. SPL augmented the activation status of IKKε and enhanced the kinase-induced phosphorylation of IRF3 and the synthesis of type I IFNs. However, the S1P degradation-incompetent form of SPL also enhanced IFN responses, suggesting that SPL's pro-IFN function is independent of S1P. Biochemical analyses revealed that SPL, as well as the mutant form of SPL, interacts with IKKε. Importantly, when endogenous IKKε was downregulated using a small interfering RNA approach, SPL's anti-influenza viral activity was markedly suppressed. This indicates that IKKε is crucial for SPL-mediated inhibition of influenza virus replication. Thus, the results illustrate the functional significance of the SPL-IKKε-IFN axis during host innate immunity against viral infection.
Collapse
Affiliation(s)
- Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Yul Eum Song
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Hanh Ngo
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Caleb J Studstill
- Department of Surgery, University of Missouri, Columbia, MO 65212.,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA 22908
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - John Hiscott
- Istituto Pasteur-Fondazione Cenci Bolognetti, 00161 Rome, Italy; and
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908
| | - Stephen Alexander
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; .,Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
164
|
Han P, Ye W, Lv X, Ma H, Weng D, Dong Y, Cheng L, Chen H, Zhang L, Xu Z, Lei Y, Zhang F. DDX50 inhibits the replication of dengue virus 2 by upregulating IFN-β production. Arch Virol 2017; 162:1487-1494. [PMID: 28181036 DOI: 10.1007/s00705-017-3250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/13/2017] [Indexed: 02/03/2023]
Abstract
Dengue virus (DENV) infects approximately 390 million people per year, and each of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4) is capable of causing infection. At present, there is no antiviral drug available for the treatment of DENV. Several DExD/H-box helicases have been shown to be involved in the antiviral immune response or viral replication. In the present study, we investigated the role of DDX50 in DENV-2 RNA replication. Our data showed that the level of DENV-2 RNA increased in DDX50 knockdown cells during an early stage of viral infection and decreased in DDX50-overexpressing cells. DDX50, in conjunction with RIG-I and MDA5, upregulated the production of IFN-β in infected cells through an additive effect on the IFN-β promoter. Furthermore, transcription of several IFN-stimulated genes was increased in DDX50-overexpressing cells infected with DENV-2. These results provide evidence that DDX50 negatively regulates DENV-2 replication during the early stages of infection by inducing IFN-β production.
Collapse
Affiliation(s)
- Peijun Han
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Wei Ye
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Xin Lv
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hongwei Ma
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Daihui Weng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yangchao Dong
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Linfeng Cheng
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Hesong Chen
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Liang Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Zhikai Xu
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China
| | - Yingfeng Lei
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| | - Fanglin Zhang
- The Department of Microbiology, School of Preclinical Medicine, The Fourth Military Medical University, No.169, Changle West Road, Xian, 710032, Shaanxi, China.
| |
Collapse
|
165
|
Hepatitis C virus drives increased type I interferon-associated impairments associated with fibrosis severity in antiretroviral treatment-treated HIV-1-hepatitis C virus-coinfected individuals. AIDS 2017; 31:1223-1234. [PMID: 28492391 DOI: 10.1097/qad.0000000000001455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Viral coinfections might contribute to the increased immune activation and inflammation that persist in antiretroviral treatment (ART)-treated HIV-1 patients. We investigated whether the hepatitis C virus (HCV) coinfection contributes to such alterations by impairing the plasmacytoid dendritic cell (pDC) IFNα/TLR7 pathway in a highly homogeneous group of ART-treated HIV-1-HCV-coinfected patients. METHODS Twenty-nine HIV-1-infected patients with fully suppressive ART were included, 15 of whom being HCV-coinfected with mild-to-moderate fibrosis and matched for their HIV-1 disease, and 13 control healthy donors. Cellular activation, plasma levels of inflammatory cytokines and pDC transcriptome associated with IFNα/TLR7 pathway were characterized. RESULTS Higher plasma levels of type-I interferon (IFN)-associated cytokines [interferon gamma-induced protein 10 (IP-10), MIP-1β, IL-8 and IFN-inducible T-cell alpha chemoattractant) were observed in HIV-1-HCV-coinfected than in HIV-1-monoinfected patients (P = 0.0007, 0.028, 0.028 and 0.035, respectively). The pDCs and T cells displayed a more exhausted (LAG-3+ and CD57+, respectively) phenotype. The pDC IFNα pathway (defined by phosphorylated STAT1 expression) was constitutively activated in all patients, irrespective of HCV coinfection. Expression of interferon-stimulated genes (ISGs) EI2AK2, ISG15, Mx1 and IFI44 was increased in pDCs from HIV-1-HCV-coinfected individuals and was correlated with fibrosis score (Fibroscan, www.echosens.com, Paris, France and aspartate-aminotransferase/platelet-ratio index score, P = 0.026 and 0.019, respectively). Plasma levels of IP-10, STAT1 expression in pDCs and Mx1 mRNA levels in pDCs decreased after interferon-free anti-HCV treatment. CONCLUSION HCV replication appears to drive increases in type-I IFN-associated inflammation and ISGs expression in pDCs, in association with fibrosis severity in ART-treated HIV-1-infected patients with mild-to-moderate fibrosis. Preliminary results indicate reduction of these alterations with earlier interferon-free anti-HCV treatment in those patients.
Collapse
|
166
|
Basler CF. Molecular pathogenesis of viral hemorrhagic fever. Semin Immunopathol 2017; 39:551-561. [PMID: 28555386 DOI: 10.1007/s00281-017-0637-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/23/2017] [Indexed: 12/11/2022]
Abstract
The clinical syndrome referred to as viral hemorrhagic fever (VHF) can be caused by several different families of RNA viruses, including select members of the arenaviruses, bunyaviruses, filoviruses, and flaviviruses. VHF is characterized by malaise, fever, vascular permeability, decreased plasma volume, coagulation abnormalities, and varying degrees of hemorrhage. Study of the filovirus Ebola virus has demonstrated a critical role for suppression of innate antiviral defenses in viral pathogenesis. Additionally, antigen-presenting cells are targets of productive infection and immune dysregulation. Among these cell populations, monocytes and macrophages are proposed to produce damaging inflammatory cytokines, while infected dendritic cells fail to undergo proper maturation, potentially impairing adaptive immunity. Uncontrolled virus replication and accompanying inflammatory responses are thought to promote vascular leakage and coagulopathy. However, the specific molecular pathways that underlie these features of VHF remain poorly understood. The arenavirus Lassa virus and the flavivirus yellow fever virus exhibit similar molecular pathogenesis suggesting common underlying mechanisms. Because non-human primate models that closely mimic VHF are available for Ebola, Lassa, and yellow fever viruses, we propose that comparative molecular studies using these models will yield new insights into the molecular underpinnings of VHF and suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Georgia Research Alliance Eminent Scholar in Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
167
|
The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription. PLoS Pathog 2017; 13:e1006382. [PMID: 28542326 PMCID: PMC5444856 DOI: 10.1371/journal.ppat.1006382] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/26/2017] [Indexed: 12/25/2022] Open
Abstract
The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host. The herpesvirus cytomegalovirus can cause severe morbidity in immunosuppressed people and poses a much greater global problem in the context of congenital infections than the Zika virus. To establish infection, cytomegalovirus needs to modulate the antiviral immune response of its host. One of the first lines of defense against viral infections is the type I interferon response which is activated by cellular sensors called pattern recognition receptors. These receptors sense viral entry and rapidly induce the transcription of type I interferons, which are instrumental for the induction of an antiviral state in infected and surrounding cells. We have identified the first viral protein encoded by murine cytomegalovirus, the M35 protein, that counteracts type I interferon transcription downstream of multiple pattern recognition receptors. We found that this viral countermeasure occurs shortly after viral entry into the host cell, as M35 is delivered with the viral particle. M35 then localizes to the nucleus where it modulates NF-κB-mediated transcription. In vivo, murine cytomegalovirus deficient of the M35 protein replicates to lower levels in spleen and liver and cannot establish a productive infection in the salivary glands, which is a key site of viral transmission, highlighting the important role of M35 for the establishment of infection. Our study provides novel insights into the complex interaction between cytomegalovirus and the innate immune response of its host.
Collapse
|
168
|
pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. J Virol 2017; 91:JVI.00246-17. [PMID: 28356532 DOI: 10.1128/jvi.00246-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans.
Collapse
|
169
|
Restriction of Human Cytomegalovirus Replication by ISG15, a Host Effector Regulated by cGAS-STING Double-Stranded-DNA Sensing. J Virol 2017; 91:JVI.02483-16. [PMID: 28202760 DOI: 10.1128/jvi.02483-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/08/2017] [Indexed: 01/10/2023] Open
Abstract
Accumulation of the interferon-stimulated gene 15 (ISG15) protein product, which is reversibly conjugated to numerous polypeptide targets, impacts the proteome and physiology of uninfected and infected cells. While many viruses, including human cytomegalovirus (HCMV), blunt host antiviral defenses by limiting ISG expression, the overall abundance of ISG15 monomer and protein conjugates rises in HCMV-infected cells. However, the molecular signals underlying ISG15 accumulation and whether the ISG15 polypeptide itself influences HCMV infection biology remain unknown. Here, we establish that the ISG15 gene product itself directly regulates HCMV replication and that its accumulation restricts productive virus growth. Although ISG15 monomer and protein conjugate accumulation was induced in cells infected with UV-inactivated HCMV, it was subsequently reduced, but not eliminated, by an immediate-early (IE) or early (E) virus-encoded function(s). Instead, HCMV-induced ISG15 monomer and protein conjugate accumulation was dependent upon the double-stranded DNA (dsDNA) sensor cyclic GMP-AMP synthase (cGAS), the innate immune adaptor STING, and interferon signaling. Significantly, dsDNA itself was sufficient to induce cGAS-, STING-, and interferon signaling-dependent ISG15 monomer and conjugate protein accumulation in uninfected cells. Accumulation of ISGylated proteins in uninfected cells treated with dsDNA was prevented by expressing the HCMV multifunctional IE1 transactivator. This demonstrates that expression of a single host interferon-stimulated gene, ISG15, restricts HCMV replication, and that IE1 is sufficient to blunt ISGylation in response to dsDNA sensing in uninfected cells. Moreover, it establishes that ISGylation modifies the proteomes of virus-infected and uninfected normal cells in response to cell-intrinsic dsDNA sensing dependent upon cGAS-STING.IMPORTANCE By antagonizing type I interferon production and action, many viruses, including human cytomegalovirus (HCMV), evade host defenses. However, levels of the interferon-induced ISG15 protein, which is covalently conjugated to host and viral proteins, increase in HCMV-infected cells. How ISG15 accumulation is regulated and whether the ISG15 polypeptide influences HCMV replication remain unknown. This study establishes that ISG15 itself restricts HCMV replication and that HCMV-induced ISG15 accumulation is triggered by host defenses that detect cytoplasmic double-stranded DNA (dsDNA). Remarkably, dsDNA triggered ISG15 accumulation even in uninfected cells, and this was reduced by HCMV IE1 expression. This shows that ISG15 itself controls the replication of HCMV, which causes life-threatening disease among the immunocompromised and is a significant source of congenital morbidity and mortality among newborns. Moreover, it demonstrates that ISG15 modifies the uninfected cell proteome in response to dsDNA, potentially impacting responses to DNA vaccines, gene therapy, and autoimmune disease pathogenesis.
Collapse
|
170
|
Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol 2017; 8:259. [PMID: 28344581 PMCID: PMC5344902 DOI: 10.3389/fimmu.2017.00259] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/21/2017] [Indexed: 12/25/2022] Open
Abstract
Immune responses to lung infections must be tightly regulated in order to permit pathogen eradication while maintaining organ function. Exuberant or dysregulated inflammation can impair gas exchange and underlies many instances of lung disease. An important driver of inflammation in the lung is the interferon (IFN) response. Type I IFNs are antiviral cytokines that induce a large range of proteins that impair viral replication in infected cells. This cell-intrinsic action plays a crucial role in protecting the lungs from spread of respiratory viruses. However, type I IFNs have also recently been found to be central to the initiation of lung inflammatory responses, by inducing recruitment and activation of immune cells. This helps control virus burden but can cause detrimental immunopathology and contribute to disease severity. Furthermore, there is now increasing evidence that type I IFNs are not only induced after viral infections but also after infection with bacteria and fungi. The pro-inflammatory function of type I IFNs in the lung opens up the possibility of immune modulation directed against this antiviral cytokine family. In this review, the initiation and signaling of type I IFNs as well as their role in driving and maintaining lung inflammation will be discussed.
Collapse
Affiliation(s)
- Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Michelle Paulsen
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London , London , UK
| |
Collapse
|
171
|
IRAV ( FLJ11286), an Interferon-Stimulated Gene with Antiviral Activity against Dengue Virus, Interacts with MOV10. J Virol 2017; 91:JVI.01606-16. [PMID: 27974568 PMCID: PMC5309953 DOI: 10.1128/jvi.01606-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/05/2016] [Indexed: 12/23/2022] Open
Abstract
Dengue virus (DENV) is a member of the genus Flavivirus and can cause severe febrile illness. Here, we show that FLJ11286, which we refer to as IRAV, is induced by DENV in an interferon-dependent manner, displays antiviral activity against DENV, and localizes to the DENV replication complex. IRAV is an RNA binding protein and localizes to cytoplasmic processing bodies (P bodies) in uninfected cells, where it interacts with the MOV10 RISC complex RNA helicase, suggesting a role for IRAV in the processing of viral RNA. After DENV infection, IRAV, along with MOV10 and Xrn1, localizes to the DENV replication complex and associates with DENV proteins. Depletion of IRAV or MOV10 results in an increase in viral RNA. These data serve to characterize an interferon-stimulated gene with antiviral activity against DENV, as well as to propose a mechanism of activity involving the processing of viral RNA.
IMPORTANCE Dengue virus, a member of the family Flaviviridae, can result in a life-threatening illness and has a significant impact on global health. Dengue virus has been shown to be particularly sensitive to the effects of type I interferon; however, little is known about the mechanisms by which interferon-stimulated genes function to inhibit viral replication. A better understanding of the interferon-mediated antiviral response to dengue virus may aid in the development of novel therapeutics. Here, we examine the influence of the interferon-stimulated gene IRAV (FLJ11286) on dengue virus replication. We show that IRAV associates with P bodies in uninfected cells and with the dengue virus replication complex after infection. IRAV also interacts with MOV10, depletion of which is associated with increased viral replication. Our results provide insight into a newly identified antiviral gene, as well as broadening our understanding of the innate immune response to dengue virus infection.
Collapse
|
172
|
An D, Guo Y, Bao J, Luo X, Liu Y, Ma B, Gao M, Wang J. Molecular characterization and biological activity of bovine interferon-omega3. Res Vet Sci 2017; 115:125-131. [PMID: 28254416 PMCID: PMC7127041 DOI: 10.1016/j.rvsc.2017.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/29/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023]
Abstract
Bovine interferon-omega3 (BoIFN-ω3) gene was amplified from bovine liver genomic DNA, which encodes a 195-amino acid protein containing a 23-amino acid signal peptide. Analysis of the molecular characteristics revealed that BoIFN-ω3 evolving from IFN-ω, contained four cysteine residues and five alpha helices, showing that BoIFN-ω3 presented the typical molecular characteristics of type I interferon. BoIFN-ω3 exhibited antiviral and antiproliferative activities, which exerted a protective effect against VSV in several mammalian cell lines, as well as against BEV, IBRV, and BVDV in MDBK cell. Moreover, BoIFN-ω3 was shown to be highly sensitive to trypsin, but remaining stable despite changes in pH and temperature. Additionally, BoIFN-ω3 induced the transcription of Mx1, ISG15, and ISG56 genes, as well as the expression of Mx1 protein in a time-dependent manner. These findings will be useful to further study BoIFN-ω in host's defence against infectious diseases, particularly viral infections. Furthermore, results will facilitate further research on the bovine interferon family. BoIFN-ω3 presents antiviral activity on several mammalian cell lines and protective effect against VSV, BEV, IBRV, and BVDV. BoIFN-ω3 exhibits antiproliferative activity and insensitivity to pH and temperature. BoIFN-ω3 can activate the transcription of ISGs gene, as well as the expression of Mx1 in a time-dependent manner.
Collapse
Affiliation(s)
- Dong An
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yongli Guo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; National Food Safety and Nutrition Collaborative Innovation Center, Wuxi, Jiangsu 214122, PR China
| | - Xiuxin Luo
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ying Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Bo Ma
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mingchun Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Junwei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; National Food Safety and Nutrition Collaborative Innovation Center, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
173
|
Guo Y, An D, Liu Y, Bao J, Luo X, Cheng X, Wang Y, Gao M, Wang J. Characterization and signaling pathway analysis of interferon-kappa in bovine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:213-220. [PMID: 27693540 DOI: 10.1016/j.dci.2016.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
A bovine interferon-kappa (BoIFN-κ) gene was amplified, which encodes a protein of 215 amino acids sharing 63% identity with human IFN-κ. BoIFN-κ was demonstrated to have antiviral and antiproliferative activities. Moreover, BoIFN-κ was shown to be highly sensitive to trypsin, however, it remained stable despite changes in pH and temperature. Result showed that BoIFN-κ can bind with bovine type I IFN receptors, and the antiviral activity can be blocked by antibodies against type I IFN receptors or BoIFN-κ. Additionally, BoIFN-κ can induce the transcription of Mx1, ISG15 and ISG56 gene, as well as the expression of Mx1 protein. The NF-κB, ISRE, and BoIFN-β promoter can all be activated by BoIFN-κ. This study revealed that BoIFN-κ exhibits the typical characteristics of type I IFNs and exerts antiviral activity via activation of the JAK-STAT signaling pathway. Overall, these findings will enrich the current knowledge about IFN-κ and facilitate further research on the role of type I IFN in antiviral defense responses in bovine.
Collapse
Affiliation(s)
- Yongli Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Dong An
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ying Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiuxin Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xintong Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yujiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Junwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
174
|
Iyer SS, Bibollet-Ruche F, Sherrill-Mix S, Learn GH, Plenderleith L, Smith AG, Barbian HJ, Russell RM, Gondim MVP, Bahari CY, Shaw CM, Li Y, Decker T, Haynes BF, Shaw GM, Sharp PM, Borrow P, Hahn BH. Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. Proc Natl Acad Sci U S A 2017; 114:E590-E599. [PMID: 28069935 PMCID: PMC5278458 DOI: 10.1073/pnas.1620144114] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sexual transmission of HIV-1 is an inefficient process, with only one or few variants of the donor quasispecies establishing the new infection. A critical, and as yet unresolved, question is whether the mucosal bottleneck selects for viruses with increased transmission fitness. Here, we characterized 300 limiting dilution-derived virus isolates from the plasma, and in some instances genital secretions, of eight HIV-1 donor and recipient pairs. Although there were no differences in the amount of virion-associated envelope glycoprotein, recipient isolates were on average threefold more infectious (P = 0.0001), replicated to 1.4-fold higher titers (P = 0.004), were released from infected cells 4.2-fold more efficiently (P < 0.00001), and were significantly more resistant to type I IFNs than the corresponding donor isolates. Remarkably, transmitted viruses exhibited 7.8-fold higher IFNα2 (P < 0.00001) and 39-fold higher IFNβ (P < 0.00001) half-maximal inhibitory concentrations (IC50) than did donor isolates, and their odds of replicating in CD4+ T cells at the highest IFNα2 and IFNβ doses were 35-fold (P < 0.00001) and 250-fold (P < 0.00001) greater, respectively. Interestingly, pretreatment of CD4+ T cells with IFNβ, but not IFNα2, selected donor plasma isolates that exhibited a transmitted virus-like phenotype, and such viruses were also detected in the donor genital tract. These data indicate that transmitted viruses are phenotypically distinct, and that increased IFN resistance represents their most distinguishing property. Thus, the mucosal bottleneck selects for viruses that are able to replicate and spread efficiently in the face of a potent innate immune response.
Collapse
Affiliation(s)
- Shilpa S Iyer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Scott Sherrill-Mix
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Andrew G Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Hannah J Barbian
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ronnie M Russell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Marcos V P Gondim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Catherine Y Bahari
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Christiana M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy Decker
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Barton F Haynes
- Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
175
|
Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, Karandikar UC, Ajami NJ, Zachos NC, Kovbasnjuk O, Donowitz M, Conner ME, Shaw CA, Estes MK. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci U S A 2017; 114:E570-E579. [PMID: 28069942 PMCID: PMC5278484 DOI: 10.1073/pnas.1615422114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Collapse
Affiliation(s)
- Kapil Saxena
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lukas M Simon
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Narayan P Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas C Zachos
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Chad A Shaw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
176
|
Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses. Sci Rep 2017; 7:40813. [PMID: 28102325 PMCID: PMC5244407 DOI: 10.1038/srep40813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication.
Collapse
|
177
|
McFadden MJ, Gokhale NS, Horner SM. Protect this house: cytosolic sensing of viruses. Curr Opin Virol 2016; 22:36-43. [PMID: 27951430 PMCID: PMC5346041 DOI: 10.1016/j.coviro.2016.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
Cells are equipped with pattern recognition receptors to sense invading viruses. Nucleic acids of RNA viruses are sensed by RIG-I like receptors in the cytosol. Foreign DNA is sensed by cGAS and other DNA sensors in the cytosol. These pattern recognition receptors activate adaptor proteins to initiate antiviral innate immune responses.
The ability to recognize invading viral pathogens and to distinguish their components from those of the host cell is critical to initiate the innate immune response. The efficiency of this detection is an important factor in determining the susceptibility of the cell to viral infection. Innate sensing of viruses is, therefore, an indispensable step in the line of defense for cells and organisms. Recent discoveries have uncovered novel sensors of viral components and hallmarks of infection, as well as mechanisms by which cells discriminate between self and non-self. This review highlights the mechanisms used by cells to detect viral pathogens in the cytosol, and recent advances in the field of cytosolic sensing of viruses.
Collapse
Affiliation(s)
- Michael J McFadden
- Department of Molecular Genetics & Microbiology, Duke University Medical Center Durham, NC 27710, USA
| | - Nandan S Gokhale
- Department of Molecular Genetics & Microbiology, Duke University Medical Center Durham, NC 27710, USA
| | - Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center Durham, NC 27710, USA.
| |
Collapse
|
178
|
Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. J Virol 2016; 90:11145-11156. [PMID: 27707917 DOI: 10.1128/jvi.01551-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
A major arm of cellular innate immunity is type I interferon (IFN), represented by IFN-α and IFN-β. Type I IFN transcriptionally induces a large number of cellular genes, collectively known as IFN-stimulated gene (ISG) proteins, which act as antivirals. The IFIT (interferon-induced proteins with tetratricopeptide repeats) family proteins constitute a major subclass of ISG proteins and are characterized by multiple tetratricopeptide repeats (TPRs). In this study, we have interrogated IFIT proteins for the ability to inhibit the growth of human parainfluenza virus type 3 (PIV3), a nonsegmented negative-strand RNA virus of the Paramyxoviridae family and a major cause of respiratory disease in children. We found that IFIT1 significantly inhibited PIV3, whereas IFIT2, IFIT3, and IFIT5 were less effective or not at all. In further screening a set of ISG proteins we discovered that several other such proteins also inhibited PIV3, including IFITM1, IDO (indoleamine 2,3-dioxygenase), PKR (protein kinase, RNA activated), and viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible)/Cig5. The antiviral effect of IDO, the enzyme that catalyzes the first step of tryptophan degradation, could be counteracted by tryptophan. These results advance our knowledge of diverse ISG proteins functioning as antivirals and may provide novel approaches against PIV3. IMPORTANCE The innate immunity of the host, typified by interferon (IFN), is a major antiviral defense. IFN inhibits virus growth by inducing a large number of IFN-stimulated gene (ISG) proteins, several of which have been shown to have specific antiviral functions. Parainfluenza virus type 3 (PIV3) is major pathogen of children, and no reliable vaccine or specific antiviral against it currently exists. In this article, we report several ISG proteins that strongly inhibit PIV3 growth, the use of which may allow a better antiviral regimen targeting PIV3.
Collapse
|
179
|
Xiao J, Yan J, Chen H, Li J, Tian Y, Tang L, Feng H. Mx1 of black carp functions importantly in the antiviral innate immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:584-592. [PMID: 27717902 DOI: 10.1016/j.fsi.2016.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Mx (myxovirus resistance) is an important antiviral protein in the innate immune responses of vertebrates to microbial pathogens. In this study, we cloned and characterized Mx1 of black carp (Mylopharyngodon piceus). The full-length cDNA of black carp Mx1 (bcMx1) consists of 2781 nucleotides and the predicted bcMx1 protein contains 631 amino acids. bcMx1 contains a GTPase domain at the N-terminnus, a "central interactive domain" in the middle and a GTPase effector domain at the C-terminus. bcMx1 mRNA was constitutively transcribed in all tissues tested, including the heart, liver, spleen, kidney, intestine, muscle, skin and gill; and bcMx1 mRNA levels increased in all but the gill after grass carp reovirus (GCRV) or viraemia of carp virus (SVCV) infection. Quantitative PCR analysis of Mylopharyngodon piceus fin (MPF) cells indicated that bcMx1 mRNA levels increased after GCRV or SVCV infection at different multiplicities of infection (MOI). Western blotting demonstrated that the molecular weight of bcMx1 is ∼75 kDa and immunofluorescent staining data of both HeLa cells and EPC cells showed that bcMx1 is a cytosolic protein. EPC cells transfected with plasmid expressing bcMx1 showed increased antiviral activity against SVCV and GCRV. All our data suggest that bcMx1 is an antiviral protein in the innate immune response of the black carp.
Collapse
Affiliation(s)
- Jun Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yu Tian
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Luosheng Tang
- The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, 430072, China.
| |
Collapse
|
180
|
Martins N, Imler JL, Meignin C. Discovery of novel targets for antivirals: learning from flies. Curr Opin Virol 2016; 20:64-70. [PMID: 27657660 DOI: 10.1016/j.coviro.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
Developing antiviral drugs is challenging due to the small number of targets in viruses, and the rapid evolution of viral genes. Animals have evolved a number of efficient antiviral defence mechanisms, which can serve as a source of inspiration for novel therapies. The genetically tractable insect Drosophila belongs to the most diverse group of animals. Genetic and transcriptomic analyses have recently identified Drosophila genes encoding viral restriction factors. Some of them represent evolutionary novelties and their characterization may provide hints for the design of directly acting antivirals. In addition, functional screens revealed conserved host factors required for efficient viral translation, such as the ribosomal protein RACK1 and the release factor Pelo. These proteins are promising candidates for host-targeted antivirals.
Collapse
Affiliation(s)
- Nelson Martins
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France
| | - Carine Meignin
- CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France; Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
181
|
Banadyga L, Dolan MA, Ebihara H. Rodent-Adapted Filoviruses and the Molecular Basis of Pathogenesis. J Mol Biol 2016; 428:3449-66. [PMID: 27189922 PMCID: PMC5010511 DOI: 10.1016/j.jmb.2016.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 11/29/2022]
Abstract
Ebola, Marburg, and Ravn viruses, all filoviruses, are the causative agents of severe hemorrhagic fever. Much of what we understand about the pathogenesis of filovirus disease is derived from work with animal models, including nonhuman primates, which are considered the "gold standard" filovirus model since they faithfully recapitulate the clinical hallmarks of filovirus disease. However, rodent models, including the mouse, guinea pig, and hamster, also exist for Ebola, Marburg, and Ravn viruses, and although they may not reproduce all the clinical signs of filovirus disease, thanks to their relative ease of use and low cost, they are often the first choice for initial descriptions of virus pathogenesis and evaluation of antiviral prophylactics and therapeutics. Since filoviruses do not cause significant disease in adult, immunocompetent rodents, these models rely on "rodent-adapted" viruses that have been passaged several times through their host until virulence and lethality are achieved. In the process of adaptation, the viruses acquire numerous nucleotide/amino acid mutations that contribute to virulence in their rodent host. Interestingly, virus protein 24 (VP24) and nucleoprotein (NP) appear to be major virulence factors for ebolaviruses in rodents, whereas VP40 appears to be the major virulence factor for marburgviruses. By characterizing these mutations and understanding the molecular mechanisms that lead to the acquisition of virulence, we can gain better insight into the pathogenic processes that underlie filovirus disease in humans. These processes, and the viral and/or cellular proteins that contribute to them, will make attractive targets for the development of novel therapeutics and counter-measures.
Collapse
Affiliation(s)
- Logan Banadyga
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Michael A Dolan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
182
|
Abstract
Myxovirus resistance proteins represent a family of interferon-induced restriction factors of the innate and adaptive immune system. Human MxB acts as a novel restriction factor with antiviral activity against a range of HIV-1 and other retroviruses mainly by inhibiting the uncoating process after reverse transcription but prior to integration. Based on published data and conservation analysis, we propose a novel hypothesis, in which MxB dimers form higher order oligomers that restrict retroviral replication by binding to the viral capsid. Insights into the mechanistic basis of structural and functional characteristics of MxB will greatly advance our understanding of MxB.
Collapse
Affiliation(s)
- Jia Kong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Min Ma
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Shuangyi He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| | - Xiaohong Qin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.,School of Life Sciences, Tianjin University, Tianjin 300072, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin 300071, China
| |
Collapse
|
183
|
Abstract
"Rotaviruses represent the most important etiological agents of acute, severe gastroenteritis in the young of many animal species, including humans." This statement, variations of which are a common beginning in articles about rotaviruses, reflects the fact that these viruses have evolved efficient strategies for evading the innate immune response of the host and for successfully replicating in the population. In this review, we summarize what is known about the defense mechanisms that host cells employ to prevent rotavirus invasion and the countermeasures that these viruses have successfully developed to surpass cellular defenses. Rotaviruses use at least two viral multifunctional proteins to directly interact with, and prevent the activation of, the interferon system, and they use at least one other protein to halt the protein synthesis machinery and prevent the expression of most of the transcriptional antiviral program of the cell. Characterization of the confrontation between rotaviruses and their host cells has allowed us to learn about the virus-host coevolution that prevents the damaging effects of the innate immune response.
Collapse
Affiliation(s)
- Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Liliana Sánchez-Tacuba
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Joaquin Moreno
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| | - Carlos F Arias
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México;
| |
Collapse
|
184
|
Fernandes J. Oncogenes: The Passport for Viral Oncolysis Through PKR Inhibition. BIOMARKERS IN CANCER 2016; 8:101-10. [PMID: 27486347 PMCID: PMC4966488 DOI: 10.4137/bic.s33378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The transforming properties of oncogenes are derived from gain-of-function mutations, shifting cell signaling from highly regulated homeostatic to an uncontrolled oncogenic state, with the contribution of the inactivating mutations in tumor suppressor genes P53 and RB, leading to tumor resistance to conventional and target-directed therapy. On the other hand, this scenario fulfills two requirements for oncolytic virus infection in tumor cells: inactivation of tumor suppressors and presence of oncoproteins, also the requirements to engage malignancy. Several of these oncogenes have a negative impact on the main interferon antiviral defense, the double-stranded RNA-activated protein kinase (PKR), which helps viruses to spontaneously target tumor cells instead of normal cells. This review is focused on the negative impact of overexpression of oncogenes on conventional and targeted therapy and their positive impact on viral oncolysis due to their ability to inhibit PKR-induced translation blockage, allowing virion release and cell death.
Collapse
Affiliation(s)
- Janaina Fernandes
- NUMPEX-BIO, Campus Xerém, Federal University of Rio de Janeiro, Duque de Caxias, Rio de Janeiro, Brazil.; Institute for Translational Research on Health and Environment in the Amazon Region-INPeTAm, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
185
|
JC Polyomavirus Infection of Primary Human Renal Epithelial Cells Is Controlled by a Type I IFN-Induced Response. mBio 2016; 7:mBio.00903-16. [PMID: 27381292 PMCID: PMC4958256 DOI: 10.1128/mbio.00903-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The JC and BK human polyomaviruses (JCPyV and BKPyV, respectively) establish lifelong persistent infections in the kidney. In immunosuppressed individuals, JCPyV causes progressive multifocal leukoencephalopathy (PML), a fatal neurodegenerative disease, and BKPyV causes polyomavirus-associated nephropathy (PVN). In this study, we compared JCPyV and BKPyV infections in primary human renal proximal tubule epithelial (HRPTE) cells. JCPyV established a persistent infection, but BKPyV killed the cells in 15 days. To identify the cellular factors responsible for controlling JCPyV infection and promoting viral persistence, we profiled the transcriptomes of JCPyV- and BKPyV-infected cells at several time points postinfection. We found that infection with both viruses induced interferon production but that interferon-stimulated genes (ISGs) were only activated in the JCPyV-infected cells. Phosphorylated STAT1 and IRF9, which are responsible for inducing ISGs, translocated to the nucleus of JCPyV-infected cells but did not in BKPyV-infected cells. In BKPyV-infected cells, two critical suppressors of cytokine signaling, SOCS3 and SOCS1, were induced. Infection with BKPyV but not JCPyV caused reorganization of PML bodies that are associated with inactivating antiviral responses. Blockade of the interferon receptor and neutralization of soluble interferon alpha (IFN-α) and IFN-β partially alleviated the block to JCPyV infection, leading to enhanced infectivity. Our results show that a type I IFN response contributes to the establishment of persistent infection by JCPyV in HRPTE cells. The human polyomaviruses JCPyV and BKPyV both establish lifelong persistent infection in the kidneys. In immunosuppressed patients, BKPyV causes significant pathology in the kidney, but JCPyV is only rarely associated with disease in this organ. The reasons behind this striking difference in kidney pathology are unknown. In this study, we show that infection of primary human renal tubule epithelial cells with JCPyV and BKPyV results in divergent innate immune responses that control JCPyV but fail to control BKPyV. This is the first study that directly compares JCPyV and BKPyV infection in vitro in the same cell type they naturally infect, and the significant differences that have been uncovered could in part explain the distinct disease outcomes.
Collapse
|
186
|
Santos Souza HF, da Silva Almeida B, Boscardin SB. Early dengue virus interactions: the role of dendritic cells during infection. Virus Res 2016; 223:88-98. [PMID: 27381061 DOI: 10.1016/j.virusres.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Dengue is an acute infectious disease caused by dengue virus (DENV) that affects approximately 400 million people annually, being the most prevalent human arthropod-borne disease. DENV infection causes a wide variety of clinical manifestations that range from asymptomatic to dengue fever, and in some cases may evolve to the more severe dengue hemorrhagic fever and dengue shock syndrome. The exact reasons why some patients do not have symptoms while others develop the severe forms of disease are still elusive, but gathered evidence showed correlation between a secondary infection with a heterologous DENV serotype and the occurrence of severe symptoms. Despite several advances, the mechanisms of DENV infection are still not completely elucidated, and efforts have been made to understand the development of immunity and/or pathology to DENV. When a mosquito transmits DENV, the virus is initially deposited in the skin, where mononuclear phagocytic cells, such as dendritic cells (DCs), become infected. DCs play a critical role in the induction of immune responses, as they are able to rapidly detect pathogen-associated molecular patterns, endocytose and process antigens, and efficiently activate naïve-T and B cells. Recent findings have shown that DCs serve as DENV targets, but they are also important mediators of immunity against the virus. In this review, we will briefly discuss DENV infection pathogenesis, and introduce DCs as central players in the induction of anti-DENV immune responses. Then, we will review in more detail how DENV interacts with and is sensed by DCs, with particular emphasis in two classes of receptors implicated in viral entry.
Collapse
Affiliation(s)
- Higo Fernando Santos Souza
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bianca da Silva Almeida
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology in Vaccines, Belo Horizonte, Brazil.
| |
Collapse
|
187
|
Lasfar A, Gogas H, Zloza A, Kaufman HL, Kirkwood JM. IFN-λ cancer immunotherapy: new kid on the block. Immunotherapy 2016; 8:877-88. [PMID: 27381684 PMCID: PMC5619162 DOI: 10.2217/imt-2015-0021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/21/2016] [Indexed: 02/08/2023] Open
Abstract
Interferon-lambda (IFN-λ) is a new IFN type, related to IFN-α, that is commonly used in the clinic. However, significant side effects accompanying IFN-α treatment limit enthusiasm for IFN-α. In this review, we discuss the current landscape of IFN-α use in oncology and describe the biologic characteristics of IFN-λ. IFN-λ offers unique advantages, including a more tumor cell selective targeting, lower off-target binding and an ability to generate both innate and adaptive immune responses. IFN-λ has also demonstrated therapeutic benefit in murine cancer models. IFN-λ may be used in clinic as a single agent or in combination with other immunotherapy agents, such as immune checkpoint inhibitors. Further clinical trials will be needed to fully elucidate the potential of this novel agent in oncology.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Helen Gogas
- First Department of Medicine, Medical School, University of Athens, Athens, Greece
| | - Andrew Zloza
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Howard L Kaufman
- Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - John M Kirkwood
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh Medical Center, PA, USA
| |
Collapse
|
188
|
Forsyth KS, Eisenlohr LC. Giving CD4+ T cells the slip: viral interference with MHC class II-restricted antigen processing and presentation. Curr Opin Immunol 2016; 40:123-9. [PMID: 27115617 PMCID: PMC4894315 DOI: 10.1016/j.coi.2016.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
Activation of CD4+ T cells through interactions with peptides bound to Major Histocompatibility Complex Class II (MHC-II) molecules is a crucial step in clearance of most pathogens. Consequently, many viruses have evolved ways of blocking this aspect of adaptive immunity, from specific targeting of processing and presentation components to modulation of signaling pathways that regulate peptide presentation in addition to many other host defense mechanisms. Such cases of interference are far less common compared to what has been elucidated in MHC-I processing and presentation. This may be attributable in part to the complexity of MHC-II antigen processing, the scope of which is only now coming to light.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laurence C Eisenlohr
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine at the Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, United States.
| |
Collapse
|
189
|
Daugherty MD, Schaller AM, Geballe AP, Malik HS. Evolution-guided functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in mammals. eLife 2016; 5. [PMID: 27240734 PMCID: PMC4887208 DOI: 10.7554/elife.14228] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022] Open
Abstract
IFIT (interferon-induced with tetratricopeptide repeats) proteins are critical mediators of mammalian innate antiviral immunity. Mouse IFIT1 selectively inhibits viruses that lack 2'O-methylation of their mRNA 5' caps. Surprisingly, human IFIT1 does not share this antiviral specificity. Here, we resolve this discrepancy by demonstrating that human and mouse IFIT1 have evolved distinct functions using a combination of evolutionary, genetic and virological analyses. First, we show that human IFIT1 and mouse IFIT1 (renamed IFIT1B) are not orthologs, but are paralogs that diverged >100 mya. Second, using a yeast genetic assay, we show that IFIT1 and IFIT1B proteins differ in their ability to be suppressed by a cap 2'O-methyltransferase. Finally, we demonstrate that IFIT1 and IFIT1B have divergent antiviral specificities, including the discovery that only IFIT1 proteins inhibit a virus encoding a cap 2'O-methyltransferase. These functional data, combined with widespread turnover of mammalian IFIT genes, reveal dramatic species-specific differences in IFIT-mediated antiviral repertoires.
Collapse
Affiliation(s)
- Matthew D Daugherty
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Aaron M Schaller
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Adam P Geballe
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, United States.,Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Microbiology, University of Washington School of Medicine, Seattle, United States.,Department of Medicine, University of Washington School of Medicine, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
190
|
Oxford KL, Wendler JP, McDermott JE, White III RA, Powell JD, Jacobs JM, Adkins JN, Waters KM. The landscape of viral proteomics and its potential to impact human health. Expert Rev Proteomics 2016; 13:579-91. [DOI: 10.1080/14789450.2016.1184091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
191
|
Interferons and inflammasomes: Cooperation and counterregulation in disease. J Allergy Clin Immunol 2016; 138:37-46. [PMID: 27373324 DOI: 10.1016/j.jaci.2016.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Interferons and the IL-1 family of cytokines have important roles in host defense against invading viruses and bacteria. Inflammasomes, multimeric cytosolic sensors of infection, are required for IL-1β and IL-18 processing and release. Interferons, IL-1β, and IL-18 are also implicated in autoimmune disease and chronic inflammation. Although independent but complementary pathways induce these cytokine subsets during infection, in some circumstances the cross-talk between these key inflammatory mediators is a particular requirement for effective host defense. In this review we will summarize recent discoveries concerning the potentiation of inflammasome responses by type I interferons, particularly in patients with gram-negative bacterial infections, and reflect on the molecular mechanisms of IFN-β's immunosuppressive effects through modulation of inflammasome and IL-1β signaling in patients with tuberculosis and multiple sclerosis.
Collapse
|
192
|
Abstract
Viral exacerbations continue to represent the major burden in terms of morbidity, mortality and health care costs associated with asthma. Those at greatest risk for acute asthma are those with more severe airways disease and poor asthma control. It is this group with established asthma in whom acute exacerbations triggered by virus infections remain a serious cause of increased morbidity. A range of novel therapies are emerging to treat asthma and in particular target this group with poor disease control, and in most cases their efficacy is now being judged by their ability to reduce the frequency of acute exacerbations. Critical for the development of new treatment approaches is an improved understanding of virus-host interaction in the context of the asthmatic airway. This requires research into the virology of the disease in physiological models in conjunction with detailed phenotypic characterisation of asthma patients to identify targets amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Hock Tay
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia
| | - Peter A B Wark
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia.,c Centre of Excellence in Severe Asthma , The University of Newcastle , Australia.,d Department of Respiratory and Sleep Medicine , John Hunter Hospital , Newcastle , Australia
| | - Nathan W Bartlett
- a Hunter Medical Research Institute , Newcastle , Australia.,b Priority Research Centre for Healthy Lungs , The University of Newcastle , Australia.,e National Heart and Lung Institute , Imperial College London , London , UK
| |
Collapse
|
193
|
An Interferon Regulated MicroRNA Provides Broad Cell-Intrinsic Antiviral Immunity through Multihit Host-Directed Targeting of the Sterol Pathway. PLoS Biol 2016; 14:e1002364. [PMID: 26938778 PMCID: PMC4777525 DOI: 10.1371/journal.pbio.1002364] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/22/2015] [Indexed: 12/11/2022] Open
Abstract
In invertebrates, small interfering RNAs are at the vanguard of cell-autonomous antiviral immunity. In contrast, antiviral mechanisms initiated by interferon (IFN) signaling predominate in mammals. Whilst mammalian IFN-induced miRNA are known to inhibit specific viruses, it is not known whether host-directed microRNAs, downstream of IFN-signaling, have a role in mediating broad antiviral resistance. By performing an integrative, systematic, global analysis of RNA turnover utilizing 4-thiouridine labeling of newly transcribed RNA and pri/pre-miRNA in IFN-activated macrophages, we identify a new post-transcriptional viral defense mechanism mediated by miR-342-5p. On the basis of ChIP and site-directed promoter mutagenesis experiments, we find the synthesis of miR-342-5p is coupled to the antiviral IFN response via the IFN-induced transcription factor, IRF1. Strikingly, we find miR-342-5p targets mevalonate-sterol biosynthesis using a multihit mechanism suppressing the pathway at different functional levels: transcriptionally via SREBF2, post-transcriptionally via miR-33, and enzymatically via IDI1 and SC4MOL. Mass spectrometry-based lipidomics and enzymatic assays demonstrate the targeting mechanisms reduce intermediate sterol pathway metabolites and total cholesterol in macrophages. These results reveal a previously unrecognized mechanism by which IFN regulates the sterol pathway. The sterol pathway is known to be an integral part of the macrophage IFN antiviral response, and we show that miR-342-5p exerts broad antiviral effects against multiple, unrelated pathogenic viruses such Cytomegalovirus and Influenza A (H1N1). Metabolic rescue experiments confirm the specificity of these effects and demonstrate that unrelated viruses have differential mevalonate and sterol pathway requirements for their replication. This study, therefore, advances the general concept of broad antiviral defense through multihit targeting of a single host pathway.
Collapse
|
194
|
Lin C, Agnes JT, Behrens N, Shao M, Tagawa Y, Gershwin LJ, Corbeil LB. Histophilus somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells. PLoS One 2016; 11:e0148551. [PMID: 26859677 PMCID: PMC4747540 DOI: 10.1371/journal.pone.0148551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 01/20/2016] [Indexed: 01/01/2023] Open
Abstract
Our previous studies showed that bovine respiratory syncytial virus (BRSV) followed by Histophilus somni causes more severe bovine respiratory disease and a more permeable alveolar barrier in vitro than either agent alone. However, microarray analysis revealed the treatment of bovine alveolar type 2 (BAT2) epithelial cells with H. somni concentrated culture supernatant (CCS) stimulated up-regulation of four antiviral protein genes as compared with BRSV infection or dual treatment. This suggested that inhibition of viral infection, rather than synergy, may occur if the bacterial infection occurred before the viral infection. Viperin (or radical S-adenosyl methionine domain containing 2—RSAD2) and ISG15 (IFN-stimulated gene 15—ubiquitin-like modifier) were most up-regulated. CCS dose and time course for up-regulation of viperin protein levels were determined in treated bovine turbinate (BT) upper respiratory cells and BAT2 lower respiratory cells by Western blotting. Treatment of BAT2 cells with H. somni culture supernatant before BRSV infection dramatically reduced viral replication as determined by qRT PCR, supporting the hypothesis that the bacterial infection may inhibit viral infection. Studies of the role of the two known H. somni cytotoxins showed that viperin protein expression was induced by endotoxin (lipooligosaccharide) but not by IbpA, which mediates alveolar permeability and H. somni invasion. A naturally occurring IbpA negative asymptomatic carrier strain of H. somni (129Pt) does not cause BAT2 cell retraction or permeability of alveolar cell monolayers, so lacks virulence in vitro. To investigate initial steps of pathogenesis, we showed that strain 129Pt attached to BT cells and induced a strong viperin response in vitro. Thus colonization of the bovine upper respiratory tract with an asymptomatic carrier strain lacking virulence may decrease viral infection and the subsequent enhancement of bacterial respiratory infection in vivo.
Collapse
Affiliation(s)
- C. Lin
- Department of Pathology, University of California San Diego, San Diego, CA, United States of America
| | - J. T. Agnes
- Department of Pathology, University of California San Diego, San Diego, CA, United States of America
| | - N. Behrens
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - M. Shao
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - Y. Tagawa
- Bacterial and Parasitic Diseases Research Division, National Institute of Animal Health, NARO, Tsukuba, Ibaraki, Japan
| | - L. J. Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
| | - L. B. Corbeil
- Department of Pathology, University of California San Diego, San Diego, CA, United States of America
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
195
|
Abstract
New interferons (IFNs) include members of the type I IFN family, such as IFN epsilon (IFNε), IFN tau, IFN omega, and IFN kappa, as well as the type III IFN family, also known as the IFN lambdas. By comparison the classical or ‘old’ IFNs comprise the 14 subtypes of IFN alpha and IFN beta, which are all members of the type I IFN family, as well as type II IFN gamma. In this article, we examine the new IFNs and specifically discuss their discovery, comparative structures, functions in physiology and disease, the signaling pathways they initiate, and their regulatory controls. We highlight IFNε that was discovered in our laboratory and characterized for its role in protecting the female reproductive tract from infections.
Collapse
|
196
|
Li L, Ulrich R, Baumgärtner W, Gerhauser I. Interferon-stimulated genes-essential antiviral effectors implicated in resistance to Theiler's virus-induced demyelinating disease. J Neuroinflammation 2015; 12:242. [PMID: 26703877 PMCID: PMC4690264 DOI: 10.1186/s12974-015-0462-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background Experimental infection of mice with Theiler’s murine encephalomyelitis virus (TMEV) is used as an animal model of human multiple sclerosis. TMEV persists in susceptible mouse strains and causes a biphasic disease consisting of acute polioencephalomyelitis and chronic demyelinating leukomyelitis. In contrast, resistant mice eliminate the virus within 2 to 4 weeks, which seems to be based on a strong antiviral innate immune response including the activation of the type I interferon (IFN) pathway. Several interferon-stimulated genes (ISGs) such as IFN-stimulated protein of 15 kDa (ISG15), protein kinase R (PKR), and 2′5′-oligoadenylate synthetase (OAS) function as antiviral effectors and might contribute to virus elimination. Nevertheless, detailed investigations of the type I IFN pathway during TMEV-induced demyelinating disease (TMEV-IDD) are lacking. Methods The present study evaluated microarray data of the spinal cord obtained from susceptible SJL/J mice after TMEV infection focusing on IFN-related genes. Moreover, ISG gene and protein expression was determined in mock- and TMEV-infected SJL/J mice and compared to its expression in resistant C57BL/6 mice using real- time PCR, immunohistochemistry, and immunofluorescence. Results Interestingly, despite of increased ISG gene expression during TMEV-IDD, ISG protein expression was impaired in SJL/J mice and mainly restricted to demyelinated lesions. In contrast, high ISG protein levels were found in spinal cord gray and white matter of C57BL/6 compared to SJL/J mice in the acute and chronic phase of TMEV-IDD. In both mouse strains, ISG15 was mainly found in astrocytes and endothelial cells, whereas PKR was predominantly expressed by microglia/macrophages, oligodendrocytes, and neurons. Only few cells were immunopositive for OAS proteins. Conclusions High levels of antiviral ISG15 and PKR proteins in the spinal cord of C57BL/6 mice might block virus replication and play an important role in the resistance to TMEV-IDD. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0462-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Reiner Ulrich
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center of Systems Neuroscience Hannover, Hannover, Germany.
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
197
|
Rhein BA, Powers LS, Rogers K, Anantpadma M, Singh BK, Sakurai Y, Bair T, Miller-Hunt C, Sinn P, Davey RA, Monick MM, Maury W. Interferon-γ Inhibits Ebola Virus Infection. PLoS Pathog 2015; 11:e1005263. [PMID: 26562011 PMCID: PMC4643030 DOI: 10.1371/journal.ppat.1005263] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022] Open
Abstract
Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks. Filovirus outbreaks occur sporadically, but with increasing frequency. With no current approved filovirus therapeutics, the 2014 Makona Ebola virus epidemic in Guinea, Sierra Leone and Liberia emphasizes the need for effective treatments against this highly pathogenic family of viruses. The use of this FDA-approved drug to inhibit Ebola virus infection would allow rapid implementation of a novel antiviral therapy for future crises. Interferon gamma elicits an antiviral state in antigen-presenting cells and stimulates cellular immune responses. We demonstrate that interferon gamma profoundly inhibits Ebola virus infection of macrophages, which are early cellular targets of Ebola virus. We also identify novel interferon gamma-stimulated genes in human macrophage populations that have not been previously appreciated to inhibit filoviruses or other negative strand RNA viruses. Finally and most importantly, we show that interferon gamma given 24 hours prior to or after virus infection protects mice from lethal Ebola virus challenge, suggesting that this drug may serve as an effective prophylactic and/or therapeutic strategy against this deadly virus.
Collapse
Affiliation(s)
- Bethany A. Rhein
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Linda S. Powers
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kai Rogers
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Brajesh K. Singh
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Yasuteru Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Thomas Bair
- Iowa Institute for Human Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Catherine Miller-Hunt
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick Sinn
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Robert A. Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Martha M. Monick
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Wendy Maury
- Department of Microbiology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
198
|
Lasfar A, Zloza A, Cohen-Solal KA. IFN-lambda therapy: current status and future perspectives. Drug Discov Today 2015; 21:167-171. [PMID: 26552337 DOI: 10.1016/j.drudis.2015.10.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/02/2015] [Accepted: 10/30/2015] [Indexed: 12/12/2022]
Abstract
Interferon-lambda (IFN-λ), the most recently described type III IFN, plays a crucial part by acting on specific cell types, controlling viral infections and establishing robust innate immunity against cancer. In contrast to IFN-α or IFN-γ, IFN-λ has a restricted cell response pattern, which could make this new IFN a better choice for disease targeting and reducing adverse events. Although IFN-λ is considered to have pivotal roles in cancer, viral infections and autoimmune diseases, clinical trials have only been conducted for treatment of chronic hepatitis C virus infection. In this review, we discuss the current and the potential clinical applications of IFN-λ in the context of current IFN therapy.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Andrew Zloza
- Section of Surgical Oncology Research, Rutgers Cancer Institute of New Jersey, Department of Surgery, Rutgers Robert Wood Johnson Medical School, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Karine A Cohen-Solal
- Rutgers Cancer Institute of New Jersey, Department of Medicine, Division of Medical Oncology, Rutgers, State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
199
|
Messaoudi I, Amarasinghe GK, Basler CF. Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus. Nat Rev Microbiol 2015; 13:663-76. [PMID: 26439085 DOI: 10.1038/nrmicro3524] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola viruses and Marburg viruses, members of the filovirus family, are zoonotic pathogens that cause severe disease in people, as highlighted by the latest Ebola virus epidemic in West Africa. Filovirus disease is characterized by uncontrolled virus replication and the activation of host responses that contribute to pathogenesis. Underlying these phenomena is the potent suppression of host innate antiviral responses, particularly the type I interferon response, by viral proteins, which allows high levels of viral replication. In this Review, we describe the mechanisms used by filoviruses to block host innate immunity and discuss the links between immune evasion and filovirus pathogenesis.
Collapse
Affiliation(s)
- Ilhem Messaoudi
- School of Medicine, University of California Riverside, Riverside, California 92521, USA
| | - Gaya K Amarasinghe
- The Division of Biology &Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63110, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
200
|
Labzin LI, Schmidt SV, Masters SL, Beyer M, Krebs W, Klee K, Stahl R, Lütjohann D, Schultze JL, Latz E, De Nardo D. ATF3 Is a Key Regulator of Macrophage IFN Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:4446-55. [PMID: 26416280 DOI: 10.4049/jimmunol.1500204] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
Cytokines and IFNs downstream of innate immune pathways are critical for mounting an appropriate immune response to microbial infection. However, the expression of these inflammatory mediators is tightly regulated, as uncontrolled production can result in tissue damage and lead to chronic inflammatory conditions and autoimmune diseases. Activating transcription factor 3 (ATF3) is an important transcriptional modulator that limits the inflammatory response by controlling the expression of a number of cytokines and chemokines. However, its role in modulating IFN responses remains poorly defined. In this study, we demonstrate that ATF3 expression in macrophages is necessary for governing basal IFN-β expression, as well as the magnitude of IFN-β cytokine production following activation of innate immune receptors. We found that ATF3 acted as a transcriptional repressor and regulated IFN-β via direct binding to a previously unidentified specific regulatory site distal to the Ifnb1 promoter. Additionally, we observed that ATF3 itself is a type I IFN-inducible gene, and that ATF3 further modulates the expression of a subset of inflammatory genes downstream of IFN signaling, suggesting it constitutes a key component of an IFN negative feedback loop. Consistent with this, macrophages deficient in Atf3 showed enhanced viral clearance in lymphocytic choriomeningitis virus and vesicular stomatitis virus infection models. Our study therefore demonstrates an important role for ATF3 in modulating IFN responses in macrophages by controlling basal and inducible levels of IFNβ, as well as the expression of genes downstream of IFN signaling.
Collapse
Affiliation(s)
- Larisa I Labzin
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Susanne V Schmidt
- Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Seth L Masters
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Marc Beyer
- Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Wolfgang Krebs
- Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Kathrin Klee
- Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Rainer Stahl
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - Joachim L Schultze
- Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany; Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605; and German Center for Neurodegenerative Diseases, 53175 Bonn, Germany
| | - Dominic De Nardo
- Institute of Innate Immunity, University Hospital, University of Bonn, 53127 Bonn, Germany; Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|