151
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
152
|
Sun A, Liu H, Sun M, Yang W, Liu J, Lin Y, Shi X, Sun J, Liu L. Emerging nanotherapeutic strategies targeting gut-X axis against diseases. Biomed Pharmacother 2023; 167:115577. [PMID: 37757494 DOI: 10.1016/j.biopha.2023.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can coordinate with different tissues and organs to maintain human health, which derives the concept of the gut-X axis. Conversely, the dysbiosis of gut microbiota leads to the occurrence and development of various diseases, such as neurological diseases, liver diseases, and even cancers. Therefore, the modulation of gut microbiota offers new opportunities in the field of medicines. Antibiotics, probiotics or other treatments might restore unbalanced gut microbiota, which effects do not match what people have expected. Recently, nanomedicines with the high targeting ability and reduced toxicity make them an appreciative choice for relieving disease through targeting gut-X axis. Considering this paradigm-setting trend, the current review summarizes the advancements in gut microbiota and its related nanomedicines. Specifically, this article introduces the immunological effects of gut microbiota, summarizes the gut-X axis-associated diseases, and highlights the nanotherapeutics-mediated treatment via remolding the gut-X axis. Moreover, this review also discusses the challenges in studies related to nanomedicines targeting the gut microbiota and offers the future perspective, thereby aiming at charting a course toward clinic.
Collapse
Affiliation(s)
- Ao Sun
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hongyu Liu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China; Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, China Medical University, Ministry of Education, Shenyang, Liaoning Province, China
| | - Mengchi Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiaxin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yi Lin
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning Province, PR China.
| | - Linlin Liu
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
153
|
Ke S, Hartmann J, Ressler KJ, Liu YY, Koenen KC. The emerging role of the gut microbiome in posttraumatic stress disorder. Brain Behav Immun 2023; 114:360-370. [PMID: 37689277 PMCID: PMC10591863 DOI: 10.1016/j.bbi.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) occurs in some people following exposure to a terrifying or catastrophic event involving actual/threatened death, serious injury, or sexual violence. PTSD is a common and debilitating mental disorder that imposes a significant burden on individuals, their families, health services, and society. Moreover, PTSD is a risk factor for chronic diseases such as coronary heart disease, stroke, diabetes, as well as premature mortality. Furthermore, PTSD is associated with dysregulated immune function. Despite the high prevalence of PTSD, the mechanisms underlying its etiology and manifestations remain poorly understood. Compelling evidence indicates that the human gut microbiome, a complex community of microorganisms living in the gastrointestinal tract, plays a crucial role in the development and function of the host nervous system, complex behaviors, and brain circuits. The gut microbiome may contribute to PTSD by influencing inflammation, stress responses, and neurotransmitter signaling, while bidirectional communication between the gut and brain involves mechanisms such as microbial metabolites, immune system activation, and the vagus nerve. In this literature review, we summarize recent findings on the role of the gut microbiome in PTSD in both human and animal studies. We discuss the methodological limitations of existing studies and suggest future research directions to further understand the role of the gut microbiome in PTSD.
Collapse
Affiliation(s)
- Shanlin Ke
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Center for Artificial Intelligence and Modeling, The Carl R. WoeseInstitute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
154
|
Horinouchi M, Hayashi T. Identification of "missing links" in C- and D-ring cleavage of steroids by Comamonas testosteroni TA441. Appl Environ Microbiol 2023; 89:e0105023. [PMID: 37815342 PMCID: PMC10654042 DOI: 10.1128/aem.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 10/11/2023] Open
Abstract
Comamonas testosteroni TA441 is capable of aerobically degrading steroids through the aromatization and cleavage of the A- and B-rings, followed by D- and C-ring cleavage via β-oxidation. While most of the degradation steps have been previously characterized, a few intermediate compounds remained unidentified. In this study, we proposed that the cleavage of the D-ring at C13-17 required the ScdY hydratase, followed by C-ring cleavage via the ScdL1L2 transferase. The anticipated reaction was expected to yield 6-methyl-3,7-dioxo-decane-1,10-dioic acid-coenzyme A (CoA) ester. To confirm this hypothesis, we constructed a plasmid enabling the induction of targeted genes in TA441 mutant strains. Induction experiments of ScdL1L2 revealed that the major product was 3-hydroxy-6-methyl-7-oxo-decane-1,10-dioic acid-CoA ester. Similarly, induction experiments of ScdY demonstrated that the substrate of ScdY was a geminal diol, 17-dihydroxy-9-oxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid-CoA ester. These findings suggest that ScdY catalyzes the addition of a water molecule at C14 of 17-dihydroxy-9-oxo-1,2,3,4,5,6,10,19-octanorandrost-8(14)-en-7-oic acid-CoA ester, leading to D-ring cleavage at C13-17. Subsequently, the C9 ketone of the D-ring cleavage product is converted to a hydroxyl group, followed by C-ring cleavage, resulting in the production of 3-hydroxy-6-methyl-7-oxo-decane-1,10-dioic acid-CoA ester.IMPORTANCEStudies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain substrates for steroid drugs. In recent years, the role of steroid-degrading bacteria in relation to human health has gained significant attention, as emerging evidence suggests that the intestinal microflora plays a crucial role in human health. Furthermore, cholic acid, a major component of bile acid secreted in the intestines, is closely associated with the gut microbiota. While Comamonas testosteroni TA441 is recognized as the leading bacterial model for aerobic steroid degradation, the involvement of aerobic steroid degradation in the intestinal microflora remains largely unexplored. Nonetheless, the presence of C. testosteroni in the cecum suggests the potential influence of aerobic steroid degradation on gut microbiota. To establish essential information about the role of these bacteria, here, we identified the missing compounds and propose more details of C-, and D-ring cleavage, which have remained unclear until now.
Collapse
Affiliation(s)
- Masae Horinouchi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
- Surface and Interface Science Laboratory, RIKEN, Saitama, Japan
| | - Toshiaki Hayashi
- Environmental Molecular Biology Laboratory, RIKEN, Saitama, Japan
| |
Collapse
|
155
|
López-Zamora M, Cano-Villagrasa A, Cortés-Ramos A, Porcar-Gozalbo N. The Influence of Sleep Disorders on Neurobiological Structures and Cognitive Processes in Pediatric Population with ASD and Epilepsy: A Systematic Review. Eur J Investig Health Psychol Educ 2023; 13:2358-2372. [PMID: 37998056 PMCID: PMC10670909 DOI: 10.3390/ejihpe13110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Autism Spectrum Disorder (ASD) and epilepsy are increasingly prevalent comorbidities in our society. These two disorders are often accompanied by other comorbidities, such as sleep disorders, significantly impacting the quality of life of individuals with ASD and epilepsy. To date, clinical approaches have primarily been descriptive in nature. Therefore, this study aimed to analyze the relationship between ASD, epilepsy, and sleep disorders, exploring neurobiological dysfunctions and cognitive alterations. A total of 22 scientific articles were selected using a systematic literature review following the criteria established using the PRISMA model. The selected articles were gathered from major databases: Medline, PubMed, PsycINFO, Google Scholar, and Web of Science. Inclusion criteria specified that study participants had an official diagnosis of ASD, the article precisely described the evaluation parameters used in the study participants, and individual characteristics of the sleep disorders of the study participants were specified. The results indicate, firstly, that the primary cause of sleep disorders in this population is directly linked to abnormal serotonin behaviors. Secondly, significant alterations in memory, attention, and hyperactivity were observed. In conclusion, sleep disorders negatively impact the quality of life and neurocognitive development of the pediatric population with ASD and epilepsy.
Collapse
Affiliation(s)
- Miguel López-Zamora
- Department of Developmental and Educational Psychology, University of Malaga, 29010 Malaga, Spain;
| | - Alejandro Cano-Villagrasa
- Faculty of Health Sciences, Universidad Internacional de Valencia, 46002 Valencia, Spain;
- Health Sciences PhD Program, Universidad Católica de Murcia UCAM, Campus de los Jerónimos n°135, Guadalupe, 30107 Murcia, Spain
| | - Antonio Cortés-Ramos
- Department of Developmental and Educational Psychology, Faculty of Educational and Sports Sciences of Melilla, University of Granada, 18071 Granada, Spain;
| | - Nadia Porcar-Gozalbo
- Faculty of Health Sciences, Universidad Internacional de Valencia, 46002 Valencia, Spain;
| |
Collapse
|
156
|
Arabi TZ, Alabdulqader AA, Sabbah BN, Ouban A. Brain-inhabiting bacteria and neurodegenerative diseases: the "brain microbiome" theory. Front Aging Neurosci 2023; 15:1240945. [PMID: 37927338 PMCID: PMC10620799 DOI: 10.3389/fnagi.2023.1240945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Controversies surrounding the validity of the toxic proteinopathy theory of Alzheimer's disease have led the scientific community to seek alternative theories in the pathogenesis of neurodegenerative disorders (ND). Recent studies have provided evidence of a microbiome in the central nervous system. Some have hypothesized that brain-inhabiting organisms induce chronic neuroinflammation, leading to the development of a spectrum of NDs. Bacteria such as Chlamydia pneumoniae, Helicobacter pylori, and Cutibacterium acnes have been found to inhabit the brains of ND patients. Furthermore, several fungi, including Candida and Malassezia species, have been identified in the central nervous system of these patients. However, there remains several limitations to the brain microbiome hypothesis. Varying results across the literature, concerns regarding sample contamination, and the presence of exogenous deoxyribonucleic acids have led to doubts about the hypothesis. These results provide valuable insight into the pathogenesis of NDs. Herein, we provide a review of the evidence for and against the brain microbiome theory and describe the difficulties facing the hypothesis. Additionally, we define possible mechanisms of bacterial invasion of the brain and organism-related neurodegeneration in NDs and the potential therapeutic premises of this theory.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
157
|
Iimura S, Takasugi S, Yasuda M, Saito Y, Morifuji M. Interactions between environmental sensitivity and gut microbiota are associated with biomarkers of stress-related psychiatric symptoms. J Affect Disord 2023; 339:136-144. [PMID: 37437719 DOI: 10.1016/j.jad.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Humans vary in their sensitivity to stressful and supportive environments and experiences. Such individual differences in environmental sensitivity are associated with mechanisms of stress-related psychiatric symptoms. In recent years, researchers have focused on bidirectional interactions in the brain-gut-microbiota axis as a neurophysiological pathway contributing to the mechanisms of stress-related psychiatric symptoms, and evidence is rapidly accumulating. METHODS Data on environmental sensitivity, gut microbiota, gut permeability (lipopolysaccharide-binding protein; LBP) and inflammation (C-reactive protein; CRP) were collected from 90 adults (50 % female; Mage = 42.1; SDage = 10.0). Environmental sensitivity was measured using a self-report questionnaire. Study participants' feces were analyzed, and observed operational taxonomic units for richness, Shannon's index for evenness, and phylogenetic diversity for biodiversity were evaluated as indicators of gut microbiota. In addition, participants' serum was analyzed for CRP and LBP. We investigated whether the interaction between environmental sensitivity and gut microbiota is associated with biomarkers of inflammation and gut permeability. RESULTS The interaction between environmental sensitivity and gut microbiota (excluding the Shannon's index) explained the levels of these biomarkers. Individuals with high environmental sensitivity displayed higher levels of CRP and LBP, when the richness and diversity of the gut microbiota was low. However, even highly susceptible individuals had lower levels of CRP and LBP, when the richness and diversity of the gut microbiota was high. CONCLUSIONS Our study indicates that high environmental sensitivity can be a risk factor for inflammation and gut permeability, when the gut microbiota diversity is low, suggesting a brain-gut-microbiota axis interaction.
Collapse
|
158
|
Di Lauro M, Guerriero C, Cornali K, Albanese M, Costacurta M, Mercuri NB, Di Daniele N, Noce A. Linking Migraine to Gut Dysbiosis and Chronic Non-Communicable Diseases. Nutrients 2023; 15:4327. [PMID: 37892403 PMCID: PMC10609600 DOI: 10.3390/nu15204327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
In the world, migraine is one of the most common causes of disability in adults. To date, there is no a single cause for this disorder, but rather a set of physio-pathogenic triggers in combination with a genetic predisposition. Among the factors related to migraine onset, a crucial role seems to be played by gut dysbiosis. In fact, it has been demonstrated how the intestine is able to modulate the central nervous system activities, through the gut-brain axis, and how gut dysbiosis can influence neurological pathologies, including migraine attacks. In this context, in addition to conventional pharmacological treatments for migraine, attention has been paid to an adjuvant therapeutic strategy based on different nutritional approaches and lifestyle changes able to positively modulate the gut microbiota composition. In fact, the restoration of the balance between the different gut bacterial species, the reconstruction of the gut barrier integrity, and the control of the release of gut-derived inflammatory neuropeptides, obtained through specific nutritional patterns and lifestyle changes, represent a possible beneficial additive therapy for many migraine subtypes. Herein, this review explores the bi-directional correlation between migraine and the main chronic non-communicable diseases, such as diabetes mellitus, arterial hypertension, obesity, cancer, and chronic kidney diseases, whose link is represented by gut dysbiosis.
Collapse
Affiliation(s)
- Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Cristina Guerriero
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
| | - Maria Albanese
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Micaela Costacurta
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, RM, Italy;
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Neurology Unit, Headache Center, Tor Vergata University Hospital, 00133 Rome, RM, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, PD, Italy
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, RM, Italy; (M.D.L.); (C.G.); (K.C.); (M.A.); (N.B.M.); (N.D.D.)
- UOSD Nephrology and Dialysis, Policlinico Tor Vergata, 00133 Rome, RM, Italy
| |
Collapse
|
159
|
Beharry KD, Latkowska M, Valencia AM, Allana A, Soto J, Cai CL, Golombek S, Hand I, Aranda JV. Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms 2023; 11:2528. [PMID: 37894186 PMCID: PMC10608807 DOI: 10.3390/microorganisms11102528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Maturational changes in the gut start in utero and rapidly progress after birth, with some functions becoming fully developed several months or years post birth including the acquisition of a full gut microbiome, which is made up of trillions of bacteria of thousands of species. Many factors influence the normal development of the neonatal and infantile microbiome, resulting in dysbiosis, which is associated with various interventions used for neonatal morbidities and survival. Extremely low gestational age neonates (<28 weeks' gestation) frequently experience recurring arterial oxygen desaturations, or apneas, during the first few weeks of life. Apnea, or the cessation of breathing lasting 15-20 s or more, occurs due to immature respiratory control and is commonly associated with intermittent hypoxia (IH). Chronic IH induces oxygen radical diseases of the neonate, including necrotizing enterocolitis (NEC), the most common and devastating gastrointestinal disease in preterm infants. NEC is associated with an immature intestinal structure and function and involves dysbiosis of the gut microbiome, inflammation, and necrosis of the intestinal mucosal layer. This review describes the factors that influence the neonatal gut microbiome and dysbiosis, which predispose preterm infants to NEC. Current and future management and therapies, including the avoidance of dysbiosis, the use of a human milk diet, probiotics, prebiotics, synbiotics, restricted antibiotics, and fecal transplantation, for the prevention of NEC and the promotion of a healthy gut microbiome are also reviewed. Interventions directed at boosting endogenous and/or exogenous antioxidant supplementation may not only help with prevention, but may also lessen the severity or shorten the course of the disease.
Collapse
Affiliation(s)
- Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Magdalena Latkowska
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Arwin M. Valencia
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Saddleback Memorial Medical Center, Laguna Hills, CA 92653, USA;
| | - Ahreen Allana
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Jatnna Soto
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.A.); (J.S.)
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Sergio Golombek
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| | - Ivan Hand
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Kings County Hospital Center, Brooklyn, NY 11203, USA;
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA; (M.L.); (C.L.C.); (S.G.); (J.V.A.)
| |
Collapse
|
160
|
Dehghani F, Abdollahi S, Shidfar F, Clark CCT, Soltani S. Probiotics supplementation and brain-derived neurotrophic factor (BDNF): a systematic review and meta-analysis of randomized controlled trials. Nutr Neurosci 2023; 26:942-952. [PMID: 35996352 DOI: 10.1080/1028415x.2022.2110664] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS An emerging body of evidence has demonstrated the beneficial effects of probiotics on various mental health conditions. In this systematic review and meta-analysis, we sought to examine the effects of probiotics supplementation on brain-derived neurotrophic factor (BDNF) in adults. METHODS PubMed, Scopus, ISI Web of Science, and the Cochrane Library were searched, from database inception to April 2021, for eligible randomized controlled trials (RCTs). We pooled mean differences and standard deviations from RCTs using random-effect models. RESULTS Overall, meta-analysis of 11 trials (n = 648 participants) showed no significant changes in serum level of BDNF following probiotics. However, subgroup analysis revealed that probiotics increased BDNF levels in individuals suffering from neurological disorders (n = 214 participants; WMD = 3.08 ng/mL, 95% CI: 1.83, 4.34; P = 0.001; I2 = 7.5%; P-heterogeneity 0.34), or depression (n = 268 participants; WMD = 0.77 ng/mL, 95% CI: 0.07, 1.47; P = 0.032; I2 = 88.4%; P-heterogeneity < 0.001). Furthermore, a significant increase in BDNF levels was found in studies that administered the mixture of Lactobacillus and Bifidobacterium genera, and were conducted in Asia . CONCLUSION Our main findings suggest that probiotics may be effective in elevating BDNF levels in patients with depression and neurological disorders, and a mixed of Lactobacillus and Bifidobacterium appear to show greater efficacy than the single genus supplement. The low quality of evidence reduces clinical advocacy, and indicates that more large-scale, high-quality, RCTs are needed to facilitate reliable conclusions.
Collapse
Affiliation(s)
- Fereshteh Dehghani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzad Shidfar
- Department of nutrition, School of public health, Iran University of Medical Sciences, Teharn, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
161
|
Wan C, Kong X, Liao Y, Chen Q, Chen M, Ding Q, Liu X, Zhong W, Xu C, Liu W, Wang B. Bibliometric analysis of the 100 most-cited papers about the role of gut microbiota in irritable bowel syndrome from 2000 to 2021. Clin Exp Med 2023; 23:2759-2772. [PMID: 36522553 DOI: 10.1007/s10238-022-00971-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
AIM Over the last few decades, gut microbiota research has been the focus of intense research and this field has become particularly important. This research aimed to provide a quantitative evaluation of the 100 most-cited articles on gut microbiota and IBS and highlight the most important advances in this field. METHODS The database Web of Science Core Collection was used to download the bibliometric information the top 100 most-cited papers. Microsoft Excel 2021, CiteSpace, VOSviewer, R software, and an online analytical platform ( https://bibliometric.com/ ) were was applied to perform bibliometric analysis of these papers. RESULTS The total citation frequency in the top 100 article ranged from 274 to 2324, with an average citation of 556.57. A total of 24 countries/regions made contributions to the top 100 cited papers, and USA, Ireland, and China were the most top three productive countries. Cryan JF was the most frequently nominated author, and of the top 100 articles, 20 listed his name. Top-cited papers mainly came from the Gastroenterology (n = 13, citations = 6373) and Gut (n = 9, citations = 3903). There was a significant citation path, indicating publications in molecular/biology/immunology primarily cited journals in molecular/biology/genetics fields. Keywords analysis suggested that the main topics on gut microbiota and IBS were mechanisms of microbiome in brain-gut axis." Behavior" was the keyword with the strongest burst strength (2.36), followed by "anxiety like behavior" (2.24), "intestinal microbiota" (2.19), and "chain fatty acid" (1.99), and "maternal separation" (1.95). CONCLUSION This study identified and provided the bibliometric information of the top 100 cited publications related to gut microbiota and IBS. The results provided a general overview of this topic and might help researchers to better understand the evolution, Influential findings and hotspots in researching gut microbiota and IBS, thus providing new perspectives and novel research ideas in this specific area.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiangxu Kong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Yusheng Liao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Qiuyu Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengshi Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Qian Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiaotong Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, No. 190, Jieyuan Road, Hongqiao District, Tianjin, 300121, China.
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
162
|
Tao Q, Zhang ZD, Lu XR, Qin Z, Liu XW, Li SH, Bai LX, Ge BW, Li JY, Yang YJ. Multi-omics reveals aspirin eugenol ester alleviates neurological disease. Biomed Pharmacother 2023; 166:115311. [PMID: 37572635 DOI: 10.1016/j.biopha.2023.115311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS In conclusion, AEE could play positive effects on neurological-related diseases.
Collapse
Affiliation(s)
- Qi Tao
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Li-Xia Bai
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Bo-Wen Ge
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
163
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
164
|
Xiang X, Vilar Gomez AA, Blomberg SP, Yuan H, Degnan BM, Degnan SM. Potential for host-symbiont communication via neurotransmitters and neuromodulators in an aneural animal, the marine sponge Amphimedon queenslandica. Front Neural Circuits 2023; 17:1250694. [PMID: 37841893 PMCID: PMC10570526 DOI: 10.3389/fncir.2023.1250694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Interkingdom signalling within a holobiont allows host and symbionts to communicate and to regulate each other's physiological and developmental states. Here we show that a suite of signalling molecules that function as neurotransmitters and neuromodulators in most animals with nervous systems, specifically dopamine and trace amines, are produced exclusively by the bacterial symbionts of the demosponge Amphimedon queenslandica. Although sponges do not possess a nervous system, A. queenslandica expresses rhodopsin class G-protein-coupled receptors that are structurally similar to dopamine and trace amine receptors. When sponge larvae, which express these receptors, are exposed to agonists and antagonists of bilaterian dopamine and trace amine receptors, we observe marked changes in larval phototactic swimming behaviour, consistent with the sponge being competent to recognise and respond to symbiont-derived trace amine signals. These results indicate that monoamines synthesised by bacterial symbionts may be able to influence the physiology of the host sponge.
Collapse
Affiliation(s)
| | | | | | | | | | - Sandie M. Degnan
- Centre for Marine Science, School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
165
|
Matiș L, Alexandru BA, Ghitea TC. Catecholamine Variations in Pediatric Gastrointestinal Disorders and Their Neuropsychiatric Expression. Biomedicines 2023; 11:2600. [PMID: 37892974 PMCID: PMC10604142 DOI: 10.3390/biomedicines11102600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The interplay between the central nervous system and the intestinal environment hinges on neural, hormonal, immune, and metabolic reactions. Over decades, significant effort has gone into exploring the link between the digestive system and the brain. The primary objective of this study is to assess catecholamine levels in children with neuropsychiatric disorders. We aim to examine how these levels impact the mental and physical wellbeing of these children, with a specific focus on psychoemotional symptoms and cognitive performance. Our research seeks to identify the significance of modifying neurotransmitter levels in pediatric medical interventions, ultimately striving to reduce mental health risks and enhance children's future development. A total of 135 individuals were chosen to partake, and they engaged in regular monthly consultations according to established study protocols. Clinical evaluations were conducted in a medical environment, encompassing the observation of constipation, diarrhea, and additional gastrointestinal anomalies not confined to constipation or diarrhea. This entailed the assessment of neurotransmitter imbalances, with a specific focus on dopamine, adrenaline, noradrenaline, and the noradrenaline/adrenaline ratio. Gastrointestinal disorders are indicative of imbalances in catecholamines, with lower gastrointestinal problems being correlated with such imbalances. In subjects with psychiatric disorders, a more pronounced dopamine and noradrenaline/adrenaline ratio was observed, while elevated adrenaline levels were associated with psychoanxiety disorders.
Collapse
|
166
|
Yang Y, Wang J, Zhang C, Guo Y, Zhao M, Zhang M, Li Z, Gao F, Luo Y, Wang Y, Cao J, Du M, Wang Y, Lin X, Xu Z. The efficacy and neural mechanism of acupuncture therapy in the treatment of visceral hypersensitivity in irritable bowel syndrome. Front Neurosci 2023; 17:1251470. [PMID: 37732301 PMCID: PMC10507180 DOI: 10.3389/fnins.2023.1251470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Irritable Bowel Syndrome (IBS) is a complex functional gastrointestinal disorder primarily characterized by chronic abdominal pain, bloating, and altered bowel habits. Chronic abdominal pain caused by visceral Hypersensitivity (VH) is the main reason why patients with IBS seek medication. Significant research effort has been devoted to the efficacy of acupuncture as a non-drug alternative therapy for visceral-hyperalgesia-induced IBS. Herein, we examined the central and peripheral analgesic mechanisms of acupuncture in IBS treatment. Acupuncture can improve inflammation and relieve pain by reducing 5-hydroxytryptamine and 5-HT3A receptor expression and increasing 5-HT4 receptor expression in peripheral intestinal sensory endings. Moreover, acupuncture can also activate the transient receptor potential vanillin 1 channel, block the activity of intestinal glial cells, and reduce the secretion of local pain-related neurotransmitters, thereby weakening peripheral sensitization. Moreover, by inhibiting the activation of N-methyl-D-aspartate receptor ion channels in the dorsal horn of the spinal cord and anterior cingulate cortex or releasing opioids, acupuncture can block excessive stimulation of abnormal pain signals in the brain and spinal cord. It can also stimulate glial cells (through the P2X7 and prokinetic protein pathways) to block VH pain perception and cognition. Furthermore, acupuncture can regulate the emotional components of IBS by targeting hypothalamic-pituitary-adrenal axis-related hormones and neurotransmitters via relevant brain nuclei, hence improving the IBS-induced VH response. These findings provide a scientific basis for acupuncture as an effective clinical adjuvant therapy for IBS pain.
Collapse
Affiliation(s)
- Yuanzhen Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaoyang Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Meidan Zhao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Man Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongzheng Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feifei Gao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Luo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiru Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junyi Cao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingfang Du
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuzhe Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin, China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
167
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
168
|
Chen W, Song J, Cheng Y, Jia B, He Y, Yu L, Yu G, Wang Y. Changes in gut microbiota and cytokines following laparoscopic sleeve gastrectomy are associated with cognitive function improvement. Heliyon 2023; 9:e19245. [PMID: 37810155 PMCID: PMC10558312 DOI: 10.1016/j.heliyon.2023.e19245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/28/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Variations of cytokines and gut microbiota diversity with improved cognitive function in patients with obesity following bariatric surgery were poorly understood. The aim of this study was to testify the relationship among gut microbiota, cytokines and cognitive function in patients with obesity before and after laparoscopic sleeve gastrectomy (LSG). Methods Forty patients were enrolled in this study. Demographics, and serum and stool specimens were collected from all patients before and 3 months after LSG. The Montreal Cognitive Assessment (MoCA) scale, as well as assessment of immediate and delayed memory were used to evaluate self-perceived cognitive improvement after LSG. Results LSG resulted in significant weight loss and improvement in cognitive functions, as measured by questionnaires. Bariatric surgery tended to increase gut microbiota relative abundance and diversity. The intestinal flora increased in the proportion of Bacteroidetes and Fusobacteria phyla, and decreased in the proportion of Firmicutes, Proteobacteria, and Actinobacteria phyla after LSG. Plasma IL-1β and TNF-α levels were significantly decreased following LSG, while IL-4 was significantly increased. MoCA test scores were significant correlated with IL-4, TNF-α and IL-1β. In addition, Firmicutes had a positive correlation with TNF-α, while Fuscobacteria had a negative correlation with IL-1β. Bacteroidetes was negatively correlated with IL-4. Conclusion Changes in gut microbiota were positive relationship with cognitive function improvement following LSG. Inflammation cytokines maybe played as a mediator between gut microbiota and cognitive function through gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Wanjing Chen
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Jiahong Song
- Graduate School of Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei City, Anhui Province, 230032, China
| | - Yunsheng Cheng
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Benli Jia
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Yawei He
- Graduate School of Anhui Medical University, No. 81 Meishan Road, Shushan District, Hefei City, Anhui Province, 230032, China
| | - Liang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Gang Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| | - Yong Wang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University. No.678 Furong Road, Economic and Technological Development District, Hefei City, Anhui Province, 230601, China
| |
Collapse
|
169
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
170
|
Shi R, Huang C, Gao Y, Li X, Zhang C, Li M. Gut microbiota axis: potential target of phytochemicals from plant-based foods. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
171
|
Santos FP, Carvalhos CA, Figueiredo-Dias M. New Insights into Photobiomodulation of the Vaginal Microbiome-A Critical Review. Int J Mol Sci 2023; 24:13507. [PMID: 37686314 PMCID: PMC10487748 DOI: 10.3390/ijms241713507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The development of new technologies such as sequencing has greatly enhanced our understanding of the human microbiome. The interactions between the human microbiome and the development of several diseases have been the subject of recent research. In-depth knowledge about the vaginal microbiome (VMB) has shown that dysbiosis is closely related to the development of gynecologic and obstetric disorders. To date, the progress in treating or modulating the VMB has lagged far behind research efforts. Photobiomodulation (PBM) uses low levels of light, usually red or near-infrared, to treat a diversity of conditions. Several studies have demonstrated that PBM can control the microbiome and improve the activity of the immune system. In recent years, increasing attention has been paid to the microbiome, mostly to the gut microbiome and its connections with many diseases, such as metabolic disorders, obesity, cardiovascular disorders, autoimmunity, and neurological disorders. The applicability of PBM therapeutics to treat gut dysbiosis has been studied, with promising results. The possible cellular and molecular effects of PBM on the vaginal microbiome constitute a theoretical and promising field that is starting to take its first steps. In this review, we will discuss the potential mechanisms and effects of photobiomodulation in the VMB.
Collapse
Affiliation(s)
- Fernanda P. Santos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| | - Carlota A. Carvalhos
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
| | - Margarida Figueiredo-Dias
- Faculty of Medicine, Gynecology University Clinic, University of Coimbra, 3000-548 Coimbra, Portugal; (C.A.C.); (M.F.-D.)
- Clinical and Academic Centre of Coimbra, 3004-531 Coimbra, Portugal
- Gynecology Department, Coimbra Hospital and University Center, 3004-561 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3001-301 Coimbra, Portugal
| |
Collapse
|
172
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
173
|
Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr 2023; 43:225-250. [PMID: 37207358 DOI: 10.1146/annurev-nutr-061121-090535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Modernization of society from a rural, hunter-gatherer setting into an urban and industrial habitat, with the associated dietary changes, has led to an increased prevalence of cardiometabolic and additional noncommunicable diseases, such as cancer, inflammatory bowel disease, and neurodegenerative and autoimmune disorders. However, while dietary sciences have been rapidly evolving to meet these challenges, validation and translation of experimental results into clinical practice remain limited for multiple reasons, including inherent ethnic, gender, and cultural interindividual variability, among other methodological, dietary reporting-related, and analytical issues. Recently, large clinical cohorts with artificial intelligence analytics have introduced new precision and personalized nutrition concepts that enable one to successfully bridge these gaps in a real-life setting. In this review, we highlight selected examples of case studies at the intersection between diet-disease research and artificial intelligence. We discuss their potential and challenges and offer an outlook toward the transformation of dietary sciences into individualized clinical translation.
Collapse
Affiliation(s)
- Yotam Cohen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Rafael Valdés-Mas
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel;
- Division of Microbiome & Cancer, National German Cancer Research Center (DKFZ), Heidelberg, Germany;
| |
Collapse
|
174
|
Benameur T, Porro C, Twfieg ME, Benameur N, Panaro MA, Filannino FM, Hasan A. Emerging Paradigms in Inflammatory Disease Management: Exploring Bioactive Compounds and the Gut Microbiota. Brain Sci 2023; 13:1226. [PMID: 37626582 PMCID: PMC10452544 DOI: 10.3390/brainsci13081226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The human gut microbiota is a complex ecosystem of mutualistic microorganisms that play a critical role in maintaining human health through their individual interactions and with the host. The normal gastrointestinal microbiota plays a specific physiological function in host immunomodulation, nutrient metabolism, vitamin synthesis, xenobiotic and drug metabolism, maintenance of structural and functional integrity of the gut mucosal barrier, and protection against various pathogens. Inflammation is the innate immune response of living tissues to injury and damage caused by infections, physical and chemical trauma, immunological factors, and genetic derangements. Most diseases are associated with an underlying inflammatory process, with inflammation mediated through the contribution of active immune cells. Current strategies to control inflammatory pathways include pharmaceutical drugs, lifestyle, and dietary changes. However, this remains insufficient. Bioactive compounds (BCs) are nutritional constituents found in small quantities in food and plant extracts that provide numerous health benefits beyond their nutritional value. BCs are known for their antioxidant, antimicrobial, anticarcinogenic, anti-metabolic syndrome, and anti-inflammatory properties. Bioactive compounds have been shown to reduce the destructive effect of inflammation on tissues by inhibiting or modulating the effects of inflammatory mediators, offering hope for patients suffering from chronic inflammatory disorders like atherosclerosis, arthritis, inflammatory bowel diseases, and neurodegenerative diseases. The aim of the present review is to summarise the role of natural bioactive compounds in modulating inflammation and protecting human health, for their safety to preserve gut microbiota and improve their physiology and behaviour.
Collapse
Affiliation(s)
- Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mohammed-Elfatih Twfieg
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nassima Benameur
- Faculty of Exact Sciences and Sciences of Nature and Life, Research Laboratory of Civil Engineering, Hydraulics, Sustainable Development and Environment (LARGHYDE), Mohamed Khider University, Biskra 07000, Algeria
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy
| | | | - Abeir Hasan
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
175
|
Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023; 18:e0273890. [PMID: 37594987 PMCID: PMC10437823 DOI: 10.1371/journal.pone.0273890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is an increasingly prevalent neuropsychiatric disorder characterized by hyperactivity, inattention, and impulsivity. Symptoms emerge from underlying deficiencies in neurocircuitry, and recent research has suggested a role played by the gut microbiome. The gut microbiome is an ecosystem of interdependent taxa involved in an exponentially complex web of interactions, plus host gene and reaction pathways, some of which involve neurotransmitters with roles in ADHD neurocircuitry. Studies have analyzed the ADHD gut microbiome using macroscale metrics such as diversity and differential abundance, and have proposed several taxa as elevated or reduced in ADHD compared to Control. Few studies have delved into the complex underlying dynamics ultimately responsible for the emergence of such metrics, leaving a largely incomplete, sometimes contradictory, and ultimately inconclusive picture. We aim to help complete this picture by venturing beyond taxa abundances and into taxa relationships (i.e. cooperation and competition), using a publicly available gut microbiome dataset (targeted 16S, v3-4 region, qPCR) from an observational, case-control study of 30 Control (15 female, 15 male) and 28 ADHD (15 female, 13 male) undergraduate students. We first perform the same macroscale analyses prevalent in ADHD gut microbiome literature (diversity, differential abundance, and composition) to observe the degree of correspondence, or any new trends. We then estimate two-way ecological relationships by producing Control and ADHD Microbial Co-occurrence Networks (MCNs), using SparCC correlations (p ≤ 0.01). We perform community detection to find clusters of taxa estimated to mutually cooperate along with their centroids, and centrality calculations to estimate taxa most vital to overall gut ecology. We finally summarize our results, providing conjectures on how they can guide future experiments, some methods for improving our experiments, and general implications for the field.
Collapse
Affiliation(s)
- Trevor Cickovski
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL United States of America
- Biomolecular Sciences Institute, Florida International University, Miami, FL, United States of America
| | - Gloria Aguirre
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Gorakh Tatke
- Department of Biological Sciences, College of Arts, Sciences and Education, Florida International University, Miami, FL, United States of America
| | - Alejandro Hermida
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| | - Giri Narasimhan
- Bioinformatics Research Group (BioRG), Knight Foundation School of Computing and Information Sciences, Florida International University, Miami, FL, United States of America
| | - Melanie Stollstorff
- Cognitive Neuroscience Laboratory, Department of Psychology, Florida International University, Miami, FL, United States of America
| |
Collapse
|
176
|
Kappéter Á, Sipos D, Varga A, Vigvári S, Halda-Kiss B, Péterfi Z. Migraine as a Disease Associated with Dysbiosis and Possible Therapy with Fecal Microbiota Transplantation. Microorganisms 2023; 11:2083. [PMID: 37630643 PMCID: PMC10458656 DOI: 10.3390/microorganisms11082083] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Migraine is a painful neurological condition characterized by severe pain on one or both sides of the head. It may be linked to changes in the gut microbiota, which are influenced by antibiotic use and other factors. Dysbiosis, which develops and persists as a result of earlier antibiotic therapy, changes the composition of the intestinal flora, and can lead to the development of various diseases such as metabolic disorders, obesity, hematological malignancies, neurological or behavioral disorders, and migraine. Metabolites produced by the gut microbiome have been shown to influence the gut-brain axis. The use of probiotics as a dietary supplement may reduce the number and severity of migraine episodes. Dietary strategies can affect the course of migraines and are a valuable tool for improving migraine management. With fecal microbiota transplantation, gut microbial restoration is more effective and more durable. Changes after fecal microbiota transplantation were studied in detail, and many data help us to interpret the successful interventions. The microbiological alteration of the gut microflora can lead to normalization of the inflammatory mediators, the serotonin pathway, and influence the frequency and intensity of migraine pain.
Collapse
Affiliation(s)
- Ágnes Kappéter
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Dávid Sipos
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Adorján Varga
- Department of Medical Microbiology and Immunology, University of Pecs Clinical Centre, H7624 Pécs, Hungary;
| | - Szabolcs Vigvári
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Bernadett Halda-Kiss
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| | - Zoltán Péterfi
- 1st Department of Internal Medicine, Department of Infectology, University of Pecs Clinical Centre, H7623 Pécs, Hungary; (Á.K.); (D.S.); (S.V.); (B.H.-K.)
| |
Collapse
|
177
|
Sun F, Chen X, Li Y, Zhao G, Gu X. Evaluation of Holstein cows with different tongue-rolling frequencies: stress immunity, rumen environment and general behavioural activity. J Anim Sci Biotechnol 2023; 14:104. [PMID: 37563681 PMCID: PMC10416447 DOI: 10.1186/s40104-023-00906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/12/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The tongue-rolling behaviour of cows is regarded as an outward sign of stressed animals in a low welfare status. The primary aim of this observational study was to evaluate the association between the frequency of tongue-rolling behaviour and its physiological function. The secondary aim was to explore the relationship between general activities and the frequency of tongue-rolling behaviour of cows. A total of 126 scan sampling behavioural observations were collected over 7 d on 348 Holstein cows with the same lactation stage in the same barn. The tongue-rolling frequency was defined as the number of tongue-rolling observations as a percentage to the total observations per individual cow. According to their tongue-rolling frequency, the cows were grouped into the CON (no tongue-rolling), LT (frequency 1%), MT (frequency 5%), and HT (frequency 10%) groups. Six cows from each group were randomly selected for sampling. Serum samples, rumen fluid, milk yield, and background information were collected. The general behaviour data during 72 continuous hours of dairy cows, including eating time, rumination time, food time (eating time + rumination time), and lying time, were recorded by the collar sensor. RESULTS Cortisol (P = 0.012), γ-hydroxybutyric acid (P = 0.008), epinephrine (P = 0.030), and dopamine (P = 0.047) levels were significantly higher in tongue-rolling groups than in the CON group. Cortisol levels and tongue-rolling frequency had a moderate positive correlation (linearly r = 0.363). With the increase in tongue-rolling frequency, the rumen pH decreased first and then increased (P = 0.013), comparing to the CON group. HT cows had significantly less food time than CON cows (P = 0.035). The frequency of tongue-rolling had a moderate negative relationship with rumination time (r = -0.384) and food time (r = -0.492). CONCLUSIONS The tongue-rolling behaviour is considered as a passive coping mechanism, as the stress response in cows with high tongue-rolling frequency increased. Food intake and rumination activities were all closely related to the occurrence of tongue-rolling behaviour.
Collapse
Affiliation(s)
- Fuyu Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Yongfeng Li
- Agricultural Information Institute, Chinese Academy of Agriculture Sciences, Haidian District, No.12 Zhongguancun South Street, Beijing, China
| | - Guangyong Zhao
- College of Animal Science and Technology, China Agricultural University, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian District, No.2 Yuanmingyuan West Road, Beijing, China.
| |
Collapse
|
178
|
Sun B, Sawant H, Borthakur A, Bihl JC. Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Front Neurosci 2023; 17:1241418. [PMID: 37621715 PMCID: PMC10445154 DOI: 10.3389/fnins.2023.1241418] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
Extracellular vesicles (EVs) serve as cell-to-cell and inter-organ communicators by conveying proteins and nucleic acids with regulatory functions. Emerging evidence shows that gut microbial-released EVs play a pivotal role in the gut-brain axis, bidirectional communication, and crosstalk between the gut and the brain. Increasing pre-clinical and clinical evidence suggests that gut bacteria-released EVs are capable of eliciting distinct signaling to the brain with the ability to cross the blood-brain barrier, exerting regulatory function on brain cells such as neurons, astrocytes, and microglia, via their abundant and diversified protein and nucleic acid cargo. Conversely, EVs derived from certain species of bacteria, particularly from gut commensals with probiotic properties, have recently been shown to confer distinct therapeutic effects on various neurological disorders. Thus, gut bacterial EVs may be both a cause of and therapy for neuropathological complications. This review marshals the basic, clinical, and translational studies that significantly contributed to our up-to-date knowledge of the therapeutic potential of gut microbial-derived EVs in treating neurological disorders, including strokes, Alzheimer's and Parkinson's disease, and dementia. The review also discusses the newer insights in recent studies focused on developing superior therapeutic microbial EVs via genetic manipulation and/or dietary intervention.
Collapse
Affiliation(s)
- Bowen Sun
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Harshal Sawant
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Alip Borthakur
- Departments of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ji Chen Bihl
- Departments of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
179
|
Ullah H, Arbab S, Tian Y, Liu CQ, Chen Y, Qijie L, Khan MIU, Hassan IU, Li K. The gut microbiota-brain axis in neurological disorder. Front Neurosci 2023; 17:1225875. [PMID: 37600019 PMCID: PMC10436500 DOI: 10.3389/fnins.2023.1225875] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
The gut microbiota (GM) plays an important role in the physiology and pathology of the host. Microbiota communicate with different organs of the organism by synthesizing hormones and regulating body activity. The interaction of the central nervous system (CNS) and gut signaling pathways includes chemical, neural immune and endocrine routes. Alteration or dysbiosis in the gut microbiota leads to different gastrointestinal tract disorders that ultimately impact host physiology because of the abnormal microbial metabolites that stimulate and trigger different physiologic reactions in the host body. Intestinal dysbiosis leads to a change in the bidirectional relationship between the CNS and GM, which is linked to the pathogenesis of neurodevelopmental and neurological disorders. Increasing preclinical and clinical studies/evidence indicate that gut microbes are a possible susceptibility factor for the progression of neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS) and autism spectrum disorder (ASD). In this review, we discuss the crucial connection between the gut microbiota and the central nervous system, the signaling pathways of multiple biological systems and the contribution of gut microbiota-related neurological disorders.
Collapse
Affiliation(s)
- Hanif Ullah
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yali Tian
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Chang-qing Liu
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuwen Chen
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Li Qijie
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Muhammad Inayat Ullah Khan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Mansehra, Mansehra, Pakistan
| | - Ka Li
- Department of Nursing, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
180
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
181
|
Moretti S, Schietroma I, Sberna G, Maggiorella MT, Sernicola L, Farcomeni S, Giovanetti M, Ciccozzi M, Borsetti A. HIV-1-Host Interaction in Gut-Associated Lymphoid Tissue (GALT): Effects on Local Environment and Comorbidities. Int J Mol Sci 2023; 24:12193. [PMID: 37569570 PMCID: PMC10418605 DOI: 10.3390/ijms241512193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
HIV-1 replication in the gastrointestinal (GI) tract causes severe CD4+ T-cell depletion and disruption of the protective epithelial barrier in the intestinal mucosa, causing microbial translocation, the main driver of inflammation and immune activation, even in people living with HIV (PLWH) taking antiretroviral drug therapy. The higher levels of HIV DNA in the gut compared to the blood highlight the importance of the gut as a viral reservoir. CD4+ T-cell subsets in the gut differ in phenotypic characteristics and differentiation status from the ones in other tissues or in peripheral blood, and little is still known about the mechanisms by which the persistence of HIV is maintained at this anatomical site. This review aims to describe the interaction with key subsets of CD4+ T cells in the intestinal mucosa targeted by HIV-1 and the role of gut microbiome and its metabolites in HIV-associated systemic inflammation and immune activation that are crucial in the pathogenesis of HIV infection and related comorbidities.
Collapse
Affiliation(s)
- Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Ivan Schietroma
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Giuseppe Sberna
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil;
- Sciences and Technologies for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00162 Rome, Italy; (S.M.); (I.S.); (G.S.); (M.T.M.); (L.S.); (S.F.)
| |
Collapse
|
182
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
183
|
Mahmoodi K, Kerick SE, Grigolini P, Franaszczuk PJ, West BJ. Complexity synchronization: a measure of interaction between the brain, heart and lungs. Sci Rep 2023; 13:11433. [PMID: 37454210 PMCID: PMC10349874 DOI: 10.1038/s41598-023-38622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Herein we address the measurable consequences of the network effect (NE) on time series generated by different parts of the brain, heart, and lung organ-networks (ONs), which are directly related to their inter-network and intra-network interactions. Moreover, these same physiologic ONs have been shown to generate crucial event (CE) time series, and herein are shown, using modified diffusion entropy analysis (MDEA) to have scaling indices with quasiperiodic changes in complexity, as measured by scaling indices, over time. Such time series are generated by different parts of the brain, heart, and lung ONs, and the results do not depend on the underlying coherence properties of the associated time series but demonstrate a generalized synchronization of complexity. This high-order synchrony among the scaling indices of EEG (brain), ECG (heart), and respiratory time series is governed by the quantitative interdependence of the multifractal behavior of the various physiological ONs' dynamics. This consequence of the NE opens the door for an entirely general characterization of the dynamics of complex networks in terms of complexity synchronization (CS) independently of the scientific, engineering, or technological context. CS is truly a transdisciplinary effect.
Collapse
Affiliation(s)
- Korosh Mahmoodi
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA.
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX, 76203, USA.
| | - Scott E Kerick
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
| | - Paolo Grigolini
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX, 76203, USA
| | - Piotr J Franaszczuk
- US Combat Capabilities Command, Army Research Laboratory, Aberdeen Proving Ground, MD, 21005, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Bruce J West
- Center for Nonlinear Science, University of North Texas, P.O. Box 311427, Denton, TX, 76203, USA
- Office of Research and Innovation, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
184
|
Zheng Y, Xu L, Zhang S, Liu Y, Ni J, Xiao G. Effect of a probiotic formula on gastrointestinal health, immune responses and metabolic health in adults with functional constipation or functional diarrhea. Front Nutr 2023; 10:1196625. [PMID: 37497057 PMCID: PMC10368241 DOI: 10.3389/fnut.2023.1196625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023] Open
Abstract
Objective Our aim was to determine the efficacy of four-week probiotic supplementation on gastrointestinal health. The secondary objectives were to assess probiotic effects on immune reaction, as well as weight control and metabolic health. Methods We conducted two randomized sub-trials, respectively, among subjects who were diagnosed with functional constipation (FC) or functional diarrhea (FDr) according to the Rome IV criteria. In each sub-trial, 70 eligible Chinese adults were randomized to receive a multi-strain probiotic combination or a placebo. Gastrointestinal symptoms, defecation habits, stool characteristics, blood and fecal biochemistry markers, anthropometrics measures, stress-associated responses, and intestinal flora changes were assessed at baseline and after probiotics intervention. Results Four weeks of probiotic supplementation reduced overall gastrointestinal symptoms scores in FC participants (p < 0.0001). Their mean weekly stool frequency increased from 3.3 times to 6.2 times; immune response and inflammation markers improved with increases in serum IgA, IFN-γ and fecal sIgA, and decrease in hsCRP; most components of lipid profile were significantly ameliorated, with increases in HDL-C and reductions in TC and TG; body weight, body mass index and basal metabolic rate decreased following probiotics consumption. For FDr participants, probiotics consumption markedly reduced overall gastrointestinal symptom scores (p < 0.0001); decreased stool frequency by 3 times per week; increased IgA, IFN-γ, sIgA concentrations, while lowered hsCRP and IL-4 levels. Both FC and FDr participants had improvement in the scores of defecation habits, anxiety or depression, and perceived stress. Probiotics supplementation promoted the production of all three major short-chain fatty acids. No changes were observed in LDL-C, IgG, IgM, IL-8, IL-10 and motilin. Conclusion Supplementation with the probiotic formula over a four-week period could help relieving gastrointestinal symptoms, improving satisfaction with defecation habits, emotional state and immune response, and ameliorating dysbacteriosis in participants with FC or FDr. It also had beneficial effects on lipid metabolism and weight control for FC participants.
Collapse
Affiliation(s)
- Yanyi Zheng
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Leiming Xu
- Department of Gastroenterology, Shanghai Jiaotong University Affiliated Xinhua Hospital, Shanghai, China
| | - Silu Zhang
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| | - Yanwen Liu
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jiayi Ni
- Sprim (China) Consulting Co. Ltd., Shanghai, China
| | - Guoxun Xiao
- Shenzhen Precision Health Food Technology Co., Ltd., Shenzhen, China
| |
Collapse
|
185
|
Huang Y, Hong Y, Wu S, Yang X, Huang Q, Dong Y, Xu D, Huang Z. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163481. [PMID: 37068676 DOI: 10.1016/j.scitotenv.2023.163481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
The present study investigated the toxic effects of IMI on brain and gut of zebrafish (Danio rerio) by a combination of transcriptome and microbiome analysis. In addition, the involvement of light/dark period was also evaluated. An acute toxic test was conducted on adult zebrafish weighing 0.45 ± 0.02 g with 4 experimental groups (n = 15): 1) IMI group (Light: Dark = 12: 12 h), 2) prolonged light group (Light: Dark = 20: 4 h), 3) prolonged darkness group (Light: Dark = 4: 20 h) which received 20 mg/L of IMI, and 4) control group, which was not treated with IMI (Light: Dark = 12: 12 h). The results showed that prolonged darkness improved the survival rate of zebrafish upon IMI exposure for 96 h. In the sub-chronic test, zebrafish were divided into the same 4 groups and exposed to IMI at 1 mg/L for 14 d (n = 30). The results showed that IMI induced oxidative stress in both IMI and prolonged light groups by inhibition of antioxidant activities and accumulation of oxidative products. Transcriptome analysis revealed a compromise of antioxidation and tryptophan metabolism pathways under IMI exposure. Several genes encoding rate-limiting enzymes in serotonin and melatonin synthesis were all inhibited in both IMI and LL groups. Meanwhile, significant decrease (P < 0.5) of serotonin and melatonin levels was observed. However, there's remarkable improvement of biochemical and transcriptional status in prolonged darkness group. In addition, microbiome analysis showed great alteration of gut bacterial community structure and inhibition of tryptophan metabolism pathway. Similarly, the gut microbiota dysbiosis induced by IMI was alleviated in prolonged darkness. In summary, sub-chronic IMI exposure induced neurotoxicity and gut toxicity in zebrafish by oxidative stress and impaired the brain-gut-axis through tryptophan metabolism perturbation. Prolonged darkness could effectively attenuate the IMI toxicity probably through maintaining a normal tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Centre of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yanzhen Dong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Dayong Xu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
186
|
Zhang Z, Zhang Q, Tan Y, Chen Y, Zhou X, Liu S, Yu J. GLP-1RAs caused gastrointestinal adverse reactions of drug withdrawal: a system review and network meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1149328. [PMID: 37484944 PMCID: PMC10359616 DOI: 10.3389/fendo.2023.1149328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1RAs) significantly reduce postprandial blood glucose, inhibit appetite, and delay gastrointestinal emptying. However, it is controversial that some patients are intolerant to GLP-1RAs. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched for randomized controlled trials (RCTs) using GLP-1RAs with documented withdrawal due to gastrointestinal adverse reactions (GI AEs) from their inception to September 28, 2022. After extracting the information incorporated into the studies, a random-effects network meta-analysis was performed within a frequentist framework. Results 64 RCTs were finally enrolled, which included six major categories of the GLP-1RA. The sample size of the GLP-1RAs treatment group was 16,783 cases. The risk of intolerable gastrointestinal adverse reactions of Liraglutide and Semaglutide was higher than that of Dulaglutide. Meanwhile, the higher the dose of the same GLP-1RA preparation, the more likely to cause these adverse reactions. These intolerable GI AEs were not significantly related to drug homology or formulations and may be related to the degree of suppression of the appetite center. Conclusion Dulaglutide caused the lowest intolerable GI AEs, while Liraglutide and Semaglutide were the highest. For Semaglutide, the higher the dose, the more likely it is to drive GI AEs. Meanwhile, the risk of these GI AEs is independent of the different formulations of the drug. All these findings can effectively guide individualized treatment. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022359346, identifier CRD42022359346.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiling Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Su Liu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
187
|
Viñas R, Joshi CK, Georgiev D, Lin P, Dumitrascu B, Gamazon ER, Liò P. Hypergraph factorization for multi-tissue gene expression imputation. NAT MACH INTELL 2023; 5:739-753. [PMID: 37771758 PMCID: PMC10538467 DOI: 10.1038/s42256-023-00684-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 06/02/2023] [Indexed: 09/30/2023]
Abstract
Integrating gene expression across tissues and cell types is crucial for understanding the coordinated biological mechanisms that drive disease and characterise homeostasis. However, traditional multitissue integration methods cannot handle uncollected tissues or rely on genotype information, which is often unavailable and subject to privacy concerns. Here we present HYFA (Hypergraph Factorisation), a parameter-efficient graph representation learning approach for joint imputation of multi-tissue and cell-type gene expression. HYFA is genotype-agnostic, supports a variable number of collected tissues per individual, and imposes strong inductive biases to leverage the shared regulatory architecture of tissues and genes. In performance comparison on Genotype-Tissue Expression project data, HYFA achieves superior performance over existing methods, especially when multiple reference tissues are available. The HYFA-imputed dataset can be used to identify replicable regulatory genetic variations (eQTLs), with substantial gains over the original incomplete dataset. HYFA can accelerate the effective and scalable integration of tissue and cell-type transcriptome biorepositories.
Collapse
Affiliation(s)
- Ramon Viñas
- Department of Computer Science and Technology, University of Cambridge
| | | | - Dobrik Georgiev
- Department of Computer Science and Technology, University of Cambridge
| | - Phillip Lin
- Division of Genetic Medicine, Vanderbilt University Medical Center
| | - Bianca Dumitrascu
- Department of Statistics and Irving Institute for Cancer Dynamics, Columbia University
| | - Eric R. Gamazon
- Vanderbilt Genetics Institute and Data Science Institute, MRC Epidemiology Unit, University of Cambridge
| | - Pietro Liò
- Department of Computer Science and Technology, University of Cambridge
| |
Collapse
|
188
|
Salia S, Martin Y, Burke FF, Myles LA, Jackman L, Halievski K, Bambico FR, Swift-Gallant A. Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain Behav Immun Health 2023; 30:100637. [PMID: 37256194 PMCID: PMC10225889 DOI: 10.1016/j.bbih.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/03/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Recent evidence has demonstrated a sex-specific role of the gut microbiome on social behavior such as anxiety, possibly driven by a reciprocal relationship between the gut microbiome and gonadal hormones. For instance, gonadal hormones drive sex differences in gut microbiota composition, and certain gut bacteria can produce androgens from glucocorticoids. We thus asked whether the gut microbiome can influence androgen-dependent socio-sexual behaviors. We first treated C57BL/6 mice with broad-spectrum antibiotics (ABX) in drinking water to deplete the gut microbiota either transiently during early development (embryonic day 16-postnatal day [PND] 21) or in adulthood (PND 60-85). We hypothesized that if ABX interferes with androgens, then early ABX would interfere with critical periods for sexual differentiation of brain and thus lead to long-term decreases in males' socio-sexual behavior, while adult ABX would interfere with androgens' activational effects on behavior. We found that in males but not females, early and adult ABX treatment decreased territorial aggression, and adult ABX also decreased sexual odor preference. We then assessed whether testosterone and/or cecal microbiota transplantation (CMT) via oral gavage could prevent ABX-induced socio-sexual behavioral deficits in adult ABX-treated males. Mice were treated with same- or other-sex control cecum contents or with testosterone for two weeks. While testosterone was not effective in rescuing any behavior, we found that male CMT restored both olfactory preference and aggression in adult ABX male mice, while female CMT restored olfactory preference but not aggression. These results suggest sex-specific effects of the gut microbiome on socio-sexual behaviors, independent of androgens.
Collapse
|
189
|
Lin YC, Lin CH, Lin MC. The Association of Prenatal Antibiotic Use with Attention Deficit and Autism Spectrum Disorders: A Nationwide Cohort Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1128. [PMID: 37508625 PMCID: PMC10377828 DOI: 10.3390/children10071128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are common cognitive and behavioral disorders. Antibiotics are widely used in pregnant women and their newborns. The objective of this study was to examine the potential association between prenatal exposure to antibiotics and the risk of ADHD and ASD in childhood from a nationwide perspective. (2) Methods: The Taiwan National Health Insurance Research Database (NHIRD) was used as the primary data source. This nationwide cohort study included only first-time pregnancies. A total of 906,942 infants were enrolled. All infants were followed up for at least 6 years. The Cox regression model was applied for covariate control. (3) Results: Prenatal exposure to antibiotics was found to significantly increase the cumulative incidence of ADHD while having only a borderline effect on the cumulative incidence of ASD. Exposure to antibiotics during any of the three different gestational age ranges significantly increased the cumulative risk. However, only exposure after 34 weeks of gestation had a significant impact on the occurrence of ASD. The study also revealed a dose-dependent effect on the occurrence of ADHD but no effect on the occurrence of ASD. (4) Conclusions: This study suggests that prenatal exposure to antibiotics may increase the risk of developing ADHD and ASD later in life.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ming-Chih Lin
- Children's Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
190
|
Jędrusiak A, Fortuna W, Majewska J, Górski A, Jończyk-Matysiak E. Phage Interactions with the Nervous System in Health and Disease. Cells 2023; 12:1720. [PMID: 37443756 PMCID: PMC10341288 DOI: 10.3390/cells12131720] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The central nervous system manages all of our activities (e.g., direct thinking and decision-making processes). It receives information from the environment and responds to environmental stimuli. Bacterial viruses (bacteriophages, phages) are the most numerous structures occurring in the biosphere and are also found in the human organism. Therefore, understanding how phages may influence this system is of great importance and is the purpose of this review. We have focused on the effect of natural bacteriophages in the central nervous system, linking them to those present in the gut microbiota, creating the gut-brain axis network, as well as their interdependence. Importantly, based on the current knowledge in the field of phage application (e.g., intranasal) in the treatment of bacterial diseases associated with the brain and nervous system, bacteriophages may have significant therapeutic potential. Moreover, it was indicated that bacteriophages may influence cognitive processing. In addition, phages (via phage display technology) appear promising as a targeted therapeutic tool in the treatment of, among other things, brain cancers. The information collected and reviewed in this work indicates that phages and their impact on the nervous system is a fascinating and, so far, underexplored field. Therefore, the aim of this review is not only to summarize currently available information on the association of phages with the nervous system, but also to stimulate future studies that could pave the way for novel therapeutic approaches potentially useful in treating bacterial and non-bacterial neural diseases.
Collapse
Affiliation(s)
- Adam Jędrusiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213, 54-427 Wroclaw, Poland;
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (A.J.); (J.M.); (A.G.)
| |
Collapse
|
191
|
Giuli L, Maestri M, Santopaolo F, Pompili M, Ponziani FR. Gut Microbiota and Neuroinflammation in Acute Liver Failure and Chronic Liver Disease. Metabolites 2023; 13:772. [PMID: 37367929 DOI: 10.3390/metabo13060772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
Acute liver failure and chronic liver disease are associated with a wide spectrum of neurological changes, of which the best known is hepatic encephalopathy (HE). Historically, hyperammonemia, causing astrocyte swelling and cerebral oedema, was considered the main etiological factor in the pathogenesis of cerebral dysfunction in patients with acute and/or chronic liver disease. However, recent studies demonstrated a key role of neuroinflammation in the development of neurological complications in this setting. Neuroinflammation is characterized by activation of microglial cells and brain secretion of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, which alter neurotransmission, leading to cognitive and motor dysfunction. Changes in the gut microbiota resulting from liver disease play a crucial role in the pathogenesis of neuroinflammation. Dysbiosis and altered intestinal permeability, resulting in bacterial translocation and endotoxemia, are responsible for systemic inflammation, which can spread to brain tissue and trigger neuroinflammation. In addition, metabolites derived from the gut microbiota can act on the central nervous system and facilitate the development of neurological complications, exacerbating clinical manifestations. Thus, strategies aimed at modulating the gut microbiota may be effective therapeutic weapons. In this review, we summarize the current knowledge on the role of the gut-liver-brain axis in the pathogenesis of neurological dysfunction associated with liver disease, with a particular focus on neuroinflammation. In addition, we highlight emerging therapeutic approaches targeting the gut microbiota and inflammation in this clinical setting.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Marta Maestri
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology-Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
192
|
Wu H, Gu Y, Meng G, Zhang Q, Liu L, Wu H, Zhang S, Zhang T, Wang X, Zhang J, Sun S, Wang X, Zhou M, Jia Q, Song K, Chang H, Huang T, Niu K. Relationship between dietary pattern and depressive symptoms: an international multicohort study. Int J Behav Nutr Phys Act 2023; 20:74. [PMID: 37340419 DOI: 10.1186/s12966-023-01461-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/30/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Several previous studies have shown that dietary patterns are associated with the incidence of depressive symptoms. However, the results have been inconsistent. This study aimed to prospectively investigate the association between dietary patterns and the risk of depressive symptoms in two large cohort studies. METHODS The Tianjin Chronic Low-grade Systemic Inflammation and Health (TCLSIH) cohort study included a total of 7,094 participants living in Tianjin, China from 2013 to 2019, and the UK Biobank cohort study includes 96,810 participants who were recruited from 22 assessment centers across the UK taken between 2006 and 2010. All participants were free of a history of cardiovascular disease (CVD), cancer, and depressive symptoms at baseline. Dietary patterns at baseline were identified with factor analysis based on responses to a validated food frequency questionnaire in TCLSIH or Oxford WebQ in UK Biobank. Depressive symptoms were evaluated using the Chinese version of the Zung Self-Rating Depression Scale (SDS) in TCLSIH or hospital inpatient records in UK Biobank. Cox proportional hazards regression models were used to estimate the association between dietary patterns and depressive symptoms. RESULTS A total of 989, and 1,303 participants developed depressive symptoms during 17,410 and 709,931 person-years of follow-up. After adjusting for several potential confounders, the multivariable HRs (95% CIs) of the depressive symptoms were 0.71 (0.57, 0.88) for traditional Chinese dietary pattern, 1.29 (1.07, 1.55) for processed animal offal included animal food dietary pattern, and 1.22 (1.02, 1.46) for sugar rich dietary pattern in TCLSIH (all Q4 vs Q1). In the UK Biobank, the HRs (95% CIs) of depressive symptoms were 1.39 (1.16, 1.68) for processed food dietary pattern (Q4 vs Q1), 0.90 (0.77, 1.00) for healthy dietary pattern (Q3 vs Q1), and 0.89 (0.75, 1.05) for meat dietary pattern (Q4 vs Q1) in the final adjusted model. CONCLUSION Dietary patterns rich in processed foods were associated with a higher risk of depressive symptoms, and following a traditional Chinese dietary pattern or healthy dietary pattern was associated with a lower risk of depressive symptoms, whereas meat dietary pattern was not associated.
Collapse
Affiliation(s)
- Hanzhang Wu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongmei Wu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shunming Zhang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tingjing Zhang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xuena Wang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Juanjuan Zhang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Chang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China.
| | - Kaijun Niu
- School of Public Health, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Tianjin, Jinghai District, 301617, China.
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
- Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
193
|
Ayata P, Amit I, Cuda CM. Editorial: Microglia in neuroinflammation. Front Immunol 2023; 14:1227095. [PMID: 37398652 PMCID: PMC10311352 DOI: 10.3389/fimmu.2023.1227095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY, United States
| | - Ido Amit
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
194
|
Kamalmaz N, Ben Bacha A, Alonazi M, Albasher G, Khayyat AIA, El-Ansary A. Unveiling sex-based differences in developing propionic acid-induced features in mice as a rodent model of ASD. PeerJ 2023; 11:e15488. [PMID: 37334116 PMCID: PMC10274690 DOI: 10.7717/peerj.15488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Background Males are more likely to develop autism as a neurodevelopmental disorder than females are, although the mechanisms underlying male vulnerability are not fully understood. Therefore, studying the role of autism etiologies considering sex differences in the propionic acid (PPA) rodent model of autism would build greater understanding of how females are protected from autism spectrum disorder, which may be used as a treatment strategy for males with autism. Objectives This study aimed to investigate the sex differences in oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut microbiota impairment as etiological mechanisms for many neurological diseases, with specific reference to autism. Method Forty albino mice were divided into four groups of 10 animals each with two control and two treated groups of both sexes received only phosphate-buffered saline or a neurotoxic dose of PPA (250 mg/kg body weight) for 3 days, respectively. Biochemical markers of energy metabolism, oxidative stress, neuroinflammation, and excitotoxicity were measured in mouse brain homogenates, whereas the presence of pathogenic bacteria was assessed in mouse stool samples. Furthermore, the repetitive behavior, cognitive ability, and physical-neural coordination of the animals were examined. Results Collectively, selected variables related to oxidative stress, glutamate excitotoxicity, neuroinflammation, and gut bacteria were impaired concomitantly with altered behavior in PPA-induced rodent model, with males being more susceptible than females. Conclusion This study explains the role of sex in the higher vulnerability of males to develop autistic biochemical and behavioral features compared with females. Female sex hormones and the higher detoxification capacity and higher glycolytic flux in females serve as neuroprotective contributors in a rodent model of autism.
Collapse
Affiliation(s)
- Nasreen Kamalmaz
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Abir Ben Bacha
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mona Alonazi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Zoology Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
195
|
Perez-Diaz-Del-Campo N, Castelnuovo G, Ribaldone DG, Caviglia GP. Fecal and Circulating Biomarkers for the Non-Invasive Assessment of Intestinal Permeability. Diagnostics (Basel) 2023; 13:diagnostics13111976. [PMID: 37296827 DOI: 10.3390/diagnostics13111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The study of intestinal permeability is gaining growing interest due to its relevance in the onset and progression of several gastrointestinal and non-gastrointestinal diseases. Though the involvement of impaired intestinal permeability in the pathophysiology of such diseases is recognized, there is currently a need to identify non-invasive biomarkers or tools that are able to accurately detect alterations in intestinal barrier integrity. On the one hand, promising results have been reported for novel in vivo methods based on paracellular probes, i.e., methods that can directly assess paracellular permeability and, on the other hand, on fecal and circulating biomarkers able to indirectly assess epithelial barrier integrity and functionality. In this review, we aimed to summarize the current knowledge on the intestinal barrier and epithelial transport pathways and to provide an overview of the methods already available or currently under investigation for the measurement of intestinal permeability.
Collapse
|
196
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
197
|
Park S, Zhang T, Kang S. Fecal Microbiota Composition, Their Interactions, and Metagenome Function in US Adults with Type 2 Diabetes According to Enterotypes. Int J Mol Sci 2023; 24:ijms24119533. [PMID: 37298483 DOI: 10.3390/ijms24119533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
T2DM etiology differs among Asians and Caucasians and may be associated with gut microbiota influenced by different diet patterns. However, the association between fecal bacterial composition, enterotypes, and T2DM susceptibility remained controversial. We investigated the fecal bacterial composition, co-abundance network, and metagenome function in US adults with T2DM compared to healthy adults based on enterotypes. We analyzed 1911 fecal bacterial files of 1039 T2DM and 872 healthy US adults from the Human Microbiome Projects. Operational taxonomic units were obtained after filtering and cleaning the files using Qiime2 tools. Machine learning and network analysis identified primary bacteria and their interactions influencing T2DM incidence, clustered into enterotypes, Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Prevotellaceae (ET-P). ET-B showed higher T2DM incidence. Alpha-diversity was significantly lower in T2DM in ET-L and ET-P (p < 0.0001), but not in ET-B. Beta-diversity revealed a distinct separation between T2DM and healthy groups across all enterotypes (p < 0.0001). The XGBoost model exhibited high accuracy and sensitivity. Enterocloster bolteae, Facalicatena fissicatena, Clostridium symbiosum, and Facalibacterium prausnitizii were more abundant in the T2DM group than in the healthy group. Bacteroides koreensis, Oscillibacter ruminantium, Bacteroides uniformis, and Blautia wexlerae were lower in the T2DM than in the healthy group regardless of the enterotypes in the XGBoost model (p < 0.0001). However, the patterns of microbial interactions varied among different enterotypes affecting T2DM risk. The interaction between fecal bacteria was more tightly regulated in the ET-L than in the ET-B and ET-P groups (p < 0.001). Metagenomic analysis revealed an inverse association between bacteria abundance in T2DM, energy utility, butanoate and propanoate metabolism, and the insulin signaling pathway (p < 0.0001). In conclusion, fecal bacteria play a role in T2DM pathogenesis, particularly within different enterotypes, providing valuable insights into the link between gut microbiota and T2DM in the US population.
Collapse
Affiliation(s)
- Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea
| | - Suna Kang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 165 Sechul-Ri, Asan 31499, Republic of Korea
| |
Collapse
|
198
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
199
|
Rosales TKO, Fabi JP. Valorization of polyphenolic compounds from food industry by-products for application in polysaccharide-based nanoparticles. Front Nutr 2023; 10:1144677. [PMID: 37293672 PMCID: PMC10244521 DOI: 10.3389/fnut.2023.1144677] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
In the last decades, evidence has indicated the beneficial properties of dietary polyphenols. In vitro and in vivo studies support that the regular intake of these compounds may be a strategy to reduce the risks of some chronic non-communicable diseases. Despite their beneficial properties, they are poorly bioavailable compounds. Thus, the main objective of this review is to explore how nanotechnology improves human health while reducing environmental impacts with the sustainable use of vegetable residues, from extraction to the development of functional foods and supplements. This extensive literature review discusses different studies based on the application of nanotechnology to stabilize polyphenolic compounds and maintain their physical-chemical stability. Food industries commonly generate a significant amount of solid waste. Exploring the bioactive compounds of solid waste has been considered a sustainable strategy in line with emerging global sustainability needs. Nanotechnology can be an efficient tool to overcome the challenge of molecular instability, especially using polysaccharides such as pectin as assembling material. Complex polysaccharides are biomaterials that can be extracted from citrus and apple peels (from the juice industries) and constitute promising wall material stabilizing chemically sensitive compounds. Pectin is an excellent biomaterial to form nanostructures, as it has low toxicity, is biocompatible, and is resistant to human enzymes. The potential extraction of polyphenols and polysaccharides from residues and their inclusion in food supplements may be a possible application to reduce environmental impacts and constitutes an approach for effectively including bioactive compounds in the human diet. Extracting polyphenolics from industrial waste and using nanotechnology may be feasible to add value to food by-products, reduce impacts on nature and preserve the properties of these compounds.
Collapse
Affiliation(s)
- Thiécla Katiane Osvaldt Rosales
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
200
|
Zhao Y, Zou DW. Gut microbiota and irritable bowel syndrome. J Dig Dis 2023; 24:312-320. [PMID: 37458142 DOI: 10.1111/1751-2980.13204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that poses a significant health concern. Although its etiology remains unknown, there is growing evidence that gut dysbiosis is involved in the development and exacerbation of IBS. Previous studies have reported altered microbial diversity, abundance, and composition in IBS patients when compared to controls. However, whether dysbiosis or aberrant changes in the intestinal microbiota can be used as a hallmark of IBS remains inconclusive. We reviewed the literatures on changes in and roles of intestinal microbiota in relation to IBS and discussed various gut microbiota manipulation strategies. Gut microbiota may affect IBS development by regulating the mucosal immune system, brain-gut-microbiome interaction, and intestinal barrier function. The advent of high-throughput multi-omics provides important insights into the pathogenesis of IBS and promotes the development of individualized treatment for IBS. Despite advances in currently available microbiota-directed therapies, large-scale, well-organized, and long-term randomized controlled trials are highly warranted to assess their clinical effects. Overall, gut microbiota alterations play a critical role in the pathophysiology of IBS, and modulation of microbiota has a significant therapeutic potential that requires to be further verified.
Collapse
Affiliation(s)
- Ye Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duo Wu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|