151
|
Bilal M, Ali H, Hassan HU, Khan SU, Ghafar R, Akram W, Ahmad H, Mushtaq S, Jafari H, Yaqoob H, Khan MM, Ullah R, Arai T. Cadmium (Cd) influences calcium (Ca) levels in the skeleton of a freshwater fish Channa gachua. BRAZ J BIOL 2024; 84:e264336. [DOI: 10.1590/1519-6984.264336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Environmental contamination with heavy metals is a threat to the organisms due to their toxicity, persistence and bioaccumulation in food chains. The study was aimed to assess cadmium (Cd) effect on calcium (Ca) level in bones of a freshwater fish Channa gachua. 42 fish individuals were kept into six (6) aquaria; labelled aq.0, 1, 2, 3,4 and 5 in the laboratory for treatment. Aq.0 was control group and aq.1, 2,3,4,5 were experimental with treatment solution of Cd 0, 0.1ppm, 0.5ppm, 1ppm, 2.5ppm and 5ppm respectively for three months. After exposure, bones tissue were examined for Cd accumulation and Ca concentration. Highest accumulation of Cd were recorded in aq.5 mean 46.86 ± 0.46 mgkg-1 .and lowest in the control group with mean 0.61 ± 0.06 mgkg-1. The order of Cd bioaccumulation in bones were aq.5 > aq.4 >aq.3 > aq.2 > aq.1 > aq.0. Highest concentration of Ca were noted in aq.0 (Control group) mean 7888.06 ± 4827.22 mgkg-1 and lowest were 1132.36 ± 203.73 mgkg-1 in aq.5 (at 5.0 ppm). Generally a pattern of decreasing Ca level were observed with each rise of Cd bioaccumulation aq.0 > aq.1 > aq.2 > aq.3 > aq.4 > aq.5. Current study indicated that Cd accumulation have substantial effect on Ca level in bones and hence on skeleton system. Strict rules must be implemented by government to control metals pollution and exploitations of biota.
Collapse
Affiliation(s)
- M. Bilal
- Government College University Lahore, Pakistan
| | - H. Ali
- University of Malakand, Pakistan
| | - H. U. Hassan
- University of Karachi, Pakistan; Ministry of National Food Security and Research, Pakistan
| | | | | | | | | | - S. Mushtaq
- Ministry of National Food Security and Research, Pakistan
| | | | | | | | - R. Ullah
- Government College University Lahore, Pakistan
| | - T. Arai
- Universiti Brunei Darussalam, Brunei
| |
Collapse
|
152
|
Román-Ochoa Y, M Cantu-Jungles T, Choque Delgado GT, Bulut N, Tejada TR, Yucra HR, Duran AE, Hamaker BR. Specific dietary fibers prevent heavy metal disruption of the human gut microbiota in vitro. Food Res Int 2024; 176:113858. [PMID: 38163737 DOI: 10.1016/j.foodres.2023.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Heavy metal exposure is a growing concern due to its adverse effects on human health, including the disruption of gut microbiota composition and function. Dietary fibers have been shown to positively impact the gut microbiota and could mitigate some of the heavy metal negative effects. This study aimed to investigate the effects of different heavy metals (As, Cd and Hg in different concentrations) on gut microbiota in the presence and absence of different dietary fibers that included fructooligosaccharides, pectin, resistant starch, and wheat bran. We observed that whereas heavy metals impaired fiber fermentation outcomes for some fiber types, the presence of fibers generally protected gut microbial communities from heavy metal-induced changes, especially for As and Cd. Notably, the protective effects varied depending on fiber types, and heavy metal type and concentration and were overall stronger for wheat bran and pectin than other fiber types. Our findings suggest that dietary fibers play a role in mitigating the adverse effects of heavy metal exposure on gut microbiota health and may have implications for the development of dietary interventions to reduce dysbiosis associated with heavy metal exposure. Moreover, fiber-type specific outcomes highlight the importance of evidence-based selection of prebiotic dietary fibers to mitigate heavy metal toxicity to the gut microbiota.
Collapse
Affiliation(s)
- Yony Román-Ochoa
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA; Carbohydrate Biochemistry Research Group (BIOCAB), Department of Chemistry, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA.
| | | | - Nuseybe Bulut
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Teresa R Tejada
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Harry R Yucra
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Antonio E Duran
- Academic Department of Food Industries Engineering, National University of San Agustin, Arequipa, Peru
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
153
|
Zhan Y, Zhu Q, Li X, Tao C, Su H, Wu Y, Lin J, Zhang Y, Huang Y, Jiang F. The Distribution Characteristics and Potential Risk Assessment of Lead in the Soil of Tieguanyin Tea Plantations in Anxi County, China. TOXICS 2023; 12:22. [PMID: 38250978 PMCID: PMC10820665 DOI: 10.3390/toxics12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Assessing the distribution and risks associated with the soil lead content in the Tieguanyin tea plantations of Anxi County is critical, given the county's significance as the primary Tieguanyin tea production area in Fujian Province. This study examined the distribution characteristics of soil lead in Anxi County's tea plantations according to the Kriging spatial interpolation of the parameters of the semivariance function of the exponential model. Moreover, the sources of lead content were analyzed, considering geological backgrounds and anthropogenic influences. Ecological risks and the issuance of early warnings were also assessed. The soil lead content in the rocks of the Tieguanyin tea plantations in Anxi County followed the order: andesite > dacite > rhyolite > granite. The soil lead content gradually decreased from the center toward the east and west, forming four distinct north-south parallel zones. High-lead-content areas were identified at the border of Jiandou, Bailai, and Hushang; in the central part of Lutian; and in the southern part of Huqiu. The high levels of soil lead in the tea plantations possibly originated from industrial and mining activities, automobile exhaust, and agricultural activities. The distribution of single-factor pollution indices and potential risk evaluation based on the Soil Environmental Quality Standard, Environmental Technical Conditions for Tea Production Area, and Environmental Technical Conditions for Organic Tea Production Area indicated that the soil in Tieguanyin tea plantations in Anxi County was clean and safe for tea cultivation.
Collapse
Affiliation(s)
- Yuanyuan Zhan
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Qin Zhu
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Xiaolin Li
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Changwu Tao
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Huogui Su
- Anxi County Soil Fertilizer Technology Extension Station, Quanzhou 362400, China; (H.S.); (Y.W.)
| | - Yuede Wu
- Anxi County Soil Fertilizer Technology Extension Station, Quanzhou 362400, China; (H.S.); (Y.W.)
| | - Jinshi Lin
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Yue Zhang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Yanhe Huang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| | - Fangshi Jiang
- Jinshan Soil and Water Conservation Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Q.Z.); (X.L.); (C.T.); (J.L.); (Y.Z.); (Y.H.)
| |
Collapse
|
154
|
Chen Y, Jiang H, Liu X, Wang X. Engineered Electrochemiluminescence Biosensors for Monitoring Heavy Metal Ions: Current Status and Prospects. BIOSENSORS 2023; 14:9. [PMID: 38248386 PMCID: PMC10813191 DOI: 10.3390/bios14010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Metal ion contamination has serious impacts on environmental and biological health, so it is crucial to effectively monitor the levels of these metal ions. With the continuous progression of optoelectronic nanotechnology and biometrics, the emerging electrochemiluminescence (ECL) biosensing technology has not only proven its simplicity, but also showcased its utility and remarkable sensitivity in engineered monitoring of residual heavy metal contaminants. This comprehensive review begins by introducing the composition, advantages, and detection principles of ECL biosensors, and delving into the engineered aspects. Furthermore, it explores two signal amplification methods: biometric element-based strategies (e.g., HCR, RCA, EDC, and CRISPR/Cas) and nanomaterial (NM)-based amplification, including quantum dots, metal nanoclusters, carbon-based nanomaterials, and porous nanomaterials. Ultimately, this review envisions future research trends and engineered technological enhancements of ECL biosensors to meet the surging demand for metal ion monitoring.
Collapse
Affiliation(s)
| | | | | | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (Y.C.); (H.J.); (X.L.)
| |
Collapse
|
155
|
Yang Q, Li G, Jin N, Zhang D. Synergistic/antagonistic toxicity characterization and source-apportionment of heavy metals and organophosphorus pesticides by the biospectroscopy-bioreporter-coupling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167057. [PMID: 37709080 DOI: 10.1016/j.scitotenv.2023.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Many anthropogenic chemicals are manufactured and eventually enter the surrounding environment, threatening food security and human health. Considering the additive or synergistic effects of pollutant mixtures, there is an expanding need for rapid, cost-effective and field-portable screening methods in environmental monitoring. This study used a recently developed biospectroscopy-bioreporter-coupling (BBC) approach to investigate the binary toxicity of Ag(I), Cr(VI) and four organophosphorus pesticides (dichlorvos, parathion, omethoate and monocrotophos). Ag(I) and Cr(VI) altered the toxicity mechanisms of pesticides, explained by the synergistic or antagonistic effect of Ag/Cr-induced cytotoxicity and pesticide-induced genotoxicity. The discriminating Raman spectral peaks associated with organophosphorus pesticides were 1585 and 1682 cm-1, but 750, 1004, 1306 and 1131 cm-1 were found in heavy metal and pesticide mixtures. More spectral alterations were related to pesticides rather than Ag(I) or Cr(VI), hinting at the dominant toxicity mechanisms of pesticides in mixtures. Ag(I) supplement significantly increased the levels of reactive oxygen species induced by organophosphorus pesticides, attributing to the increased permeability of cell membrane and entrance of toxic substances into the cells by the oligodynamic actions. This study lends deeper insights into the interactions between microbes and pollutant mixtures, offering clues to assess the cocktail effects of multiple pollutants comprehensively.
Collapse
Affiliation(s)
- Qiuyuan Yang
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
156
|
Talukdar A, Kundu P, Bhattacharjee S, Dey S, Dey A, Biswas JK, Chaudhuri P, Bhattacharya S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166165. [PMID: 37574065 DOI: 10.1016/j.scitotenv.2023.166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/15/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Microplastics (MPs) are a new and lesser-known pollutant that has intrigued the interest of scientists all over the world in recent decades. MP (<5mm in size) can enter marine environments such as mangrove forests in a variety of ways, interfering with the health of the environment and organisms. Mangroves are now getting increasingly exposed to microplastic contamination due to their proximity to human activities and their position as critical transitional zones between land and sea. The present study reviews the status of MPs contamination specifically in mangrove ecosystems situated in Asia. Different sources and characteristics of MPs, subsequent deposition of MPs in mangrove water and sediments, bioaccumulation in different organisms are discussed in this context. MP concentrations in sediments and organisms were higher in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater than in pristine areas. The distribution of MPs varies from organism to organism in mangrove ecosystems, and is significantly influenced by their morphometric characteristics, feeding habits, dwelling environment etc. Mangrove plants can accumulate microplastics in their roots, stem and leaves through absorption, adsorption and entrapment helping in reducing abundance of microplastic in the surrounding environment. Several bacterial and fungal species are reported from these mangrove ecosystems, which are capable of degrading MPs. The bioremediation potential of mangrove plants offers an innovative and sustainable approach to mitigate microplastic pollution. Diverse mechanisms of MP biodegradation by mangrove dwelling organisms are discussed in this context. Biotechnological applications can be utilized to explore the genetic potential of the floral and faunal species found in the Asian mangroves. Detailed studies are required to monitor, control, and evaluate MP pollution in sediments and various organisms in mangrove ecosystems in Asia as well as in other parts of the world.
Collapse
Affiliation(s)
| | - Pritha Kundu
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India
| | - Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post-graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah 711301, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology & Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, and International Centre for Ecological Engineering, University of Kalyani, Nadia, West Bengal 741235, India
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| |
Collapse
|
157
|
Yan G, Jin H, Yin C, Hua Y, Huang Q, Zhou G, Xu Y, He Y, Liang Y, Zhu Z. Comparative effects of silicon and silicon nanoparticles on the antioxidant system and cadmium uptake in tomato under cadmium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166819. [PMID: 37673236 DOI: 10.1016/j.scitotenv.2023.166819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Cadmium (Cd) pollution is an important threat to agricultural production globally. Silicon (Si) and silicon nanoparticles (Si NPs) can mitigate Cd stress in plants. However, the mechanisms underlying the impacts of Si and Si NPs on Cd resistance, particularly in low-Si accumulators, remain inadequately understood. Accordingly, we conducted a comparative investigation into the roles of Si and Si NPs in regulating the antioxidant system (enzymes and antioxidants) and Cd uptake (influx rate, symplastic and apoplastic pathways) in tomato (a typical low-Si accumulator). The results revealed that Si and Si NPs improved tomato growth under Cd stress, and principal component analysis (PCA) demonstrated that Si NPs were more effective than Si. For oxidative damage, redundancy analysis (RDA) results showed that Si NPs ameliorated oxidative damage in both shoots and roots, whereas Si predominantly alleviated oxidative damage in roots. Simultaneously, Si and Si NPs regulated antioxidant enzymes and nonenzymatic antioxidants with distinct targets and strengths. Furthermore, Si and Si NPs decreased Cd concentration in tomato shoot, root, and xylem sap, while Si NPs induced a more significant decline in shoot and xylem sap Cd. Noninvasive microtest and quantitative estimation of trisodium-8-hydroxy-1,3,6-pyrenetrisulfonic (PTS, an apoplastic tracer) showed that Si and Si NPs reduced the Cd influx rate and apoplastic Cd uptake, while Si NPs induced a more significant reduction. Moreover, Si regulated the expression of genes responsible for Cd uptake (NRAMP2 and LCT1) and compartmentalization (HMA3), while Si NPs reduced the expression of NRAMP2. In conjunction with RDA, the results showed that Si and Si NPs decreased Cd uptake mainly by regulating the symplastic and apoplastic pathways, respectively. Overall, our results indicate that Si NPs is more effective in promoting tomato growth and alleviating oxidative damage than Si in tomato under Cd stress by modulating the antioxidant system and reducing apoplastic Cd uptake.
Collapse
Affiliation(s)
- Guochao Yan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Han Jin
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Chang Yin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuchen Hua
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Qingying Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Guanfeng Zhou
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yunmin Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yong He
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
158
|
Wang L, Liu X, Wang Y, Wang X, Liu J, Li T, Guo X, Shi C, Wang Y, Li S. Stability and ecological risk assessment of nickel (Ni) in phytoremediation-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166498. [PMID: 37633368 DOI: 10.1016/j.scitotenv.2023.166498] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Improper treatment of heavy metal-enriched biomass generated after phytoremediation might cause secondary pollution in soil and water. At present, the pyrolysis process is an effective method for the treatment of phytoremediation residue. In this study, Ni-enriched biomass was prepared using hydroponics method and further pyrolyzed at different temperatures (300-700 °C). At low pyrolysis temperatures (below 500 °C), carbonate precipitation was the main reason of Ni stabilization in biochar. Nevertheless, the formed phosphate and aluminosilicate were important factors for immobilizing Ni in biochar at high pyrolysis temperatures (above 500 °C). Moreover, the oxidizable (F3) and residual (F4) components of Ni in biochar increased with increasing pyrolysis temperature, which indicated that higher pyrolysis temperature could effectively reduce the bioavailability of Ni in biochar. The results of deionized water, acidification, oxidation, and toxic characteristic leaching procedure (TCLP) experiments showed that pyrolysis temperature was the dominant factor for Ni stabilization in biochar. The ecological risk assessments further proved that pyrolyzed Ni-enriched biochar could reduce the environmental toxicity and potential ecological risks of Ni. In the soil simulated experiment, the soil microenvironment gradually promoted the transformation of Ni in BCNiX from bioavailable fraction to stable fraction. Overall, this study would expose more reasonable reference for the long-term storage of phytoremediation residues.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Xunjie Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Yangyang Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Jin Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Tongtong Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xiaomeng Guo
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Chao Shi
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Ying Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
159
|
Xu X, Guo L, Wang S, Ren M, Zhao P, Huang Z, Jia H, Wang J, Lin A. Comprehensive evaluation of the risk system for heavy metals in the rehabilitated saline-alkali land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119117. [PMID: 37806271 DOI: 10.1016/j.jenvman.2023.119117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Abstract
A comprehensive assessment of the heavy metal system in the rehabilitated saline-alkali land holds significant importance, as the in-situ remediation process utilizing amendments substantially alters the initial physicochemical properties of the soil, which could lead to the migration or reactivation of previously stabilized heavy metals. In this context, the present study aims to evaluate the heavy metal content and health risk within the improved saline-alkali soil-plant system. Moreover, a comprehensive evaluation based on the TOPSIS-RSR method is carried out to accurately gauge the soil health status. The findings indicate that the modification process has an impact on the concentrations of heavy metals in the soil and crops, causing either an increase or decrease. However, the level of heavy metal pollution in the improved saline-alkali soil and rape remains within safe limits. The results of the migration of heavy metals after amendment application indicated that the migration of heavy metals in the soil was influenced by the properties of the heavy metals, the composition of the amendment, and leaching. Furthermore, the total non-carcinogenic hazard quotients in the soil and rape were within the safe threshold for all populations. The findings provided novel insights into the status and risk assessment of the pollution of improved saline-alkali soil.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lin Guo
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Shaobo Wang
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ziyi Huang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hongjun Jia
- Shanxi Construction Engineering Group Co., Ltd., Taiyuan 030000, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
160
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
161
|
Gupta D, Das A, Mitra S. Role of modeling and artificial intelligence in process parameter optimization of biochar: A review. BIORESOURCE TECHNOLOGY 2023; 390:129792. [PMID: 37820969 DOI: 10.1016/j.biortech.2023.129792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023]
Abstract
Enhancement of crop yield, conservation and quality upgradation of soil, and efficient water management are the main objectives of sustainable agriculture and mitigating climate change's impact on agriculture. In recent days, biochar, obtained via thermochemical alteration of biomass is becoming a powerful agent for soil and water quality improvement, carbon sequestration, greenhouse gas emission reduction, and heavy metal adsorption. The present study predominantly focuses on various process parameters related to biochar preparation through pyrolysis, their impact on biochar production as well as physicochemical characteristics, and the optimization of such process parameters. Different designs of the experiment (DOE) and optimization techniques including traditional and non-traditional optimizations are discussed in the current review, along with their applicability and shortcomings. Since the biochar preparation process is tedious and energy-consuming, the present review will help to understand the importance of optimization in preparing biochar, thereby leading to a better way to prepare biochar.
Collapse
Affiliation(s)
- Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro & Rural Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ashmita Das
- Agro-ecotechnology Laboratory, School of Agro & Rural Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro & Rural Technology, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
162
|
Yalin D, Craddock HA, Assouline S, Ben Mordechay E, Ben-Gal A, Bernstein N, Chaudhry RM, Chefetz B, Fatta-Kassinos D, Gawlik BM, Hamilton KA, Khalifa L, Kisekka I, Klapp I, Korach-Rechtman H, Kurtzman D, Levy GJ, Maffettone R, Malato S, Manaia CM, Manoli K, Moshe OF, Rimelman A, Rizzo L, Sedlak DL, Shnit-Orland M, Shtull-Trauring E, Tarchitzky J, Welch-White V, Williams C, McLain J, Cytryn E. Mitigating risks and maximizing sustainability of treated wastewater reuse for irrigation. WATER RESEARCH X 2023; 21:100203. [PMID: 38098886 PMCID: PMC10719582 DOI: 10.1016/j.wroa.2023.100203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Scarcity of freshwater for agriculture has led to increased utilization of treated wastewater (TWW), establishing it as a significant and reliable source of irrigation water. However, years of research indicate that if not managed adequately, TWW may deleteriously affect soil functioning and plant productivity, and pose a hazard to human and environmental health. This review leverages the experience of researchers, stakeholders, and policymakers from Israel, the United-States, and Europe to present a holistic, multidisciplinary perspective on maximizing the benefits from municipal TWW use for irrigation. We specifically draw on the extensive knowledge gained in Israel, a world leader in agricultural TWW implementation. The first two sections of the work set the foundation for understanding current challenges involved with the use of TWW, detailing known and emerging agronomic and environmental issues (such as salinity and phytotoxicity) and public health risks (such as contaminants of emerging concern and pathogens). The work then presents solutions to address these challenges, including technological and agronomic management-based solutions as well as source control policies. The concluding section presents suggestions for the path forward, emphasizing the importance of improving links between research and policy, and better outreach to the public and agricultural practitioners. We use this platform as a call for action, to form a global harmonized data system that will centralize scientific findings on agronomic, environmental and public health effects of TWW irrigation. Insights from such global collaboration will help to mitigate risks, and facilitate more sustainable use of TWW for food production in the future.
Collapse
Affiliation(s)
- David Yalin
- A Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hillary A. Craddock
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Assouline
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Evyatar Ben Mordechay
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization (ARO) – The Volcani Institute, Gilat Reseach Center, Israel
| | - Nirit Bernstein
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Benny Chefetz
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering, NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Bernd M. Gawlik
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Kerry A. Hamilton
- The School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Leron Khalifa
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Isaya Kisekka
- Department of Land Air and Water Resources, University of California, Davis, California, USA
| | - Iftach Klapp
- Institute of Agricultural engineering, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | | | - Daniel Kurtzman
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Guy J. Levy
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Roberta Maffettone
- Ocean and Water Unit, Joint Research Centre, European Commission, Ispra, Italy
| | - Sixto Malato
- CIEMAT-Plataforma Solar de Almería, Ctra. Sen´es km 4, 04200 Tabernas, Almería, Spain
| | - Célia M. Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Kyriakos Manoli
- NIREAS-International Water Research Center, University of Cyprus, Nicosia, Cyprus
| | - Orah F. Moshe
- Department of Soil Conservation, Soil Erosion Research Center, Ministry of Agriculture, Rishon LeZion, Israel
| | - Andrew Rimelman
- PG Environmental. 1113 Washington Avenue, Suite 200. Golden, CO 80401, USA
| | - Luigi Rizzo
- Water Science and Technology (WaSTe) Group, Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - David L. Sedlak
- Department of Civil & Environmental Engineering, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Maya Shnit-Orland
- Extension Service, Ministry of Agriculture and Rural Development, Israel
| | - Eliav Shtull-Trauring
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| | - Jorge Tarchitzky
- The Robert H Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Clinton Williams
- US Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, AZ, USA
| | - Jean McLain
- Department of Environmental Science, University of Arizona, Tucson, Arizona, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agriculture Research Organization (ARO) – The Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
163
|
Rai PK, Song H, Kim KH. Nanoparticles modulate heavy-metal and arsenic stress in food crops: Hormesis for food security/safety and public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166064. [PMID: 37544460 DOI: 10.1016/j.scitotenv.2023.166064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Heavy metal and arsenic (HM-As) contamination at the soil-food crop interface is a threat to food security/safety and public health worldwide. The potential ecotoxicological effects of HM-As on food crops can perturb normal physiological, biochemical, and molecular processes. To protect food safety and human health, nanoparticles (NPs) can be applied to seed priming and soil amendment, as 'manifestation of hormesis' to modulate HM-As-induced oxidative stress in edible crops. This review provides a comprehensive overview of NPs-mediated alleviation of HM-As stress in food crops and resulting hormetic effects. The underlying biochemical and molecular mechanisms in the amelioration of HM-As-induced oxidative stress is delineated by covering the various aspects of the interaction of NPs (e.g., magnetic particles, silicon, metal oxides, selenium, and carbon nanotubes) with plant microbes, phytohormone, signaling molecules, and plant-growth bioregulators (e.g., salicylic acid and melatonin). With biotechnical advances (such as clustered regularly interspaced short palindromic repeats (CRISPR) gene editing and omics), the efficacy of NPs and associated hormesis has been augmented to produce "pollution-safe designer cultivars" in HM-As-stressed agriculture systems. Future research into nanoscale technological innovations should thus be directed toward achieving food security, sustainable development goals, and human well-being, with the aid of HM-As stress resilient food crops.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
164
|
Karnwal A, Dohroo A, Malik T. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6911851. [PMID: 38075309 PMCID: PMC10699995 DOI: 10.1155/2023/6911851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The increasing public concern over the negative impacts of chemical fertilizers and pesticides on food security and sustainability has led to exploring innovative methods that offer both environmental and agricultural benefits. One such innovative approach is using plant-growth-promoting bioinoculants that involve bacteria, fungi, and algae. These living microorganisms are applied to soil, seeds, or plant surfaces and can enhance plant development by increasing nutrient availability and defense against plant pathogens. However, the application of biofertilizers in the field faced many challenges and required conjunction with innovative delivering approaches. Nanotechnology has gained significant attention in recent years due to its numerous applications in various fields, such as medicine, drug development, catalysis, energy, and materials. Nanoparticles with small sizes and large surface areas (1-100 nm) have numerous potential functions. In sustainable agriculture, the development of nanochemicals has shown promise as agents for plant growth, fertilizers, and pesticides. The use of nanomaterials is being considered as a solution to control plant pests, including insects, fungi, and weeds. In the food industry, nanoparticles are used as antimicrobial agents in food packaging, with silver nanomaterials being particularly interesting. However, many nanoparticles (Ag, Fe, Cu, Si, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes) have been reported to negatively affect plant growth. This review focuses on the effects of nanoparticles on beneficial plant bacteria and their ability to promote plant growth. Implementing novel sustainable strategies in agriculture, biofertilizers, and nanoparticles could be a promising solution to achieve sustainable food production while reducing the negative environmental impacts.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aradhana Dohroo
- Baddi University of Emerging Sciences and Technologies, Baddi, Himachal Pradesh 173405, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
165
|
Karume I, Bbumba S, Tewolde S, Mukasa IZT, Ntale M. Impact of carbonization conditions and adsorbate nature on the performance of activated carbon in water treatment. BMC Chem 2023; 17:162. [PMID: 37993910 PMCID: PMC10666421 DOI: 10.1186/s13065-023-01091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
The physical and chemical structure of activated carbon (AC) varies with the carbonization temperature, activation process and time. The texture and toughness of the starting raw material also determine the morphology of AC produced. The Brunauer-Emmet-Teller surface area (SBET) is small for AC produced at low temperatures but increases from 500 to 700 °C, and generally drops in activated carbons synthesized > 700 °C. Mild chemical activators and low activator concentrations tend to generate AC with high SBET compared to strong and concentrated oxidizing chemicals, acids and bases. Activated carbon from soft starting materials such as cereals and mushrooms have larger SBET approximately twice that of tough materials such as stem berks, shells and bones. The residual functional groups observed in AC vary widely with the starting material and tend to reduce under extreme carbonization temperatures and the use of highly concentrated chemical activators. Further, the adsorption capacity of AC shows dependency on the size of the adsorbate where large organic molecules such as methylene blue are highly adsorbed compared to relatively small adsorbates such as phenol and metal ions. Adsorption also varies with adsorbate concentration, temperature and other matrix parameters.
Collapse
Affiliation(s)
- Ibrahim Karume
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Simon Bbumba
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Simon Tewolde
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Is'harq Z T Mukasa
- Department of Chemistry, Faculty of Science, Kabale University, Kabale, Uganda
| | - Muhammad Ntale
- Department of Chemistry, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
166
|
Zhang S, Zhao B, Zhang X, Wu F, Zhao Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2911. [PMID: 37999265 PMCID: PMC10675538 DOI: 10.3390/nano13222911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Due to activities like mining and smelting, lead (Pb) enters the atmosphere in various forms in coarse and fine particles. It enters plants mainly through leaves, and goes up the food chain. In this study, PbXn (nano-PbS, mic-PbO and PbCl2) was applied to eggplant (Solanum melongena L.) leaves, and 379 differential metabolites were identified and analyzed in eggplant leaves using liquid chromatography-mass spectrometry. Multivariate statistical analysis revealed that all three Pb treatments significantly altered the metabolite profile. Compared with nano-PbS, mic-PbO and PbCl2 induced more identical metabolite changes. However, the alterations in metabolites related to the TCA cycle and pyrimidine metabolism, such as succinic acid, citric acid and cytidine, were specific to PbCl2. The number of differential metabolites induced by mic-PbO and PbCl2 was three times that of nano-PbS, even though the amount of nano-PbS absorbed by leaves was ten times that of PbO and seven times that of PbCl2. This suggests that the metabolic response of eggplant leaves to Pb is influenced by both concentration and form. This study enhances the current understanding of plants' metabolic response to Pb, and demonstrates that the metabolomics map provides a more comprehensive view of a plant's response to specific metals.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Bing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
167
|
Penzy K, Muhammad S, Shahzad M, Hussain I, Khan SA, Abbasi AM, Khan I, Ahmad R. Industrial wastewater irrigation increased higher heavy metals uptake and expansins, metacaspases, and cystatin genes expression in Parthenium and maize. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1430. [PMID: 37940800 DOI: 10.1007/s10661-023-12028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Industrial wastewater irrigation of agricultural crops can cause a lot of environmental and health problems in developing countries due to heavy metals deposition in agricultural soils as well as edible plant consumption by human beings. Therefore, this study was conducted to find out the heavy metals concentration in industrial wastewater and soil irrigated with that wastewater. In addition, the aim was to determine the impact of industrial wastewater irrigation on Parthenium hysterophorus and Zea mays genes involved in growth improvement and inhibition. For this purpose, plant samples from agriculture fields irrigated with wastewater from Hattar Industrial Estate (HIE) of Haripur, Pakistan, and control plants from non-contaminated soil irrigated with tape water were collected after 15 and 45 days of germination. Heavy metals concentration in the collected plant samples, wastewater, and soil was determined. The results revealed that the soil of the sample collection site was predominantly contaminated with Cr, Pb, Ni, Cu, Co, Zn, and Cd up to the concentrations of 38.98, 21.14, 46.01, 155.73, 12.50, 68.50, and 7.01 mg/kg, respectively. The concentrations of these heavy metals were found to surpass the permissible limit in normal agricultural soil. Expansins, cystatins (plant growth enhancers), and metacaspases (plant growth inhibitor) gene expression were studied through reverse transcription polymerase chain reaction. The results showed that the expression of these genes was higher in samples collected from wastewater-irrigated soils as compared to control. The expression of these genes was observed in 45 days old samples, 15 days old samples, and control. Taken together, this study suggests the use of Parthenium and maize for phytoremediation and that they should not be used for eating purposes if irrigated with industrial wastewater.
Collapse
Affiliation(s)
- Kinza Penzy
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Said Muhammad
- National Centre of Excellence in Geology University of Peshawar, Peshawar, 25130, Pakistan
| | - Muhammad Shahzad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Imran Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan.
| | - Sabaz Ali Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Imtiaz Khan
- Department of Weed Science and Botany, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Rafiq Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
168
|
Vasilachi-Mitoseru IC, Stoleru V, Gavrilescu M. Integrated Assessment of Pb(II) and Cu(II) Metal Ion Phytotoxicity on Medicago sativa L., Triticum aestivum L., and Zea mays L. Plants: Insights into Germination Inhibition, Seedling Development, and Ecosystem Health. PLANTS (BASEL, SWITZERLAND) 2023; 12:3754. [PMID: 37960110 PMCID: PMC10650519 DOI: 10.3390/plants12213754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Environmental pollution with heavy metals has become a problem of major interest due to the harmful effects of metal ions that constantly evolve and generate serious threats to both the environment and human health through the food chain. Recognizing the imperative need for toxicological assessments, this study revolves around elucidating the effects of Pb(II) and Cu(II) ions on three plant species; namely, Medicago sativa L., Triticum aestivum L., and Zea mays L. These particular species were selected due to their suitability for controlled laboratory cultivation, their potential resistance to heavy metal exposure, and their potential contributions to phytoremediation strategies. The comprehensive phytotoxicity assessments conducted covered a spectrum of critical parameters, encompassing germination inhibition, seedling development, and broader considerations regarding ecosystem health. The key metrics under scrutiny included the germination rate, the relative growth of root and stem lengths, the growth inhibition index, and the tolerance index. These accurately designed experiments involved subjecting the seeds of these plants to an array of concentrations of PbCl2 and CuCl2 solutions, enabling an exhaustive evaluation of the phytotoxic potential of these metal ions and their intricate repercussions on these plant species. Overall, this study provides valuable insights into the diverse and dynamic responses of different plant species to Pb(II) and Cu(II) metal ions, shedding light on their adaptability and resilience in metal-contaminated environments. These findings have important implications for understanding plant-metal interactions and devising phytoremediation strategies in contaminated ecosystems.
Collapse
Affiliation(s)
- Ionela-Catalina Vasilachi-Mitoseru
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
| | - Vasile Stoleru
- Department of Horticultural Technologies, Faculty of Horticulture, “Ion Ionescu de la Brad” University of Life Sciences, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Maria Gavrilescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73 Prof. D. Mangeron Blvd., 700050 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
169
|
Lai ZY, Yiin CL, Lock SSM, Chin BLF, Zauzi NSA, Sar-Ee S. A review on natural based deep eutectic solvents (NADESs): fundamentals and potential applications in removing heavy metals from soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116878-116905. [PMID: 36917382 DOI: 10.1007/s11356-023-26288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural based deep eutectic solvent (NADES) is a promising green solvent to replace the conventional soil washing solvent due to the environmental benign properties such as low toxicity, high biodegradability, high polarity or hydrophilicity, and low cost of fabrication process. The application of NADES is intensively studied in the extraction of organic compounds or natural products from vegetations or organic matters. Conversely, the use of the solvent in removing heavy metals from soil is severely lacking. This review focuses on the potential application of NADES as a soil washing agent to remove heavy metal contaminants. Hydrophilicity is an important feature of a NADES to be used as a soil washing solvent. In this context, choline chloride is often used as hydrogen bond acceptor (HBA) whereby choline chloride based NADESs showed excellent performance in the extraction of various solutes in the past studies. The nature of NADES along with its chemistry, preparation and designing methods as well as potential applications were comprehensively reviewed. Subsequently, related studies on choline chloride-based NADES in heavy metal polluted soil remediation were also reviewed. Potential applications in removing other soil contaminants as well as the limitations of NADES were discussed based on the current advancements of soil washing and future research directions were also proposed.
Collapse
Affiliation(s)
- Zhi Ying Lai
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
- Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Serene Sow Mun Lock
- CO2 Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia
| | - Bridgid Lai Fui Chin
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
- Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Nur Syuhada Ahmad Zauzi
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Sherena Sar-Ee
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
170
|
Mititelu M, Udeanu DI, Docea AO, Tsatsakis A, Calina D, Arsene AL, Nedelescu M, Neacsu SM, Bruno Ștefan Velescu, Ghica M. New method for risk assessment in environmental health: The paradigm of heavy metals in honey. ENVIRONMENTAL RESEARCH 2023; 236:115194. [PMID: 36587723 DOI: 10.1016/j.envres.2022.115194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The release of heavy metals into the natural environment creates problems due to their persistence. They can accumulate in the food chain presenting a dangerous sign for ecosystems and human health. The metals in honey could be of agrochemical or industrial origin. Regular consumption of honey and bee products contaminated with various pollutants in high concentrations can cause serious health problems due accumulation of toxic substances in the body. In the current study, we aimed to determine the concentrations of chromium, cadmium, zinc, copper, lead and nickel in four types of honey (linden, acacia, rapeseed and polyfloral honey) and soil collected from three regions with different degrees of pollution. For the risk characterization, we used a new methodology that calculated the corrected estimated daily intake and the source hazard quotient for each metal and the adversity-specific hazard index. There was a strong influence of the degree of environmental pollution on the level of contaminants in the honey samples. In the case of a single chemical assessment, an HQ above 10 was obtained for Cd in linden, rapeseed and polyfloral honey from area 1 and an HQ above 1 was obtained for Cd in the other honey samples from the 3 areas, for Cu in all honey samples from all the 3 areas, for Pb in linden, rapeseed and polyfloral honey from area 1 and for Cr in linden honey for area 2. HIA calculated as a sum of all HQS of heavy metals in food reveals an increase and moderate risk for nephrotoxicity, bone demineralisation, cardiotoxicity, developmental toxicity, small decrease in body weight or body weight gain after consumption of honey impurified with heavy metals. A strict monitorization of heavy metals in honey samples from farmers should be done in order to protect the consumers.
Collapse
Affiliation(s)
- Magdalena Mititelu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Denisa Ioana Udeanu
- Department of Clinical Laboratory and Food Hygiene Department, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece.
| | - Daniela Calina
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
| | - Andreea Letitia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania.
| | - Mirela Nedelescu
- Department of Hygiene and Environmental Health, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 020956, Bucharest, Romania; Department of Food Hygiene and Nutrition, National Institute of Public Health, National Centre for Envi-ronmental Hazards Monitoring, 1-3 Dr. Leonte Street, 020956, Bucharest, Romania.
| | | | - Bruno Ștefan Velescu
- Department of Pharmacology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bu-charest, Romania.
| | - Manuela Ghica
- Department of Mathematics and Biostatistics, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
171
|
Li J, Yang X, Tong X, Peng Y, Deng Y, Yan X, Zhou Y. Cleaner production of Chinese cabbage by intercropping from Cd contaminated soil: Effects of hyperaccumulator variety and planting strip width. CHEMOSPHERE 2023; 341:139975. [PMID: 37643648 DOI: 10.1016/j.chemosphere.2023.139975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The utilization of Cd-contaminated soil in vegetable crop production can lighten the food crisis and improve the soil environmental resilience. Intercropping is a reliable technology in safety production from contaminated soil. A field-scale experiment was carried out to unravel how plant species and pattern affect the growth and Cd uptake of Chinese cabbage from Cd contaminated land. Among all the intercropping systems designed in this study, one row of Chinese cabbage intercropping with one row of Solanum nigrum L. is the best planting mode (high yields (2.78 kg/m2) and low Cd accumulation (0.02 mg/kg) of Chinese cabbage). Combined with the in-depth joint analysis of diverse soil physicochemical features (soil nutrient characteristics and microbial community structure), biomass yield and quality, and soil microbiological properties, we elaborated that two measures (screening hyperaccumulation types and controlling planting strip width) were the major factors in determining the growth of the aboveground and underground parts of Chinese cabbage respectively, thus directly regulating the application effectiveness of intercropping technology. The intertwined mechanisms (interspecific and intraspecific relationship) of different intercropping systems are summarized, which include better utilization of space, light and other resources in the aboveground part, bioavailability of nutrient, drive of soil bacteria and alleviated soil Cd stress in the underground part, etc. Our research outputs indicate the effectiveness and feasibility of intercropping can be improved by optimizing the streamline configuration and plant mode, which provide theory of reference and practical evidence for warranting the food safety and agricultural soil remediation simultaneously.
Collapse
Affiliation(s)
- Junchun Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangdong, 510045, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xuejiao Tong
- Yuhuan Enviromental Technology Co.Ltd, Shijiazhuang, Hebei, 050000, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangdong, 510045, China
| | - Xiulan Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
172
|
Jalil S, Nazir MM, Ali Q, Zulfiqar F, Moosa A, Altaf MA, Zaid A, Nafees M, Yong JWH, Jin X. Zinc and nano zinc mediated alleviation of heavy metals and metalloids in plants: an overview. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:870-888. [PMID: 37598713 DOI: 10.1071/fp23021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2023] [Indexed: 08/22/2023]
Abstract
Heavy metals and metalloids (HMs) contamination in the environment has heightened recently due to increasing global concern for food safety and human livability. Zinc (Zn2+ ) is an important nutrient required for the normal development of plants. It is an essential cofactor for the vital enzymes involved in various biological mechanisms of plants. Interestingly, Zn2+ has an additional role in the detoxification of HMs in plants due to its unique biochemical-mediating role in several soil and plant processes. During any exposure to high levels of HMs, the application of Zn2+ would confer greater plant resilience by decreasing oxidative stress, maintaining uptake of nutrients, photosynthesis productivity and optimising osmolytes concentration. Zn2+ also has an important role in ameliorating HMs toxicity by regulating metal uptake through the expression of certain metal transporter genes, targeted chelation and translocation from roots to shoots. This review examined the vital roles of Zn2+ and nano Zn in plants and described their involvement in alleviating HMs toxicity in plants. Moving forward, a broad understanding of uptake, transport, signalling and tolerance mechanisms of Zn2+ /zinc and its nanoparticles in alleviating HMs toxicity of plants will be the first step towards a wider incorporation of Zn2+ into agricultural practices.
Collapse
Affiliation(s)
- Sanaullah Jalil
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, Punjab University, Lahore 54590, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agricultural and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Abbu Zaid
- Department of Botany, Government Gandhi Memorial Science College, Jammu, India
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden
| | - Xiaoli Jin
- The Key Laboratory for Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
173
|
Turhan Ş, Turfan N, Kurnaz A. Heavy metal contamination and health risk evaluation of chestnut ( Castanea sativa Miller) consumed in Turkey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:1091-1101. [PMID: 35549500 DOI: 10.1080/09603123.2022.2073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
This study was performed to determine heavy metals and metalloids in twenty-eight chestnut (Castanea sativa Miller) samples consumed in Turkey by inductively coupled plasma optical emission spectrometry and evaluate health risks for humans through the consumption of chestnut samples. The concentrations of Cd, Cr, Co, Cu, Fe, Pb, Mn, Ni and Zn analyzed in chestnut samples varied from 537 to 635, 608 to 5333, 347 to 972, 207 to 8619, 12,739 to 86,310, 278 to 7549, 8676 to 67,622, 1068 to 18,661 and 3625 to 12,876 µg/kg (dry weight), respectively. The concentrations of Cd and Pb were above the maximum limits determined by the Turkish Food Codex. Healthy risks caused by the heavy metals in the consumed chestnut samples were evaluated by estimating the average daily intake of metal, health risk index (HRI), and total HRI. These results revealed that there is no possible health risk to consumers due to the intake of chestnut samples studied under the current consumption rate.
Collapse
Affiliation(s)
- Şeref Turhan
- Department of Physics, Faculty of Science and Letters, Kastamonu University, Kastamonu, Turkey
| | - Nezahat Turfan
- Department of Biology, Faculty of Science and Letters, Kastamonu University, Kastamonu, Turkey
| | - Aslı Kurnaz
- Department of Physics, Faculty of Science and Letters, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
174
|
Urama DC, Amadi CC, Ozokolie CB, Andong FA, Olabode MP, Ezerike AV, Amujiri AN. Assessment of Trace Metal Contaminants and Consumer Preference in Tomato Varieties Produced in Two Mining Communities of Nigeria. J Food Prot 2023; 86:100166. [PMID: 37777114 DOI: 10.1016/j.jfp.2023.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Tomato varieties (Solanum lycopersicum L) produced in areas prominent for mining activities contribute more deposits of metal contaminants. In turn, affects the quality and value of the products. Highlighting the level of metal contaminant in consumer's most preferred tomato variety is also necessary for health and well-being. This study specifically aimed to investigate, i) the variability between six metal contaminants in UTC, Yowlings, and Derica tomatoes; ii) we also explored the relationship between the metal contaminants and tomato quality, and lastly, we ascertained which socioeconomic factor specifically determined preference for a particular variety of the tomatoes. The metal contaminants examined and found present using ICP-OES were nickel (Ni), chromium (Cr), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg). We found a good agreement between most of the analyte and the National Institute of Standards and Technology (NIST) Certified Reference Material 1573a (CRM 1573a) values. Although this study's recovery for the analyte was between 83.22% and 111.00%, we also found contrary to our prediction that Cr, Ni, and Cd concentrations were higher in Derica, UTC, and the Yowlings varieties during the rainy season. A two-way ANOVA between tomatoes and planting seasons was not statistically significant (P > 0.05) in contrast to the mixed model (GLMMs) analysis that indicated a significant (P < 0.05) relationship between lycopene concentration, size of tomatoes, and concentration of metals screened. We also found using a principle component analysis (PCA) and correlation matrix that the concentration of Pb in the tomato varieties was significantly related to the As level. Despite As and Cr concentrations being higher in the Derica tomato variety, most consumers preferred it. Derica tomato contained metal contaminants that could be harmful to human health. Therefore, there is need to monitor the production procedures involved prior to supply of the tomato product.
Collapse
Affiliation(s)
- Dilibe Clifford Urama
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibugo Chinedu Amadi
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinenye Benita Ozokolie
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Felix Atawal Andong
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; AP Leventis Ornithological Research Institute, Faculty of Natural Sciences, University of Jos, Plateau State, Nigeria.
| | - Mayowa Peter Olabode
- Department of Veterinary Public Health and Preventive Medicine, NVRI, Vom, Jos-South, Plateau State, Nigeria
| | - Amaka Victoria Ezerike
- Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Angela Nkechi Amujiri
- Department of Plant Science and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|
175
|
Banerjee A, Roychoudhury A. Bio-priming with a Novel Plant Growth-Promoting Acinetobacter indicus Strain Alleviates Arsenic-Fluoride Co-toxicity in Rice by Modulating the Physiome and Micronutrient Homeostasis. Appl Biochem Biotechnol 2023; 195:6441-6464. [PMID: 36870026 DOI: 10.1007/s12010-023-04410-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/05/2023]
Abstract
Sustainable remediation of arsenic-fluoride from rice fields through efficient bio-extraction is the need of the hour, since these toxicants severely challenge safe cultivation of rice and food biosafety. In the present study, we screened an arsenic-fluoride tolerant strain AB-ARC of Acinetobacter indicus from the soil of a severely polluted region of West Bengal, India, which was capable of efficiently removing extremely high doses of arsenate and fluoride from the media. The strain also behaved as a plant growth-promoting rhizobacterium, since it could produce indole-3-acetic acid and solubilize phosphate, zinc, and starch. Due to these properties of the identified strain, it was used for bio-priming the seeds of the arsenic-fluoride susceptible rice cultivar, Khitish for testing the efficacy of the AB-ARC strain to promote combined arsenic-fluoride tolerance in the rice genotype. Bio-priming with AB-ARC led to accelerated uptake of crucial elements like iron, copper, and nickel which behave as co-factors of physiological and antioxidative enzymes. Thus, the activation of superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase, and glutathione-S-transferase enabled detoxification of reactive oxygen species (ROS) and reduction of the oxidative injuries like malondialdehyde and methylglyoxal generation. Overall, due to ameliorated molecular damages and low uptake of the toxic xenobiotics, the plants were able to maintain improved growth vigor and photosynthesis, as evident from the elevated levels of Hill activity and chlorophyll content. Hence, bio-priming with the A. indicus AB-ARC strain may be advocated for sustainable rice cultivation in arsenic-fluoride co-polluted fields.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India.
| |
Collapse
|
176
|
Khoshakhlagh AH, Mohammadzadeh M, Bamel U, Gruszecka-Kosowska A. Human exposure to heavy metals and related cancer development: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109867-109888. [PMID: 37792180 DOI: 10.1007/s11356-023-29939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
As notifications on carcinogenicity of heavy metals increase, more and more attention is paid recently to heavy metals exposure. In our study, the human exposure to heavy metals and cancer knowledge epistemology was investigated using bibliometric analysis. The bibliometric data of the research articles were retrieved using following keywords: "heavy metal," "trace element", "cancer", "carcinogen", and "tumor" in the Scopus database. Specifically, 2118 articles published between 1972 and 2023 were found, covering a total of 1473 authors, 252 sources, and 2797 keywords. Retrospective data obtained from 251 documents and 145 journals were further analyzed by performance analysis and techniques of science mapping. The number of studies conducted in this field increased from one article published in 1972 to 18 articles published in 2022 in the study of Michael P Waalkes. The most impactful author regarding the number of published papers was Masoudreza Sohrabi with 7 publications. In the majority of the published papers, the most popular keywords were "cadmium" and "carcinogenicity". However, in recent 4 years, the emphasis has been placed more on epidemiology studies. Our study provides general knowledge about the trend of publication on the role of heavy metals in causing cancer. The leading researchers in the field of the effects of heavy metals on the development of cancer were identified in our studies. Our results might also create a better understanding of new and emerging issues and can be used as a comprehensive road map for future researchers.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdiyeh Mohammadzadeh
- Department of Environmental Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Umesh Bamel
- OB & HRM Group, International Management Institute New Delhi, New Delhi, India
| | - Agnieszka Gruszecka-Kosowska
- Faculty of Geology, Geophysics, and Environmental Protection, Department of Environmental Protection, AGH University of Science and Technology in Krakow, Al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
177
|
Noor M, Ullah A, Khan MI, Raza I, Iqbal M, Aziz A, Kim GW, Taimur N, Azizullah A, Ali I, Kim PJ. Elucidating growth and biochemical characteristics of rice seedlings under stress from chromium VI salt and nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117562-117576. [PMID: 37870671 DOI: 10.1007/s11356-023-30487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Plants are usually provoked by a variety of heavy metal (HM) stressors that have adverse effects on their growth and other biochemical characterizations. Among the HMs, chromium has been considered the most toxic for both plants and animals. The present study was conducted to compare the phytotoxic effects of increasing chromium (VI) salt and nanoparticles (NPs) concentrations on various growth indexes of rice (Oryza sativa L. var. swat 1) seedlings grown in a hydroponic system. The 7-day rice seedlings were exposed to Cr (VI) salt and NPs hydroponic suspensions which were adjusted to the concentration of 0, 50, 100, 150, 200 and 250 mg/L. Both the Cr (VI) salt and NPs with lower concentrations (up to 100mg/L) exerted minimum inhibitory effects on the growth performance of rice seedlings. However, a significant decrease in shoot and root length and their fresh and dry weight was recorded at higher doses of Cr (VI) salt (200 mg/L) and NPs (250 mg/L). The stress induced by Cr (VI) salt has drastically affected the roots, whereas, Cr (VI) NPs significantly affected the shoot tissues. Photosynthetic pigments decreased significantly in a dose-dependent manner, and the reduction was more pronounced in rice seedlings exposed to Cr (VI) NPs compared to Cr (VI) salt. Cr (VI) NPs enhanced the membrane permeability in shoots and roots as compared to that of Cr (VI) salt, which resulted in higher concentration of reactive oxygen species (ROS) and increased lipid peroxidation. The activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased significantly in shoot/root tissue following exposure to higher doses of Cr (VI) salt (200 mg/L) and NPs stress (250 mg/L), while minor changes in CAT and APX activities were observed in root and shoot tissues after exposure to higher concentration of Cr (VI) NP. Furthermore, the increasing concentrations of Cr (VI) NPs increased the length of stomatal guard cells. Conclusively, Cr (VI) salt and NPs in higher concentrations have higher potential to damage the growth and induce oxidative stress in rice plants.
Collapse
Affiliation(s)
- Maryam Noor
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Arif Ullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Israr Khan
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju-Si, Gyeongsang Nam-do, 52828, South Korea
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju-Si, Gyeongsang Nam-do, 52828, South Korea
| | - Irum Raza
- College of Agriculture and Environmental Sciences, University of Georgia, Athens, USA
| | - Muhammad Iqbal
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Abdul Aziz
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Gil Won Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju-Si, Gyeongsang Nam-do, 52828, South Korea
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju-Si, Gyeongsang Nam-do, 52828, South Korea
| | - Nadia Taimur
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Azizullah Azizullah
- Department of Biology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Imran Ali
- Department of Botany, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju-Si, Gyeongsang Nam-do, 52828, South Korea.
| |
Collapse
|
178
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
179
|
Ugulu I, Khan ZI, Alrefaei AF, Bibi S, Ahmad K, Memona H, Mahpara S, Mehmood N, Almutairi MH, Batool AI, Ashfaq A, Noorka IR. Influence of Industrial Wastewater Irrigation on Heavy Metal Content in Coriander ( Coriandrum sativum L.): Ecological and Health Risk Assessment. PLANTS (BASEL, SWITZERLAND) 2023; 12:3652. [PMID: 37896115 PMCID: PMC10609805 DOI: 10.3390/plants12203652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
The primary objective of this study was to determine the heavy metal contents in the water-soil-coriander samples in an industrial wastewater irrigated area and to assess the health risks of these metals to consumers. Sampling was done from areas adjoining the Chistian sugar mill district Sargodha and two separate sites irrigated with groundwater (Site 1), and sugar mill effluents (Site 2) were checked for possible metal contamination. The water-soil-coriander continuum was tested for the presence of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Ni), lead (Pb), and zinc (Zn). The mean concentrations of all metals were higher than the permissible limits for all studied metals except for Mn in the sugar mill wastewater, with Fe (8.861 mg/L) and Zn (9.761 mg/L) exhibiting the highest values. The mean levels of Fe (4.023 mg/kg), Cd (2.101 mg/kg), Cr (2.135 mg/kg), Cu (2.180 mg/kg), and Ni (1.523 mg/kg) were high in the soil at Site 2 in comparison to the groundwater irrigated site where Fe (3.232 mg/kg) and Cd (1.845 mg/kg) manifested high elemental levels. For coriander specimens, only Cd had a higher mean level in both the groundwater (1.245 mg/kg) and the sugar mill wastewater (1.245 mg/kg) irrigated sites. An estimation of the pollution indices yielded a high risk from Cd (health risk index (HRI): 173.2), Zn (HRI: 7.012), Mn (HRI: 6.276), Fe (HRI: 1.709), Cu (HRI: 1.282), and Ni (HRI: 1.009), as all values are above 1.0 indicating a hazard to human health from consuming coriander irrigated with wastewater. Regular monitoring of vegetables irrigated with wastewater is strongly advised to reduce health hazards to people.
Collapse
Affiliation(s)
- Ilker Ugulu
- Faculty of Education, Usak University, Usak 64000, Turkey
| | - Zafar Iqbal Khan
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan (A.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.H.A.)
| | - Shehnaz Bibi
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan (A.A.)
| | - Kafeel Ahmad
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan (A.A.)
| | - Hafsa Memona
- Department of Zoology, Queen Mary College, Lahore 54000, Pakistan
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan
| | - Naunain Mehmood
- Department of Zoology, University of Sargodha, Sargodha 40100, Pakistan
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Mikhlid Hammad Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.H.A.)
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha 40100, Pakistan
| | - Asma Ashfaq
- Department of Botany, University of Sargodha, Sargodha 40100, Pakistan (A.A.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan;
| |
Collapse
|
180
|
Lin BG, Pan P, Wei CX, Chen XC, Zhang ZY, Fan QF, Liu F, Liu BB, Wu L. Health risk assessment of trace metal(loid)s in agricultural soil using an integrated model combining soil-related and plants-accumulation exposures: A case study on Hainan Island, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165242. [PMID: 37394068 DOI: 10.1016/j.scitotenv.2023.165242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Traditional health risk assessment of trace metal(loid)s (TMs) in agricultural soil exclusively considers direct soil-related exposure and may underestimate the health risks they pose. In this study, the health risks of TMs were evaluated using an integrated model that combined soil-related and plant-accumulating exposures. A detailed investigation of common TMs (Cr, Pb, Cd, As, and Hg) coupled with probability risk analysis based on a Monte Carlo simulation was conducted on Hainan Island. Our results showed that, except for As, the non-carcinogenic risk (HI) and carcinogenic risk (CR) of the TMs were all within the acceptable ranges (HI < 1.0, and CR < 1E-06) for direct soil-related exposure to bio-accessible fractions and indirect exposure via plant accumulation (CR substantially lower than the warning threshold 1E-04). We identified crop food ingestion as the essential pathway for TM exposure and As as the critical toxic element in terms of risk control. Moreover, we determined that RfDo and SFo are the most suitable parameters for assessing As health risk severity. Our study demonstrated that the proposed integrated model combining soil-related and plant-accumulating exposures can avoid major health risk assessment deviations. The results obtained and the integrated model proposed in this study can facilitate future multi-pathway exposure research and could be the basis for determining agricultural soil quality criteria in tropical areas.
Collapse
Affiliation(s)
- Bi-Gui Lin
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Pan Pan
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Chao-Xian Wei
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China
| | - Xi-Chao Chen
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Zong-Yao Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qing-Fang Fan
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Key Laboratory of Green Pesticide and Agricultural Engineering of Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, PR China
| | - Fang Liu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, PR China
| | - Bei-Bei Liu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China.
| | - Lin Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Key Laboratory of Low-carbon Green Agriculture in Tropical Region of China, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China.
| |
Collapse
|
181
|
Buendía-Valverde MDLL, Gómez-Merino FC, Corona-Torres T, Mateos-Nava RA, Trejo-Téllez LI. Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper ( Capsicum annuum L.) Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3563. [PMID: 37896025 PMCID: PMC10609808 DOI: 10.3390/plants12203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.
Collapse
Affiliation(s)
- María de la Luz Buendía-Valverde
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Fernando C Gómez-Merino
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Laboratory of Plant Tissue Culture, Department of Sustainable Agri-Food Innovation, Collaborative Research Group at College of Postgraduates in Agricultural Sciences, Campus Córdoba, Manuel León, Amatlán de los Reyes 94953, Mexico
| | - Tarsicio Corona-Torres
- Department of Genetic Resources and Productivity-Genetics, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Research Unit in Genetics and Environmental Toxicology (UIGTA), Multidisciplinary Experimental Research Unit (UMIE-ZAP 9-020), L5 PA Laboratory, Faculty of Higher Studies-Zaragoza, National Autonomous University of Mexico, Campus II, Mexico City 15000, Mexico
| | - Libia I Trejo-Téllez
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| |
Collapse
|
182
|
Lin TS, Wu JW, Vo TDH, Nguyen VT, Ju YR. Accumulation degree and risk assessment of metals in street dust from a developing city in Central Taiwan. CHEMOSPHERE 2023; 339:139785. [PMID: 37567257 DOI: 10.1016/j.chemosphere.2023.139785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Due to the numerous industrial parks and high traffic density in Miaoli, Taiwan, large amounts of metals may be released into the atmosphere, accumulating in street dust. Therefore, this study aimed to collect street dust in Miaoli to quantify the metals and assess the accumulation degree, sources, and potential risks. The enrichment factor (EF), geological accumulation index (Igeo), ecological risk, and non-carcinogenic and lifetime carcinogenic risk were estimated to assess the accumulation degree and the potential environmental and health risks. Pearson correlation analysis, principal component analysis, and positive matrix factor model were used to clarify the relationship between levels of metals and identify possible sources. The levels of metals in street dust in order were Fe > Zn > Mn > Cu > Cr > Ni > Pb > Sr > Co > Sb. According to Igeo, the level of Ni indicated moderately polluted. The levels of Zn, Cu, and Pb showed moderate to strong pollution, strong pollution, and very strong pollution, respectively. Results of average ecological risk analysis pointed out that Pb and Cu represent a very high risk, while other metals posed low-to moderate-level ecological risks. Excluding the Steel Enterprise area, based on the EF value and source identification, it might be concluded that Co, Sr, Fe, Mn, and Sb were mainly from natural sources, while Cu, Pb, and Zn come from anthropogenic pollution sources. Based on the results of the risk assessments, most metals pose no serious adverse health risk to humans. But, in comparison to Miaoli townships, the health risks of residents living in the Steel Enterprise area were higher. However, given that children and adolescents exposure to Co, Cr, Pb, and Ni together constitute a relatively higher carcinogenic risk (CR > 10-6), more attention needs to be paid to the populations most susceptible.
Collapse
Affiliation(s)
- Tser-Sheng Lin
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Jun-Wei Wu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Thi-Dieu-Hien Vo
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam
| | - Van-Truc Nguyen
- Department of Environmental Sciences, Saigon University, Ho Chi Minh City, 700000, Viet Nam
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| |
Collapse
|
183
|
Kang M, Wang X, Chen J, Fang Q, Liu J, Tang L, Liu L, Cao W, Zhu Y, Liu B. Extreme low-temperature events can alleviate micronutrient deficiencies while increasing potential health risks from heavy metals in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122165. [PMID: 37429493 DOI: 10.1016/j.envpol.2023.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Despite global warming, extreme low-temperature stress (LTS) events pose a significant threat to rice production (especially in East Asia) that can significantly impact micronutrient and heavy metal elements in rice. With two billion people worldwide facing micronutrient deficiencies (MNDs) and widespread heavy metal pollution in rice, understanding these impacts is crucial. We conducted detailed extreme LTS experiments with two rice (Oryza sativa L.) cultivars (Huaidao 5 and Nanjing 46) grown under four temperature levels (from 21/27 °C to 6/12 °C) and three LTS durations (three, six, and nine days). We observed significant interaction effects for LTS at different growth stages, durations and temperature levels on the contents and accumulation of mineral elements. The contents of most mineral elements (such Fe, Zn, As, Cu, and Cd) increased significantly under severe LTS at flowering, but decreased under LTS at the grain-filling stage. The accumulations of all mineral elements decreased at the three growth stages under LTS due to decreased grain weight. The contents and accumulation of mineral elements were more sensitive to LTS at the peak flowering stage than at the other two stages. Furthermore, the contents of most mineral elements in Nanjing 46 show larger variation under LTS compared to Huaidao 5. Accumulated cold degree days (ACDD, °C·d) were found to be suitable for quantifying the effects of LTS on the relative contents and accumulations of mineral elements. LTS at the flowering stage will help alleviate MNDs, but may also increase potential health risks from heavy metals. These results provide valuable insights for evaluating future climate change impacts on rice grain quality and potential health risks from heavy metals.
Collapse
Affiliation(s)
- Min Kang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Xue Wang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiankun Chen
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Qizhao Fang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Jiaming Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Liang Tang
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Leilei Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Weixing Cao
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Yan Zhu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| | - Bing Liu
- National Engineering and Technology Center for Information Agriculture, Engineering Research Center of Smart Agriculture, Ministry of Education, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
184
|
Adewumi AJ, Laniyan TA. Contamination, ecological, and human health risks of heavy metals in water from a Pb-Zn-F mining area, North Eastern Nigeria. JOURNAL OF WATER AND HEALTH 2023; 21:1470-1488. [PMID: 37902203 PMCID: wh_2023_132 DOI: 10.2166/wh.2023.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In Nigeria, artisanal mining has become a serious issue. In the Nigerian mining region of Arufu Pb-Zn-F, this study assessed the level of pollution, ecological hazards, and health risks related to the presence of metals in the water. In the dry and rainy seasons, 36 water samples (20 from the ground, 10 from the surface, and six from the mine) were gathered. Samples were examined for the presence of heavy metals such as Cr, Co, Ni, Cu, Zn, As, Cd, and Pb. Other than Cu, Zn, As, Cd, Sb, and Cd (surface water, dry season), which were below the acceptable norm, all water samples had metals over the suggested limits. Heavy metals from nearby mining activities polluted the water, according to contamination evaluations utilizing the contamination factor (CF). Metals in the water may pose very significant ecological dangers, according to ecological risk assessments. The evaluation of human health risks revealed that both adults and children in the region are susceptible to carcinogenic and non-carcinogenic health hazards since the hazard index (HI) values for both indices were above 1 × 10-5 and above 1, respectively. This report emphasizes the need for monitoring mining operations in the nation to safeguard public health.
Collapse
Affiliation(s)
- Adeniyi JohnPaul Adewumi
- Department of Geological Sciences, Achievers University, PMB 1030, Owo, Ondo State, Nigeria E-mail:
| | | |
Collapse
|
185
|
Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Chen G, Huan L, Liu Y, Wang G. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115382. [PMID: 37619453 DOI: 10.1016/j.ecoenv.2023.115382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Nano-enabled agriculture has emerged as an attractive approach for facilitating soil pollution mitigation and enhancing crop production and nutrition. In this study, we conducted a greenhouse experiment to explore the efficacy of silicon oxide nanoparticles (SiONPs) and iron oxide nanoparticles (FeONPs) in alleviating arsenic (As) toxicity in wheat (Triticum aestivum L.) and elucidated the underlying mechanisms involved. The application of SiONPs and FeONPs at 25, 50, and 100 mg kg-1 soil concentration significantly reduced As toxicity and concurrently improved plant growth performance, including plant height, dry matter, spike length, and grain yield. The biochemical analysis showed that the enhanced plant growth was mainly due to stimulated antioxidative enzymes (catalase, superoxide dismutase, peroxidase) and reduced reactive oxygen species (electrolyte leakage, malondialdehyde, and hydrogen peroxide) in wheat seedlings under As stress upon NPs application. The nanoparticles (NPs) exposure also enhanced the photosynthesis efficiency, including the total chlorophyll and carotenoid contents as compared with the control treatment. Importantly, soil amendments with 100 mg kg-1 FeONPs significantly reduced the acropetal As translocation in the plant root, shoot and grains by 74%, 54% and 78%, respectively, as compared with the control treatment under As stress condition, with relatively lower reduction levels (i.e., 64%, 37% and 58% for the plant root, shoot and grains, respectively) for SiONPs amendment. Overall, the application of NPs especially the FeONPs as nanoferlizers for agricultural crops is a promising approach towards mitigating the negative impact of HMs toxicity, ensuring food safety, and promoting future sustainable agriculture.
Collapse
Affiliation(s)
- Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Liaqat Ali
- University of Agriculture Faisalabad, Sub-Campus Burewala Vehari, 61100, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Tahir Abbas
- Department of environmental sciences, University of Jhang, Punjab, Pakistan
| | - Guowei Chen
- Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liying Huan
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China; National Black Soil & Agriculture Research, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
186
|
Lhotská M, Zemanová V, Pavlíková D, Hnilička F. Changes in the photosynthetic response of lettuce exposed to toxic element multicontamination under hydroponic conditions. PHOTOSYNTHETICA 2023; 61:390-397. [PMID: 39651361 PMCID: PMC11558601 DOI: 10.32615/ps.2023.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/08/2023] [Indexed: 12/11/2024]
Abstract
The effect of toxic element multicontamination on photosynthetic responses was observed in a greenhouse hydroponic culture of lettuce plants (Lactuca sativa var. capitata). The experiment focused only on the combined effect of selected toxic elements without the influence of soil, due to the hydroponic conditions. Pre-cultivated (six-true-leaf stage) plants were grown in control and contaminated hydroponic culture for 14 d. The mix of toxic elements (As, Cd, Pb, and Zn) in the contaminated solution corresponded to the water-soluble fraction of soil from the anthropogenically contaminated Litavka River area, Czech Republic. The plant response was measured by determining the toxic element contents, dry biomass, and gas-exchange parameters. Lettuce accumulated toxic elements predominantly in the roots, with low translocation to the leaves. The uptake of toxic elements harmed photosynthesis and caused a decrease in net photosynthetic rate, transpiration rate, and stomatal conductance. Consequently, the whole dry biomass of the plants decreased. The results show that contamination in hydroponic conditions had an irreversible effect on plant fitness due to direct contact between the roots and contaminated solutions.
Collapse
Affiliation(s)
- M. Lhotská
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
| | - V. Zemanová
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
| | - D. Pavlíková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
| | - F. Hnilička
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6, Czech Republic
| |
Collapse
|
187
|
Elazab D, Lambardi M, Capuana M. In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3387. [PMID: 37836127 PMCID: PMC10574448 DOI: 10.3390/plants12193387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Heavy metals are among the most common and dangerous contaminants; their action on plants, as well as the possibility for plants to effectively absorb and translocate them, have been studied for several years, mainly for exploitation in phytoremediation, an environmentally friendly and potentially effective technology proposed and studied for the recovery of contaminated soils and waters. In this work, the analysis has focused on the studies developed using in vitro techniques on the possibilities of mitigating, in plants, the stress due to the presence of heavy metals and/or improving their absorption. These objectives can be pursued with the use of different substances and organisms, which have been examined in detail. The following are therefore presented in this review: an analysis of the role of metals and metalloids; the use of several plant growth regulators, with their mechanisms of action in different physiological phases of the plant; the activity of bacteria and fungi; and the role of other effective compounds, such as ascorbic acid and glutathione.
Collapse
Affiliation(s)
- Doaa Elazab
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
- Department of Pomology, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Maurizio Lambardi
- IBE—Institute of BioEconomy, National Research Council (CNR), 50019 Florence, Italy; (D.E.); (M.L.)
| | - Maurizio Capuana
- IBBR—Institute of Biosciences and Bioresources, National Research Council (CNR), 50019 Florence, Italy
| |
Collapse
|
188
|
Cui Z, He M, Chen B, Hu B. In-situ elemental quantitative imaging in plant leaves by LA-ICP-MS with matrix-matching external calibration. Anal Chim Acta 2023; 1275:341588. [PMID: 37524476 DOI: 10.1016/j.aca.2023.341588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023]
Abstract
Due to the enormous interest in plants related to bioscience, environmental and toxicological research, analytical methods are expected with the ability of getting information on elemental transfer, distribution and contents in plants. In this work, a mixture of gelatin (GA) and hydroxypropyl methyl cellulose (HPMC) was prepared to simulate plant matrix, a method based on laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with matrix-matching external calibration was proposed for direct quantification of multiple elements in plants. The composition of GA&HPMC substrate was optimized, such as the concentration of spiked nitric acid, the mass fraction of both GA and HPMC in the substrate and the mass ratio of GA: HPMC. After spiking elemental solution, coating the mixture onto a glass slide and drying overnight at room temperature, GA&HPMC substrate was obtained. The substrate obtained with GA: HPMC of 8: 2 was used to fabricate the standard series, which exhibited good elemental homogeneity and similar elemental signal intensities in LA-ICP-MS detection to that obtained for plant Certified Reference Material (CRM). CRMs of different plants including Citrus leaf (GBW10019), Tea (GBW07605), Beans (GBW10021) and Scallions (GBW10049) were further pressed into pellets and subjected to the proposed method, and the quantification accuracy was demonstrated. The limits of detections of this method were found to be 0.003 (Ce)-104 (Ca) μg g-1, with a wide linear range (0.01-10000 μg g-1) for 17 target elements. The application potential of the method was further demonstrated by performing elemental imaging in Trigonotis peduncularis leaves. Rapid in-situ quantitative imaging of Zn, Cu, Sr and Mn was achieved, and the elemental quantitative distributions were discussed. The constructed substrate helped direct elemental quantification in plants. It provided a powerful and efficient tool for the investigation of the distribution and transfer of elements in plants, favoring further exploration of elemental bioavailability, transport and toxicity mechanisms.
Collapse
Affiliation(s)
- Zewei Cui
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
189
|
Lin X, Wang F, Lu Y, Wang J, Chen J, Yu Y, Tao X, Xiao Y, Peng Y. A review on edible insects in China: Nutritional supply, environmental benefits, and potential applications. Curr Res Food Sci 2023; 7:100596. [PMID: 37744556 PMCID: PMC10517268 DOI: 10.1016/j.crfs.2023.100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
This review explored the potential of edible insects to address the challenges of malnutrition and food security. Although grain production in China has met the Food and Agriculture Organization standards, the shortage of protein supply is still a big issue. Moreover, expanding livestock farming is considered unsustainable and environmentally unfriendly. Edible insects have become an alternative with higher sustainable and ecological properties. There are 324 species of insects currently consumed in China, and they have high nutritional value, with a rich source of protein and unsaturated fatty acids. Insect farming provides numerous benefits, including green feeds for livestock, poultry, and aquaculture, sustainable organic waste management, as well as industrial and pharmaceutical raw materials. The food toxicological evaluations conducted in China indicated that edible insects are safe for general consumption by the Chinese, but allergies and other related food safety issues should not be ignored. Consumer acceptance is another barrier to overcome, with different schemas between China and Western countries. More research on the potential functions of edible insects and their product development may enhance their acceptance in China. Overall, incorporating edible insects into our diet is a promising solution to address challenges related to protein supply and food security. To ensure safety and sustainability, appropriate legislation, quality regulations, large-scale insect farms, and acceptable processing techniques are necessary. Moreover, more scientific research and social awareness are required to promote the culture and utilization of edible insects in China.
Collapse
Affiliation(s)
- Xueying Lin
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Feifan Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yuting Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Jiarui Wang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Jingwen Chen
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaoyu Tao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, 999078, China
| |
Collapse
|
190
|
Fasani E, Giannelli G, Varotto S, Visioli G, Bellin D, Furini A, DalCorso G. Epigenetic Control of Plant Response to Heavy Metals. PLANTS (BASEL, SWITZERLAND) 2023; 12:3195. [PMID: 37765359 PMCID: PMC10537915 DOI: 10.3390/plants12183195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Plants are sessile organisms that must adapt to environmental conditions, such as soil characteristics, by adjusting their development during their entire life cycle. In case of low-distance seed dispersal, the new generations are challenged with the same abiotic stress encountered by the parents. Epigenetic modification is an effective option that allows plants to face an environmental constraint and to share the same adaptative strategy with their progeny through transgenerational inheritance. This is the topic of the presented review that reports the scientific progress, up to date, gained in unravelling the epigenetic response of plants to soil contamination by heavy metals and metalloids, collectively known as potentially toxic elements. The effect of the microbial community inhabiting the rhizosphere is also considered, as the evidence of a transgenerational transfer of the epigenetic status that contributes to the activation in plants of response mechanisms to soil pollution.
Collapse
Affiliation(s)
- Elisa Fasani
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, 35020 Legnaro, Italy;
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (G.G.); (G.V.)
| | - Diana Bellin
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Antonella Furini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| | - Giovanni DalCorso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (E.F.); (D.B.)
| |
Collapse
|
191
|
de Oliveira M, Melo ESDP, da Silva TC, Cardozo CML, Siqueira IV, Hamaji MP, Braga VT, Martin LFT, Fonseca A, do Nascimento VA. Quantification of Metal(loid)s in Lubricating Eye Drops Used in the Treatment of Dry Eye Disease. Molecules 2023; 28:6508. [PMID: 37764284 PMCID: PMC10536462 DOI: 10.3390/molecules28186508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The aim of the study was to evaluate the presence of metal(loid)s in lubricating eye drops used in the treatment of dry eye disease. The concentrations of Al, As, Ba, Cd, Co, Cu, Cr, Pb, Fe, Mg, Mn, Mo, Ni, Se, V, and Zn were determined in 19 eye drop samples using inductively coupled plasma optical emission spectrometry (ICP OES). The limit of detection (LOD) and limit of quantification (LOQ) values for the quantified elements ranged from 0.0002-0.0363 (mg/L) and 0.0007-0.1211 (mg/L), respectively. High values of concentrations of Al (2.382 µg/g), As (0.204 µg/g), Ba (0.056 µg/g), Cd (0.051 µg/g), Co (1.085 µg/g), Cr (0.020 µg/g), Cu (0.023 µg/g), Fe (0.453 µg/g), Mg (24.284 µg/g), Mn (0.014 µg/g), Mo (0.046 µg/g), Ni (0.071 µg/g), Pb (0.049 µg/g), Se (0.365 µg/g), V (0.083 µg/g), and Zn (0.552 µg/g) were quantified in samples of eye drops with and without preservatives. The concentrations of As (5 samples) and Cd (3 samples) were higher than those allowed by the Brazilian Pharmacopoeia for impurities (parenteral use). The value of Co content (µg/g) in a sample was higher than the value established by the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH Q3D (R2)) in the parenteral route. The daily eye drop instillation exposure (µg/day) was below the values from the parenteral-permitted daily exposure (PDE) set by the ICH Q3D guideline (R2). The presence of heavy metals in eye drops is an alert to regulatory agencies in several countries so that control and inspections can be carried out.
Collapse
Affiliation(s)
- Marcelo de Oliveira
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Elaine S. de Pádua Melo
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Thaís Carvalho da Silva
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Carla Maiara Lopes Cardozo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Igor Valadares Siqueira
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Mariana Pereira Hamaji
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Vanessa Torres Braga
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
| | - Luiz Fernando Taranta Martin
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Alessandro Fonseca
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (M.d.O.); (C.M.L.C.); (V.T.B.)
- Group of Spectroscopy and Bioinformatics Applied to Biodiversity and Health, Postgraduation Program in Health and Development in the Midwest Region, School of Medicine, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (E.S.d.P.M.); (T.C.d.S.); (I.V.S.); (M.P.H.); (L.F.T.M.); (A.F.)
| |
Collapse
|
192
|
Ketema B, Amde M, Teju E. Contents and health risk assessments of selected heavy metals in vegetables produced through irrigation with effluent-impacted river. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1160. [PMID: 37674096 DOI: 10.1007/s10661-023-11803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
The widely consumed vegetables, khat, lettuce, and Swiss chard, in Hirna town, West Hararghe, Ethiopia, are extensively cultivated through irrigation with an effluent-impacted river that flows through the town which denotes that monitoring the safety of the vegetables is crucial. Herein, the contents of Pb, Zn, Cu, Cr, and Cd in vegetables, water, and soils were determined by flame atomic absorption spectrometry after a wet digestion procedure based on a mixture of HNO3 and HClO4 at 200 °C. pH and electrical conductivity of the water and soil, and health risks associated with vegetable consumption were determined. The pH of the water (6.64) and soil (6.67) was slightly acidic, and electrical conductivity values were 0.416 and 0.024 mS/cm, respectively, indicating both are in good condition. The metal concentrations were in the range of ND-3.12, 3.43-9.22, and 0.15-10.6 mg/L in the water, soil, and vegetables, respectively, and the contents followed a trend of Cu > Zn > Cr > Pb > Cd. The irrigation water contained all metals above the guidelines except Cd, and the soil contained safe levels except Cd which is above the guideline. The obtained metal levels in the vegetables were below the safe limits. Estimated daily intakes and the total target cancer risks were below the guidelines, and the target hazard quotient and the hazard index were below 1 indicating that the vegetables are safe for consumption. In general, the obtained results suggest that the vegetables are safe for consumption. However, continuous monitoring and policy development are required to mitigate contamination of the river.
Collapse
Affiliation(s)
- Berhan Ketema
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Oromia, Ethiopia
| | - Meseret Amde
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Oromia, Ethiopia.
| | - Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Oromia, Ethiopia
| |
Collapse
|
193
|
Scutarașu EC, Trincă LC. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 2023; 12:3340. [PMID: 37761050 PMCID: PMC10528236 DOI: 10.3390/foods12183340] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Heavy metals are chemical elements with a toxic effect on the human body. The expansion of industries has led to significant increasing levels of these constituents in the environment. Intensive agriculture can also lead to an increased concentration of heavy metals as a result of using different fertilizers and pesticides. Heavy metal accumulation in soil and plants represents a serious issue because of the potential risks to consumers. There are several methods available for the removal of these toxic components from different substrates (chemical precipitation, electrodialysis, coagulation and flocculation, photocatalytic removal, and adsorption-based processes), but most procedures are expensive and difficult to perform. Thus, more research is needed on the development of low-cost methods in foods. This work represents a review on the heavy metal presence in different food substrates (such as fruits and vegetables, milk and dairy products, meat and meat derivatives, oils, and alcoholic beverages) and provides an overview of the current situation worldwide, taking into account the fact that risks for human health are induced by the intensification of industry and the high degree of pollution. Considering that the toxicological quality of food affects its acceptability, this work provides valuable data regarding the actual situation on the proposed topic.
Collapse
Affiliation(s)
| | - Lucia Carmen Trincă
- Faculty of Horticulture, “Ion Ionescu de la Brad” Iași University of Life Sciences, 3rd M. Sadoveanu Alley, 700490 Iași, Romania;
| |
Collapse
|
194
|
Choudhary M, Datta SP, Golui D, Meena MC, Nogiya M, Samal SK, Raza MB, Rahman MM, Mishra R. Effect of sludge amelioration on yield, accumulation and translocation of heavy metals in soybean grown in acid and alkaline soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101343-101357. [PMID: 37651010 DOI: 10.1007/s11356-023-29568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
A greenhouse pot experiment was conducted with seven different levels of sludge (0, 5, 10, 20, 40, 80, 160 g kg-1) to assess the potential impact of sludge application on soybean (Glycine max (L.) Merr.) productivity, metal accumulation and translocation, and physico-chemical changes in acid and alkaline soils. The outcomes revealed that the application of sludge @ 5.0 to 160 g kg-1 resulted in a significant (p < 0.05) increase in seed and straw yield in both acid and alkaline soils compared to control. All the assessed heavy metals in soybean were within permissible ranges and did not exceed the phytotoxic limit, except for Fe, Zn, and Cu in the roots from the application of sewage sludge. The values of bioaccumulation factor (BFroot/soil) and translocation factor i.e., TFstraw/root and TFseed/straw were < 1.0 for Ni, Pb and Cr. Overall, for all the sludge application doses the soil pH was observed to increase in the acid soil and decline in alkaline soil when compared to the control. All the investigated heavy metals (Fe, Mn, Zn, Cu, Ni, Cd, Pb, and Cr) in the different plant tissues (root, straw and seed) of soybean were correlated with the soil variables. The study finds that sludge can be a potential organic fertilizer and function as an eco-friendly technique for the recycling of nutrients in the soil while keeping a check on the heavy metals' availability to plants.
Collapse
Affiliation(s)
- Mahipal Choudhary
- ICAR-Central Arid Zone Research Institute, Jodhpur, 342003, India
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Siba Prasad Datta
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India.
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Civil Construction and Environmental Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Mahesh Chand Meena
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Saubhagya Kumar Samal
- ICAR-Indian Institute of Soil & Water Conservation, RC Koraput, Panchkula, Odisha, 763002, India
| | - Mohammed Basit Raza
- ICAR-Directorate of Floricultural Research, Pune, Maharashtra, 411036, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rahul Mishra
- ICAR-Indian Institute of Soil Science, Bhopal, 462001, India
| |
Collapse
|
195
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
196
|
Hasan M, Hossain MM, Abrarin S, Kormoker T, Billah MM, Bhuiyan MKA, Akbor MA, Salam SMA, Khan R, Naher K, Salam MA, Ali MM, Rahman MM, Emran TB, Mahmoud Z, Khandaker MU, Siddique MAB. Heavy metals in popularly sold branded cigarettes in Bangladesh and associated health hazards from inhalation exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100828-100844. [PMID: 37644270 DOI: 10.1007/s11356-023-29491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.
Collapse
Affiliation(s)
- Mehedi Hasan
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Moazzem Hossain
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shaifa Abrarin
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong
| | - Md Masum Billah
- Inter-Departmental Research Centre for Environmental Science - CIRSA, University of Bologna, Via S. Alberto 163, Ravenna Campus, Ravenna, 48123, Italy
| | - Md Khurshid Alam Bhuiyan
- Institute of Marine Research (INMAR), University of Cádiz, Research Institutes Building, Puerto Real Campus, Cádiz, 11510, Puerto Real, Spain
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Sayed M A Salam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Kamrun Naher
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission (BAEC), Savar, Dhaka, 1349, Bangladesh
| | - Mohammed Abdus Salam
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School & Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Z Mahmoud
- Department of Physics, College of Sciences, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500, Bandar Sunway, Malaysia
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh.
| |
Collapse
|
197
|
Hoque MM, Islam A, Islam ARMT, Das BC, Pal SC, Arabameri A, Khan R. Spatio-temporal assessment of water quality of a tropical decaying river in India for drinking purposes and human health risk characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101653-101668. [PMID: 37656296 DOI: 10.1007/s11356-023-29431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
River water pollution and water-related health problems are common issues across the world. The present study aims to examine the Jalangi River's water quality to assess its suitability for drinking purposes and associated human health risks. The 34 water samples were collected from the source to the mouth of Jalangi River in 2022 to depict the spatial dynamics while another 119 water samples (2012-2022) were collected from a secondary source to portray the seasonal dynamics. Results indicate better water quality in the lower reach of the river in the monsoon and post-monsoon seasons. Principal component analysis reveals that K+, NO3-, and total alkalinity (TA) play a dominant role in controlling the water quality of the study region, while, CaCO3, Ca2+, and EC in the pre-monsoon, EC, TDS, Na+, and TA in the monsoon, and EC, TDS and TA in the post-monsoon controlled the water quality. The results of ANOVA reveal that BOD, Ca2+, and CaCO3 concentrations in water have significant spatial dynamics, whereas pH, BOD, DO, Cl-, SO42-, Na+, Mg2+, Ca2+, CaCO3, TDS, TA, and EC have seasonal dynamics (p < 0.05). The water quality index depicts that the Jalangi River's water quality ranged from 6.23 to 140.83, i.e., excellent to unsuitable for drinking purposes. Human health risk analysis shows that 32.35% of water samples have non-carcinogenic health risks for all three groups of people, i.e., adults, children, and infants while only 5.88% of water samples have carcinogenic health risks for adults and children. The gradual decay of the Jalangi River coupled with the disposal of urban and agricultural effluents induces river pollution that calls for substantial attention from the various stakeholders to restore the water quality.
Collapse
Affiliation(s)
- Md Mofizul Hoque
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata, 700014, West Bengal, India
| | - Aznarul Islam
- Department of Geography, Aliah University, 17 Gorachand Road, Kolkata, 700014, West Bengal, India.
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Balai Chandra Das
- Department of Geography, Krishnagar Government College, Nadia, 741101, West Bengal, India
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Purba Bardhaman, West Bengal, 713104, India
| | - Alireza Arabameri
- Department of Geomorphology, Tarbiat Modares University, Tehran, Iran
| | - Rituparna Khan
- Department of Geography, Bidhannagar College, Salt Lake, affiliated to West Bengal State University, Berunanpukuria, India
| |
Collapse
|
198
|
Song J, Song Q, Wang D, Liu Y. Mitigation strategies for excessive cadmium in rice. Compr Rev Food Sci Food Saf 2023; 22:3847-3869. [PMID: 37458295 DOI: 10.1111/1541-4337.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 09/13/2023]
Abstract
Cadmium (Cd)-contaminated rice is a human food safety problem that lacks a clear solution. A large amount of rice having an excessive Cd content is processed yearly, but it cannot be discarded and placed in landfills because it will cause secondary pollution. How do we best cope with this toxic rice? From the perspectives of food safety, food waste prevention, and human hunger eradication, the use of contemporary physical, chemical, and biological techniques to lower the Cd content in postharvest Cd-contaminated rice so that it can be used safely is the best course of action. In this review, the contamination, chemical speciation, and distribution of Cd in rice are analyzed and discussed, as are the methods of Cd removal from rice, including a comparison of the advantages and disadvantages of various techniques. Owing to the limitations of current technology, research and technological development recommendations for removing Cd from rice grain are presented. The chemical and biological methods produce higher Cd-removal rates than physical methods. However, they are limited to small-scale laboratory applications and cannot be applied on a large industrial scale. For the efficient safe removal of Cd from food, mixed fermentation with lactic acid bacteria and yeast has good application prospects. However, limited strains having high Cd-removal rates have been screened. In addition, modern biotechnology has rarely been applied to reduce rice Cd levels. Therefore, applying genetic engineering techniques to rapidly obtain microorganisms with high Cd-removal rates in rice should be the focus of future research.
Collapse
Affiliation(s)
- Jun Song
- Institute of Agricultural Quality Standards and Testing Technology, Sichuan Academy of Agricultural sciences, Chengdu, PR China
- Chengdu Center for Food Quality Supervision, Inspection and Testing, Ministry of Agriculture and Rural Affairs, Chengdu, PR China
| | - Qiuchi Song
- College of Agronomy, Sichuan Agricultural University, Chengdu, PR China
| | - Dong Wang
- Sichuan Academy of Agricultural sciences, Chengdu, PR China
| | - Yonghong Liu
- Chengdu Center for Food Quality Supervision, Inspection and Testing, Ministry of Agriculture and Rural Affairs, Chengdu, PR China
- Sichuan Academy of Agricultural sciences, Chengdu, PR China
| |
Collapse
|
199
|
Liu J, Zhao H, Yin Z, Dong H, Chu X, Meng X, Li Y, Ding X. Application and prospect of metabolomics-related technologies in food inspection. Food Res Int 2023; 171:113071. [PMID: 37330829 DOI: 10.1016/j.foodres.2023.113071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Food inspection covers a broad range of topics, including nutrient analysis, food pollutants, food auxiliary materials, additives, and food sensory identification. The foundation of diverse subjects like food science, nutrition, health research, and the food industry, as well as the desired reference for drafting trade and food legislation, makes food inspection highly significant. Because of their high efficiency, sensitivity, and accuracy, instrumental analysis methods have gradually replaced conventional analytical methods as the primary means of food hygiene inspection. SCOPE AND APPROACH Metabolomics-based analysis technology, such as nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry (CE-MS), has become a widely used analytics platform. This research provides a bird's eye view of the application and future of metabolomics-related technologies in food inspection. KEY FINDINGS AND CONCLUSIONS We have provided a summary of the features and the application range of various metabolomics techniques, the strengths and weaknesses of different metabolomics platforms, and their implementation in specific inspection procedures. These procedures encompass the identification of endogenous metabolites, the detection of exogenous toxins and food additives, analysis of metabolite alterations during processing and storage, as well as the recognition of food adulteration. Despite the widespread utilization and significant contributions of metabolomics-based food inspection technologies, numerous challenges persist as the food industry advances and technology continues to improve. Thus, we anticipate addressing these potential issues in the future.
Collapse
Affiliation(s)
- Jiazong Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Haipeng Zhao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Hongyang Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xiaomeng Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China
| | - Xuanlin Meng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China; Shanghai Jiao Tong University, 200030 Shanghai, PR China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of plant protection, Shandong Agricultural University, Taian 271018, Shandong, PR China.
| |
Collapse
|
200
|
Su WC, Lee J, Zhang K, Wong SW, Buu A. Estimation of Health Risks Caused by Metals Contained in E-Cigarette Aerosol through Passive Vaping. TOXICS 2023; 11:684. [PMID: 37624189 PMCID: PMC10459233 DOI: 10.3390/toxics11080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
It is expected that secondary exposure to e-cigarette aerosol (passive vaping) will soon become an issue of public health. Passive vaping inhales e-cigarette aerosol containing similar harmful substances as active vaping. However, parallel studies on passive vaping are minimal. Therefore, there is a need for passive vaping-related health risk studies to assess the impact of vaping on public health. This research conducted a series of experiments in a room using a puffing machine and the Mobile Aerosol Lung Deposition Apparatus (MALDA) to study e-cigarette aerosol respiratory deposition through passive vaping. The experimental data acquired were applied to estimate the deposited mass and health risks caused by toxic metals contained in e-cigarette aerosol. Five popular e-cigarette products were used in this study to generate e-cigarette aerosol for deposition experiments. In addition, size-segregated e-cigarette aerosol samples were collected, and metal compositions in the e-cigarette aerosol were analyzed. Results obtained showed that estimated non-cancer risks were all acceptable, with hazard quotient and hazard index all less than 1.0. The calculated cancer risks were also found acceptable, with lifetime excess cancer risk generally less than 1E-6. Therefore, the e-cigarettes tested and the passive vaping exposure scenarios studied do not seem to induce any potential for metal-related respiratory health effects.
Collapse
Affiliation(s)
- Wei-Chung Su
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jinho Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Su-Wei Wong
- Department of Health Promotion & Behavioral Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anne Buu
- Department of Health Promotion & Behavioral Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|