151
|
Tanaviyutpakdee P, Karnpanit W. Exposure Assessment of Heavy Metals and Microplastic-like Particles from Consumption of Bivalves. Foods 2023; 12:3018. [PMID: 37628017 PMCID: PMC10453466 DOI: 10.3390/foods12163018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the contamination of lead (Pb), cadmium (Cd) and microplastic (MP)-like particles in bivalves and estimate the exposure of the Thai population to these contaminants due to bivalve consumption. Clams, mussels and cockles were purchased from five wholesale seafood markets located on the upper Gulf of Thailand during the period 2017-2019. Determinations of Cd and Pb in the bivalves were conducted using a graphite furnace atomic absorption spectrometer (GFAAS). Visualization was conducted using a stereomicroscope to investigate the morphology and content of MP-like particles in the bivalve samples. The average Pb contents in clams, mussels and cockles were 112, 64 and 151 µg/kg wet wt., respectively. The average Cd contents were 126, 107 and 457 µg/kg wet wt. for clams, mussels and cockles, respectively. The average number of MP-like particles in bivalve samples varied from not detected to 1.2 items/g wet wt. and not detected to 4.3 items/individual. The exposure to Pb, Cd and MP-like particles due to bivalve consumption varied between 0.005 and 0.29 µg/kg bw/day, 0.017 and 28.9 µg/kg bw/month and 0.015 and 27.5 items/person/day, respectively. There was no potential health risk of exposure to Pb and Cd due to bivalve consumption in any age group. However, a high consumption of cockles with high Cd levels (the worst-case scenario) in children may be of concern.
Collapse
Affiliation(s)
| | - Weeraya Karnpanit
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
152
|
Aydın RB, Yozukmaz A, Şener İ, Temiz F, Giannetto D. Occurrence of Microplastics in Most Consumed Fruits and Vegetables from Turkey and Public Risk Assessment for Consumers. Life (Basel) 2023; 13:1686. [PMID: 37629543 PMCID: PMC10455475 DOI: 10.3390/life13081686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Microplastics are transferred to humans through the food chain by consuming food contaminated with microplastics. However, the knowledge about the risks of dietary exposure for humans to these particles is very limited. Moreover, only a few studies on microplastic pollution in fruit and vegetables have been carried on. Thus, this study aims to investigate the presence of microplastics in some of the most consumed fruits and vegetables (pear (Pyrus communis), apple (Malus domestica), tomato (Solanum lycopersicum), onion (Allium cepa), potatoes (Solanum tuberosum), and cucumber (Cucumis sativus)) from Turkey and to evaluate the potential risk for consumers. Fruits and vegetable samples were purchased from different markets and fruiterer (two of each) in Muğla province, Southwest of Turkey. Microplastic extraction processes were carried out on the edible parts of the samples. According to the results obtained, a total of 210 particles (2.9 ± 1.6 particle g-1) were detected in all samples. Any significant difference occurred among the different markets. The maximum average amount of microplastic was determined in tomato samples (3.63 ± 1.39 particle g-1). The highest microplastic intake was with tomato (398,520 particles individual-1 year-1 for Estimated Annual Intake (EAI) and Estimated Daily Intake (EDI) for children 68.24 particles kg-1 day-1). The occurrence of microplastics of big size, that are not allowed to pass by plant xylem transport, suggests that fresh vegetables and fruits can be contaminated with plastic, especially during the production phase, during agricultural activities and during the marketing process (transport to the market and purchasing process).
Collapse
Affiliation(s)
- Rana Berfin Aydın
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Aykut Yozukmaz
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - İdris Şener
- Department of Aquatic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (A.Y.); (İ.Ş.)
| | - Funda Temiz
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| | - Daniela Giannetto
- Department of Biology, Faculty of Science, Muğla Sıtkı Koçman University, Muğla 48000, Turkey; (R.B.A.); (F.T.)
| |
Collapse
|
153
|
Haque MK, Uddin M, Kormoker T, Ahmed T, Zaman MRU, Rahman MS, Rahman MA, Hossain MY, Rana MM, Tsang YF. Occurrences, sources, fate and impacts of plastic on aquatic organisms and human health in global perspectives: What Bangladesh can do in future? ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5531-5556. [PMID: 37382719 DOI: 10.1007/s10653-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/02/2023] [Indexed: 06/30/2023]
Abstract
Bangladesh is not an exception to the growing global environmental problem of plastic pollution. Plastics have been deemed a blessing for today's world thanks to their inexpensive production costs, low weight, toughness, and flexibility, but poor biodegradability and massive misuse of plastics are to blame for widespread contamination of the environmental components. Plastic as well as microplastic pollution and its adverse consequences have attracted significant investigative attention all over the world. Plastic pollution is a rising concern in Bangladesh, but scientific studies, data, and related information are very scarce in numerous areas of the plastic pollution problem. The current study examined the effects of plastic and microplastic pollution on the environment and human health, and it examined Bangladesh's existing knowledge of plastic pollution in aquatic ecosystems in light of the rapidly expanding international research in this field. We also made an effort to investigate the current shortcomings in Bangladesh's assessment of plastic pollution. This study proposed several management approaches to the persistent plastic pollution problem by analyzing studies from industrialized and emerging countries. Finally, this work pushed investigators to investigate Bangladesh's plastic contamination thoroughly and develop guidelines and policies to address the issue.
Collapse
Affiliation(s)
- Md Kamrul Haque
- Institute of Bangabandhu War of Liberation Bangladesh Studies, National University, Dhaka, 1209, Bangladesh
| | - Minhaz Uddin
- Department of Environmental Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Tapos Kormoker
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong.
| | - Tareq Ahmed
- Institute of Structural and Molecular Biology, Department of Biological Science, University of London, Birkbeck, UK
| | - Md Rahat Uz Zaman
- Department of Genetics and Plant Breeding, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - M Safiur Rahman
- Chemistry Division, Atomic Energy Centre, Bangladesh Atomic Energy Commission, Shahbag, Dhaka, 1000, Bangladesh
| | - Md Ashekur Rahman
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Yeamin Hossain
- Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| | - Md Masud Rana
- Department of Horticulture, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, 999077, Hong Kong
| |
Collapse
|
154
|
Chen Y, Niu J, Xu D, Zhang M, Sun K, Gao B. Wet Deposition of Globally Transportable Microplastics (<25 μm) Hovering over the Megacity of Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11152-11162. [PMID: 37459058 DOI: 10.1021/acs.est.3c03474] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Microplastics of size <25 μm possess globally transportable features, but the impact of precipitation on their transport remains unclear. Here, microplastics were detected in all 10 studied rainfalls in Beijing, with <25 μm microplastics present in 8 rainfalls. Interestingly, microplastic abundance (7590-136,778 items·m-3) was tentatively linked to maximum rainfall intensity, with <25 μm microplastics making up 39.6 (±27.5)% of the total count. The composition of <25 μm microplastics differed from that of larger microplastics, although both mainly comprised polystyrene, polyethylene, and polypropylene. The microplastic communities differed among rainfalls, suggesting that atmospheric transport is a highly dynamic process. The first rainfall exhibited the highest microplastic abundance and community diversity after long-term exposure to dry atmospheric environment. The deposited microplastics were unstable and highly fragmented according to the conditional fragmentation model. The wet deposition rate of the microplastics was calculated as 2-463 μg·m-2 (146-8629 items·m-2) per rain, amounting to 25.44 tons per annum in Beijing. Although <25 μm microplastics represented a negligible proportion (0.00-1.24%) of the overall mass load of microplastics, their numerical abundance was high. Our results demonstrate that precipitation is an effective mechanism for removing airborne microplastics, which may enter urban soils and waters, exacerbate microplastic burdens in the environment, and cause potential risk for human health.
Collapse
Affiliation(s)
- Yalan Chen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jinqiong Niu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Mengyu Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
155
|
Belzagui F, Gutiérrez-Bouzán C, Carrillo-Navarrete F, López-Grimau V. Sustainable Filtering Systems to Reduce Microfiber Emissions from Textiles during Household Laundering. Polymers (Basel) 2023; 15:3023. [PMID: 37514412 PMCID: PMC10383179 DOI: 10.3390/polym15143023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
During laundering, synthetic textiles (polyester, polyamide, etc.) can release small fiber debris with a length of <5 mm. These are a type of microplastics (MPs), usually referred to as microfibers (MFs), which are considered high-concern pollutants due to their continuous and cumulative entrance into the environment. Currently, as far as we know, there are no feasible alternatives to remove them. In this work, four new and sustainable filtering systems are proposed to retain the MFs emitted from domestic washing machines. The filters contain a replaceable cartridge partially filled with recycled low-density polyethylene pellets. The four designed filtering systems of different sizes were tested in a household washing machine determining the retention efficiency of the MFs after several washing cycles. It was found that all four assessed filter arrangements have a good performance for retaining MFs from the washers' effluents. Filter F1 (diameter of 4 cm and a height of 30 cm) started retaining more than 50% of the MFs, at the 10th washing cycle, the retention climbed to 66%, while in the 20th washing cycle, its retention was greater than 80%. MFs retention was higher for filter F2 (diameter of 6.3 cm and a height of 41 cm), achieving a performance greater than 90% in the 20th washing cycle. Filter F3 was arranged by turning the F1 model flow upside down and the retention efficiency is higher compared with filter F1 values, reaching a retention efficiency of almost 100% in the 15th washing cycle. Finally, filter F4 arrangement was developed using the existing washing machine filter, obtaining better performance than the F1 and F2 filters, reaching efficiencies higher than 90% at the 20th washing cycle. In summary, depending on the arrangement, the microfiber retention efficiency was estimated between 52% and 86% in the 1st washing cycle and up to 83% to 99% in the 20th. Additionally, all arrangements demonstrated that the cartridges may last for more than 30 washing cycles before needing to be replaced.
Collapse
Affiliation(s)
- Francisco Belzagui
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Carmen Gutiérrez-Bouzán
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Fernando Carrillo-Navarrete
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| | - Víctor López-Grimau
- Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER), Universitat Politècnica de Catalunya-Barcelona Tech, Colom 15, 08222 Terrassa, Spain
| |
Collapse
|
156
|
Azfaralariff A, Mat Lazim A, Amran NH, Mukhtar NH, Bakri ND, Azrihan NN, Mohamad M. Mini review of microplastic pollutions and its impact on the environment and human health. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1219-1226. [PMID: 36883418 DOI: 10.1177/0734242x231155395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, the environmental pollution of microplastics (MPs) has increasingly drawn our attention. MPs are small fragments of plastics that are commonly dispersed in the environment. The accumulation of environmental MPs is due to population growth and urbanization, while natural disasters such as hurricanes, flooding and human activity may influence their distribution. The leaching of chemicals from MPs raises a significant safety problem and environmental approaches aimed at reducing the use and recycling of plastics, with the replacement by bioplastics and wastewater treatment developments are called for. This summary also helps in demonstrating the connection between terrestrial and freshwater MPs and wastewater treatment plants as the major contributors to environmental MPs by discharges of sludge and effluent. More research on the classification, detection, characterization and toxicity of MPs are essential to enable greater options and solutions. Control initiatives need to intensify the comprehensive study of MP waste control and management information programmes in the fields of institutional engagement, technological research and development, legislation and regulation. A comprehensive quantitative analysis approach for MPs should be created in the future, and more reliable traceability analysis methods should be built to examine further its environmental activity and existence, where this should be done to improve scientific research on MP pollution in terrestrial, freshwater and marine environments and hence, develop more scientific and rational control policies.
Collapse
Affiliation(s)
- Ahmad Azfaralariff
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Azwan Mat Lazim
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - N Hidayah Amran
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - N Hafizah Mukhtar
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - N Dyana Bakri
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - N Najmina Azrihan
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mazlan Mohamad
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Kelantan, Malaysia
| |
Collapse
|
157
|
Bhutto SUA, Ma YF, Akram M, You XY. Microplastics in Tai lake food web: Trophic transfer and human health risk assessment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 101:104206. [PMID: 37391051 DOI: 10.1016/j.etap.2023.104206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/26/2023] [Accepted: 04/23/2023] [Indexed: 07/02/2023]
Abstract
Although microplastics (MPs) in marine organisms have been widely studied, the toxicity of MPs in freshwaters and human health is still a global challenge. To fill this gap, we implemented an Ecopath and food web accumulation model to simulate the Tai Lake ecosystem, a region dependent on the tourism and seafood industries. Our results suggested the accumulation of MPs throughout the food web and ultimately reach organisms at high trophic levels, including human-being, who consume MPs through seafood. The adults were prone to consume more MPs than adolescents and children. Unlike clams, fish biota magnification factors indicated that MPs accumulation between specific predator-prey interactions is not expected. The abundance of MPs within clams reveals a potential risk of MPs entering the food web. To better understand the MPs transfer, we recommend paying greater attention to species-specific mechanisms and the resources they rely on.
Collapse
Affiliation(s)
- Seerat Ul Ain Bhutto
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Yi-Fei Ma
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Muhammad Akram
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xue-Yi You
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
158
|
Das BC, Ramanan P A, Gorakh SS, Pillai D, Vattiringal Jayadradhan RK. Sub-chronic exposure of Oreochromis niloticus to environmentally relevant concentrations of smaller microplastics: Accumulation and toxico-physiological responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131916. [PMID: 37402322 DOI: 10.1016/j.jhazmat.2023.131916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
This study assesses the accumulation and toxic effects of environmentally relevant concentrations (0.01, 0.1 and 1 mg/L) of polystyrene MPs (1 µm) in Oreochromis niloticus (Nile tilapia) for 14 days. The results showed that 1 µm PS-MPs accumulated in the intestine, gills, liver, spleen, muscle, gonad and brain. RBC, Hb and HCT showed a significant decline, while WBC and PLT showed a significant increase after the exposure. Glucose, total protein, A/G ratio, SGOT, SGPT and ALP showed significant increments in 0.1 and 1 mg/L of PS-MPs treated groups. The increase in cortisol level and upregulation of HSP70 gene expression in response to MPs exposure indicate MPs-mediated stress in tilapia. MPs-induced oxidative stress is evident from reduced SOD activity, increased MDA levels and upregulated P53 gene expression. The immune response was enhanced by inducing respiratory burst activity, MPO activity and serum TNF-α and IgM levels. MPs exposure also led to down-regulation of CYP1A gene and decreased AChE activity, GNRH and vitellogenin levels, indicating the toxicity of MPs on the cellular detoxification mechanism, nervous and reproductive systems. The present study highlights the tissue accumulation of PS-MP and its effects on hematological, biochemical, immunological and physiological responses in tilapia with low environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bini C Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Aparna Ramanan P
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Satkar Sagar Gorakh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | | |
Collapse
|
159
|
Ding R, Ma Y, Li T, Sun M, Sun Z, Duan J. The detrimental effects of micro-and nano-plastics on digestive system: An overview of oxidative stress-related adverse outcome pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163144. [PMID: 37003332 DOI: 10.1016/j.scitotenv.2023.163144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
With the massive manufacture and use of plastics, plastic pollution-related environmental impacts have raised great concern in recent years. As byproducts of plastic fragmentation and degradation, microplastics (MPs) and nanoplastics (NPs) have been identified as novel pollutants that posed a threat to the ecosystem and humans. Since MPs/NPs could be transported via the food chain and retained in the water, the digestive system should be one of the major targets of MPs/NPs-related toxicity. Although considerable evidence has supported the digestive toxicity of MPs/NPs, the proposed mechanisms remained ambiguous due to the variety of study types, models, and endpoints. This review provided a mechanism-based perspective on MPs/NPs-induced digestive effects by adopting the adverse outcome pathway framework as a promising tool. The overproduction of reactive oxygen species was identified as the molecular initiating event in MPs/NPs-mediated injury to the digestive system. A series of detrimental effects including oxidative stress, apoptosis, inflammation, dysbiosis, and metabolic disorders were summarized as key events. Finally, the occurrence of these effects eventually led to an adverse outcome, suggesting a possible increase in the incidence of digestive morbidity and mortality.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yiming Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
160
|
Lo HS, Wong LC, Lai KP, Cheung SG. The influences of spatial-temporal variability and ecological drivers on microplastic in marine fish in Hong Kong. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121527. [PMID: 36997140 DOI: 10.1016/j.envpol.2023.121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
This study examined microplastic (MP) occurrence and abundance in marine fish collected from the western and eastern waters of Hong Kong during the wet and dry seasons. Over half (57.1%) of the fish had MP in their gastrointestinal (GI) tracts, with overall MP abundance ranging from not detected to 44.0 items per individual. Statistical analysis revealed significant spatial and temporal differences in MP occurrence, with fish from more polluted areas having a higher likelihood of MP ingestion. Additionally, fish collected in the west during the wet season had significantly higher MP abundance, likely due to influence from the Pearl River Estuary. Omnivorous fish had significantly higher MP counts than carnivorous fish, regardless of collection location or time. Body length and weight were not significant predictors of MP occurrence or abundance. Our study identified several ecological drivers that affect MP ingestion by fish, including spatial-temporal variation, feeding mode, and feeding range. These findings provide a foundation for future research to investigate the relative importance of these factors in governing MP ingestion by fish in different ecosystems and species.
Collapse
Affiliation(s)
- Hoi Shing Lo
- Department of Environmental Science, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Leung Chun Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
161
|
Severin MI, Akpetou LK, Annasawmy P, Asuquo FE, Beckman F, Benomar M, Jaya-Ram A, Malouli M, Mees J, Monteiro I, Ndwiga J, Neves Silva P, Nubi OA, Sim YK, Sohou Z, Shau-Hwai AT, Woo SP, Zizah S, Buysse A, Raes F, Krug LA, Seeyave S, Everaert G, Mahu E, Catarino AI. Impact of the citizen science project COLLECT on ocean literacy and well-being within a north/west African and south-east Asian context. Front Psychol 2023; 14:1130596. [PMID: 37388649 PMCID: PMC10303996 DOI: 10.3389/fpsyg.2023.1130596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Plastic pollution is both a societal and environmental problem and citizen science has shown to be a useful tool to engage both the public and professionals in addressing it. However, knowledge on the educational and behavioral impacts of citizen science projects focusing on marine litter remains limited. Our preregistered study investigates the impact of the citizen science project Citizen Observation of Local Litter in coastal ECosysTems (COLLECT) on the participants' ocean literacy, pro-environmental intentions and attitudes, well-being, and nature connectedness, using a pretest-posttest design. A total of 410 secondary school students from seven countries, in Africa (Benin, Cabo Verde, Côte d'Ivoire, Ghana, Morocco, Nigeria) and Asia (Malaysia) were trained to sample plastics on sandy beaches and to analyze their collection in the classroom. Non-parametric statistical tests (n = 239 matched participants) demonstrate that the COLLECT project positively impacted ocean literacy (i.e., awareness and knowledge of marine litter, self-reported litter-reducing behaviors, attitudes towards beach litter removal). The COLLECT project also led to higher pro-environmental behavioral intentions for students in Benin and Ghana (implying a positive spillover effect) and higher well-being and nature connectedness for students in Benin. Results are interpreted in consideration of a high baseline in awareness and attitudes towards marine litter, a low internal consistency of pro-environmental attitudes, the cultural context of the participating countries, and the unique settings of the project's implementation. Our study highlights the benefits and challenges of understanding how citizen science impacts the perceptions and behaviors towards marine litter in youth from the respective regions.
Collapse
Affiliation(s)
- Marine I. Severin
- Flanders Marine Institute (VLIZ), Oostende, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Centre for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| | - Lazare Kouame Akpetou
- Centre Universitaire de Recherche et d’Application en Télédétection (CURAT), Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | | | - Francis Emile Asuquo
- Marine Atmosphere and Coastal Ocean Research Network (MACORN), UNICAL, Faculty of Oceanography, University of Calabar, Calabar, Nigeria
| | - Fiona Beckman
- Partnership for Observation of the Global Ocean (POGO), Plymouth, United Kingdom
| | - Mostapha Benomar
- Institut National de Recherche Halieutique (INRH), Casablanca, Morocco
| | - Annette Jaya-Ram
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohammed Malouli
- Institut National de Recherche Halieutique (INRH), Casablanca, Morocco
| | - Jan Mees
- Flanders Marine Institute (VLIZ), Oostende, Belgium
- Marine Biology Research Group, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Ivanice Monteiro
- Ocean Science Centre Mindelo, Instituto do Mar (IMar), Mindelo, Cape Verde
| | - Joey Ndwiga
- Flanders Marine Institute (VLIZ), Oostende, Belgium
| | | | | | - Yee Kwang Sim
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Zacharie Sohou
- Institut de Recherches Halieutiques et Océanologiques du Benin (IRHOB), Cotonou, Benin
| | - Aileen Tan Shau-Hwai
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sau Pinn Woo
- Centre for Marine and Coastal Studies (CEMACS), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Soukaina Zizah
- Institut National de Recherche Halieutique (INRH), Casablanca, Morocco
| | - Ann Buysse
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Filip Raes
- Centre for the Psychology of Learning and Experimental Psychopathology, KU Leuven, Leuven, Belgium
| | - Lilian A. Krug
- Partnership for Observation of the Global Ocean (POGO), Plymouth, United Kingdom
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Faro, Portugal
| | - Sophie Seeyave
- Partnership for Observation of the Global Ocean (POGO), Plymouth, United Kingdom
| | | | - Edem Mahu
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | | |
Collapse
|
162
|
Cai X, Chen H, Cheng J, Huang B, Jin B, Lu J. Coupling of microplastic contamination in organisms and the environment: Evidence from the tidal flat ecosystem of Hangzhou Bay, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131838. [PMID: 37320899 DOI: 10.1016/j.jhazmat.2023.131838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics are a new type of contaminant, widely defined as fragmented plastics with the longest dimension or diameter less than 5 mm, that are widely distributed, difficult to degrade, and easily adsorb other pollutants. Estuaries are key habitats where terrestrial microplastics flow in water runoff and import into the ocean. The ubiquitous use of plastics has resulted in a massive amount of plastic waste that is released and accumulated in bay ecosystems, posing serious ecological impacts. The study of microplastic contamination in Hangzhou Bay, the estuary of the Qiantang River, has important theoretical value in ecology and environmental science. Microplastic contamination in the tidal flats and organisms of Hangzhou Bay is serious and microplastic characteristics (type, size, and polymer type) in organisms were significantly correlated with those in the environmental media. Spatial autocorrelation was found in the abundance of microplastics in marine and tidal flat sediments of Hangzhou Bay, China, but no spatial autocorrelation was found in the sediment environment as a whole. The microplastic abundance in each organism in this study was not statistically correlated by weight or by individual count with its corresponding trophic level (P = 0.239 > 0.05; P = 0.492 > 0.05, respectively). Our study suggests a coupling relationship of microplastic contamination between organisms and the environment and can provide essential data and a scientific foundation for the study of microplastics pollution in Hangzhou Bay, as well as provide important evidence for the ecological and health risk assessment of microplastics.
Collapse
Affiliation(s)
- Xinyi Cai
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Huili Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jie Cheng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Bei Huang
- Marine Ecological Environmental Monitoring Center of Zhejiang Province, Zhoushan 316021, China
| | - Binsong Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jianbo Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
163
|
Niu H, Liu S, Jiang Y, Hu Y, Li Y, He L, Xing M, Li X, Wu L, Chen Z, Wang X, Lou X. Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. Metabolites 2023; 13:739. [PMID: 37367897 DOI: 10.3390/metabo13060739] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Emerging studies have presented an initial picture of the toxic effects of exposure to environmental micro- and nanoplastics. They have indicated that micro- and nanoplastics may induce toxicity by leading to oxidative stress, energy metabolism disorders, gene damage, and so forth in environmental organisms, marine invertebrates and vertebrates, and laboratory mouse models. In recent years, micro- and nanoplastics have been discovered in human fecal samples, placentas, lung tissue, and even blood; thus, micro- and nanoplastics pose an alarming and ever-increasing threat to global public health. However, current research on the health effects of micro- and nanoplastics and the possible adverse outcomes in humans has only presented the tip of the iceberg. More robust clinical data and basic experiments are still warranted to elucidate the specific relationships and mechanisms. In this paper, we review studies on micro- and nanoplastic toxicity from the perspectives of eco-toxicity, the adverse effects on invertebrates and vertebrates, and the impact of micro- and nanoplastics on the gut microbiota and its metabolites. In addition, we evaluate the toxicological role of micro- and nanoplastic exposure and its potential implications in respect to human health. We also summarize studies regarding preventive strategies. Overall, this review provides insights on micro- and nanoplastic toxicity and its underlying mechanisms, opening up scientific avenues for future in-depth studies.
Collapse
Affiliation(s)
- Huixia Niu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Shaojie Liu
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yujie Jiang
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yang Hu
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yahui Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Hangzhou 310051, China
| |
Collapse
|
164
|
My TTA, Dat ND, Hung NQ. Occurrence and Characteristics of Microplastics in Wild and Farmed Shrimps Collected from Cau Hai Lagoon, Central Vietnam. Molecules 2023; 28:4634. [PMID: 37375190 DOI: 10.3390/molecules28124634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
This study investigated the occurrence of microplastics (MPs) in the gastrointestinal tracts (GT) and tissues of four common shrimps (including two wild-caught shrimps and two farmed shrimps) collected from a high-diversity lagoon in central Vietnam. The numbers of MP items in greasy-back shrimp (Metapenaeus ensis), green tiger shrimp (Penaeus semisulcatus), white-leg shrimp (Litopenaeus vannamei), and giant tiger shrimp (Penaeus monodon), determined per weight and individual, were 0.7 ± 0.3, 0.6 ± 0.2, 1.1 ± 0.4, and 0.5 ± 0.3 (items/g-ww), and 2.5 ± 0.5, 2.3 ± 0.7, 8.6 ± 3.5, 7.7 ± 3.5 (items/individual), respectively. The concentration of microplastics in the GT samples was significantly higher than that in the tissue samples (p < 0.05). The number of microplastics in the farmed shrimp (white-leg shrimp and black tiger shrimp) was statistically significantly higher than the number of microplastics in the wild-caught shrimp (greasy-back and green tiger shrimps) (p <0.05). Fibers and fragments were the dominant shapes of the MPs, followed by pellets, and these accounted for 42-69%, 22-57%, and 0-27% of the total microplastics, respectively. The chemical compositions determined using FTIR confirmed six polymers, in which rayon was the most abundant polymer, accounting for 61.9% of the MPs found, followed by polyamide (10.5%), PET (6.7%), polyethylene (5.7%), polyacrylic (5.8%), and polystyrene (3.8%). As the first investigation on the MPs in shrimps from Cau Hai Lagoon, central Vietnam, this study provides useful information on the occurrences and characteristics of the microplastics in the gastrointestinal tracts and tissues of four shrimp species that live in different living conditions.
Collapse
Affiliation(s)
- Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University, Hue 53000, Vietnam
| | - Nguyen Duy Dat
- Faculty of Chemical & Food Technology, Ho Chi Minh City University of Technology and Education, Thu Duc, Ho Chi Minh 70000, Vietnam
| | - Nguyen Quoc Hung
- Center of Analytical Sevices and Experimentation HCMc, Ho Chi Minh 70000, Vietnam
| |
Collapse
|
165
|
Quaglia NC, Capuozzo F, Ceci E, Cometa S, Di Pinto A, Mottola A, Piredda R, Dambrosio A. Preliminary survey on the occurrence of microplastics in bivalve mollusks marketed in Apulian fish markets. Ital J Food Saf 2023; 12:10906. [PMID: 37405143 PMCID: PMC10316275 DOI: 10.4081/ijfs.2023.10906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/07/2023] [Indexed: 07/06/2023] Open
Abstract
Microplastics (MPs) are a relevant threat to food safety because they are ingested by humans through various foods. Bivalves are at high risk of microplastic contamination due to their filter-feeding mechanism and pose a risk to consumers as they are ingested whole. In this work, microplastics were detected, quantified, identified, and classified in samples of mussels (Mytilus galloprovincialis) and oysters (Crassostrea gigas) marketed in the Apulia region. The total number of plastic debris was 789 particles in the mussel samples and 270 particles in the oyster samples, with size ranging from 10 to 7350 μm. Fragments with size within the category of 5-500 μm were the predominant findings in both species, with blue as the predominant color in mussels and transparent in oysters; most of the debris was polyamide and nylon polymers in the mussels and chlorinated polypropylene in the oysters. These results show that mussel and oyster samples purchased at fish markets are contaminated with microplastics. The sources may be diverse and further studies are needed to assess the impact of the marketing stage on microplastic contamination in bivalves to better define the human risk assessment associated with microplastic exposure from bivalves consumption.
Collapse
Affiliation(s)
| | - Flavia Capuozzo
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| | - Edmondo Ceci
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| | | | - Angela Di Pinto
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| | - Anna Mottola
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| | - Roberta Piredda
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| | - Angela Dambrosio
- Veterinary Medicine Department, University of Bari Aldo Moro, Valenzano
| |
Collapse
|
166
|
Ma YB, Xie ZY, Hamid N, Tang QP, Deng JY, Luo L, Pei DS. Recent advances in micro (nano) plastics in the environment: Distribution, health risks, challenges and future prospects. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106597. [PMID: 37311378 DOI: 10.1016/j.aquatox.2023.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/15/2023]
Abstract
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Collapse
Affiliation(s)
- Yan-Bo Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Zhuo-Yuan Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Qi-Ping Tang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Jiao-Yun Deng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Lin Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
167
|
Ragusa A, De Luca C, Zucchelli E, Rinaldo D, Svelato A. Plastic, microplastic, and the inconsistency of human thought. Front Public Health 2023; 11:1145240. [PMID: 37342277 PMCID: PMC10277741 DOI: 10.3389/fpubh.2023.1145240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
- Antonio Ragusa
- Department of Obstetrics and Gynecology, Campus Bio-Medico University Hospital Foundation Rome, Rome, Italy
| | - Caterina De Luca
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| | - Emma Zucchelli
- Instituto de Salud Global, Universitat de Barcelona, Barcelona, Spain
| | - Denise Rinaldo
- Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Est, Bolognini Hospital, Seriate, Italy
| | - Alessandro Svelato
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
168
|
Khan ML, Hassan HU, Khan FU, Ghaffar RA, Rafiq N, Bilal M, Khooharo AR, Ullah S, Jafari H, Nadeem K, Siddique MAM, Arai T. Effects of microplastics in freshwater fishes health and the implications for human health. BRAZ J BIOL 2023; 84:e272524. [PMID: 37283392 DOI: 10.1590/1519-6984.272524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
The presence of microplastics in aquatic environments has raised concerns about their abundance and potential hazards to aquatic organisms. This review provides insight into the problem that may be of alarm for freshwater fish. Plastic pollution is not confined to marine ecosystems; freshwater also comprises plastic bits, as the most of plastic fragments enter oceans via rivers. Microplastics (MPs) can be consumed by fish and accumulated due to their size and poor biodegradability. Furthermore, it has the potential to enter the food chain and cause health problems. Evidence of MPs s ingestion has been reported in >150 fish species from both freshwater and marine systems. However, microplastic quantification and toxicity in freshwater ecosystems have been underestimated, ignored, and not reported as much as compared to the marine ecosystem. However, their abundance, influence, and toxicity in freshwater biota are not less than in marine ecosystems. The interaction of MPs with freshwater fish, as well as the risk of human consumption, remains a mystery. Nevertheless, our knowledge of the impacts of MPs on freshwater fish is still very limited. This study detailed the status of the toxicity of MPs in freshwater fish. This review will add to our understanding of the ecotoxicology of microplastics on freshwater fish and give subsequent research directions.
Collapse
Affiliation(s)
- M L Khan
- Kohat University of Science and Technology, Department of Zoology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - H U Hassan
- University of Karachi, Department of Zoology, Karachi, Pakistan
- Government of Pakistan, Ministry of National Food Security and Research, Fisheries Development Board, Islamabad, Pakistan
| | - F U Khan
- Quaid-i-Azam University, Faculty of Biological Sciences, Department of Zoology, Islamabad, Pakistan
| | - R A Ghaffar
- University of Karachi, Department of Zoology, Karachi, Pakistan
| | - N Rafiq
- Abdul Wali Khan University Mardan, Department of Zoology, Mardan, Pakistan
| | - M Bilal
- Government College University Lahore, Department of Zoology, Lahore, Pakistan
| | - A R Khooharo
- University of Karachi, Centre of Excellence in Marine Biology, Karachi, Pakistan
| | - S Ullah
- University of Swabi, Department of Zoology, Khyber Pakhtunkhwa, Pakistan
| | - H Jafari
- University of Karachi, Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering, Karachi, Pakistan
| | - K Nadeem
- University of Karachi, Department of Zoology, Karachi, Pakistan
| | - M A M Siddique
- Noakhali Science and Technology University, Department of Oceanography, Noakhali, Bangladesh
| | - T Arai
- Universiti Brunei Darussalam, Faculty of Science, Environmental and Life Sciences Programme, Gadong, Brunei
| |
Collapse
|
169
|
Berlino M, Sarà G, Mangano MC. Functional Trait-Based Evidence of Microplastic Effects on Aquatic Species. BIOLOGY 2023; 12:811. [PMID: 37372096 PMCID: PMC10294819 DOI: 10.3390/biology12060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Microplastics represent an ever-increasing threat to aquatic organisms. We merged data from two global scale meta-analyses investigating the effect of microplastics on benthic organisms' and fishes' functional traits. Results were compared, allowing differences related to vertebrate and invertebrate habitat, life stage, trophic level, and experimental design to be explored. Functional traits of aquatic organisms were negatively affected. Metabolism, growth, and reproduction of benthic organisms were impacted, and fish behaviour was significantly affected. Responses differed by trophic level, suggesting negative effects on trophic interactions and energy transfer through the trophic web. The experimental design was found to have the most significant impact on results. As microplastics impact an organism's performance, this causes indirect repercussions further up the ecological hierarchy on the ecosystem's stability and functioning, and its associated goods and services are at risk. Standardized methods to generate salient targets and indicators are urgently needed to better inform policy makers and guide mitigation plans.
Collapse
Affiliation(s)
- M. Berlino
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - G. Sarà
- Dipartimento di Scienze della Terra e del Mare, DiSTeM, Università degli Studi di Palermo, Ed. 16, 90128 Palermo, Italy
| | - M. C. Mangano
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology (EMI), Sicily Marine Centre, Lungomare Cristoforo Colombo (Complesso Roosevelt), 90149 Palermo, Italy;
| |
Collapse
|
170
|
Lam TWL, Tsui YCJ, Cheng YL, Ma ATH, Fok L. Microplastic contamination in edible clams from popular recreational clam-digging sites in Hong Kong and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162576. [PMID: 36871718 DOI: 10.1016/j.scitotenv.2023.162576] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The ubiquitous presence of microplastics in edible bivalves and the human health risks associated with bivalve consumption have raised public concerns. Farmed and market-sold bivalves have received the most attention, while wild bivalves have received much less scrutiny. In the present study, 249 individuals were examined across six wild clam species from two popular recreational clam-digging sites in Hong Kong. Of the clams, 56.6 % contained microplastics, with an average abundance of 1.04 items/g (wet weight) and 0.98 items/individual. This resulted in an estimated annual dietary exposure of 14,307 items per Hong Kong resident. Moreover, the potential microplastic risks for humans associated with wild clam consumption were assessed using the polymer hazard index, and the results indicated a medium degree of risk, indicating that exposure to microplastics through wild clam consumption is inevitable and poses a potential health threat to humans. Further research is needed to facilitate a better understanding of the widespread occurrence of microplastics in wild bivalves, and further refinements of the risk assessment framework can hopefully allow a more accurate and holistic health risk assessment for microplastics.
Collapse
Affiliation(s)
- Theresa Wing Ling Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Yui Chain Jade Tsui
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Yan Laam Cheng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Anson Tsz Hin Ma
- Department of Social Sciences, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Lincoln Fok
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong.
| |
Collapse
|
171
|
Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, Javed M, Othman MHD, Goh HH, Chew KW. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. CHEMOSPHERE 2023; 325:138367. [PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
Collapse
Affiliation(s)
| | - Ahtisham Haider
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Hafiz Muhammad Ahmad
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan.
| | - Hafiz Muhammad Umer Aslam
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Sohail Nadeem
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohsin Javed
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 637459, Singapore
| |
Collapse
|
172
|
Sun C, Teng J, Wang D, Zhao J, Shan E, Wang Q. The adverse impact of microplastics and their attached pathogen on hemocyte function and antioxidative response in the mussel Mytilus galloprovincialis. CHEMOSPHERE 2023; 325:138381. [PMID: 36907490 DOI: 10.1016/j.chemosphere.2023.138381] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are widely distributed in marine environments, and they are easily attached by various microorganisms, including pathogenic bacteria. When bivalves mistakenly eat MPs, pathogenic bacteria attached to MPs enter their bodies through the Trojan horse effect, causing adverse effects. In this study, the mussel Mytilus galloprovincialis was exposed to aged polymethylmethacrylate MPs (PMMA-MPs, 20 μm) and Vibrio parahaemolyticus attached to PMMA-MPs to explore the effect of synergistic exposure by measuring lysosomal membrane stability, ROS content, phagocytosis, apoptosis in hemocytes, antioxidative enzyme activities and apoptosis-related gene expression in gills and digestive glands. The results showed that MP exposure alone did not cause significant oxidative stress in mussels, but after long-term coexposure to MPs and V. parahaemolyticus, the activities of antioxidant enzymes were significantly inhibited in the gills of mussels. Both single MP exposure and coexposure will affect hemocyte function. Coexposure can induce hemocytes to produce higher ROS, improve phagocytosis, significantly reduce the stability of the lysosome membrane, and induce the expression of apoptosis-related genes, causing apoptosis of hemocytes compared with single MP exposure. Our results demonstrate that MPs attached to pathogenic bacteria have stronger toxic effects on mussels, which also suggests that MPs with pathogenic bacteria might have an influence on the immune system and cause disease in mollusks. Thus, MPs may mediate the transmission of pathogens in marine environments, posing a threat to marine animals and human health. This study provides a scientific basis for the ecological risk assessment of MP pollution in marine environments.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Encui Shan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| |
Collapse
|
173
|
Yadav S, Kataria N, Khyalia P, Rose PK, Mukherjee S, Sabherwal H, Chai WS, Rajendran S, Jiang JJ, Khoo KS. Recent analytical techniques, and potential eco-toxicological impacts of textile fibrous microplastics (FMPs) and associated contaminates: A review. CHEMOSPHERE 2023; 326:138495. [PMID: 36963588 DOI: 10.1016/j.chemosphere.2023.138495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Despite of our growing understanding of microplastic's implications, research on the effects of fibrous microplastic (FMPs) on the environment is still in its infancy. Some scientists have hypothesized the possibility of natural textile fibres, which may act as one of the emerging environmental pollutants prevalent among microplastic pollutants in the environment. Therefore, this review aims to critically evaluate the toxic effects of emerging FMPs, the presence, and sources of FMPs in the environment, identification and analytical techniques, and the potential impact or toxicity of the FMPs on the environment and human health. About175 publications (2011-2023) based on FMPs were identified and critically reviewed for transportation, analysis and ecotoxicological behaviours of FMPs in the environment. Textile industries, wastewater treatment plants, and household washing of clothes are significant sources of FMPs. In addition, various characterization techniques (e.g., FTIR, SEM, RAMAN, TGA, microscope, and X-Ray Fluorescence Spectroscopy) commonly used for the identification and analysis of FMPs are also discussed, which justifies the novelty aspects of this review. FMPs are pollutants of emerging concern due to their prevalence and persistence in the environment. FMPs are also found in the food chain, which is an alarming situation for living organisms, including effects on the nervous system, digestive system, circulatory system, and genetic alteration. This review will provide readers with a comparison of different analytical techniques, which will be helpful for researchers to select the appropriate analytical techniques for their study and enhance their knowledge about the harmful effects of FMPs.
Collapse
Affiliation(s)
- Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheswar University of Science &Technology, Hisar, 125001, Haryana, India
| | - Navish Kataria
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Santanu Mukherjee
- Shoolini University of Biotechnology and Management Sciences, Sultanpur, Solan, Himachal Pradesh, 173229, India
| | - Himani Sabherwal
- Department of Environmental Sciences, J. C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Wai Siong Chai
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Saravanan Rajendran
- Faculty of Engineering, Department of Mechanical Engineering, University of Tarapaca, Avda. General Velasquez, 1775, Arica, Chile
| | - Jheng-Jie Jiang
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, 320314, Taiwan; Centre for Environment Risk Management (CERM), Chung Yuan Christian University, Taoyuan, 320314, Taiwan
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India; Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia.
| |
Collapse
|
174
|
Santonicola S, Volgare M, Cocca M, Dorigato G, Giaccone V, Colavita G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals (Basel) 2023; 13:1736. [PMID: 37889673 PMCID: PMC10252135 DOI: 10.3390/ani13111736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/15/2023] Open
Abstract
The omnipresence of microfibers in marine environments has raised concerns about their availability to aquatic biota, including commercial fish species. Due to their tiny size and wide distribution, microfibers may be ingested by wild-captured pelagic or benthic fish and farmed species. Humans are exposed via seafood consumption. Despite the fact that research on the impact of microfibers on marine biota is increasing, knowledge on their role in food security and safety is limited. The present review aims to examine the current knowledge about microfiber contamination in commercially relevant fish species, their impact on the marine food chain, and their probable threat to consumer health. The available information suggests that among the marine biota, edible species are also contaminated, but there is an urgent need to standardize data collection methods to assess the extent of microfiber occurrence in seafood. In this context, natural microfibers should also be investigated. A multidisciplinary approach to the microfiber issue that recognizes the interrelationship and connection of environmental health with that of animals and humans should be used, leading to the application of strategies to reduce microfiber pollution through the control of the sources and the development of remediation technologies.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | | | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
175
|
Yadav H, Khan MRH, Quadir M, Rusch KA, Mondal PP, Orr M, Xu EG, Iskander SM. Cutting Boards: An Overlooked Source of Microplastics in Human Food? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37220346 DOI: 10.1021/acs.est.3c00924] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plastic cutting boards are a potentially significant source of microplastics in human food. Thus, we investigated the impact of chopping styles and board materials on microplastics released during chopping. As chopping progressed, the effects of chopping styles on microplastic release became evident. The mass and number of microplastics released from polypropylene chopping boards were greater than polyethylene by 5-60% and 14-71%, respectively. Chopping on polyethylene boards was associated with a greater release of microplastics with a vegetable (i.e., carrots) than chopping without carrots. Microplastics showed a broad, bottom-skewed normal distribution, dominated by <100 μm spherical-shaped microplastics. Based on our assumptions, we estimated a per-person annual exposure of 7.4-50.7 g of microplastics from a polyethylene chopping board and 49.5 g of microplastics from a polypropylene chopping board. We further estimated that a person could be exposed to 14.5 to 71.9 million polyethylene microplastics annually, compared to 79.4 million polypropylene microplastics from chopping boards. The preliminary toxicity study of the polyethylene microplastics did not show adverse effects on the viability of mouse fibroblast cells for 72 h. This study identifies plastic chopping boards as a substantial source of microplastics in human food, which requires careful attention.
Collapse
Affiliation(s)
- Himani Yadav
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
| | - Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
- Materials and Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Kelly A Rusch
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
| | | | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, United States
- Environmental and Conservation Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
176
|
Ribeiro VV, Nobre CR, Moreno BB, Semensatto D, Sanz-Lazaro C, Moreira LB, Castro ÍB. Oysters and mussels as equivalent sentinels of microplastics and natural particles in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162468. [PMID: 36858238 DOI: 10.1016/j.scitotenv.2023.162468] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Filter-feeder organisms such as oyster and mussels are exposed to particles like microplastics (MPs). Although widely used to monitor MPs contamination, little is known about their performance as sentinels, which are biological monitors accumulating contaminants without significant adverse effects. This study comparatively evaluated the quantitative and qualitative accumulation of MPs by oysters (Crassostrea brasiliana) and mussels (Perna perna) along a gradient of contamination in a highly urbanized estuarine system of Brazil. In the most contaminated site, both species presented the worst status of nutrition and health, and also one of the highest MPs levels reported for molluscs to date (up to 44.1 particles·g-1). Despite some inter-specific differences, oysters and mussels were suitable and showed an equivalent performance as sentinels, reflecting the gradient condition demonstrated for other contaminants in the region. The similarity in MPs accumulation was also observed for qualitative aspects (polymer composition, sizes, shapes and colors). Particles were mostly <1000 μm, fibrous, colorless and composed by cellulose and polymethyl methacrylate (PMMA). Thus, despite small variations, the usage of C. brasiliana and P. perna is recommended and provides reliable information for environmental levels of microplastics.
Collapse
Affiliation(s)
| | | | | | - Décio Semensatto
- Laboratory of Integrated Sciences (LabInSciences), Universidade Federal de São Paulo (Unifesp), Diadema, Brazil
| | | | | | - Ítalo Braga Castro
- Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Santos, Brazil.
| |
Collapse
|
177
|
Chen B. Characteristics and hazard risk of microplastics in Sinonovacula constricta: from farming to market. FRONTIERS IN MARINE SCIENCE 2023; 10. [DOI: 10.3389/fmars.2023.1151523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this paper, I selected Sinonovacula constricta, a typical representative of commercial bivalve shellfish from Zhangzhou City, and found that microplastics were detected in all the samples with small sizes. The abundance in farm samples (3.65 n/g) was higher than in market samples (0.89 n/g), despite their smaller weight, which was mainly contributed by body fluid. Microplastics transported from the body fluid to the viscera and then metabolized into muscle were substantially reduced (69.3%), with only 0 or 1 microplastic observed in the muscles on the micron scale. The microplastics detected in the market samples were mainly concentrated in the viscera, accounting for 81%, while distributed in all the organs of farm samples, with body fluids accounting for 52%. A total of four shapes were detected, with the highest percentage of fibrous shape, while foam-like microplastics were not detected in the market samples. The abundance was not correlated with sample weight, but market samples showed a positive correlation. A total of seven polymers were detected, with the highest rate of polypropylene (PP) (27%). The polymer risk level reached level III. The percentage of polyvinyl chloride (PVC) in the market samples exceeded that of farms, which resulted in a higher hazard risk index despite their lower abundance. The cleaning process and excretory behavior, from farms to markets, greatly reduced microplastic contamination.
Collapse
|
178
|
Carvalho Ferreira H, Lôbo-Hajdu G. Microplastics in coastal and oceanic surface waters and their role as carriers of pollutants of emerging concern in marine organisms. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106021. [PMID: 37257340 DOI: 10.1016/j.marenvres.2023.106021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Microplastics (Mps) pose a significant environmental challenge with global implications. To examine the effect of Mps on coastal and oceanic surface waters, as well as in marine organisms, 167 original research papers published between January 2013 and September 2022 were analyzed. The study revealed an unequal distribution of research efforts across the world. Fragments and fibers were the most frequently detected particles in ocean surface waters and marine biota, which mainly consisted of colored and transparent microparticles. Sampling of Mps was primarily done using collecting nets with a mesh size of 330 μm. Most articles used a stereomicroscope and Fourier-Transform Infrared spectroscopy for identification and composition determination, respectively. Polyethylene and polypropylene were the most frequent polymers found, both in coastal waters and in marine organisms. The major impact observed on marine organisms was a reduction in growth rate, an increase in mortality, and reduced food consumption. The hydrophobic nature of plastics encourages the formation of biofilms called the "plastisphere," which can carry pollutants that are often toxic and can enter the food chain. To better define management measures, it is necessary to standardize investigations that assess Mp pollution, considering not only the geomorphological and oceanographic features of each region but also the urban and industrial occupation of the studied marine environments.
Collapse
Affiliation(s)
- Hudson Carvalho Ferreira
- Laboratory of Marine Genetics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PHLC, Office 205, Rio de Janeiro, 20550-013, Brazil; Graduate Program in Oceanography (PPGOCN), State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PJLF, Bl. E, Office 4018, Rio de Janeiro, 20550-013, Brazil
| | - Gisele Lôbo-Hajdu
- Laboratory of Marine Genetics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PHLC, Office 205, Rio de Janeiro, 20550-013, Brazil.
| |
Collapse
|
179
|
Chelomin VP, Slobodskova VV, Kukla SP, Mazur AA, Dovzhenko NV, Zhukovskaya AF, Karpenko AA, Karpenko MA, Odintsov VS. Dietary Exposure to Particles of Polytetrafluoroethylene (PTFE) and Polymethylmethacrylate (PMMA) Induces Different Responses in Periwinkles Littorina brevicula. Int J Mol Sci 2023; 24:ijms24098243. [PMID: 37175949 PMCID: PMC10179660 DOI: 10.3390/ijms24098243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The marine and ocean water pollution with different-sized plastic waste poses a real threat to the lives of the next generations. Plastic, including microplastics, is found in all types of water bodies and in the organisms that live in them. However, given the chemical diversity of plastic particles, data on their toxicity are currently incomplete. Moreover, it is clear that different organisms, depending on their habitat and feeding habits, are at different risks from plastic particles. Therefore, we performed a series of experiments on feeding the gastropod scraping mollusk Littorina brevicula with two types of polymeric particles-polymethylmethacrylate (PMMA) and polytetrafluoroethylene (PTFE)-using a special feeding design. In the PMMA-exposed group, changes in gastrointestinal biochemical parameters such as increases in malondialdehyde (MDA) and protein carbonyls (PC) were detected, indicating the initiation of oxidative stress. Similarly, a comet assay showed an almost twofold increase in DNA damage in digestive gland cells compared to the control group. In mollusks fed with PTFE-containing food, no similar changes were recorded.
Collapse
Affiliation(s)
- Victor Pavlovich Chelomin
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Sergey Petrovich Kukla
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Andrey Alexandrovich Mazur
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | | | - Avianna Fayazovna Zhukovskaya
- Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Alexander Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Maxim Alexandrovich Karpenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vyacheslav Sergeevich Odintsov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
180
|
Aslam S, Khurram A, Hussain R, Qadir A, Ahmad SR. Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:638. [PMID: 37138178 DOI: 10.1007/s10661-023-11242-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
The present study aimed to find out the source, distribution, quantity, and incipient threats of the microplastics (MPs) released by food-packing plastic materials, plastic bags, bottles, and containers on human health, biodiversity, water bodies, and atmosphere. For this purpose, 152 articles about MPs (0.1 to 5000 µm) and nanoplastics (NP) 1 to 100 nm) were reviewed and interpreted their results in the present articles about microplastics. The highest plastic waste is generated by China (⁓ 59 Mt), the USA (⁓ 38 Mt), Brazil (⁓ 12 Mt), Germany (⁓ 15 Mt), and Pakistan (⁓ 6 Mt). The count of MPs (MPs/kg) in Chinese salt was 718, UK 136, Iran 48, and USA 32, while MPs in bivalves, i.e., in Chinese bivalves was 2.93, UK 2.9, Iran 2.2, and Italy 7.2 in MPs/kg, respectively. The MPs count in Chinese fish was 7.3, Italy's 23, the USA's 13, and UK's 1.25 in MPs/kg, respectively. The MP concentrations in the water bodies, i.e., USA, were 15.2, Italy 7, and UK 4.4 in mg/L, respectively. It was critically reviewed that MPs can enter the human body causing various disorders (neurotoxic, biotoxic, mutagenic, teratogenic, and carcinogenic disorders) because of the presence of various polymers. The present study concluded that MPs were released from processed and stored food containers, either through physical, biological, or chemical means, which harshly affect the surrounding environment and human health. The study recommended that alternatives to plastic containers are glass and bioplastic containers, papers, cotton bags, wooden boxes, and tree leaves need to use to avoid direct consumption of MPs from food.
Collapse
Affiliation(s)
- Sarfa Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Ayesha Khurram
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Rahib Hussain
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Geographic Sciences &, Natural Resources Research, CAS, Beijing, 100101, China.
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
181
|
Cáceres-Farias L, Espinoza-Vera MM, Orós J, Garcia-Bereguiain MA, Alfaro-Núñez A. Macro and microplastic intake in seafood variates by the marine organism's feeding behaviour: Is it a concern to human health? Heliyon 2023; 9:e16452. [PMID: 37251848 PMCID: PMC10213373 DOI: 10.1016/j.heliyon.2023.e16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023] Open
Abstract
Seafood is considered one of the healthiest sources of food intake for humans, mainly because of its high protein content. However, oceans are among the most polluted environments, and microplastics have been widely reported to be ingested, absorbed or bioaccumulated by marine organisms. The different feeding behaviour may contribute to infer the amounts of microplastic particles accidently intake by marine organisms. We investigated the putative levels of microplastics in different edible species of fish, molluscs, and crustaceans. Plastic fragments larger than 200 μm were detected in the digestive tract of 277 out of 390 specimens (71.5 ± 22.2%) of the 26 different species analysed. There was no evidence of microplastic translocation or bioaccumulation in the muscle tissue of fish, molluscs, and crustaceans. Organisms with carnivorous feeding habits had the highest prevalence of plastic ingestion (79 ± 9.4%), followed by planktivorous species (74 ± 15.5%), and detritivorous species (38 ± 36.9%), suggesting a transfer through the food chain. Moreover, we found evidence that species with less selective feeding habits may be the most affected by the ingestion of large microplastic particles. Our results provide further evidence to the ubiquitous presence of microplastics in marine organisms representing a direct threat to marine wildlife, and to human health with potential consequences for future generations according to the One Health initiatives approach.
Collapse
Affiliation(s)
- Lenin Cáceres-Farias
- AquaCEAL Corporation, Urb. Las Palmeras, Ave. Capitán Byron Palacios & General Quisquis, #8 EC230101, Santo Domingo de los Colorados, Ecuador
- Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, 131101, Ecuador
| | - María Mercedes Espinoza-Vera
- AquaCEAL Corporation, Urb. Las Palmeras, Ave. Capitán Byron Palacios & General Quisquis, #8 EC230101, Santo Domingo de los Colorados, Ecuador
- Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Acuicultura y Ciencias del Mar, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, 131101, Ecuador
| | - Jorge Orós
- Department of Morphology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Miguel Angel Garcia-Bereguiain
- One Health Research Group, Universidad de las Américas, Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad Latina de Costa Rica, San José, Costa Rica
| | - Alonzo Alfaro-Núñez
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 57a, 4700, Naestved, Denmark
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, Copenhagen K, Denmark
| |
Collapse
|
182
|
Mozafarjalali M, Hamidian AH, Sayadi MH. Microplastics as carriers of iron and copper nanoparticles in aqueous solution. CHEMOSPHERE 2023; 324:138332. [PMID: 36893866 DOI: 10.1016/j.chemosphere.2023.138332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In recent years, microplastics have attracted a lot of attention due to their excessive spread in the environment, especially in aquatic ecosystems. By sorbing metal nanoparticles on their surface, microplastics can act as carriers of these pollutants in aquatic environments and thus cause adverse effects on the health of living organisms and humans. This study, investigated the adsorption of iron and copper nanoparticles on three different microplastics i.e. polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). In this regard, the effects of parameters such as; pH, duration of contact and initial concentration of nanoparticle solution were investigated. By using atomic absorption spectroscopic analysis, the amount of adsorption of metal nanoparticles by microplastics was measured. The maximum amount of adsorption occurred at pH = 11, after a duration time of 60 min and at the initial concentration of 50 mg L-1. Scanning electron microscope (SEM) images showed that microplastics have different surface characteristics. The spectra obtained from Fourier transform infrared analysis (FTIR) before and after the adsorption of iron and copper nanoparticles on microplastics were not different, which showed that the adsorption of iron and copper nanoparticles on microplastics was physically and no new functional group was formed. X-ray energy diffraction spectroscopy (EDS) showed the adsorption of iron and copper nanoparticles on microplastics. By examining Langmuir and Freundlich adsorption isotherms and adsorption kinetics, it was found that the adsorption of iron and copper nanoparticles on microplastics is more consistent with the Freundlich adsorption isotherm. Also, pseudo-second-order kinetics is more suitable than pseudo-first-order kinetics. The adsorption ability of microplastics was as follows: PVC > PP > PS, and in general copper nanoparticles were adsorbed more than iron nanoparticles on microplastics.
Collapse
Affiliation(s)
- Malihe Mozafarjalali
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
183
|
Freitas TBN, Leite TS, de Ramos B, Proietti MC. Understanding the interactions between cephalopods and marine litter: A research evaluation with identification of gaps and future perspectives. MARINE POLLUTION BULLETIN 2023; 190:114814. [PMID: 36933358 DOI: 10.1016/j.marpolbul.2023.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Litter is known to negatively affect numerous marine organisms, but the extent of such impacts is not well known for several groups, including cephalopods. Considering the ecological, behavioral and economic importance of these animals, we reviewed the types of interactions between cephalopods and litter in the scientific literature, to evaluate impacts and knowledge gaps. We found 30 papers, which included records of microplastic ingestion and the transfer of synthetic microfibers along the food web. The largest number of records involved litter use as shelter, and the common octopus was the most frequent species. At first sight, litter use as shelter could appear to be a potential positive effect, but it is necessary to clarify the implications of this choice and its long-term consequences. Regarding ingestion and trophic transfer, further research is needed to elucidate its occurrence and impacts on cephalopods and their predators, including humans.
Collapse
Affiliation(s)
- Tainah B N Freitas
- Programa de Pós-graduação em Oceanografia Biológica and Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Campus Carreiros, Rio Grande, RS, Brazil
| | - Tatiana S Leite
- Laboratório de Métodos de Estudos Subaquáticos e Cefalópodes, Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina - UFSC, Trindade, Florianópolis, SC, Brazil
| | - Bruna de Ramos
- Departamento de Oceanografia, Universidade Federal de Pernambuco - UFPE, Cidade Universitária, Recife, PE, Brazil
| | - Maíra C Proietti
- Programa de Pós-graduação em Oceanografia Biológica and Projeto Lixo Marinho, Instituto de Oceanografia, Universidade Federal do Rio Grande - FURG, Campus Carreiros, Rio Grande, RS, Brazil; The Ocean Cleanup, Rotterdam, the Netherlands.
| |
Collapse
|
184
|
Valsan G, Warrier AK, Amrutha K, Anusree S, Rangel-Buitrago N. Exploring the presence and distribution of microplastics in subterranean estuaries from southwest India. MARINE POLLUTION BULLETIN 2023; 190:114820. [PMID: 36989595 DOI: 10.1016/j.marpolbul.2023.114820] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Rivers, surface runoff, and the wind all transport microplastics (MPs) to the ocean. There is a knowledge gap concerning the distribution of microplastics in transitional subterranean estuaries. Here, we report the presence of microplastics in the pore water, groundwater, and sea water from four locations in southwest India. Pore water, groundwater, and seawater had mean MP abundances (± standard deviations) of 0.75 (±0.66), 0.15 (±0.1), and 0.11 (±0.07) MPs/l, respectively. Fibres were the dominant category of MPs found. Fourier-transformed infrared spectroscopy revealed the presence of polymers like polyester, low-density polyethylene, and polystyrene. Possible sources of microplastic are fishing activities, tourism, and coastal residents. The microplastics-derived risk assessment scores indicate severe risk to the ecosystems. Fibrous microplastics in pore water indicate that these linear particles can migrate vertically through sandy sediments, reaching subterranean estuaries. We believe submarine groundwater discharge can act as a possible pathway for microplastics to enter the oceans.
Collapse
Affiliation(s)
- Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for Climate Studies, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - K Amrutha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Anusree
- Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia; Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| |
Collapse
|
185
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
186
|
Periyasamy AP. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. TOXICS 2023; 11:toxics11050406. [PMID: 37235219 DOI: 10.3390/toxics11050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
The growing worldwide population is directly responsible for the increased production and consumption of textile products. One of the key reasons for the generation of microfibers is the use of textiles and garment materials, which is expected to increase. The textile industry is responsible for the invisible pollution that is created by textile microfibers, which have been detected in marine sediments and organisms. The present review paper demonstrates that the microfibers discharged from functionalized textiles exhibit non-biodegradable characteristics and that a considerable proportion of them possess toxic properties. This is primarily attributed to the impact of textiles' material functionalization on their biodegradability. The potential for these microfibers, which are released from textiles that contain a variety of dyes, toxic chemicals, and nanomaterials, to pose a variety of health risks to both humans and other living organisms is discussed in this paper. In addition, this paper covers a wide variety of preventative and minimizing measures for reduction, which are discussed in terms of several phases ranging from sustainable production through the consumer, end of life, domestic washing, and wastewater treatment phases.
Collapse
Affiliation(s)
- Aravin Prince Periyasamy
- Textile and Nonwoven Materials, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
187
|
Liu Y, Shi H, Chen L, Teng X, Xue C, Li Z. An overview of microplastics in oysters: Analysis, hazards, and depuration. Food Chem 2023; 422:136153. [PMID: 37130454 DOI: 10.1016/j.foodchem.2023.136153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/04/2023]
Abstract
Microplastic pollution has become an emergent global environmental issue because of its ubiquitous nature and everlasting ecological impacts. In marine ecosystems, microplastics can serve as carriers to absorb various contaminants and the ingestion of microplastics in oysters is of concern because they can induce several adverse effects. The analytical process of microplastics in oysters commonly consists of separation, quantification, and identification. Quantification of microplastics is difficult since information regarding the analytical methods is incoherent, therefore, standard microplastic analytical methods for shellfish should be established in the future. The depuration process can be used to reduce the level of microplastics in oysters to ensure safe consumption of oysters and longer depuration time facilitates improved depuration efficacy. In summary, this review aims to help better understand microplastic pollution in oysters and provide useful suggestions and guidance for future research.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Haohao Shi
- College of Food Science and Technology, Hainan University, Hainan 570228, PR China
| | - Lipin Chen
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China.
| | - Xiaoyu Teng
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao, Shandong Province 266003, PR China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
188
|
Abelouah MR, Romdhani I, Ben-Haddad M, Hajji S, De-la-Torre GE, Gaaied S, Barra I, Banni M, Ait Alla A. Binational survey using Mytilus galloprovincialis as a bioindicator of microplastic pollution: Insights into chemical analysis and potential risk on humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161894. [PMID: 36716882 DOI: 10.1016/j.scitotenv.2023.161894] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) contamination in edible mussels has raised concerns due to their potential risk to human health. Aiming to provide valuable insights regarding the occurrence, physicochemical characteristics, and human health implications of MP contamination, in the present study, two nationwide surveys of MP contamination in mussels (Mytilus galloprovincialis) were conducted in Morocco and Tunisia. The results indicated that MP frequency ranged from 79 % to 100 % in all the analyzed samples. The highest MP density was detected in mussels from Morocco (gills "GI": 1.88 MPs/g ww-1; digestive glands "DG": 0.92 MPs/g ww-1) compared to mussels of Tunisia (GI: 1.47 MPs g- 1; DG: 0.79 MPs g- 1). No significant differences in MP density were found between the two organs (GI and DG) for both countries. MPs were predominantly blue and black fibers, and smaller than 1000 μm. Seven polymeric types were identified, of which PET, PP, and PE were the most abundant, accounting for >87 % of all samples. Scanning Electron Microscopy (SEM) coupled with Energy dispersive X-ray (EDX) showed that most MPs have noticeable signs of weathering and inorganic components on their surface. The highest MP daily intake was found in children, while the lowest was estimated in women and men. Moreover, the annual dietary exposure of MPs through mussel consumption was estimated to be 1262.17 MPs/year in Morocco and 78.18 MPs/year in Tunisia. The potential risk assessment of MPs in mussels based on the polymer hazard index (PHI) was estimated in the high-risk levels, implying that MPs may pose health risks to humans. Overall, this research suggests that the consumption of mussels represents a considerable MP exposure route for the Moroccan and Tunisian populations.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Ilef Romdhani
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| | | | - Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Issam Barra
- Mohammed VI Polytechnic University (UM6P), Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences (AgBS), 43150 Benguerir, Morocco.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco..
| |
Collapse
|
189
|
Lee Y, Cho S, Park K, Kim T, Kim J, Ryu DY, Hong J. Potential lifetime effects caused by cellular uptake of nanoplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121668. [PMID: 37087090 DOI: 10.1016/j.envpol.2023.121668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du-Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
190
|
Dimassi SN, Hahladakis JN, Daly Yahia MN, Ahmad MI, Sayadi S, Al-Ghouti MA. Insights into the degradation mechanism of PET and PP under marine conditions using FTIR. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130796. [PMID: 36669417 DOI: 10.1016/j.jhazmat.2023.130796] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Plastics possess diverse functional properties that have made them extremely desirable. However, due to poor waste management practices, large quantities eventually end up in the oceans where their degradation begins. Hence, it is imperative to understand and further investigate the dynamics of this process. Currently, most relevant studies have been carried out under benign and/or controlled weather conditions. This study investigates the natural degradation of polypropylene (PP) and polyethylene terephthalate (PET) in more extreme environments. Simulated and real marine conditions, both in the laboratory (indoors) and outdoors were applied for a duration of 140 days and results were assessed using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis. SEM micrographs revealed variations in the morphologies of both plastic types. Degradation signs were shown in both plastic types, under all conditions. Findings indicated that microplastics (MPs) degraded faster than macroplastics, with PP MPs having higher weight loss (49%) than PET MPs (1%) when exposed to outdoor marine conditions. Additionally, the degradation rates of MPs-PP were higher than MPs-PET for outdoor and indoor treatments, with 1.07 × 10-6 g/d and 4.41 × 10-7 g/d, respectively. FTIR combined with PCA was efficient in determining the most degraded plastic types.
Collapse
Affiliation(s)
- Sarra N Dimassi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar; Food-Energy-Water-Waste Sustainability (FEWWS) program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - John N Hahladakis
- Food-Energy-Water-Waste Sustainability (FEWWS) program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar; Chemistry and Earth Sciences Department, Qatar University, College of Arts and Sciences, P.O. Box: 2713, Doha, Qatar.
| | - Mohamed Nejib Daly Yahia
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammad I Ahmad
- Central Laboratories Unit, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
191
|
Dambrosio A, Cometa S, Capuozzo F, Ceci E, Derosa M, Quaglia NC. Occurrence and Characterization of Microplastics in Commercial Mussels (Mytilus galloprovincialis) from Apulia Region (Italy). Foods 2023; 12:foods12071495. [PMID: 37048316 PMCID: PMC10094384 DOI: 10.3390/foods12071495] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Microplastics are a ubiquitous pollutant whose spreading is a growing concern worldwide. They can pose a threat to food safety and consumer health as they are ingested through various foods. Bivalves are considered the most contaminated, as they filter large amounts of seawater and enter consumers’ diet ingested whole. The aim of this study was to detect, quantify, identify and classify microplastics in mussels (Mytilus galloprovincialis) marketed in fishery stores in Bari and its surroundings (Apulia, Italy). A total of 5077 particles were isolated from our samples, with an average value of 1.59 ± 0.95 MPs/g and 6.51 ± 4.32 MPs/individual. Blue fragments, sized 10–500 µm, were the prevalent findings; most of them belonged to Polyamide (PA) polymers. The results of this study help to show that mussels represent a source of microplastics for consumers and a direct risk to their health, even considering that they may contain many chemical compounds and microorganisms that may or may not be pathogenic to humans. Further research is needed to assess the role of commercialization in bivalve molluscs contamination.
Collapse
Affiliation(s)
- Angela Dambrosio
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | | | - Flavia Capuozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Michele Derosa
- Veterinary Surgeon, Freelance Professional, Via Martiri di via Fani, 62, Grumo Appula, 70025 Bari, Italy
| | | |
Collapse
|
192
|
Amran NH, Zaid SSM, Meng GY, Salleh A, Mokhtar MH. Protective Role of Kelulut Honey against Toxicity Effects of Polystyrene Microplastics on Morphology, Hormones, and Sex Steroid Receptor Expression in the Uterus of Rats. TOXICS 2023; 11:324. [PMID: 37112551 PMCID: PMC10141738 DOI: 10.3390/toxics11040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Microplastics (MPs) are an emerging global pollutant. Previous studies have revealed that chronic exposure to MPs can affect animal and human reproductive health, particularly by impairing the reproductive system's normal functions, which may increase the risk of infertility in both males and females. Kelulut honey (KH), an excellent source of antioxidants, has been used to counteract the disruptive effects of Polystyrene microplastics (PS-MPs) in the rat uterus. Thus, this study aimed to investigate the potential protective effects of Kelulut honey against PS-MPs-induced uterine toxicity in pubertal rats. METHODS Prepubertal female Sprague Dawley rats were divided into four groups (n = 8): (i) normal control group (NC: treated with deionized water), MPs-exposed group (M: exposed to PS-MPs at 2.5 mg/kg), (iii) Kelulut honey group (DM: pretreated with 1200 mg/kg of KH 30 minutes before they were administered with PS-MPs at 2.5 mg/kg), and (iv) Kelulut honey control group (DC: only treated with KH at 2.5 mg/kg). The rats were treated orally once daily for six consecutive weeks. RESULTS Uterine abnormalities in PS-MPs-exposed rats were significantly improved after concurrent treatment with Kelulut honey. Morphology improvement was observed and luminal epithelial cells seemed thicker with more goblet cells, glandular cells had a more regular and circular shape, stromal cell increased in size, interstitial gaps between stromal cells expanded, and the myometrium layer was thicker. Kelulut honey treatment also effectively normalized the suppressive effect of PS-MPs on the expression and distribution of sex steroid receptors (ERα and ERβ), as well as the level of serum gonadotropin (LH and FSH) and sex steroid (estradiol and progesterone) hormones. CONCLUSION Kelulut honey can protect the female reproductive system against the disruptive effects of PS-MPs. The phytochemical properties of Kelulut honey might be responsible for these beneficial benefits. However, future studies are warranted to identify the mechanisms involved.
Collapse
Affiliation(s)
- Nur Hanisah Amran
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Mohamad Zaid
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Goh Yong Meng
- Department of Veterinary Pre-Clinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostic, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
193
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
194
|
Goswami P, Selvakumar N, Verma P, Saha M, Suneel V, Vinithkumar NV, Dharani G, Rathore C, Nayak J. Microplastic intrusion into the zooplankton, the base of the marine food chain: Evidence from the Arabian Sea, Indian Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160876. [PMID: 36539089 DOI: 10.1016/j.scitotenv.2022.160876] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are ubiquitous in the marine environment, yet information regarding their occurrence in the food web is limited. We investigated the concentration and composition of MPs in water and diverse zooplankton groups from the Arabian Sea basin. Forty-one zooplankton tows were collected with a bongo net (330 μm mesh) from the Arabian Sea in January 2019. MPs in the surface water varied between 0 and 0.055 particles/m3, with a relatively higher concentration (0.013 ± 0.002 particles/m3) in the central Arabian Sea. Though fibrous MPs were most abundant in the seawater (77.14 %), zooplankton prefers small fragments (55.3 %). The size of MPs was distinctly smaller (277.1 ± 46.74 μm) in zooplankton than that in seawater (864.32 ± 73.72 μm), and MPs bioaccumulation was observed in almost all the zooplankton functional groups. Polymer composition revealed polyamide, polyethylene, polypropylene, and PVC were abundant in water and zooplankton, suggesting that the textile, fishing, shipping, and packaging industries are significant sources. The prevailing northeasterly winds, strong West India Coastal Current, and conducive westward radiated Rossby wave during January 2019 have carried the microplastic contaminated water mass away from the coast, posing a threat to the open ocean ecosystems. These results demand further attention to investigate the state of plastic pollution in the Arabian Sea basin.
Collapse
Affiliation(s)
- Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India.
| | - Narasimman Selvakumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India; Centre for Environmental Studies, Anna University, Chennai 600 025, India
| | - Pankaj Verma
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600 100, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - V Suneel
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India
| | - Gopal Dharani
- Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Chennai 600 100, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jibananand Nayak
- Atal Centre for Ocean Science and Technology for Islands, National Institute of Ocean Technology, Port Blair, 744103, Andaman and Nicobar Islands, India
| |
Collapse
|
195
|
Tuuri EM, Leterme SC. How plastic debris and associated chemicals impact the marine food web: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121156. [PMID: 36709917 DOI: 10.1016/j.envpol.2023.121156] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Contamination from plastic debris is omnipresent in marine environments, posing a substantial risk to marine organisms, food webs and the ecosystem. The overlap between the size range of marine plastic pollution with prey means that plastics are readily available for consumption by organisms at all trophic levels. Large plastic debris can directly result in the death of larger marine organisms, through entanglement, strangulation, choking and starvation through a false sense of satiation. Whereas smaller plastic debris, such as micro- and nano-plastics can have adverse impact to marine organisms due to their large surface area to volume ratio and their ability to translocate within an organism. Various physiological processes are reported to be impacted by these small contaminants, such as feeding behaviour, reproductive outputs, developmental anomalies, changes in gene expression, tissue inflammation and the inhibition of growth and development to both adults and their offspring. Micro- and nano-plastics are still relatively poorly understood and are considered a hidden threat. Plastic is a complex contaminant due to the diversity in sizes, shapes, polymer compositions, and chemical additives. These factors can each have unique and species-specific impacts. Consumption of plastics can occur directly, through ingestion and indirectly, through trophic transfer, entanglement of prey, adherence of plastics to external surfaces, and adherence of organisms to the external surfaces of plastics. This review investigated the intrusion of plastics into the marine food web and the subsequent consequences of plastic pollution to marine biota.The objective of this review was to identify the complexity of impacts to marine organisms through the food web from plastic contamination. Through a concise analysis of the available literature the review has shown that plastic pollution and their associated additives can adversely impact environmental and biological health.
Collapse
Affiliation(s)
- Elise M Tuuri
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| | - Sophie Catherine Leterme
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia; ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
196
|
Zhao H, Federigi I, Verani M, Carducci A. Organic Pollutants Associated with Plastic Debris in Marine Environment: A Systematic Review of Analytical Methods, Occurrence, and Characteristics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4892. [PMID: 36981806 PMCID: PMC10048819 DOI: 10.3390/ijerph20064892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Plastic pollution has become one of the most serious environmental problems, and microplastics (MPs, particles < 5 mm size) may behave as a vehicle of organic pollutants, causing detrimental effects to the environment. Studies on MP-sorbed organic pollutants lack methodological standardization, resulting in a low comparability and replicability. In this work, we reviewed 40 field studies of MP-sorbed organic contaminants using PRISMA guidelines for acquiring information on sampling and analytical protocols. The papers were also scored for their reliability on the basis of 7 criteria, from 0 (minimum) to 21 (maximum). Our results showed a great heterogeneity of the methods used for the sample collection, MPs extraction, and instruments for chemicals' identification. Measures for cross-contamination control during MPs analysis were strictly applied only in 13% of the studies, indicating a need for quality control in MPs-related research. The most frequently detected MP-sorbed chemicals were polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs). Most of the studies showed a good reliability (>75% of the total score), with 32 papers scoring 16 or higher. On the basis of the collected information, a standardizable protocol for the detection of MPs and MP-sorbed chemicals has been suggested for improving the reliability of MPs monitoring studies.
Collapse
|
197
|
Cherian AG, Liu Z, McKie MJ, Almuhtaram H, Andrews RC. Microplastic Removal from Drinking Water Using Point-of-Use Devices. Polymers (Basel) 2023; 15:polym15061331. [PMID: 36987112 PMCID: PMC10054062 DOI: 10.3390/polym15061331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The occurrence of microplastics in drinking water has drawn increasing attention due to their ubiquity and unresolved implications regarding human health. Despite achieving high reduction efficiencies (70 to >90%) at conventional drinking water treatment plants (DWTPs), microplastics remain. Since human consumption represents a small portion of typical household water use, point-of-use (POU) water treatment devices may provide the additional removal of microplastics (MPs) prior to consumption. The primary objective of this study was to evaluate the performance of commonly used pour-through POU devices, including those that utilize combinations of granular activated carbon (GAC), ion exchange (IX), and microfiltration (MF), with respect to MP removal. Treated drinking water was spiked with polyethylene terephthalate (PET) and polyvinyl chloride (PVC) fragments, along with nylon fibers representing a range of particle sizes (30–1000 µm) at concentrations of 36–64 particles/L. Samples were collected from each POU device following 25, 50, 75, 100 and 125% increases in the manufacturer’s rated treatment capacity, and subsequently analyzed via microscopy to determine their removal efficiency. Two POU devices that incorporate MF technologies exhibited 78–86% and 94–100% removal values for PVC and PET fragments, respectively, whereas one device that only incorporates GAC and IX resulted in a greater number of particles in its effluent when compared to the influent. When comparing the two devices that incorporate membranes, the device with the smaller nominal pore size (0.2 µm vs. ≥1 µm) exhibited the best performance. These findings suggest that POU devices that incorporate physical treatment barriers, including membrane filtration, may be optimal for MP removal (if desired) from drinking water.
Collapse
|
198
|
Effect of coconut fibers chemically modified with alkoxysilanes on the crystallization, thermal, and dynamic mechanical properties of poly(lactic acid) composites. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
199
|
El Abed N, Özogul F. The risks of marine micro/nano-plastics on seafood safety and human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:229-271. [PMID: 36863836 DOI: 10.1016/bs.afnr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A considerable mass of plastics has been released into the marine environment annually through different human activities, including industrial, agriculture, medical, pharmaceutical and daily care products. These materials are decomposed into smaller particles such as microplastic (MP) and nanoplastic (NP). Hence, these particles can be transported and distributed in coastal and aquatic areas and are ingested by the majority of marine biotas, including seafood products, thus causing the contamination of the different parts of aquatic ecosystems. In fact, seafood involves a wide diversity of edible marine organisms, such as fish, crustaceans, molluscs, and echinoderms, which can ingest the micro/nanoplastics particles, and then transmit them to humans through dietary consumption. Consequently, these pollutants can cause several toxic and adverse impacts on human health and the marine ecosystem. Therefore, this chapter provides information on the potential risks of marine micro/nanoplastics on seafood safety and human health.
Collapse
Affiliation(s)
- Nariman El Abed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia.
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
200
|
Siddiqui SA, Khan S, Tariq T, Sameen A, Nawaz A, Walayat N, Oboturova NP, Ambartsumov TG, Nagdalian AA. Potential risk assessment and toxicological impacts of nano/micro-plastics on human health through food products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:361-395. [PMID: 36863839 DOI: 10.1016/bs.afnr.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The problem of environmental pollution with plastic is becoming more and more acute every year. Due to the low rate of decomposition of plastic, its particles get into food and harm the human body. This chapter focuses on the potential risks and toxicological effects of both nano and microplastics on human health. The main places of distribution of various toxicants along with the food chain have been established. The effects of some examples of the main sources of micro/nanoplastics on the human body are also emphasised. The processes of entry and accumulation of micro/nanoplastics are described, and the mechanism of accumulation that occurs inside the body is briefly explained. Potential toxic effects reported from studies on various organisms are highlighted as well.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany.
| | - Sipper Khan
- Institute of Agricultural Engineering Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Tayyaba Tariq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Asad Nawaz
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | | | | |
Collapse
|