151
|
Jandl C, King C. Cytokines in the Germinal Center Niche. Antibodies (Basel) 2016; 5:antib5010005. [PMID: 31557986 PMCID: PMC6698856 DOI: 10.3390/antib5010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
Cytokines are small, secreted, glycoproteins that specifically affect the interactions and communications between cells. Cytokines are produced transiently and locally, acting in a paracrine or autocrine manner, and they are extremely potent, ligating high affinity cell surface receptors to elicit changes in gene expression and protein synthesis in the responding cell. Cytokines produced during the differentiation of T follicular helper (Tfh) cells and B cells within the germinal center (GC) niche play an important role in ensuring that the humoral immune response is robust, whilst retaining flexibility, during the generation of affinity matured antibodies. Cytokines produced by B cells, antigen presenting cells and stromal cells are important for the differentiation of Tfh cells and Tfh cell produced cytokines act both in an autocrine fashion to firm Tfh cell differentiation and in a paracrine fashion to support the differentiation of memory B cells and plasma cells. In this review, we discuss the role of cytokines during the GC reaction with a particular focus on the influence of cytokines on Tfh cells.
Collapse
Affiliation(s)
- Christoph Jandl
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Cecile King
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
- St Vincents Medical School, University of New South Wales, Sydney, NSW 2010, Australia.
| |
Collapse
|
152
|
Hickey MJ, Valenzuela NM, Reed EF. Alloantibody Generation and Effector Function Following Sensitization to Human Leukocyte Antigen. Front Immunol 2016; 7:30. [PMID: 26870045 PMCID: PMC4740371 DOI: 10.3389/fimmu.2016.00030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023] Open
Abstract
Allorecognition is the activation of the adaptive immune system to foreign human leukocyte antigen (HLA) resulting in the generation of alloantibodies. Due to a high polymorphism, foreign HLA is recognized by the immune system following transplant, transfusion, or pregnancy resulting in the formation of the germinal center and the generation of long-lived alloantibody-producing memory B cells. Alloantibodies recognize antigenic epitopes displayed by the HLA molecule on the transplanted allograft and contribute to graft damage through multiple mechanisms, including (1) activation of the complement cascade resulting in the formation of the MAC complex and inflammatory anaphylatoxins, (2) transduction of intracellular signals leading to cytoskeletal rearrangement, growth, and proliferation of graft vasculature, and (3) immune cell infiltration into the allograft via FcγR interactions with the FC portion of the antibody. This review focuses on the generation of HLA alloantibody, routes of sensitization, alloantibody specificity, and mechanisms of antibody-mediated graft damage.
Collapse
Affiliation(s)
- Michelle J Hickey
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
153
|
Abstract
The success of most vaccines relies on the generation of antibodies to provide protection against subsequent infection; this in turn depends on a robust germinal centre (GC) response that culminates in the production of long-lived antibody-secreting plasma cells. The size and quality of the GC response are directed by a specialised subset of CD4
+ T cells: T follicular helper (Tfh) cells. Tfh cells provide growth and differentiation signals to GC B cells and mediate positive selection of high-affinity B cell clones in the GC, thereby determining which B cells exit the GC as plasma cells and memory B cells. Because of their central role in the production of long-lasting humoral immunity, Tfh cells represent an interesting target for rational vaccine design.
Collapse
Affiliation(s)
- Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Danika L Hill
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
154
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
155
|
Zhu Y, Zou L, Liu YC. T follicular helper cells, T follicular regulatory cells and autoimmunity. Int Immunol 2015; 28:173-9. [PMID: 26714592 DOI: 10.1093/intimm/dxv079] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
CD4(+)T follicular helper (Tfh) cells are recognized as a distinct T-cell subset, which provides help for germinal center (GC) formation, B-cell development and affinity maturation, and immunoglobulin class switching, as an indispensable part of adaptive immunity. Tfh cell differentiation depends on various factors including cell-surface molecule interactions, extracellular cytokines and multiple transcription factors, with B-cell lymphoma 6 (Bcl-6) being the master regulator. T follicular regulatory (Tfr) cells are also located in the GC and share phenotypic characteristics with Tfh cells and regulatory T cells, but function as negative regulators of GC responses. Dysregulation of either Tfh or Tfr cells is linked to the pathogenesis of autoimmune diseases such as systemic lupus erythematosus. This review covers the basic Tfh and Tfr biology including their differentiation and function, and their close relationship with autoimmune diseases.
Collapse
Affiliation(s)
- Yangyang Zhu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Le Zou
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle Dr., La Jolla, CA 92130, USA
| |
Collapse
|
156
|
Soni C, Domeier PP, Wong EB, Shwetank, Khan TN, Elias MJ, Schell SL, Lukacher AE, Cooper TK, Rahman ZSM. Distinct and synergistic roles of FcγRIIB deficiency and 129 strain-derived SLAM family proteins in the development of spontaneous germinal centers and autoimmunity. J Autoimmun 2015; 63:31-46. [PMID: 26162758 DOI: 10.1016/j.jaut.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/22/2015] [Accepted: 06/24/2015] [Indexed: 11/28/2022]
Abstract
The inhibitory IgG Fc receptor (FcγRIIB) deficiency and 129 strain-derived signaling lymphocyte activation molecules (129-SLAMs) are proposed to contribute to the lupus phenotype in FcγRIIB-deficient mice generated using 129 ES cells and backcrossed to C57BL/6 mice (B6.129.RIIBKO). In this study, we examine the individual contributions and the cellular mechanisms by which FcγRIIB deficiency and 129-derived SLAM family genes promote dysregulated spontaneous germinal center (Spt-GC) B cell and follicular helper T cell (Tfh) responses in B6.129.RIIBKO mice. We find that B6 mice congenic for the 129-derived SLAM locus (B6.129-SLAM) and B6 mice deficient in FcγRIIB (B6.RIIBKO) have increased Spt-GC B cell responses compared to B6 controls but significantly lower than B6.129.RIIBKO mice. These data indicate that both FcγRIIB deficiency and 129-SLAMs contribute to elevated Spt-GC B cell responses in B6.129.RIIBKO mice. However, only 129-SLAMs contribute significantly to augmented Tfh responses in B6.129.RIIBKO mice, and do so by a combination of T cell-dependent effects and enhanced B cell and DC-dependent antigen presentation to T cells. Elevated Spt-GC B cell responses in mice with FcγRIIB deficiency and polymorphic 129-SLAMs were associated with elevated metabolic activity, improved GC B cell survival and increased differentiation of naïve B cells into GC B cell phenotype. Our data suggest that the interplay between 129-SLAM expression on B cells, T cells and DCs is central to the alteration of the GC tolerance checkpoint, and that deficiency of FcγRIIB on B cells is necessary to augment Spt-GC responses, pathogenic autoantibodies, and lupus disease.
Collapse
Affiliation(s)
- Chetna Soni
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Phillip P Domeier
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Eric B Wong
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Shwetank
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Tahsin N Khan
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Melinda J Elias
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Stephanie L Schell
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Aron E Lukacher
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA
| | - Timothy K Cooper
- Departments of Comparative Medicine and Pathology, Pennsylvania State University College of Medicine, USA
| | - Ziaur S M Rahman
- Microbiology and Immunology, Pennsylvania State University College of Medicine, USA.
| |
Collapse
|
157
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
158
|
Shin C, Han JA, Koh H, Choi B, Cho Y, Jeong H, Ra JS, Sung P, Shin EC, Ryu S, Do Y. CD8α− Dendritic Cells Induce Antigen-Specific T Follicular Helper Cells Generating Efficient Humoral Immune Responses. Cell Rep 2015; 11:1929-40. [DOI: 10.1016/j.celrep.2015.05.042] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/10/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
|
159
|
The importance of co‐stimulation in the orchestration of T helper cell differentiation. Immunol Cell Biol 2015; 93:780-8. [DOI: 10.1038/icb.2015.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/01/2015] [Accepted: 03/18/2015] [Indexed: 12/29/2022]
|
160
|
Wang N, Halibozek PJ, Yigit B, Zhao H, O'Keeffe MS, Sage P, Sharpe A, Terhorst C. Negative Regulation of Humoral Immunity Due to Interplay between the SLAMF1, SLAMF5, and SLAMF6 Receptors. Front Immunol 2015; 6:158. [PMID: 25926831 PMCID: PMC4396446 DOI: 10.3389/fimmu.2015.00158] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/23/2015] [Indexed: 12/30/2022] Open
Abstract
Whereas the SLAMF-associated protein (SAP) is involved in differentiation of T follicular helper (Tfh) cells and antibody responses, the precise requirements of SLAMF receptors in humoral immune responses are incompletely understood. By analyzing mice with targeted disruptions of the Slamf1, Slamf5, and Slamf6 genes, we found that both T-dependent and T-independent antibody responses were twofold higher compared to those in single knockout mice. These data suggest a suppressive synergy of SLAMF1, SLAMF5, and SLAMF6 in humoral immunity, which contrasts the decreased antibody responses resulting from a defective GC reaction in the absence of the adapter SAP. In adoptive co-transfer assays, both [Slamf1 + 5 + 6]−/− B and T cells were capable of inducing enhanced antibody responses, but more pronounced enhancement was observed after adoptive transfer of [Slamf1 + 5 + 6]−/− B cells compared to that of [Slamf1 + 5 + 6]−/− T cells. In support of [Slamf1 + 5 + 6]−/− B cell intrinsic activity, [Slamf1 + 5 + 6]−/− mice also mounted significantly higher antibody responses to T-independent type 2 antigen. Furthermore, treatment of mice with anti-SLAMF6 monoclonal antibody results in severe inhibition of the development of Tfh cells and GC B cells, confirming a suppressive effect of SLAMF6. Taken together, these results establish SLAMF1, SLAMF5, and SLAMF6 as important negative regulators of humoral immune response, consistent with the notion that SLAM family receptors have dual functions in immune responses.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Peter J Halibozek
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Hui Zhao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Michael S O'Keeffe
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Peter Sage
- Department of Microbiology and Immunology, Harvard Medical School , Boston, MA , USA
| | - Arlene Sharpe
- Department of Microbiology and Immunology, Harvard Medical School , Boston, MA , USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
161
|
Clatworthy MR. Two-photon microscopy for imaging germinal centers and T follicular helper cells. Methods Mol Biol 2015; 1291:63-75. [PMID: 25836302 DOI: 10.1007/978-1-4939-2498-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the principle features of immune cells is their dynamic nature. Lymphocytes circulate in the blood between secondary lymphoid organs and tissues in an effort to maximize the likelihood of a rapid and appropriate immune response to invading pathogens and tissue damage. Conventional experimental techniques such as histology and flow cytometry have greatly increased our understanding of immune cells, but in the last decade, two-photon microscopy has revolutionized our ability to interrogate the dynamic behavior of immune cells, a facet so critical to their function. Two-photon microscopy relies on the excitation of fluorophores by simultaneous application of two photons of longer wavelength light. This allows a greater depth of imaging with minimal photodamage. Thus, living tissues can be imaged, including immune cells in lymph nodes. This technique has been used to interrogate the events occurring in a germinal center response and the interactions between cells in the germinal center, including T follicular helper cells (Tfh), germinal center B cells, and follicular dendritic cells (FDC). Herein, a method is described by which the interactions between Tfh and B cells within a germinal center in a popliteal lymph node can be imaged in a live mouse.
Collapse
Affiliation(s)
- Menna R Clatworthy
- Laboratory of Molecular Biology, Department of Medicine, University of Cambridge Research Unit, University of Cambridge, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK,
| |
Collapse
|
162
|
Wong EB, Soni C, Chan AY, Domeier PP, Shwetank, Abraham T, Limaye N, Khan TN, Elias MJ, Chodisetti SB, Wakeland EK, Rahman ZSM. B cell-intrinsic CD84 and Ly108 maintain germinal center B cell tolerance. THE JOURNAL OF IMMUNOLOGY 2015; 194:4130-43. [PMID: 25801429 DOI: 10.4049/jimmunol.1403023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.
Collapse
Affiliation(s)
- Eric B Wong
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Alice Y Chan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Shwetank
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Thomas Abraham
- Department of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Nisha Limaye
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Tahsin N Khan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melinda J Elias
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
163
|
Pérez-Mazliah D, Ng DHL, Freitas do Rosário AP, McLaughlin S, Mastelic-Gavillet B, Sodenkamp J, Kushinga G, Langhorne J. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria. PLoS Pathog 2015; 11:e1004715. [PMID: 25763578 PMCID: PMC4370355 DOI: 10.1371/journal.ppat.1004715] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses. The importance of antibody and B-cell responses for control of the erythrocytic-stage of the malaria parasite, Plasmodium, was first described when immune serum, passively transferred into Plasmodium falciparum-infected children, reduced parasitemia. This was later confirmed in experimental models in which mice deficient in B cells were unable to eliminate erythrocytic-stage infections. The signals required to activate these protective long-lasting B cell responses towards Plasmodium have not been investigated. IL-21 has been shown to be important for development of B-cell responses after immunization; however, a direct requirement for IL-21 in the control of infection via B-cell dependent mechanisms has never been demonstrated. In this paper, we have used mouse models of erythrocytic P. chabaudi and P. yoelii 17X(NL) infections in combination with IL-21/IL-21R deficiency to show that IL-21 from CD4+ T cells is required to eliminate Plasmodium infection by activating protective, long-lasting B-cell responses. Disruption of IL-21 signaling in B cells prevents the elimination of the parasite resulting in sustained high parasitemias, with no development of memory B-cells, lack of antigen-specific plasma cells and antibodies, and thus no protective immunity against a second challenge infection. Our data demonstrate the absolute requirement of IL-21 for B-cell control of this systemic infection. This has important implications for the design of vaccines against Plasmodium.
Collapse
Affiliation(s)
- Damián Pérez-Mazliah
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Dorothy Hui Lin Ng
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | | | - Sarah McLaughlin
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Béatris Mastelic-Gavillet
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Jan Sodenkamp
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Garikai Kushinga
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research (NIMR), London, United Kingdom
- * E-mail:
| |
Collapse
|
164
|
Abstract
Humoral immunity depends on the germinal centre (GC) reaction during which somatically mutated high-affinity memory B cells and plasma cells are generated. Recent studies have uncovered crucial cues that are required for the formation and the maintenance of GCs and for the selection of high-affinity antibody mutants. In addition, it is now clear that these events are promoted by the dynamic movements of cells within and between GCs. These findings have resolved the complexities of the GC reaction in greater detail than ever before. This Review focuses on these recent advances and discusses their implications for the establishment of humoral immunity.
Collapse
Affiliation(s)
- Nilushi S De Silva
- Herbert Irving Comprehensive Cancer Center and Departments of Pathology and Cell Biology, and Microbiology and Immunology, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | - Ulf Klein
- Herbert Irving Comprehensive Cancer Center and Departments of Pathology and Cell Biology, and Microbiology and Immunology, Columbia University, 1130 St Nicholas Avenue, New York, New York 10032, USA
| |
Collapse
|
165
|
Abstract
Antibodies are powerful defense tools against pathogens but may cause autoimmune diseases when erroneously directed toward self-antigens. Thus, antibody producing cells are carefully selected, refined, and expanded in a highly regulated microenvironment (germinal center) in the peripheral lymphoid organs. A subset of T cells termed T follicular helper cells (Tfh) play a central role in instructing B cells to form a repertoire of antibody producing cells that provide life-long supply of high affinity, pathogen-specific antibodies. Therefore, understanding how Tfh cells arise and how they facilitate B cell selection and differentiation during germinal center reaction is critical to improve vaccines and better treat autoimmune diseases. In this review, I will summarise recent findings on molecular and cellular mechanisms underlying Tfh generation and function with an emphasis on T cell costimulation.
Collapse
Affiliation(s)
- Woong-Kyung Suh
- Clinical Research Institute of Montreal (IRCM), University of Montreal, and McGill University, Montreal, Quebec H2W 1R7,
Canada
| |
Collapse
|
166
|
Abstract
Epstein-Barr virus (EBV) is usually acquired silently early in life and carried thereafter as an asymptomatic infection of the B lymphoid system. However, many circumstances disturb the delicate EBV-host balance and cause the virus to display its pathogenic potential. Thus, primary infection in adolescence can manifest as infectious mononucleosis (IM), as a fatal illness that magnifies the immunopathology of IM in boys with the X-linked lymphoproliferative disease trait, and as a chronic active disease leading to life-threatening hemophagocytosis in rare cases of T or natural killer (NK) cell infection. Patients with primary immunodeficiencies affecting the NK and/or T cell systems, as well as immunosuppressed transplant recipients, handle EBV infections poorly, and many are at increased risk of virus-driven B-lymphoproliferative disease. By contrast, a range of other EBV-positive malignancies of lymphoid or epithelial origin arise in individuals with seemingly intact immune systems through mechanisms that remain to be understood.
Collapse
Affiliation(s)
- Graham S Taylor
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; , , , ,
| | | | | | | | | |
Collapse
|
167
|
Abstract
Epstein-Barr virus (EBV) infects nearly all humans and usually is asymptomatic, or in the case of adolescents and young adults, it can result in infectious mononucleosis. EBV-infected B cells are controlled primarily by NK cells, iNKT cells, CD4 T cells, and CD8 T cells. While mutations in proteins important for B cell function can affect EBV infection of these cells, these mutations do not result in severe EBV infection. Some genetic disorders affecting T and NK cell function result in failure to control EBV infection, but do not result in increased susceptibility to other virus infections. These include mutations in SH2D1A, BIRC4, ITK, CD27, MAGT1, CORO1A, and LRBA. Since EBV is the only virus that induces proliferation of B cells, the study of these diseases has helped to identify proteins critical for interactions of T and/or NK cells with B cells. Mutations in three genes associated with hemophagocytic lymphohistocytosis, PRF1, STXBP2, and UNC13D, can also predispose to severe chronic active EBV disease. Severe EBV infection can be associated with immunodeficiencies that also predispose to other viral infections and in some cases other bacterial and fungal infections. These include diseases due to mutations in PIK3CD, PIK3R1, CTPS1, STK4, GATA2, MCM4, FCGR3A, CARD11, ATM, and WAS. In addition, patients with severe combined immunodeficiency, which can be due to mutations in a number of different genes, are at high risk for various infections as well as EBV B cell lymphomas. Identification of proteins important for control of EBV may help to identify new targets for immunosuppressive therapies.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institutes of Health, 50 South Drive, MSC 8007, Bethesda, MD, 20892, USA.
| |
Collapse
|
168
|
Hofmann S, Braun A, Pozgaj R, Morowski M, Vögtle T, Nieswandt B. Mice lacking the SLAM family member CD84 display unaltered platelet function in hemostasis and thrombosis. PLoS One 2014; 9:e115306. [PMID: 25551754 PMCID: PMC4281120 DOI: 10.1371/journal.pone.0115306] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023] Open
Abstract
Background Platelets are anuclear cell fragments derived from bone marrow megakaryocytes that safeguard vascular integrity by forming thrombi at sites of vascular injury. Although the early events of thrombus formation—platelet adhesion and aggregation—have been intensively studied, less is known about the mechanisms and receptors that stabilize platelet-platelet interactions once a thrombus has formed. One receptor that has been implicated in this process is the signaling lymphocyte activation molecule (SLAM) family member CD84, which can undergo homophilic interactions and becomes phosphorylated upon platelet aggregation. Objective The role of CD84 in platelet physiology and thrombus formation was investigated in CD84-deficient mice. Methods and Results We generated CD84-deficient mice and analyzed their platelets in vitro and in vivo. Cd84−/− platelets exhibited normal activation and aggregation responses to classical platelet agonists. Furthermore, CD84 deficiency did not affect integrin-mediated clot retraction and spreading of activated platelets on fibrinogen. Notably, also the formation of stable three-dimensional thrombi on collagen-coated surfaces under flow ex vivo was unaltered in the blood of Cd84−/− mice. In vivo, Cd84−/− mice exhibited unaltered hemostatic function and arterial thrombus formation. Conclusion These results show that CD84 is dispensable for thrombus formation and stabilization, indicating that its deficiency may be functionally compensated by other receptors or that it may be important for platelet functions different from platelet-platelet interactions.
Collapse
Affiliation(s)
- Sebastian Hofmann
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Attila Braun
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Rastislav Pozgaj
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Martina Morowski
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Timo Vögtle
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
- * E-mail: (BN); (TV)
| | - Bernhard Nieswandt
- University of Würzburg, Department of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, Würzburg, Germany
- * E-mail: (BN); (TV)
| |
Collapse
|
169
|
Peebles RS. At the bedside: the emergence of group 2 innate lymphoid cells in human disease. J Leukoc Biol 2014; 97:469-75. [PMID: 25516755 DOI: 10.1189/jlb.3bt0814-383r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ILC2s have been primarily identified at environmental-mucosal interfaces and can be activated quickly by environmental antigens and pathogens to produce large quantities of IL-5 and IL-13. As a result of the production of these cytokines, ILC2s have been implicated in the host response to allergens, viruses, and parasites. However, the exact role of ILC2s in any human disease state is presently unknown, as specifically eliminating these cells is not possible, given that potentially targetable cell-surface markers are shared with other immune cells. Likewise, selectively and completely inhibiting ILC2 activation is also not currently possible, as several activating cytokines, IL-25, IL-33, and TSLP, act in redundancy or are not specific for ILC2 stimulation. Therefore, at this point, we can only identify the relative abundance of ILC2s in organs and tissue identified as being involved in specific diseases, and the contribution of ILC2s in human disease can only be inferred from mouse studies. Given these limitations, in this article, we will review the studies that have examined the presence of ILC2s in human disease states and speculate on their possible role in disease pathogenesis. The intent of the review is to identify priority areas for basic research based on clinical research insights.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
170
|
Abstract
PURPOSE OF REVIEW Here, we describe recent data on the characterization of follicular helper CD4 T cells (Tfh) and the dynamics of Tfh-B-cell interactions in HIV and simian immunodeficiency virus (SIV) infection and discuss important aspects of these interactions that need to be addressed in order to design more effective vaccines that elicit broadly neutralizing antibodies. RECENT FINDINGS Mouse, nonhuman primate (NHP) and human Tfh cells share phenotypic, functional and molecular programs, which are regulated by local signals and spatiotemporal parameters. Chronic HIV/SIV infection results in accumulation of Tfh, germinal center B cells and circulating virus-specific immunoglobulins in some individuals. However, most HIV/SIV-infected individuals do not mount broadly neutralizing antibodies, pointing to functional defects in Tfh cells in chronic HIV/SIV infection. The susceptibility of particular CD4 T-cell populations to HIV/SIV infection within lymph nodes notably impacts upon the dynamics of Tfh-germinal center B-cell interactions. Some circulating CD4 T cells share certain characteristics with Tfh cells, however, their direct origin from germinal center Tfh cells is not clear. SUMMARY There are many ways in which HIV and SIV influence the complex signals and mechanisms regulating the development of Tfh cells and their interactions with germinal center B cells. Understanding the biology of Tfh cells will be necessary to appropriately recruit these cells during vaccination with the goal of stimulating a more broad and potent neutralizing antibody response.
Collapse
|
171
|
den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: Cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162:103-12. [DOI: 10.1016/j.imlet.2014.10.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
172
|
Sinai P, Dozmorov IM, Song R, Schwartzberg PL, Wakeland EK, Wülfing C. T/B-cell interactions are more transient in response to weak stimuli in SLE-prone mice. Eur J Immunol 2014; 44:3522-31. [PMID: 25209945 DOI: 10.1002/eji.201444602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/31/2014] [Accepted: 09/09/2014] [Indexed: 12/23/2022]
Abstract
Changes in immune function during the course of systemic lupus erythematosus (SLE) are well characterized. Class-switched antinuclear antibodies are the hallmark of SLE, and T/B-cell interactions are thus critical. However, changes in immune function contributing to disease susceptibility are unknown. Here, we have analyzed primary T and B cells from a mouse model of SLE prior to the onset of disease. To allow cognate T-cell activation with low affinity, we have developed a lower potency peptide ligand for the OTII TCR. T- and B-cell couples formed less frequently and retained their polarity less efficiently preferentially in response to low-affinity stimulation in SLE-prone mice. This matched decreased recruitment of actin and Vav1 and an enhanced PKCΘ recruitment to the cellular interface in T cells. The induction of the GC B-cell marker GL7 was increased in T/B cell couples from SLE-prone mice when the T-cell numbers were limited. However, the overall gene expression changes were marginal. Taken together, the enhanced cell-couple transience may allow a more efficient sampling of a large number of T/B cell couples, preferentially in response to limiting stimuli, therefore enhancing the immune reactivity in the development of SLE.
Collapse
Affiliation(s)
- Parisa Sinai
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | |
Collapse
|
173
|
Parodi C, Badano MN, Galassi N, Coraglia A, Baré P, Malbrán A, Bracco MMDED. Follicular helper T lymphocytes in health and disease. World J Hematol 2014; 3:118-127. [DOI: 10.5315/wjh.v3.i4.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/12/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
A correct antibody response requires the participation of both B and T lymphocytes and antigen presenting cells. In this review we address the role of follicular helper T lymphocytes (TFH) in this reaction. We shall focus on the regulation of their development and function in health and disease. TFH can be characterized on the basis of their phenotype and the pattern of secretion of cytokines. This fact is useful to study their participation in the generation of antibody deficiency in primary immunodeficiency diseases such as common variable immunodeficiency, X-linked hyper IgM syndrome or X-linked lymphoproliferative disease. Increased numbers of TFH have been demonstrated in several autoimmune diseases and are thought to play a role in the development of autoantibodies. In chronic viral infections caused by the human immunodeficiency virus, hepatitis B or C virus, increased circulating TFH have been observed, but their role in the protective immune response to these agents is under discussion. Likewise, an important role of TFH in the control of some experimental protozoan infections has been proposed, and it will be important to assess their relevance in order to design effective vaccination strategies.
Collapse
|
174
|
Huang YH, Tsai K, Ma C, Vallance BA, Priatel JJ, Tan R. SLAM-SAP signaling promotes differentiation of IL-17-producing T cells and progression of experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:5841-53. [PMID: 25362182 DOI: 10.4049/jimmunol.1301435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-17 plays critical roles in host defenses, combating bacterial and fungal infections, as well as the pathogenesis of autoimmune diseases such as experimental autoimmune encephalomyelitis (EAE). The signaling adaptor SAP is essential for normal immune homeostasis and mutations within SH2D1A, the locus encoding this protein, result in serious and sometimes fatal syndromes, including X-linked lymphoproliferative disease and severe cases of common variable immunodeficiency. However, the precise cellular basis of how SAP deficiency contributes to immune dysfunction remains incompletely understood. In this study, we found that CD4 and CD8 T cells lacking SAP had a diminished capacity to differentiate into IL-17-producing Th17 and T cytotoxic (Tc17) cells relative to wild-type lymphocytes. The use of costimulating SLAM Abs was found to augment the differentiation of IL-17-secreting effectors in wild-type but not Sh2d1a(-/-) splenic T cells under IL-17-polarizing conditions. In addition, SAP's regulation of IL-17-secreting T cells was shown to be a T cell-intrinsic role, as purified naive Sh2d1a(-/-) CD4 and CD8 T cells were inherently defective at converting into Th17 and Tc17 cells in vitro and in vivo. Furthermore, Sh2d1a(-/-) mice were protected from EAE and exhibited greatly decreased numbers of CNS-infiltrating Th17 and Tc17 effector T cells and reduced disease severity. Collectively, these results suggest that SLAM-SAP signaling drives the differentiation and function of Th17 and Tc17 cells in vitro and in vivo and contributes to the pathogenesis of autoimmunity in EAE.
Collapse
Affiliation(s)
- Yu-Hsuan Huang
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kevin Tsai
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Caixia Ma
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - Bruce A Vallance
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Division of Gastroenterology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; and
| | - John J Priatel
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada;
| | - Rusung Tan
- Child and Family Research Institute, BC Children's Hospital, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; Department of Pathology, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
175
|
Kanari Y, Sugahara-Tobinai A, Takahashi H, Inui M, Nakamura A, Hirose S, Takai T. Dichotomy in FcγRIIB deficiency and autoimmune-prone SLAM haplotype clarifies the roles of the Fc receptor in development of autoantibodies and glomerulonephritis. BMC Immunol 2014; 15:47. [PMID: 25339546 PMCID: PMC4209029 DOI: 10.1186/s12865-014-0047-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 10/09/2014] [Indexed: 11/25/2022] Open
Abstract
Background The significance of a unique inhibitory Fc receptor for IgG, FcγRIIB (RIIB), in the prevention of spontaneous production of autoantibodies remains controversial, due mainly to the fact that the RIIB locus is adjacent to the autoimmune-related SLAM locus harboring the genes coding for signaling lymphocyte activation molecules, making it difficult to isolate the effect of RIIB deletion from that of SLAM in gene-targeted mice. Our objective was to determine the influence of RIIB deletion on the spontaneous development of autoimmune diseases and to compare it with that of potentially pathogenic SLAM. Results We established two congenic C57BL/6 (B6) strains, one with the RIIB deletion and the other with SLAM, by backcrossing 129/SvJ-based RIIB-deficient mice into the B6 genetic background extensively. The RIIB deficiency indeed led to the production and/or accumulation of a small amount of anti-nuclear autoantibodies (ANAs) and to weak IgG immune-complex deposition in glomeruli without any obvious manifestation of lupus nephritis. In contrast, pathogenic SLAM in the B6 genetic background induced ANAs but no IgG immune-complex deposition in the kidneys. Naïve SLAM mice but not RIIB-deficient mice exhibited hyperplasia of splenic germinal centers. Conclusion The present results clarify the roles of RIIB in preventing production and/or accumulation of a small amount of ANAs, and development of glomerulonephritis. The combined effects of RIIB deletion and pathogenic SLAM can lead to severe lupus nephritis in the B6 genetic background. Electronic supplementary material The online version of this article (doi:10.1186/s12865-014-0047-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toshiyuki Takai
- Department of Experimental Immunology and CREST Program of JST, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan.
| |
Collapse
|
176
|
Zimara N, Florian C, Schmid M, Malissen B, Kissenpfennig A, Männel DN, Edinger M, Hutchinson JA, Hoffmann P, Ritter U. Langerhans cells promote early germinal center formation in response toLeishmania-derived cutaneous antigens. Eur J Immunol 2014; 44:2955-67. [DOI: 10.1002/eji.201344263] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/30/2014] [Accepted: 07/25/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Nicole Zimara
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Christian Florian
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Maximilian Schmid
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique Unité Mixte de Recherche; Aix Marseille Université; Marseille France
| | - Adrien Kissenpfennig
- Centre for Infection and Immunity; School of Medicine; Dentistry & Biomedical Sciences; Queens University; Belfast UK
| | - Daniela N. Männel
- Institute of Immunology; University of Regensburg; Regensburg Germany
| | - Matthias Edinger
- Internal Medicine III; University Hospital Regensburg; Regensburg Germany
| | - James A. Hutchinson
- Laboratory for Transplantation Research; Department of Surgery; University Hospital Regensburg; Regensburg Germany
| | - Petra Hoffmann
- Internal Medicine III; University Hospital Regensburg; Regensburg Germany
| | - Uwe Ritter
- Institute of Immunology; University of Regensburg; Regensburg Germany
| |
Collapse
|
177
|
Brenu EW, Ashton KJ, Batovska J, Staines DR, Marshall-Gradisnik SM. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis. PLoS One 2014; 9:e102783. [PMID: 25238588 PMCID: PMC4169517 DOI: 10.1371/journal.pone.0102783] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.
Collapse
Affiliation(s)
- Ekua W. Brenu
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Jana Batovska
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Donald R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, Queensland, Australia
| | - Sonya M. Marshall-Gradisnik
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
178
|
Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood 2014; 124:2858-66. [PMID: 25232056 DOI: 10.1182/blood-2014-03-563445] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antiplatelet-antibody-producing B cells play a key role in immune thrombocytopenia (ITP) pathogenesis; however, little is known about T-cell dysregulations that support B-cell differentiation. During the past decade, T follicular helper cells (TFHs) have been characterized as the main T-cell subset within secondary lymphoid organs that promotes B-cell differentiation leading to antibody class-switch recombination and secretion. Herein, we characterized TFHs within the spleen of 8 controls and 13 ITP patients. We show that human splenic TFHs are the main producers of interleukin (IL)-21, express CD40 ligand (CD154), and are located within the germinal center of secondary follicles. Compared with controls, splenic TFH frequency is higher in ITP patients and correlates with germinal center and plasma cell percentages that are also increased. In vitro, IL-21 stimulation combined with an anti-CD40 agonist antibody led to the differentiation of splenic B cells into plasma cells and to the secretion of antiplatelet antibodies in ITP patients. Overall, these results point out the involvement of TFH in ITP pathophysiology and the potential interest of IL-21 and CD40 as therapeutic targets in ITP.
Collapse
|
179
|
Chu C, Wang Y, Zhang X, Ni X, Cao J, Xu W, Dong Z, Yuan P, Wei W, Ma Y, Zhang L, Wu L, Qi H. SAP-regulated T Cell-APC adhesion and ligation-dependent and -independent Ly108-CD3ζ interactions. THE JOURNAL OF IMMUNOLOGY 2014; 193:3860-71. [PMID: 25217164 DOI: 10.4049/jimmunol.1401660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The germinal center response requires cooperation between Ag-specific T and B lymphocytes, which takes the form of long-lasting cell-cell conjugation in vivo. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is required for stable cognate T-B cell conjugation, whereas SLAM family transmembrane (TM) receptor Ly108 may negatively regulate this process. We show that, other than phosphotyrosine-binding, SAP does not harbor motifs that recruit additional signaling intermediates to stabilize T-B adhesion. Ly108 dampens T cell adhesion to not only Ag-presenting B cells, but also dendritic cells by inhibiting CD3ζ phosphorylation through two levels of regulated Ly108-CD3ζ interactions. Constitutively associated with Src homology 2 domain-containing tyrosine phosphatase-1 even in SAP-competent cells, Ly108 is codistributed with the CD3 complex within a length scale of 100-200 nm on quiescent cells and can reduce CD3ζ phosphorylation in the absence of overt TCR stimulation or Ly108 ligation. When Ly108 is engaged in trans during cell-cell interactions, Ly108-CD3ζ interactions are promoted in a manner that uniquely depends on Ly108 TM domain, leading to more efficient CD3ζ dephosphorylation. Whereas replacement of the Ly108 TM domain still allows the constitutive, colocalization-dependent inhibition of CD3ζ phosphorylation, it abrogates the ligation-dependent Ly108-CD3ζ interactions and CD3ζ dephosphorylation, and it abolishes the suppression on Ag-triggered T-B adhesion. These results offer new insights into how SAP and Ly108 antagonistically modulate the strength of proximal TCR signaling and thereby control cognate T cell-APC interactions.
Collapse
Affiliation(s)
- Coco Chu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yifeng Wang
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xu Zhang
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinya Ni
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Junxia Cao
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wan Xu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhongjun Dong
- Laboratory of Tumor Immunology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Pengfei Yuan
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; and
| | - Wensheng Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; and
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medical Center, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Longyan Wu
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China;
| |
Collapse
|
180
|
McCarron MJ, Marie JC. TGF-β prevents T follicular helper cell accumulation and B cell autoreactivity. J Clin Invest 2014; 124:4375-86. [PMID: 25157822 DOI: 10.1172/jci76179] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023] Open
Abstract
T follicular helper (Tfh) cells contribute to the establishment of humoral immunity by controlling the delivery of helper signals to activated B cells; however, Tfh development must be restrained, as aberrant accumulation of these cells is associated with positive selection of self-reactive germinal center B cells and autoimmunity in both humans and mice. Here, we show that TGF-β signaling in T cells prevented Tfh cell accumulation, self-reactive B cell activation, and autoantibody production. Using mice with either T cell-specific loss or constitutive activation of TGF-β signaling, we demonstrated that TGF-β signaling is required for the thymic maturation of CD44⁺CD122⁺Ly49⁺CD8⁺ regulatory T cells (Tregs), which induce Tfh apoptosis and thus regulate this cell population. Moreover, peripheral Tfh cells escaping TGF-β control were resistant to apoptosis, exhibited high levels of the antiapoptotic protein BCL2, and remained refractory to regulation by CD8+ Tregs. The unrestrained accumulation of Tfh cells in the absence of TGF-β was dependent on T cell receptor engagement and required B cells. Together, these data indicate that TGF-β signaling restrains Tfh cell accumulation and B cell-associated autoimmunity and thereby controls self-tolerance.
Collapse
|
181
|
Qi H, Kastenmüller W, Germain RN. Spatiotemporal basis of innate and adaptive immunity in secondary lymphoid tissue. Annu Rev Cell Dev Biol 2014; 30:141-67. [PMID: 25150013 DOI: 10.1146/annurev-cellbio-100913-013254] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Secondary lymphoid tissues are the sites of both innate and adaptive host defense. Aside from the relatively static nonhematopoietic stromal elements and some macrophages and dendritic cells, most of the cells in these tissues are in constant movement, but the organs maintain a defined microanatomy with preferred locations for the bulk of T cells, B cells, and other lymphocytes and subsets of myeloid cells. Here we describe both the cell dynamics and spatial organization of lymph nodes and review how both physical features and molecular cues guide cell movement to optimize host defense. We emphasize the role of locality in improving the efficiency of a system requiring rare cells to find each other and interact productively through membrane-bound or short-range secreted mediators and highlight how changes in steady-state cell positioning during an infectious challenge contribute to rapid generation of productive responses.
Collapse
Affiliation(s)
- Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, Beijing 100084, China;
| | | | | |
Collapse
|
182
|
Yusuf I, Stern J, McCaughtry TM, Gallagher S, Sun H, Gao C, Tedder T, Carlesso G, Carter L, Herbst R, Wang Y. Germinal center B cell depletion diminishes CD4+ follicular T helper cells in autoimmune mice. PLoS One 2014; 9:e102791. [PMID: 25101629 PMCID: PMC4125140 DOI: 10.1371/journal.pone.0102791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/24/2014] [Indexed: 01/25/2023] Open
Abstract
Background Continuous support from follicular CD4+ T helper (Tfh) cells drives germinal center (GC) responses, which last for several weeks to produce high affinity memory B cells and plasma cells. In autoimmune Sle1 and NZB/W F1 mice, elevated numbers of Tfh cells persist, promoting the expansion of self-reactive B cells. Expansion of circulating Tfh like cells have also been described in several autoimmune diseases. Although, the signals required for Tfh differentiation have now been well described, the mechanisms that sustain the maintenance of fully differentiated Tfh are less understood. Recent data demonstrate a role for GC B cells for Tfh maintenance after protein immunization. Methods and Finding Given the pathogenic role Tfh play in autoimmune disease, we explored whether B cells are required for maintenance of autoreactive Tfh. Our data suggest that the number of mature autoreactive Tfh cells is controlled by GC B cells. Depletion of B cells in Sle1 autoimmune mice leads to a dramatic reduction in Tfh cells. In NZB/W F1 autoimmune mice, similar to the SRBC immunization model, GC B cells support the maintenance of mature Tfh, which is dependent mainly on ICOS. The CD28-associated pathway is dispensable for Tfh maintenance in SRBC immunized mice, but is required in the spontaneous NZB/W F1 model. Conclusion These data suggest that mature Tfh cells require signals from GC B cells to sustain their optimal numbers and function in both autoimmune and immunization models. Thus, immunotherapies targeting B cells in autoimmune disease may affect pathogenic Tfh cells.
Collapse
Affiliation(s)
- Isharat Yusuf
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Jessica Stern
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Tom M McCaughtry
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Sandra Gallagher
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Hong Sun
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Changshou Gao
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Thomas Tedder
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gianluca Carlesso
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Laura Carter
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Ronald Herbst
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| | - Yue Wang
- Department of Respiratory, Inflammation and Autoimmunity Research, MedImmune LLC, Gaithersburg, Maryland, United States of America
| |
Collapse
|
183
|
Reindel R, Bischof J, Kim KYA, Orenstein JM, Soares MB, Baker SC, Shulman ST, Perlman EJ, Lingen MW, Pink AJ, Trevenen C, Rowley AH. CD84 is markedly up-regulated in Kawasaki disease arteriopathy. Clin Exp Immunol 2014; 177:203-11. [PMID: 24635044 DOI: 10.1111/cei.12327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2014] [Indexed: 11/28/2022] Open
Abstract
The major goals of Kawasaki disease (KD) therapy are to reduce inflammation and prevent thrombosis in the coronary arteries (CA), but some children do not respond to currently available non-specific therapies. New treatments have been difficult to develop because the molecular pathogenesis is unknown. In order to identify dysregulated gene expression in KD CA, we performed high-throughput RNA sequencing on KD and control CA, validated potentially dysregulated genes by real-time reverse transcription-polymerase chain reaction (RT-PCR) and localized protein expression by immunohistochemistry. Signalling lymphocyte activation molecule CD84 was up-regulated 16-fold (P < 0·01) in acute KD CA (within 2 months of onset) and 32-fold (P < 0·01) in chronic CA (5 months to years after onset). CD84 was localized to inflammatory cells in KD tissues. Genes associated with cellular proliferation, motility and survival were also up-regulated in KD CA, and immune activation molecules MX2 and SP140 were up-regulated in chronic KD. CD84, which facilitates immune responses and stabilizes platelet aggregates, is markedly up-regulated in KD CA in patients with acute and chronic arterial disease. We provide the first molecular evidence of dysregulated inflammatory responses persisting for months to years in CA significantly damaged by KD.
Collapse
Affiliation(s)
- R Reindel
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Tangye SG. XLP: clinical features and molecular etiology due to mutations in SH2D1A encoding SAP. J Clin Immunol 2014; 34:772-9. [PMID: 25085526 DOI: 10.1007/s10875-014-0083-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
X-linked lymphoproliferative disease (XLP) is a rare primary immunodeficiency affecting approximately 1-2 per 1 million males. A key feature of XLP is the exquisite sensitivity of affected individuals to disease induced following EBV infection. However, patients can also develop hypogammaglobulinemia and B-cell lymphoma independently of exposure to EBV. XLP is caused by loss-of function mutations in SH2D1A, which encodes the intracellular adaptor molecule SAP. SAP is predominantly expressed in T cells and NK cells, and functions to regulate signal transduction pathways downstream of the SLAM family of surface receptors to control CD4+ T cell (and by extension B cells), CD8+ T cell and NK cell function, as well as the development of NKT cells. The study of XLP had shed substantial light on the requirements for lymphocyte differentiation and immune regulation, which in turn have the potential to be translated into novel treatments for not only XLP patients but individuals affected by EBV-induced disease, impaired humoral immunity and malignancy.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology Research Program, Garvan Institute of Medical Research, 384 Victoria St Darlinghurst, NSW, 2010, Sydney, Australia,
| |
Collapse
|
185
|
Toll-like receptor 9 signaling acts on multiple elements of the germinal center to enhance antibody responses. Proc Natl Acad Sci U S A 2014; 111:E3224-33. [PMID: 25053813 DOI: 10.1073/pnas.1323985111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have demonstrated important roles of nucleic acid-sensing Toll-like receptors (TLRs) in promoting protective antibody responses against several viruses. To dissect how recognition of nucleic acids by TLRs enhances germinal center (GC) responses, mice selectively deleted for myeloid differentiation primary-response protein 88 (MyD88) in B cells or dendritic cells (DCs) were immunized with a haptenated protein antigen bound to a TLR9 ligand. TLR9 signaling in DCs led to greater numbers of follicular helper T (TFH) cells and GC B cells, and accelerated production of broad-affinity antihapten IgG. In addition to modulating GC selection by increasing inducible costimulator (ICOS) expression on TFH cells and reducing the number of follicular regulatory T cells, MyD88-dependent signaling in B cells enhanced GC output by augmenting a class switch to IgG2a, affinity maturation, and the memory antibody response. Thus, attachment of a TLR9 ligand to an oligovalent antigen acted on DCs and B cells to coordinate changes in the T-cell compartment and also promoted B cell-intrinsic effects that ultimately programmed a more potent GC response.
Collapse
|
186
|
Wang H, Geng J, Wen X, Bi E, Kossenkov AV, Wolf AI, Tas J, Choi YS, Takata H, Day TJ, Chang LY, Sprout SL, Becker EK, Willen J, Tian L, Wang X, Xiao C, Jiang P, Crotty S, Victora GD, Showe LC, Tucker HO, Erikson J, Hu H. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat Immunol 2014; 15:667-75. [PMID: 24859450 PMCID: PMC4142638 DOI: 10.1038/ni.2890] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/06/2014] [Indexed: 12/15/2022]
Abstract
CD4(+) follicular helper T cells (T(FH) cells) are essential for germinal center (GC) responses and long-lived antibody responses. Here we report that naive CD4(+) T cells deficient in the transcription factor Foxp1 'preferentially' differentiated into T(FH) cells, which resulted in substantially enhanced GC and antibody responses. We found that Foxp1 used both constitutive Foxp1A and Foxp1D induced by stimulation of the T cell antigen receptor (TCR) to inhibit the generation of T(FH) cells. Mechanistically, Foxp1 directly and negatively regulated interleukin 21 (IL-21); Foxp1 also dampened expression of the costimulatory molecule ICOS and its downstream signaling at early stages of T cell activation, which rendered Foxp1-deficient CD4(+) T cells partially resistant to blockade of the ICOS ligand (ICOSL) during T(FH) cell development. Our findings demonstrate that Foxp1 is a critical negative regulator of T(FH) cell differentiation.
Collapse
Affiliation(s)
- Haikun Wang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jianlin Geng
- 1] The Wistar Institute, Philadelphia, Pennsylvania, USA. [2]
| | - Xiaomin Wen
- 1] The Wistar Institute, Philadelphia, Pennsylvania, USA. [2]
| | - Enguang Bi
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Amaya I Wolf
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jeroen Tas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | - Youn Soo Choi
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | | | - Timothy J Day
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Li-Yuan Chang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | - Lifeng Tian
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Xinxin Wang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Ping Jiang
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Shane Crotty
- La Jolla Institute for Allergy & Immunology, La Jolla, California, USA
| | - Gabriel D Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, USA
| | | | - Haley O Tucker
- Department of Molecular Genetics and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Texas, USA
| | - Jan Erikson
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Hui Hu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
187
|
Yan S, Yim LY, Lu L, Lau CS, Chan VSF. MicroRNA Regulation in Systemic Lupus Erythematosus Pathogenesis. Immune Netw 2014; 14:138-48. [PMID: 24999310 PMCID: PMC4079820 DOI: 10.4110/in.2014.14.3.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNA molecules best known for their function in post-transcriptional gene regulation. Immunologically, miRNA regulates the differentiation and function of immune cells and its malfunction contributes to the development of various autoimmune diseases including systemic lupus erythematosus (SLE). Over the last decade, accumulating researches provide evidence for the connection between dysregulated miRNA network and autoimmunity. Interruption of miRNA biogenesis machinery contributes to the abnormal T and B cell development and particularly a reduced suppressive function of regulatory T cells, leading to systemic autoimmune diseases. Additionally, multiple factors under autoimmune conditions interfere with miRNA generation via key miRNA processing enzymes, thus further skewing the miRNA expression profile. Indeed, several independent miRNA profiling studies reported significant differences between SLE patients and healthy controls. Despite the lack of a consistent expression pattern on individual dysregulated miRNAs in SLE among these studies, the aberrant expression of distinct groups of miRNAs causes overlapping functional outcomes including perturbed type I interferon signalling cascade, DNA hypomethylation and hyperactivation of T and B cells. The impact of specific miRNA-mediated regulation on function of major immune cells in lupus is also discussed. Although research on the clinical application of miRNAs is still immature, through an integrated approach with advances in next generation sequencing, novel tools in bioinformatics database analysis and new in vitro and in vivo models for functional evaluation, the diagnostic and therapeutic potentials of miRNAs may bring to fruition in the future.
Collapse
Affiliation(s)
- Sheng Yan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lok Yan Yim
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Liwei Lu
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chak Sing Lau
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Vera Sau-Fong Chan
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
188
|
Chang SH, Kim TJ, Kim YJ, Liu Y, Min SY, Park MJ, Park HS, Lee SK, Nam KH, Kim HY, Mohan C, Kim HR. The lupus susceptibility locus Sle1 facilitates the peripheral development and selection of anti-DNA B cells through impaired receptor editing. THE JOURNAL OF IMMUNOLOGY 2014; 192:5579-85. [PMID: 24835399 DOI: 10.4049/jimmunol.1201558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is characterized by the spontaneous production of IgG autoantibodies in patients and lupus-prone mice. In this study, we investigated the effect of the Sle1 lupus susceptibility locus on the peripheral development of 56R(+) anti-DNA transgenic B cells by tracking 56R(+) B cells in mice without (B6.56R) or with (B6.Sle1.56R) the Sle1 locus. Compared with B6.56R mice, B6.Sle1.56R mice exhibited increased class-switched IgG2a anti-DNA Abs in their serum, encoded by the transgene. Interestingly, within the spleen, Sle1 facilitated the development of these cells into clusters of IgG2a class-switched B cells juxtaposed to CD4(+) T cells within extrafollicular sites. Through sequence analysis of B cell hybridomas, we also found that B cells from B6.Sle1.56R mice are inefficient at Ig H and L chain editing. Thus, the Ig H chains in Sle1.56R(+) B cells are partnered more often with cationic L chains that facilitate DNA binding. Taken together, these findings indicate that the Sle1 lupus-susceptibility locus may facilitate the emergence of anti-DNA B cells by subduing BCR revision and possibly by shaping the extrafollicular development of effector B cells, although the precise molecular mechanisms await further study.
Collapse
Affiliation(s)
- Soog-Hee Chang
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Tae-Joo Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Young-Joo Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Yang Liu
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - So-Youn Min
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Min-Jung Park
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Hyun-Sil Park
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea
| | - Sun-Kyung Lee
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea
| | - Ki-Hoan Nam
- Biomedical Mouse Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Republic of Korea
| | - Ho-Youn Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, 137-040, Republic of Korea;
| | - Chandra Mohan
- Division of Rheumatology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Hang-Rae Kim
- Department of Anatomy and Biomedical Sciences, Seoul National University College of Medicine, Jongno-gu, Seoul 110-799, Republic of Korea;
| |
Collapse
|
189
|
Chen X, Yang X, Li Y, Zhu J, Zhou S, Xu Z, He L, Xue X, Zhang W, Dong X, Wu H, Li CJ, Hsu HT, Kong W, Liu F, Tripathi PB, Yu MS, Chang J, Zhou L, Su C. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog 2014; 10:e1004097. [PMID: 24788758 PMCID: PMC4006917 DOI: 10.1371/journal.ppat.1004097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Following Schistosoma japonicum (S. japonicum) infection, granulomatous responses are induced by parasite eggs trapped in host organs, particular in the liver, during the acute stage of disease. While excessive liver granulomatous responses can lead to more severe fibrosis and circulatory impairment in chronically infected host. However, the exact mechanism of hepatic granuloma formation has remained obscure. In this study, we for the first time showed that follicular helper T (Tfh) cells are recruited to the liver to upregulate hepatic granuloma formation and liver injury in S. japonicum-infected mice, and identified a novel function of macrophages in Tfh cell induction. In addition, our results showed that the generation of Tfh cells driven by macrophages is dependent on cell–cell contact and the level of inducible costimulator ligand (ICOSL) on macrophages which is regulated by CD40–CD40L signaling. Our findings uncovered a previously unappreciated role for Tfh cells in liver pathology caused by S. japonicum infection in mice. Schistosomiasis is a chronic helminthic disease that affects approximately 200 million people. After S. japonicum infection, parasite eggs are trapped in host liver and granulomas are induced to form around eggs. Severe granuloma subsequently results in serious liver fibrosis and circulatory impairment chronically. It is important to fully elucidate the mechanism of the granuloma formation. Here, we show that Tfh cells play a novel role of promoting the hepatic granuloma formation and liver injury, and identified a novel function of macrophages in Tfh cells induction in S. japonicum-infected mouse model. In addition, we show that the generation of Tfh cells driven by macrophages is cell–cell contact dependent and regulated by CD40-CD40L signaling. Our findings revealed a novel role and mechanism of macrophages in Tfh cell generation and the liver pathogenesis in S. japonicum-infected mouse model.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaowei Yang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yong Li
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhipeng Xu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Lei He
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xue Xue
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Weiwei Zhang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaoxiao Dong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Henry Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Carrie J. Li
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Hsiang-Ting Hsu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Wenjun Kong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Liu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Prem B. Tripathi
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Michelle S. Yu
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Jason Chang
- Department of General Surgery, Kaiser LAMC, Los Angeles, California, United States of America
| | - Liang Zhou
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chuan Su
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
190
|
Collins CM, Speck SH. Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help. PLoS Pathog 2014; 10:e1004106. [PMID: 24789087 PMCID: PMC4006913 DOI: 10.1371/journal.ppat.1004106] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
X linked lymphoproliferative disease (XLP) is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP). One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV), a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM). However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68), a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH) cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection. During an immune response, B cells respond to invading pathogens by undergoing massive expansion during the germinal center reaction. This proliferation requires signals from CD4 T cells, with some B cells then maturing into antibody secreting plasma cells, while others mature into memory B cells that may persist for the life of the host. Gammaherpesviruses take advantage of this immune response by infecting B cells, resulting in expansion of the pool of infected cells during the germinal center reaction. The human gammaherpesvirus Epstein-Barr virus (EBV) is thought to be able to accomplish this without the need for CD4 T cell help by expressing viral proteins that mimic signals from CD4 T cells. Here we show in a mouse model of gammaherpesvirus infection that infected B cells require signals from CD4 T cells for proliferation. Since the mouse gammaherpesvirus and EBV belong to different subgroups of gammaherpesviruses, this suggests that these subgroups utilize fundamentally different strategies to expand the pool of infected B cells during the establishment of latency. These different strategies may explain the different outcome of infection by these different subgroups of gammaherpesviruses in the context of defective germinal center responses that result from defective CD4 T cell help.
Collapse
Affiliation(s)
- Christopher M. Collins
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Samuel H. Speck
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
191
|
Thymic TFH cells involved in the pathogenesis of myasthenia gravis with thymoma. Exp Neurol 2014; 254:200-5. [DOI: 10.1016/j.expneurol.2014.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 01/26/2023]
|
192
|
Doherty TA, Scott D, Walford HH, Khorram N, Lund S, Baum R, Chang J, Rosenthal P, Beppu A, Miller M, Broide DH. Allergen challenge in allergic rhinitis rapidly induces increased peripheral blood type 2 innate lymphoid cells that express CD84. J Allergy Clin Immunol 2014; 133:1203-5. [PMID: 24582313 PMCID: PMC3972276 DOI: 10.1016/j.jaci.2013.12.1086] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/12/2013] [Accepted: 12/24/2013] [Indexed: 01/24/2023]
Abstract
Type 2 innate lymphoid cells (ILC2) produce high levels of Th2 cytokines. Our study demonstrates that cat allergen challenge in allergic rhinitis subjects rapidly induces increased peripheral blood ILC2.
Collapse
Affiliation(s)
- Taylor A Doherty
- Department of Medicine, University of California, San Diego, La Jolla, Calif.
| | - David Scott
- Department of Medicine, University of California, San Diego, La Jolla, Calif; Division of Allergy, Asthma and Immunology, Scripps Clinic, La Jolla, Calif
| | - Hannah H Walford
- Department of Medicine, University of California, San Diego, La Jolla, Calif; Rady's Children's Hospital of San Diego, Division of Rheumatology, Allergy and Immunology, San Diego, Calif
| | - Naseem Khorram
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Sean Lund
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Rachel Baum
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Jinny Chang
- Department of Medicine, University of California, San Diego, La Jolla, Calif; Division of Allergy, Asthma and Immunology, Scripps Clinic, La Jolla, Calif
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Andrew Beppu
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| |
Collapse
|
193
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
194
|
Gifford CE, Weingartner E, Villanueva J, Johnson J, Zhang K, Filipovich AH, Bleesing JJ, Marsh RA. Clinical flow cytometric screening of SAP and XIAP expression accurately identifies patients with SH2D1A and XIAP/BIRC4 mutations. CYTOMETRY PART B-CLINICAL CYTOMETRY 2014; 86:263-71. [PMID: 24616127 DOI: 10.1002/cyto.b.21166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 11/11/2013] [Accepted: 02/03/2014] [Indexed: 11/07/2022]
Abstract
INTRODUCTION X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. METHODS We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. RESULTS SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. CONCLUSION Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2.
Collapse
Affiliation(s)
- Carrie E Gifford
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Tang X, Zhang B, Jarrell JA, Price JV, Dai H, Utz PJ, Strober S. Ly108 expression distinguishes subsets of invariant NKT cells that help autoantibody production and secrete IL-21 from those that secrete IL-17 in lupus prone NZB/W mice. J Autoimmun 2014; 50:87-98. [PMID: 24508410 DOI: 10.1016/j.jaut.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/19/2013] [Accepted: 01/01/2014] [Indexed: 01/12/2023]
Abstract
Lupus is a systemic autoimmune disease characterized by anti-nuclear antibodies in humans and genetically susceptible NZB/W mice that can cause immune complex glomerulonephritis. T cells contribute to lupus pathogenesis by secreting pro-inflammatory cytokines such as IL-17, and by interacting with B cells and secreting helper factors such as IL-21 that promote production of IgG autoantibodies. In the current study, we determined whether purified NKT cells or far more numerous conventional non-NKT cells in the spleen of NZB/W female mice secrete IL-17 and/or IL-21 after TCR activation in vitro, and provide help for spontaneous IgG autoantibody production by purified splenic CD19(+) B cells. Whereas invariant NKT cells secreted large amounts of IL-17 and IL-21, and helped B cells, non-NKT cells did not. The subset of IL-17 secreting NZB/W NKT cells expressed the Ly108(lo)CD4(-)NK1.1(-) phenotype, whereas the IL-21 secreting subset expressed the Ly108(hi)CD4(+)NK1.1(-) phenotype and helped B cells secrete a variety of IgG anti-nuclear antibodies. α-galactocylceramide enhanced the helper activity of NZB/W and B6.Sle1b NKT cells for IgG autoantibody secretion by syngeneic B cells. In conclusion, different subsets of iNKT cells from mice with genetic susceptibility to lupus can contribute to pathogenesis by secreting pro-inflammatory cytokines and helping autoantibody production.
Collapse
Affiliation(s)
- Xiaobin Tang
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bo Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Justin A Jarrell
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jordan V Price
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Samuel Strober
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
196
|
Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR, McColl SR. Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 2014; 10:e1003905. [PMID: 24586147 PMCID: PMC3930558 DOI: 10.1371/journal.ppat.1003905] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Differentiation of naïve CD4⁺ cells into functionally distinct effector helper T cell subsets, characterised by distinct "cytokine signatures," is a cardinal strategy employed by the mammalian immune system to efficiently deal with the rapidly evolving array of pathogenic microorganisms encountered by the host. Since the T(H)1/T(H)2 paradigm was first described by Mosmann and Coffman, research in the field of helper T cell biology has grown exponentially with seven functionally unique subsets having now been described. In this review, recent insights into the molecular mechanisms that govern differentiation and function of effector helper T cell subsets will be discussed in the context of microbial infections, with a focus on how these different helper T cell subsets orchestrate immune responses tailored to combat the nature of the pathogenic threat encountered.
Collapse
Affiliation(s)
- Ervin E. Kara
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Iain Comerford
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kevin A. Fenix
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Cameron R. Bastow
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Carly E. Gregor
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Duncan R. McKenzie
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R. McColl
- School of Molecular & Biomedical Science, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
197
|
Nakayamada S, Poholek AC, Lu KT, Takahashi H, Kato M, Iwata S, Hirahara K, Cannons JL, Schwartzberg PL, Vahedi G, Sun HW, Kanno Y, O'Shea JJ. Type I IFN induces binding of STAT1 to Bcl6: divergent roles of STAT family transcription factors in the T follicular helper cell genetic program. THE JOURNAL OF IMMUNOLOGY 2014; 192:2156-66. [PMID: 24489092 DOI: 10.4049/jimmunol.1300675] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CD4(+) T follicular helper cells (TFH) are critical for the formation and function of B cell responses to infection or immunization, but also play an important role in autoimmunity. The factors that contribute to the differentiation of this helper cell subset are incompletely understood, although several cytokines including IL-6, IL-21, and IL-12 can promote TFH cell formation. Yet, none of these factors, nor their downstream cognate STATs, have emerged as nonredundant, essential drivers of TFH cells. This suggests a model in which multiple factors can contribute to the phenotypic characteristics of TFH cells. Because type I IFNs are often generated in immune responses, we set out to investigate whether these factors are relevant to TFH cell differentiation. Type I IFNs promote Th1 responses, thus one possibility was these factors antagonized TFH-expressed genes. However, we show that type I IFNs (IFN-α/β) induced B cell lymphoma 6 (Bcl6) expression, the master regulator transcription factor for TFH cells, and CXCR5 and programmed cell death-1 (encoded by Pdcd1), key surface molecules expressed by TFH cells. In contrast, type I IFNs failed to induce IL-21, the signature cytokine for TFH cells. The induction of Bcl6 was regulated directly by STAT1, which bound to the Bcl6, Cxcr5, and Pdcd1 loci. These data suggest that type I IFNs (IFN-α/β) and STAT1 can contribute to some features of TFH cells but are inadequate in inducing complete programming of this subset.
Collapse
Affiliation(s)
- Shingo Nakayamada
- Lymphocyte Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Moir S, Fauci AS. Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals. Immunol Rev 2014; 254:207-24. [PMID: 23772622 DOI: 10.1111/imr.12067] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV) disease is associated with dysregulation and dysfunction involving all major lymphocyte populations, including B cells. Such perturbations occur early in the course of infection and are driven in large part by immune activation resulting from ongoing HIV replication leading to bystander effects on B cells. While most of the knowledge regarding immune cell abnormalities in HIV-infected individuals has been gained from studies conducted on the peripheral blood, it is clear that the virus is most active and most damaging in lymphoid tissues. Here, we discuss B-cell perturbations in HIV-infected individuals, focusing on the skewing of B-cell subsets that circulate in the peripheral blood and their counterparts that reside in lymphoid tissues. This review also highlights recent advances in evaluating HIV-specific B-cell responses both in the memory B-cell compartment, as well as in circulating antibody-secreting plasmablasts and the more differentiated plasma cells residing in tissues. Finally, we consider how knowledge gained by investigating B cells in HIV-infected individuals may help inform the development of an effective antibody-based HIV vaccine.
Collapse
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
199
|
Randall KL. Generating humoral immune memory following infection or vaccination. Expert Rev Vaccines 2014; 9:1083-93. [DOI: 10.1586/erv.10.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
200
|
Tfh Cell Differentiation and Their Function in Promoting B-Cell Responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:153-80. [DOI: 10.1007/978-94-017-9487-9_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|