151
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
152
|
Farahbakhsh F, Hamzehzarghani H, Massah A, Tortosa M, Yassaie M, Rodriguez VM. Comparative metabolomics of temperature sensitive resistance to wheat streak mosaic virus (WSMV) in resistant and susceptible wheat cultivars. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:30-42. [PMID: 31005806 DOI: 10.1016/j.jplph.2019.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
In order to evaluate wheat resistance to wheat streak mosaic virus (WSMV) at low temperature and resistance breakdown at high temperature, metabolic profile of WSMV-resistant (R) and susceptible (S) wheat cultivars were analyzed. Metabolites were detected by UPLC-QTOF/MS in leaves of R and S plants challenged with WSMV at 20 °C and 32 °C, 24, 48 and 72 h post inoculation (hpi). WSMV and mock inoculated plants were used for discriminating the most significant metabolites and metabolic pathways affected at those temperatures. At 24 hpi/20 °C and 48 hpi/20 °C, the most important metabolites in R plants were coumarins, a limited number of lipids, and unknown compounds, while at 72 hpi/20 °C, in addition to coumarins, alkaloids and several amino acids were increased. Compared to 24 and 48 hpi, at 72hpi, in R plants most metabolic pathways were up-regulated at 20 °C. These resistance-related specific pathways included amino acid metabolism, lipid metabolism and alkaloids pathways. Also, several pathways were up-regulated at 32 °C.These combined heat stress and pathogen related pathways, included lipid metabolism and amino acid metabolism. Some carbohydrate metabolism pathways were considered as heat stress related pathways and could be associated with resistance breakdown. On the other hand, the increased expression of lipid compounds, especially 24 hpi at 32 °C in R plant, can be attributed to plant adaptation to combined stressors such as pathogen and high temperature. Increased susceptibility of R plants at 32 °C coincided with a down-regulated expression of components of signal transduction pathways or in a decreased level of metabolites related to this pathway, especially at a later time after infection, leading to decreased metabolite signaling. Decrease of signaling compounds under combined stress is a possible outcome of deactivating WSMV specific signaling networks leading to compatible response in R plants. The significance of these findings considering the recent increase of global temperature and the challenge of breakdown of temperature sensitive resistance to some plant viruses is discussed.
Collapse
Affiliation(s)
- F Farahbakhsh
- Plant Protection Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - H Hamzehzarghani
- Plant Protection Department, Shiraz University, Bajgah, Shiraz, Iran.
| | - A Massah
- Plant Protection Department, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - M Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - M Yassaie
- Seed and Plant Improvement Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Shiraz, Iran
| | - V M Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas. Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
153
|
Pasin F, Menzel W, Daròs J. Harnessed viruses in the age of metagenomics and synthetic biology: an update on infectious clone assembly and biotechnologies of plant viruses. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1010-1026. [PMID: 30677208 PMCID: PMC6523588 DOI: 10.1111/pbi.13084] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/09/2018] [Accepted: 01/15/2019] [Indexed: 05/12/2023]
Abstract
Recent metagenomic studies have provided an unprecedented wealth of data, which are revolutionizing our understanding of virus diversity. A redrawn landscape highlights viruses as active players in the phytobiome, and surveys have uncovered their positive roles in environmental stress tolerance of plants. Viral infectious clones are key tools for functional characterization of known and newly identified viruses. Knowledge of viruses and their components has been instrumental for the development of modern plant molecular biology and biotechnology. In this review, we provide extensive guidelines built on current synthetic biology advances that streamline infectious clone assembly, thus lessening a major technical constraint of plant virology. The focus is on generation of infectious clones in binary T-DNA vectors, which are delivered efficiently to plants by Agrobacterium. We then summarize recent applications of plant viruses and explore emerging trends in microbiology, bacterial and human virology that, once translated to plant virology, could lead to the development of virus-based gene therapies for ad hoc engineering of plant traits. The systematic characterization of plant virus roles in the phytobiome and next-generation virus-based tools will be indispensable landmarks in the synthetic biology roadmap to better crops.
Collapse
Affiliation(s)
- Fabio Pasin
- Agricultural Biotechnology Research CenterAcademia SinicaTaipeiTaiwan
| | - Wulf Menzel
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de València)ValenciaSpain
| |
Collapse
|
154
|
Songy A, Fernandez O, Clément C, Larignon P, Fontaine F. Grapevine trunk diseases under thermal and water stresses. PLANTA 2019; 249:1655-1679. [PMID: 30805725 DOI: 10.1007/s00425-019-03111-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Heat and water stresses, individually or combined, affect both the plant (development, physiology, and production) and the pathogens (growth, morphology, dissemination, distribution, and virulence). The grapevine response to combined abiotic and biotic stresses is complex and cannot be inferred from the response to each single stress. Several factors might impact the response and the recovery of the grapevine, such as the intensity, duration, and timing of the stresses. In the heat/water stress-GTDs-grapevine interaction, the nature of the pathogens, and the host, i.e., the nature of the rootstock, the cultivar and the clone, has a great importance. This review highlights the lack of studies investigating the response to combined stresses, in particular molecular studies, and the misreading of the relationship between rootstock and scion in the relationship GTDs/abiotic stresses. Grapevine trunk diseases (GTDs) are one of the biggest threats to vineyard sustainability in the next 30 years. Although many treatments and practices are used to manage GTDs, there has been an increase in the prevalence of these diseases due to several factors such as vineyard intensification, aging vineyards, or nursery practices. The ban of efficient treatments, i.e., sodium arsenite, carbendazim, and benomyl, in the early 2000s may be partly responsible for the fast spread of these diseases. However, GTD-associated fungi can act as endophytes for several years on, or inside the vine until the appearance of the first symptoms. This prompted several researchers to hypothesise that abiotic conditions, especially thermal and water stresses, were involved in the initiation of GTD symptoms. Unfortunately, the frequency of these abiotic conditions occurring is likely to increase according to the recent consensus scenario of climate change, especially in wine-growing areas. In this article, following a review on the impact of combined thermal and water stresses on grapevine physiology, we will examine (1) how this combination of stresses might influence the lifestyle of GTD pathogens, (2) learnings from grapevine field experiments and modelling aiming at studying biotic and abiotic stresses, and (3) what mechanistic concepts can be used to explain how these stresses might affect the grapevine plant status.
Collapse
Affiliation(s)
- A Songy
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - O Fernandez
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - C Clément
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France
| | - P Larignon
- Institut Français de la Vigne et du Vin Pôle Rhône-Méditerranée, France, 7 avenue Cazeaux, 30230, Rodilhan, France
| | - F Fontaine
- SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, Résistance Induite et Bioprotection des Plantes EA 4707, BP 1039, 51687, Reims Cedex 2, France.
| |
Collapse
|
155
|
Park J, Kim TH, Takahashi Y, Schwab R, Dressano K, Stephan AB, Ceciliato PHO, Ramirez E, Garin V, Huffaker A, Schroeder JI. Chemical genetic identification of a lectin receptor kinase that transduces immune responses and interferes with abscisic acid signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:492-510. [PMID: 30659683 PMCID: PMC6488365 DOI: 10.1111/tpj.14232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
Insight into how plants simultaneously cope with multiple stresses, for example, when challenged with biotic stress from pathogen infection and abiotic stress from drought, is important both for understanding evolutionary trade-offs and optimizing crop responses to these stresses. Mechanisms by which initial plant immune signaling antagonizes abscisic acid (ABA) signal transduction require further investigation. Using a chemical genetics approach, the small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) has previously been identified due to its ability to suppress ABA signaling via plant immune signaling components. Here, we have used forward chemical genetics screening to identify DFPM-insensitive loci by monitoring the activity of ABA-inducible pRAB18::GFP in the presence of DFPM and ABA. The ability of DFPM to attenuate ABA signaling was reduced in rda mutants (resistant to DFPM inhibition of ABA signaling). One of the mutants, rda2, was mapped and is defective in a gene encoding a lectin receptor kinase. RDA2 functions in DFPM-mediated inhibition of ABA-mediated reporter expression. RDA2 is required for DFPM-mediated activation of immune signaling, including phosphorylation of mitogen-activated protein kinase (MAPK) 3 (MPK3) and MPK6, and induction of immunity marker genes. Our study identifies a previously uncharacterized receptor kinase gene that is important for DFPM-mediated immune signaling and inhibition of ABA signaling. We demonstrate that the lectin receptor kinase RDA2 is essential for perceiving the DFPM signal and activating MAPKs, and that MKK4 and MKK5 are required for DFPM interference with ABA signal transduction.
Collapse
Affiliation(s)
- Jiyoung Park
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Tae-Houn Kim
- Department of Biotechnology, Duksung Women’s University, 01369, Seoul, Korea
| | - Yohei Takahashi
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Keini Dressano
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Aaron B Stephan
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Paulo HO Ceciliato
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Eduardo Ramirez
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Vince Garin
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Alisa Huffaker
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| | - Julian I Schroeder
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla CA 92093-0116, USA
| |
Collapse
|
156
|
Sinha R, Irulappan V, Mohan-Raju B, Suganthi A, Senthil-Kumar M. Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Sci Rep 2019; 9:5577. [PMID: 30944350 PMCID: PMC6447570 DOI: 10.1038/s41598-019-41463-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/11/2019] [Indexed: 11/09/2022] Open
Abstract
Drought stress and pathogen infection simultaneously occur in the field. In this study, the interaction of these two stresses with chickpea, their individual and combined effect and the net impact on plant growth and yield traits were systematically assessed under field and confined pot experiments. The field experiments were conducted for four consecutive years from 2014-15 to 2017-18 at different locations of India. Different irrigation regimes were maintained to impose mild to severe drought stress, and natural incidence of the pathogen was considered as pathogen stress. We observed an increased incidence of fungal diseases namely, dry root rot (DRR) caused by Rhizoctonia bataticola, black root rot (BRR) caused by Fusarium solani under severe drought stress compared to well-irrigated field condition. Similar to field experiments, pot experiments also showed severe disease symptoms of DRR and BRR in the presence of drought compared to pathogen only stress. Overall, the results from this study not only showed the impact of combined drought and DRR stress but also provided systematic data, first of its kind, for the use of researchers.
Collapse
Affiliation(s)
- Ranjita Sinha
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vadivelmurugan Irulappan
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Basavaiah Mohan-Raju
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bangalore, 560065, India
| | - Angappan Suganthi
- Agricultural research station and Krishi Vigyan Kendra, Tamil Nadu Agricultural University, Virinjipuram, Vellore, 632104, India.,Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, JNU Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
157
|
Rissel D, Peiter E. Poly(ADP-Ribose) Polymerases in Plants and Their Human Counterparts: Parallels and Peculiarities. Int J Mol Sci 2019; 20:E1638. [PMID: 30986964 PMCID: PMC6479469 DOI: 10.3390/ijms20071638] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
Poly(ADP-ribosyl)ation is a rapid and transient post-translational protein modification that was described first in mammalian cells. Activated by the sensing of DNA strand breaks, poly(ADP-ribose)polymerase1 (PARP1) transfers ADP-ribose units onto itself and other target proteins using NAD⁺ as a substrate. Subsequently, DNA damage responses and other cellular responses are initiated. In plants, poly(ADP-ribose) polymerases (PARPs) have also been implicated in responses to DNA damage. The Arabidopsis genome contains three canonical PARP genes, the nomenclature of which has been uncoordinated in the past. Albeit assumptions concerning the function and roles of PARP proteins in planta have often been inferred from homology and structural conservation between plant PARPs and their mammalian counterparts, plant-specific roles have become apparent. In particular, PARPs have been linked to stress responses of plants. A negative role under abiotic stress has been inferred from studies in which a genetic or, more commonly, pharmacological inhibition of PARP activity improved the performance of stressed plants; in response to pathogen-associated molecular patterns, a positive role has been suggested. However, reports have been inconsistent, and the effects of PARP inhibitors appear to be more robust than the genetic abolition of PARP gene expression, indicating the presence of alternative targets of those drugs. Collectively, recent evidence suggests a conditionality of stress-related phenotypes of parp mutants and calls for a reconsideration of PARP inhibitor studies on plants. This review critically summarizes our current understanding of poly(ADP-ribosylation) and PARP proteins in plants, highlighting similarities and differences to human PARPs, areas of controversy, and requirements for future studies.
Collapse
Affiliation(s)
- Dagmar Rissel
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
- Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institut (JKI), 38104 Braunschweig, Germany.
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany.
- Agrochemisches Institut Piesteritz e.V. (AIP), Möllensdorfer Strasse 13, 06886 Lutherstadt Wittenberg, Germany.
| |
Collapse
|
158
|
Landi M, Cotrozzi L, Pellegrini E, Remorini D, Tonelli M, Trivellini A, Nali C, Guidi L, Massai R, Vernieri P, Lorenzini G. When "thirsty" means "less able to activate the signalling wave trigged by a pulse of ozone": A case of study in two Mediterranean deciduous oak species with different drought sensitivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:379-390. [PMID: 30550902 DOI: 10.1016/j.scitotenv.2018.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 05/27/2023]
Abstract
There is a lack of knowledge about the possibility that plants facing abiotic stressors, such as drought, have an altered perception of a pulse of O3 and incur in alterations of their signalling network. This poses some concerns as to whether defensive strategy to cope episodic O3 peaks in healthy plants may fail under stress. In this study, a set of saplings of two Mediterranean deciduous species, Quercus cerris and Q. pubescens, was subjected to water withholding (20% of daily evapotranspiration for 15 days) while another set was kept well-watered. Saplings were then subjected to a pulse of O3 (200 nl l-1 for 5 h) or maintained in filtered air. Q. pubescens had a more severe decline of photosynthesis and leaf PDΨw (about -65% and 5-fold lower than in well-watered ones) and events of cell death were observed under drought when compared to Q. cerris, which is supportive for a higher sensitivity to drought exhibited by this species. When O3 was applied after drought, patterns of signalling compounds were altered in both species. Only in Q. pubescens, the typical O3-induced accumulation of apoplastic reactive oxygen species, which is the first necessary step for the activation of signalling cascade, was completely lost. In Q. cerris the most frequent changes encompassed the weakening of peaks of key signalling molecules (ethylene and salicylic acid), whereas in Q. pubescens both delayed (salicylic and jasmonic acid) or weakened (ethylene and salicylic acid) peaks were observed. This is translated to a higher ability of Q. cerris to maintain a prompt activation of defensive reaction to counteract oxidative damage due to the pollutant. Our results reveal the complexity of the signalling network in plants facing multiple stresses and highlight the need to further investigate possible alteration of defensive mechanism of tree species to predict their behavior.
Collapse
Affiliation(s)
- Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy.
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa 56127, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy
| |
Collapse
|
159
|
Avramova Z. Defence-related priming and responses to recurring drought: Two manifestations of plant transcriptional memory mediated by the ABA and JA signalling pathways. PLANT, CELL & ENVIRONMENT 2019; 42:983-997. [PMID: 30299553 DOI: 10.1111/pce.13458] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 05/20/2023]
Abstract
Collective evidence from agricultural practices and from scientific research has demonstrated that plants can alter their phenotypic responses to repeated biotic and abiotic stresses or their elicitors. A coordinated reaction at the organismal, cellular, and genome levels has suggested that plants can "remember" an earlier stress and modify their future responses, accordingly. Stress memory may increase a plant's survival chances by improving its tolerance/avoidance abilities and may provide a mechanism for acclimation and adaptation. Understanding the mechanisms that regulate plant stress memory is not only an intellectually challenging topic but has important implications for agricultural practices as well. Here, I focus exclusively on specific aspects of the transcription memory in response to recurring dehydration stresses and the memory-type responses to insect damage in a process known as "priming." The questions discussed are (a) whether/how the two memory phenomena are connected at the level of transcriptional regulation; (b) how differential transcription is achieved mechanistically under a repeated stress; and (c) whether similar molecular and/or epigenetic mechanisms are involved. Possible biological relevance of transcriptional stress memory and its preservation in plant evolution are also discussed.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, UNL, Lincoln, Nebraska
| |
Collapse
|
160
|
Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: A climate change perspective. ADVANCES IN GENETICS 2019; 103:1-38. [PMID: 30904092 DOI: 10.1016/bs.adgen.2019.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For several decades, researchers are working toward improving the "major" crops for better adaptability and tolerance to environmental stresses. However, little or no research attention is given toward neglected and underutilized crop species (NUCS) which hold the potential to ensure food and nutritional security among the ever-growing global population. NUCS are predominantly climate resilient, but their yield and quality are compromised due to selective breeding. In this context, the importance of omics technologies namely genomics, transcriptomics, proteomics, phenomics and ionomics in delineating the complex molecular machinery governing growth, development and stress responses of NUCS is underlined. However, gaining insights through individual omics approaches will not be sufficient to address the research questions, whereas integrating these technologies could be an effective strategy to decipher the gene function, genome structures, biological pathways, metabolic and regulatory networks underlying complex traits. Given this, the chapter enlists the importance of NUCS in food and nutritional security and provides an overview of deploying omics approaches to study the NUCS. Also, the chapter enumerates the status of crop improvement programs in NUCS and suggests implementing "integrating omics" for gaining a better understanding of crops' response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Mehanathan Muthamilarasan
- National Institute of Plant Genome Research, New Delhi, India; ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
161
|
Zhou R, Kong L, Wu Z, Rosenqvist E, Wang Y, Zhao L, Zhao T, Ottosen CO. Physiological response of tomatoes at drought, heat and their combination followed by recovery. PHYSIOLOGIA PLANTARUM 2019; 165:144-154. [PMID: 29774556 DOI: 10.1111/ppl.12764] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 05/21/2023]
Abstract
In nature, crops encounter a combination of abiotic stresses that severely limit yield. Our aim was to dynamically expose the changes of tomatoes' physiological parameters to drought, heat and their combination and thereby clarify the relationship between the responses to single and combined stress. We studied the effect of single and combined drought and heat stresses on the shoot and root of two tomato cultivars (Sufen No.14 as CV1; Jinlingmeiyu as CV2). After being exposed to combined stress for 6 days, the dry weight of shoot and root significantly decreased. The Fq '/Fm ' (quantum yield of photosystem II) was significantly lower in CV1 upon drought and combined stress and in CV2 subjected to combined stress (between days 4 and 6) compared to control. The relative water content during combined stress was significantly lower than control from day 4 to recovery day 2. On days 3 and 6, the water loss rate significantly increased under heat stress and decreased at drought and combined stress, respectively. The combined stress caused severe damages on photosystem II and chloroplast ultrastructure. The root activity after stress recovered even though drought significantly increased the activity from day 2 to day 6. Combined stress result in complex responses during tomato growth. The CV1 was more heat tolerant than CV2, but there was no varietal difference at drought and combined stress. This study contributes to the understanding of the underlying physiological response mechanism of plant to combined stress and crop improvement by providing valuable information for abiotic stress-tolerant tomato breeding.
Collapse
Affiliation(s)
- Rong Zhou
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing, Jiangsu, China
| | - Lingpeng Kong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yinlei Wang
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing, Jiangsu, China
| | - Liping Zhao
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing, Jiangsu, China
| | - Tongmin Zhao
- Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing, Jiangsu, China
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing, Jiangsu, China
| | | |
Collapse
|
162
|
Subramanian S, Tehrani R, Van Aken B. Transcriptomic response of Arabidopsis thaliana exposed to hydroxylated polychlorinated biphenyls (OH-PCBs). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:52-59. [PMID: 30648423 PMCID: PMC6548195 DOI: 10.1080/15226514.2018.1523872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are toxic contaminants produced by biotic or abiotic transformation of PCBs. In this study, we have tested the toxicity of 2,5-dichlorobiphenyl (2,5-DCB) and three of its OH-derivatives, 2'-OH-, 3'-OH-, and 4'-OH-2,5-DCB toward the model plant, Arabidopsis thaliana. Toxicity tests showed that the parent 2,5-DCB (5 mg L-1) had little effect on the plants, while all three OH-metabolites (5 mg L-1) exhibited a significant toxicity, with 4'-OH-2,5-DCB being the most potent (inhibition concentration 50%-IC50 in germination tests = 9.8 mg L-1 for 2'-OH-2,5-DCB, 9.5 mg L-1 for 3'-OH-2,5-DCB, and 4.8 mg L-1 for 4'-OH-2,5-DCB). Whole-genome expression microarrays (Affymetrix) showed that exposure to the three OH-PCBs resulted in rather similar expression patterns, which were distinct from the one developing in response to 2,5-DCB. Searching an Arabidopsis microarray database (Genevestigator) revealed that, unlike the parent compound, the three OH-derivatives induced expression profiles similar to inhibitors of brassinosteroid synthesis (i.e., brassinazole, propiconazole, and uniconazole), resulting in severe iron deficiency in exposed plants. Our results suggest that the higher phytotoxicity of OH-derivatives as compared to 2,5-DCB is at least partly explained by the inhibition of the brassinosteroid pathway.
Collapse
Affiliation(s)
- Srishty Subramanian
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA
| | - Rouzbeh Tehrani
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA
| | - Benoit Van Aken
- Department of Chemistry & Biochemistry, George Mason University, Fairfax, VA
| |
Collapse
|
163
|
Vemanna RS, Bakade R, Bharti P, Kumar MKP, Sreeman SM, Senthil-Kumar M, Makarla U. Cross-Talk Signaling in Rice During Combined Drought and Bacterial Blight Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:193. [PMID: 30894866 PMCID: PMC6415615 DOI: 10.3389/fpls.2019.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/05/2019] [Indexed: 05/22/2023]
Abstract
Due to climatic changes, rice crop is affected by moisture deficit stress and pathogens. Tissue water limitation besides reducing growth rates, also renders the crop susceptible to the infection by Xanthomonas oryzae pv. oryzae (Xoo) that causes bacterial leaf blight. Independently, both drought adaptation and Xoo resistance have been extensively studied. Though the cross-talk between drought and Xoo stress responses have been explored from individual stress studies, examining the combinatorial stress response is limited in rice. Recently published combined stress studies showed that under the combined stress, maintenance of carbon assimilation is hindered and such response is regulated by overlapping cellular mechanisms that are different from either of the individual stresses. Several receptors, MAP kinases, transcription factors, and ribosomal proteins, are predicted for playing a role in cellular homeostasis and protects cells from combined stress effects. Here we provide a critical analysis of these aspects using information from the recently published combined stress literature. This review is useful for researchers to comprehend combinatorial stress response of rice plants to drought and Xoo.
Collapse
Affiliation(s)
- Ramu S. Vemanna
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
- Regional Center for Biotechnology, Faridabad, India
- *Correspondence: Ramu S. Vemanna, ;
| | - Rahul Bakade
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | - Pooja Bharti
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agriculture Sciences, Bengaluru, India
| | | | | | - Udayakumar Makarla
- Department of Crop Physiology, University of Agriculture Sciences, Bengaluru, India
| |
Collapse
|
164
|
Regulatory Role of Rhizobacteria to Induce Drought and Salt Stress Tolerance in Plants. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2019. [DOI: 10.1007/978-3-030-30926-8_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
165
|
Jansen MAK, Bilger W, Hideg É, Strid Å, Urban O. Editorial: Interactive effects of UV-B radiation in a complex environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:1-8. [PMID: 30385007 DOI: 10.1016/j.plaphy.2018.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Marcel A K Jansen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland; Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Wolfgang Bilger
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Éva Hideg
- Institute of Biology, University of Pécs, Ifjusag u. 6, H-7624, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden
| | - Otmar Urban
- Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic.
| |
Collapse
|
166
|
Das S, Majumder B, Biswas AK. Modulation of growth, ascorbate-glutathione cycle and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings by arsenic and silicon. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1387-1403. [PMID: 30406896 DOI: 10.1007/s10646-018-1994-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Arsenic is a carcinogenic metalloid, exists in two important oxidation states-arsenate (As-V) and arsenite (As-III). The influence of arsenate with or without silicate on the growth and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings were investigated. Arsenate was more toxic for root growth than shoot growth where the root lengths were short, characteristically fragile and root tips turned brown. The multiple comparison analysis using Tukey's HSD (honest significant difference) tests indicated that the rate of arsenate accumulation and its conversion to arsenite by arsenate reductase were significantly increased in all arsenate treated seedlings while in seedlings treated jointly with arsenate and silicate, arsenate accumulation and its conversion to arsenite decreased. Silicate content was detected in the seedlings treated with silicate alone and under co-application of arsenate with silicate. In the test seedlings arsenic toxicity increased ascorbate and glutathione contents along with the activities of their regulatory enzymes, viz., ascorbate peroxidase, glutathione reductase, glutathione peroxidase and glutathione-s-transferase to reduce the toxicity level induced by arsenic whereas ascorbate oxidase activity was decreased to maintain sufficient ascorbate pool under arsenate treatment. Phytochelatins production were increased in both root and shoot of the test seedlings under arsenate exposure to alter the detrimental effects of arsenic by chelation with arsenite and their subsequent sequestration into vacuole. Thus, joint application of silicate along with arsenate showed significant alterations on all the parameters tested compared to arsenate treatment alone due to less availability of arsenic in the tissue leading to better growth and metabolism in rice seedlings. Thus use of silicon in arsenic contaminated medium may help to grow rice with improved vigour.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
167
|
Anwar A, She M, Wang K, Riaz B, Ye X. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. Int J Mol Sci 2018; 19:ijms19113681. [PMID: 30469329 PMCID: PMC6274847 DOI: 10.3390/ijms19113681] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia.
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bisma Riaz
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
168
|
Chojak-Koźniewska J, Kuźniak E, Zimny J. The Effects of Combined Abiotic and Pathogen Stress in Plants: Insights From Salinity and Pseudomonas syringae pv lachrymans Interaction in Cucumber. FRONTIERS IN PLANT SCIENCE 2018; 9:1691. [PMID: 30524462 PMCID: PMC6256280 DOI: 10.3389/fpls.2018.01691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/31/2018] [Indexed: 05/13/2023]
Abstract
Plants are often challenged by abiotic and biotic stresses acting in combination and the response to combinatorial stress differs from that triggered by each factor individually. Although salinity and pathogens are major stressors limiting plant growth and productivity worldwide, their interaction is poorly understood. The reactions to pathogens overlap with those to abiotic stresses, and reactive oxygen species (ROS) and stress hormones represent central nodes in the interacting signaling pathways. Usually, abiotic stress negatively affects plant susceptibility to disease. Specific focus of this review is on cucumber plants exposed to salt stress and thereafter infected with Pseudomonas syringae pv lachrymans (Psl). We addressed this problem by discussing the changes in photochemistry, the antioxidant system, primary carbon metabolism, salicylic acid (SA) and abscisic acid (ABA) contents. Salt-treated plants were more prone to infection and this effect was determined by changes in the hormonal and redox balance as well as the carboxylate metabolism and activities of some NADPH-generating enzymes. Our detailed understanding of the interactive effects of biotic and abiotic stresses is fundamental to achieve enhanced tolerance to combination stress in agronomically important crops.
Collapse
Affiliation(s)
- Joanna Chojak-Koźniewska
- Genetically Modified Organisms Controlling Laboratory, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lódź, Lódź, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute – National Research Institute, Radzików, Poland
| |
Collapse
|
169
|
Meisner A, de Boer W. Strategies to Maintain Natural Biocontrol of Soil-Borne Crop Diseases During Severe Drought and Rainfall Events. Front Microbiol 2018; 9:2279. [PMID: 30450083 PMCID: PMC6225574 DOI: 10.3389/fmicb.2018.02279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/06/2018] [Indexed: 11/13/2022] Open
Abstract
In many parts of the world, agricultural ecosystems are increasingly exposed to severe drought, and rainfall events due to climate changes. This coincides with a higher vulnerability of crops to soil-borne diseases, which is mostly ascribed to decreased resistance to pathogen attacks. However, loss of the natural capacity of soil microbes to suppress soil-borne plant pathogens may also contribute to increased disease outbreaks. In this perspectives paper, we will discuss the effect of extreme weather events on pathogen-antagonist interactions during drought and rainfall events and upon recovery. We will focus on diseases caused by root-infecting fungi and oomycetes. In addition, we will explore factors that affect restoration of the balance between pathogens and other soil microbes. Finally, we will indicate potential future avenues to improve the resistance and/or recovery of natural biocontrol during, and after water stresses. As such, our perspective paper will highlight a knowledge gap that needs to be bridged to adapt agricultural ecosystems to changing climate scenarios.
Collapse
Affiliation(s)
- Annelein Meisner
- Microbial Ecology Group, Department of Biology, Lund University, Lund, Sweden
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Department of Soil Quality, Wageningen University and Research Centre, Wageningen, Netherlands
| |
Collapse
|
170
|
Guo N, Wang G, Zong M, Han S, Liu F. Genome-wide identification, and phylogenetic and expression profiling analyses of CaM and CML genes in Brassica rapa and Brassica oleracea. Gene 2018; 677:232-244. [DOI: 10.1016/j.gene.2018.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
|
171
|
Yang T, Xu ZP, Lv R, Zhu LS, Peng QD, Qiu L, Tian ZH, Lin HH, Xi DH. N gene enhances resistance to Chilli veinal mottle virus and hypersensitivity to salt stress in tobacco. JOURNAL OF PLANT PHYSIOLOGY 2018; 230:92-100. [PMID: 30196244 DOI: 10.1016/j.jplph.2018.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Plants use multiple mechanisms to fight against pathogen infection. One of the major mechanisms involves the disease resistance (R) gene, which specifically mediates plant defense. Recent studies have shown that R genes have broad spectrum effects in response to various stresses. N gene is the resistance gene specifically resistant to Tobacco mosaic virus (TMV). However, the role of N gene in abiotic stress and other viral responses remains obscure. In this study, we investigated the mechanisms by which N regulates plant defense responses under Chilli veinal mottle virus (ChiVMV) infection and salt stress. Here, we monitored the physiological and molecular changes of tobacco plants under virus attack. The results showed that when tobaccoNN and tobacconn plants were exposed to ChiVMV, tobaccoNN plants displayed higher susceptibility at five days post infection (dpi), while tobacconn plants exhibited higher susceptibility at 20 dpi. In addition, accumulation of reactive oxygen species (ROS) and expression of HARPIN-INDUCED1(NtHIN1) were higher in tobaccoNN plants than in tobacconn plants at 5 dpi. Interestingly, the pathogenesis-related gene (NtPR1 and NtPR5), the activities of antioxidant enzymes, and the content of salicylic acid (SA) in tobaccoNN plants increased compared with those in tobacconn plants. It was suggested that the N gene induced a hypersensitive response (HR) and enhanced the systemic resistance of plants in response to ChiVMV via the SA-dependent signaling pathway. In addition, the N gene was also induced significantly by salt stress. However, tobaccoNN plants showed hypersensitivity toward increased salt stress, and this hypersensitivity was dependent on abscisic acid and jasmonic acid but not SA. Taken together, our results indicate that the N gene appears to be important in the plant response to ChiVMV infection and salt stress.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zhen-Peng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Rui Lv
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Li-Sha Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Qi-Ding Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Long Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Zhi-Hui Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - De-Hui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
172
|
Comparative transcriptome meta-analysis of Arabidopsis thaliana under drought and cold stress. PLoS One 2018; 13:e0203266. [PMID: 30192796 PMCID: PMC6128483 DOI: 10.1371/journal.pone.0203266] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/17/2018] [Indexed: 02/08/2023] Open
Abstract
Multiple environmental stresses adversely affect plant growth and development. Plants under multiple stress condition trigger cascade of signals and show response unique to specific stress as well as shared responses, common to individual stresses. Here, we aim to identify common and unique genetic components during stress response mechanisms liable for cross-talk between stresses. Although drought and cold stress have been widely studied, insignificant information is available about how their combination affects plants. To that end, we performed meta-analysis and co-expression network comparison of drought and cold stress response in Arabidopsis thaliana by analyzing 390 microarray samples belonging to 29 microarray studies. We observed 6120 and 7079 DEGs (differentially expressed genes) under drought and cold stress respectively, using Rank Product methodology. Statistically, 28% (2890) DEGs were found to be common in both the stresses (i.e.; drought and cold stress) with most of them having similar expression pattern. Further, gene ontology-based enrichment analysis have identified shared biological processes and molecular mechanisms such as—‘photosynthesis’, ‘respiratory burst’, ‘response to hormone’, ‘signal transduction’, ‘metabolic process’, ‘response to water deprivation’, which were affected under cold and drought stress. Forty three transcription factor families were found to be expressed under both the stress conditions. Primarily, WRKY, NAC, MYB, AP2/ERF and bZIP transcription factor family genes were highly enriched in all genes sets and were found to regulate 56% of common genes expressed in drought and cold stress. Gene co-expression network analysis by WGCNA (weighted gene co-expression network analysis) revealed 21 and 16 highly inter-correlated gene modules with specific expression profiles under drought and cold stress respectively. Detection and analysis of gene modules shared between two stresses revealed the presence of four consensus gene modules.
Collapse
|
173
|
Tarafdar A, Rani TS, Chandran USS, Ghosh R, Chobe DR, Sharma M. Exploring Combined Effect of Abiotic (Soil Moisture) and Biotic ( Sclerotium rolfsii Sacc.) Stress on Collar Rot Development in Chickpea. FRONTIERS IN PLANT SCIENCE 2018; 9:1154. [PMID: 30158943 PMCID: PMC6104659 DOI: 10.3389/fpls.2018.01154] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/19/2018] [Indexed: 05/14/2023]
Abstract
Plants being sessile are under constant threat of multiple abiotic and biotic stresses within its natural habitat. A combined stress involving an abiotic and a biotic factor reportedly increases susceptibility of the plants to pathogens. The emerging threat, collar rot disease of chickpea (caused by Sclerotium rolfsii Sacc.) is reported to be influenced by soil moisture condition (SMC). Hence, we studied the influence of differential SMC viz. upper optimum (100%), optimum (80%), lower optimum (60%), and limiting (40%) soil moisture conditions on colonization and collar rot development over the course of infection in two chickpea cultivars, Annigeri (susceptible to collar rot) and ICCV 05530 (moderately resistant to collar rot). Disease incidence was found to be directly proportional to increase in soil moisture (R2 = 0.794). Maximum incidence was observed at 80% SMC, followed by 100 and 60% SMC. Expression of genes (qPCR analysis) associated with host cell wall binding (lectin) and degradation viz. endopolygalacturonase-2, endoglucosidase, and cellobiohydrolase during collar rot development in chickpea were relatively less at limiting soil moisture condition (40%) as compared to optimum soil moisture condition (80%). As compared to individual stress, the expression of defense response genes in chickpea seedlings were highly up-regulated in seedlings challenged with combined stress. Our qPCR results indicated that the expression of defense-related genes in chickpea during interaction with S. rolfsii at low SMC was primarily responsible for delayed disease reaction. Involvement of moisture and biotic stress-related genes in combined stress showed a tailored defense mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Mamta Sharma
- Legumes Pathology, Integrated Crop Management, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India
| |
Collapse
|
174
|
Tani E, Kizis D, Markellou E, Papadakis I, Tsamadia D, Leventis G, Makrogianni D, Karapanos I. Cultivar-Dependent Responses of Eggplant ( Solanum melongena L.) to Simultaneous Verticillium dahliae Infection and Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:1181. [PMID: 30150998 PMCID: PMC6099113 DOI: 10.3389/fpls.2018.01181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/24/2018] [Indexed: 05/22/2023]
Abstract
Several studies regarding the imposition of stresses simultaneously in plants have shown that plant responses are different under individual and combined stress. Pathogen infection in combination with drought can act both additively and antagonistically, suggesting a tailored-made plant response to these stresses. The aforementioned combination of stresses can be considered as one of the most important factors affecting global crop production. In the present research we studied eggplant responses to simultaneous Verticillium dahliae infection and drought with respect to the application of the individual stresses alone and investigated the extent to which these responses were cultivar dependent. Two eggplant cultivars (Skoutari and EMI) with intermediate resistance to V. dahliae were subjected to combined stress for a 3-week period. Significant differences in plant growth, several physiological and biochemical parameters (photosynthesis rate, leaf gas exchanges, Malondialdehyde, Proline) and gene expression, were found between plants subjected to combined and individual stresses. Furthermore, plant growth and molecular (lipid peroxidation, hydrogen peroxide, gene expression levels) changes highlight a clear discrimination between the two cultivars in response to simultaneous V. dahliae infection and drought. Our results showed that combined stress affects significantly plants responses compared to the application of individual stresses alone and that these responses are cultivar dependent.
Collapse
Affiliation(s)
- Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, Athens, Greece
| | - Emilia Markellou
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, Athens, Greece
| | - Ioannis Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimitra Tsamadia
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Georgios Leventis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Despoina Makrogianni
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ioannis Karapanos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
175
|
Shrestha A, Khan A, Dey N. cis-trans Engineering: Advances and Perspectives on Customized Transcriptional Regulation in Plants. MOLECULAR PLANT 2018; 11:886-898. [PMID: 29859265 DOI: 10.1016/j.molp.2018.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
Coordinated transcriptional control employing synthetic promoters and transcription factors (TFs) can be used to achieve customized regulation of gene expression in planta. Synthetic promoter technology has yielded a series of promoters with modified cis-regulatory elements that provide useful tools for efficient modulation of gene expression. In addition, the use of zinc fingers (ZFs), transcription activator-like effectors (TALEs), and catalytically inactive clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (dCas9) has made it feasible to engineer TFs that can produce targeted gene expression regulation; these approaches are particularly effective when artificial TFs are coupled with transcriptional activators or repressors. This review focuses on strategies used to engineer both promoters and TFs in the context of targeted transcriptional regulation. We also discuss the creation of synthetic inducible platforms, which can be used to impart stress tolerance to plants. We propose that combinatorial "cis-trans engineering" using a CRISPR-dCas9-based bipartite module could be used to regulate the expression of multiple target genes. This approach provides an attractive tool for introduction of specific qualitative traits into plants, thus enhancing their overall environmental adaptability.
Collapse
Affiliation(s)
- Ankita Shrestha
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ahamed Khan
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Division of Microbial and Plant Biotechnology, Institute of Life Sciences, Department of Biotechnology, Government of India, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
176
|
Cheng J, Fan H, Li L, Hu B, Liu H, Liu Z. Genome-wide Identification and Expression Analyses of RPP13-like Genes in Barley. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2203-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
177
|
Santamaria ME, Diaz I, Martinez M. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:458. [PMID: 29681917 PMCID: PMC5898276 DOI: 10.3389/fpls.2018.00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.
Collapse
Affiliation(s)
- M. E. Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
178
|
Woldesemayat AA, Modise DM, Gemeildien J, Ndimba BK, Christoffels A. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species. PLoS One 2018; 13:e0192678. [PMID: 29590108 PMCID: PMC5873934 DOI: 10.1371/journal.pone.0192678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations. METHODS In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO), Trait Ontology (TO), Plant Ontology (PO), Growth Ontology (GRO) and Environment Ontology (EO) were used to semantically integrate drought related information. RESULTS Target genes linked to Quantitative Trait Loci (QTLs) controlling yield and stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%), salt (32%), cold (20%), heat (8%) and oxidative stress (25%) were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs associated with different traits that are responsive to multiple stresses. Ontology mapping was used to validate the identified genes, while reconstruction of the phylogenetic tree was instrumental to infer the evolutionary relationship of the sorghum orthologs. The results also show specific genes responsible for various interrelated components of drought response mechanism such as drought tolerance, drought avoidance and drought escape. CONCLUSIONS We submit that this approach is novel and to our knowledge, has not been used previously in any other research; it enables us to perform cross-species queries for genes that are likely to be associated with multiple stress tolerance, as a means to identify novel targets for engineering stress resistance in sorghum and possibly, in other crop species.
Collapse
Affiliation(s)
- Adugna Abdi Woldesemayat
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
- * E-mail: ,
| | - David M. Modise
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Florida, Johannesburg, South Africa
| | - Junaid Gemeildien
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
| | - Bongani K. Ndimba
- Department of Biotechnology, University of the Western Cape, Cape Town, Western Cape, South Africa
- Agricultural Research Council, Infruitech-Nietvoorbij, Stellenbosch, South Africa
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Belleville, South Africa
| |
Collapse
|
179
|
Kim Y, Mun BG, Khan AL, Waqas M, Kim HH, Shahzad R, Imran M, Yun BW, Lee IJ. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One 2018; 13:e0192650. [PMID: 29558477 PMCID: PMC5860692 DOI: 10.1371/journal.pone.0192650] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/26/2018] [Indexed: 01/24/2023] Open
Abstract
This study investigated the regulatory role of exogenous salicylic acid (SA) in rice and its effects on toxic reactive oxygen and nitrogen species during short-term salinity stress. SA application (0.5 and 1.0 mM) during salinity-induced stress (100 mM NaCl) resulted in significantly longer shoot length and higher chlorophyll and biomass accumulation than with salinity stress alone. NaCl-induced reactive oxygen species production led to increased levels of lipid peroxidation in rice plants, which were significantly reduced following SA application. A similar finding was observed for superoxide dismutase; however, catalase (CAT) and ascorbate peroxidase (APX) were significantly reduced in rice plants treated with SA and NaCl alone and in combination. The relative mRNA expression of OsCATA and OsAPX1 was lower in rice plants during SA stress. Regarding nitrogenous species, S-nitrosothiol (SNO) was significantly reduced initially (one day after treatment [DAT]) but then increased in plants subjected to single or combined stress conditions. Genes related to SNO biosynthesis, S-nitrosoglutathione reductase (GSNOR1), NO synthase-like activity (NOA), and nitrite reductase (NIR) were also assessed. The mRNA expression of GSNOR1 was increased relative to that of the control, whereas OsNOA was expressed at higher levels in plants treated with SA and NaCl alone relative to the control. The mRNA expression of OsNR was decreased in plants subjected to single or combination treatment, except at 2 DAT, compared to the control. In conclusion, the current findings suggest that SA can regulate the generation of NaCl-induced oxygen and nitrogen reactive species in rice plants.
Collapse
Affiliation(s)
- Yoonha Kim
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
| | - Bong-Gyu Mun
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdul Latif Khan
- UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- Department of Agriculture Extension, Government of Khyber Pakhtunkhwa, Buner, Pakistan
| | - Hyun-Ho Kim
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
| | - Raheem Shahzad
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
| | - Muhammad Imran
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
- * E-mail: (BWY); (IJL)
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, South Korea
- * E-mail: (BWY); (IJL)
| |
Collapse
|
180
|
Islam W, Qasim M, Noman A, Adnan M, Tayyab M, Farooq TH, Wei H, Wang L. Plant microRNAs: Front line players against invading pathogens. Microb Pathog 2018. [PMID: 29524548 DOI: 10.1016/j.micpath.2018.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plants are attacked by a large number of pathogens. To defend against these pathogens, plants activate or repress a vast array of genes. For genetic expression and reprogramming, host endogenous small RNAs (sRNAs) are the key factors. Among these sRNAs, microRNAs (miRNAs) mediate gene regulation through RNA silencing at the post-transcriptional level and play an essential role in the defense responses to biotic and abiotic stress. In the recent years, high-throughput sequencing has enabled the researchers to uncover the role of plant miRNAs during pathogen invasion. So here we have reviewed the recent research findings illustrating the plant miRNAs active involvement in various defense processes during fungal, bacterial, viral and nematode infections. However, rapid validation of direct targets of miRNAs is the dire need of time, which can be very helpful in improving the plant resistance against various pathogenic diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Govt. of Punjab, Agriculture Department, Lahore, Pakistan.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China
| | - Ali Noman
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Department of Botany, Govt. College University, Faisalabad, Pakistan
| | - Muhammad Adnan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Tayyab
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taimoor Hassan Farooq
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huang Wei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, 350002, China.
| |
Collapse
|
181
|
Bai Y, Kissoudis C, Yan Z, Visser RGF, van der Linden G. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:781-793. [PMID: 29237240 DOI: 10.1111/tpj.13800] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Crop plants are subjected to a variety of stresses during their lifecycle, including abiotic stress factors such as salinity and biotic stress factors such as pathogens. Plants have developed a multitude of defense and adaptation responses to these stress factors. In the field, different stress factors mostly occur concurrently resulting in a new state of stress, the combined stress. There is evidence that plant resistance to pathogens can be attenuated or enhanced by abiotic stress factors. With stress tolerance research being mostly focused on plant responses to individual stresses, the understanding of a plant's ability to adapt to combined stresses is limited. In the last few years, we studied powdery mildew resistance under salt stress conditions in the model crop plant tomato with the aim to understand the requirements to achieve plant resilience to a wider array of combined abiotic and biotic stress combinations. We uncovered specific responses of tomato plants to combined salinity-pathogen stress, which varied with salinity intensity and plant resistance genes. Moreover, hormones, with their complex regulation and cross-talk, were shown to play a key role in the adaptation of tomato plants to the combined stress. In this review, we attempt to understand the complexity of plant responses to abiotic and biotic stress combinations, with a focus on tomato responses (genetic control and cross-talk of signaling pathways) to combined salinity and pathogen stresses. Further, we provide recommendations on how to design novel strategies for breeding crops with a sustained performance under diverse environmental conditions.
Collapse
Affiliation(s)
- Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Christos Kissoudis
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| | - Gerard van der Linden
- Plant Breeding, Wageningen University & Research, P.O. Box 386, Wageningen, 6700AJ, The Netherlands
| |
Collapse
|
182
|
Bergès SE, Vile D, Vazquez-Rovere C, Blanc S, Yvon M, Bédiée A, Rolland G, Dauzat M, van Munster M. Interactions Between Drought and Plant Genotype Change Epidemiological Traits of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2018; 9:703. [PMID: 29881396 PMCID: PMC5976794 DOI: 10.3389/fpls.2018.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.
Collapse
Affiliation(s)
- Sandy E. Bergès
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Denis Vile
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| | - Cecilia Vazquez-Rovere
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- LABINTEX Europe, Instituto Nacional de Tecnología Agropecuária, Montpellier, France
| | - Stéphane Blanc
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michel Yvon
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Alexis Bédiée
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Myriam Dauzat
- LEPSE, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Manuella van Munster
- BGPI, CIRAD, INRA, Montpellier SupAgro, Université de Montpellier, Montpellier, France
- *Correspondence: Denis Vile, Manuella van Munster,
| |
Collapse
|
183
|
Khan A, Shrestha A, Bhuyan K, Maiti IB, Dey N. Structural characterization of a novel full-length transcript promoter from Horseradish Latent Virus (HRLV) and its transcriptional regulation by multiple stress responsive transcription factors. PLANT MOLECULAR BIOLOGY 2018; 96:179-196. [PMID: 29327227 DOI: 10.1007/s11103-017-0693-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE The promoter fragment described in this study can be employed for strong transgene expression under both biotic and abiotic stress conditions. Plant-infecting Caulimoviruses have evolved multiple regulatory mechanisms to address various environmental stimuli during the course of evolution. One such mechanism involves the retention of discrete stress responsive cis-elements which are required for their survival and host-specificity. Here we describe the characterization of a novel Caulimoviral promoter isolated from Horseradish Latent Virus (HRLV) and its regulation by multiple stress responsive Transcription factors (TFs) namely DREB1, AREB1 and TGA1a. The activity of full length transcript (Flt-) promoter from HRLV (- 677 to + 283) was investigated in both transient and transgenic assays where we identified H12 (- 427 to + 73) as the highest expressing fragment having ~ 2.5-fold stronger activity than the CaMV35S promoter. The H12 promoter was highly active and near-constitutive in the vegetative and reproductive parts of both Tobacco and Arabidopsis transgenic plants. Interestingly, H12 contains a distinct cluster of cis-elements like dehydration-responsive element (DRE-core; GCCGAC), an ABA-responsive element (ABRE; ACGTGTC) and as-1 element (TGACG) which are known to be induced by cold, drought and pathogen/SA respectively. The specific binding of DREB1, AREB1 and TGA1a to DRE, ABRE and as-1 elements respectively were confirmed by the gel-binding assays using H12 promoter-specific probes. Detailed mutational analysis of the H12 promoter suggested that the presence of DRE-core and as-1 element was indispensable for its activity which was further confirmed by the transactivation assays. Our studies imply that H12 could be a valuable genetic tool for regulated transgene expression under diverse environmental conditions.
Collapse
Affiliation(s)
- Ahamed Khan
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Ankita Shrestha
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Kashyap Bhuyan
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India
| | - Indu B Maiti
- Department of Molecular Plant Virology and Plant Genetic Engineering, KTRDC, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546-0236, USA
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Department of Biotechnology, Government of India, Institute of Life Sciences, Chandrasekharpur, Bhubaneswar, Odisha, India.
| |
Collapse
|
184
|
Naalden D, Verbeek R, Gheysen G. Nicotiana benthamiana as model plant for Meloidogyne graminicola infection. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Summary
Nicotiana benthamiana is widely used as a model plant to analyse cell biology and to obtain insight into the molecular host-pathogen interaction because it is susceptible to many pathogens. Since N. benthamiana can be transformed easily, it is also used to study pathogens for which it is not a known host. Meloidogyne graminicola has a fairly broad host range of mainly monocots and some dicots but no data were available on the ability of M. graminicola to infect N. benthamiana. In this study, we show that M. graminicola is able to infect and complete its life cycle in N. benthamiana, although our experiments demonstrate a lower susceptibility compared to rice. In addition, M. graminicola was also able to develop in N. tabacum but the reproduction was very low. Therefore, we conclude that N. benthamiana can be considered as a host, while this is not the case for N. tabacum.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Ruben Verbeek
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Godelieve Gheysen
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| |
Collapse
|
185
|
Sheshukova EV, Komarova TV, Ershova NM, Shindyapina AV, Dorokhov YL. An Alternative Nested Reading Frame May Participate in the Stress-Dependent Expression of a Plant Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:2137. [PMID: 29312392 PMCID: PMC5742262 DOI: 10.3389/fpls.2017.02137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
Although plants as sessile organisms are affected by a variety of stressors in the field, the stress factors for the above-ground and underground parts of the plant and their gene expression profiles are not the same. Here, we investigated NbKPILP, a gene encoding a new member of the ubiquitous, pathogenesis-related Kunitz peptidase inhibitor (KPI)-like protein family, that we discovered in the genome of Nicotiana benthamiana and other representatives of the Solanaceae family. The NbKPILP gene encodes a protein that has all the structural elements characteristic of KPI but in contrast to the proven A. thaliana KPI (AtKPI), it does not inhibit serine peptidases. Unlike roots, NbKPILP mRNA and its corresponding protein were not detected in intact leaves, but abiotic and biotic stressors drastically affected NbKPILP mRNA accumulation. In search of the causes of suppressed NbKPILP mRNA accumulation in leaves, we found that the NbKPILP gene is "matryoshka," containing an alternative nested reading frame (ANRF) encoding a 53-amino acid (aa) polypeptide (53aa-ANRF) which has an amphipathic helix (AH). We confirmed ANRF expression experimentally. A vector containing a GFP-encoding sequence was inserted into the NbKPILP gene in frame with 53aa-ANRF, resulting in a 53aa-GFP fused protein that localized in the membrane fraction of cells. Using the 5'-RACE approach, we have shown that the expression of ANRF was not explained by the existence of a cryptic promoter within the NbKPILP gene but was controlled by the maternal NbKPILP mRNA. We found that insertion of mutations destroying the 53aa-ANRF AH resulted in more than a two-fold increase of the NbKPILP mRNA level. The NbKPILP gene represents the first example of ANRF functioning as a repressor of a maternal gene in an intact plant. We proposed a model where the stress influencing the translation initiation promotes the accumulation of NbKPILP and its mRNA in leaves.
Collapse
Affiliation(s)
- Ekaterina V. Sheshukova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V. Komarova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Natalia M. Ershova
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia V. Shindyapina
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri L. Dorokhov
- Department of Genetics and Biotechnology, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
186
|
Aguilar E, Cutrona C, Del Toro FJ, Vallarino JG, Osorio S, Pérez-Bueno ML, Barón M, Chung BN, Canto T, Tenllado F. Virulence determines beneficial trade-offs in the response of virus-infected plants to drought via induction of salicylic acid. PLANT, CELL & ENVIRONMENT 2017; 40:2909-2930. [PMID: 28718885 DOI: 10.1111/pce.13028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/02/2017] [Indexed: 05/21/2023]
Abstract
It has been hypothesized that plants can get beneficial trade-offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus-induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought-tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus-infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid-independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non-infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Carmen Cutrona
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco J Del Toro
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - José G Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-CSIC, Málaga, 2907, Spain
| | - María Luisa Pérez-Bueno
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Matilde Barón
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, 18008, Spain
| | - Bong-Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Francisco Tenllado
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| |
Collapse
|
187
|
Kumar A, Verma JP. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiol Res 2017; 207:41-52. [PMID: 29458867 DOI: 10.1016/j.micres.2017.11.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/26/2017] [Accepted: 11/04/2017] [Indexed: 01/17/2023]
Abstract
The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production.
Collapse
Affiliation(s)
- Akhilesh Kumar
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi221005, U.P., India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi221005, U.P., India.
| |
Collapse
|
188
|
Rampino P, De Pascali M, De Caroli M, Luvisi A, De Bellis L, Piro G, Perrotta C. Td4IN2: A drought-responsive durum wheat (Triticum durum Desf.) gene coding for a resistance like protein with serine/threonine protein kinase, nucleotide binding site and leucine rich domains. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:223-231. [PMID: 29065389 DOI: 10.1016/j.plaphy.2017.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/01/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure.
Collapse
Affiliation(s)
- Patrizia Rampino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy.
| | - Mariarosaria De Pascali
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Andrea Luvisi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Luigi De Bellis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Carla Perrotta
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| |
Collapse
|
189
|
Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 2017; 206:131-140. [PMID: 29146250 DOI: 10.1016/j.micres.2017.08.016] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/10/2023]
Abstract
The progression of life in all forms is not only dependent on agricultural and food security but also on the soil characteristics. The dynamic nature of soil is a direct manifestation of soil microbes, bio-mineralization, and synergistic co-evolution with plants. With the increase in world's population the demand for agriculture yield has increased tremendously and thereby leading to large scale production of chemical fertilizers. Since the use of fertilizers and pesticides in the agricultural fields have caused degradation of soil quality and fertility, thus the expansion of agricultural land with fertile soil is near impossible, hence researchers and scientists have sifted their attention for a safer and productive means of agricultural practices. Plant growth promoting rhizobacteria (PGPR) has been functioning as a co-evolution between plants and microbes showing antagonistic and synergistic interactions with microorganisms and the soil. Microbial revitalization using plant growth promoters had been achieved through direct and indirect approaches like bio-fertilization, invigorating root growth, rhizoremediation, disease resistance etc. Although, there are a wide variety of PGPR and its allies, their role and usages for sustainable agriculture remains controversial and restricted. There is also variability in the performance of PGPR that may be due to various environmental factors that might affect their growth and proliferation in the plants. These gaps and limitations can be addressed through use of modern approaches and techniques such as nano-encapsulation and micro-encapsulation along with exploring multidisciplinary research that combines applications in biotechnology, nanotechnology, agro biotechnology, chemical engineering and material science and bringing together different ecological and functional biological approaches to provide new formulations and opportunities with immense potential.
Collapse
Affiliation(s)
- Sushanto Gouda
- Amity Institute of Wildlife Science, Noida 201303, Uttar Pradesh, India
| | - Rout George Kerry
- Department of Biotechnology, AMIT College, Khurda 752057, Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggi-do 10326, Republic of Korea.
| |
Collapse
|
190
|
Nerva L, Silvestri A, Ciuffo M, Palmano S, Varese GC, Turina M. Transmission of Penicillium aurantiogriseum partiti-like virus 1 to a new fungal host (Cryphonectria parasitica) confers higher resistance to salinity and reveals adaptive genomic changes. Environ Microbiol 2017; 19:4480-4492. [PMID: 28836717 DOI: 10.1111/1462-2920.13894] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/12/2017] [Indexed: 11/27/2022]
Abstract
We attempted to transfect six recently characterized virus species to protoplasts of Penicillium janczewskii and Chryphonectria parasitica. None of the recovered P. janczewskii colonies was positive for the transfected viruses, but Penicillium aurantiogriseum partiti-like virus 1 (PaPLV1) was detected in three distinct regenerated C. parasitica colonies. We screened the phenotype of the infected strains in up to 45 different conditions combining different media, salinity and temperatures: our results show that the infected strains grow slower than the virus- free in most of the tested conditions with the exception of halophilic stress in a specific nutrient combination media. We proceeded to characterize molecularly the population of distinct isolates of PaPLV1 infected C. parasitica through RNAseq: comparison to the viral population present in the original host - P. auratiogriseum - showed that two isolates accumulated non-synonymous mutations suggesting adaptation to the new host. RNAseq analyses identified a second genomic RNA segment and northern blot of RNA extracted from purified virus suspensions allowed establishing that PaPLV1 is at least bipartite in nature and that it forms isometric virions of circa 36-38 nm in diameter. In light of these new acquisitions, we discuss the taxonomic placement of PaPLV1 inside the Partitiviridae.
Collapse
Affiliation(s)
- Luca Nerva
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, Torino 10135, Italy.,Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, Torino 10125, Italy
| | - Alessandro Silvestri
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, Torino 10135, Italy.,Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, Torino 10125, Italy
| | - Marina Ciuffo
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Sabrina Palmano
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | - Givanna Cristina Varese
- Department of Life Sciences and Systems Biology, University of Turin, Mycotheca Universitatis Taurinensis (MUT), Viale Mattioli 25, Torino 10125, Italy
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Strada delle Cacce 73, Torino 10135, Italy
| |
Collapse
|
191
|
Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:731-744. [PMID: 29158624 PMCID: PMC5671444 DOI: 10.1007/s12298-017-0462-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/31/2017] [Indexed: 05/18/2023]
Abstract
Plants are confronted with a variety of environmenmtal stresses resulting in enhanced production of ROS. Plants require a threshold level of ROS for vital functions and any change in their concentration alters the entire physiology of plant. Delicate balance of ROS is maintained by an efficient functioning of intriguing indigenous defence system called antioxidant system comprising enzymatic and non enzymatic components. Down regulation of antioxidant system leads to ROS induced oxidative stress causing damage to important cellular structures and hence anomalies in metabolism. Proper mineral nutrition, in addition to other agricultural practices, forms an important part for growth and hence the yield. Potassium (K) is a key macro-element regulating growth and development through alterations in physiological and biochemical attributes. K has been reported to result into accumulation of osmolytes and augmentation of antioxidant components in the plants exposed to water and salt stress. In the present review an effort has been made to revisit the old findings and the current advances in research regarding the role of optimal, suboptimal and deficient K soil status on growth under normal and stressful conditions. Effect of K deficiency and sufficiency is discussed and the information about the K mediated antioxidant regulation and plant response is highlighted.
Collapse
Affiliation(s)
| | - Nisha Singh Tomar
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Megha Tittal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - Surendra Argal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| | - R. M. Agarwal
- School of Studies in Botany, Jiwaji University, Gwalior, MP 474011 India
| |
Collapse
|
192
|
Sharma M, Pandey GK. Editorial: Genomics and Functional Genomics of Stress-mediated Signaling in Plants: Volume I. Curr Genomics 2017; 18:467-468. [PMID: 29204076 PMCID: PMC5684647 DOI: 10.2174/138920291806170929123912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
193
|
Avramova Z. The jasmonic acid-signalling and abscisic acid-signalling pathways cross talk during one, but not repeated, dehydration stress: a non-specific 'panicky' or a meaningful response? PLANT, CELL & ENVIRONMENT 2017; 40:1704-1710. [PMID: 28447364 DOI: 10.1111/pce.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Experiencing diverse and recurring biotic and abiotic stresses throughout life, plants have evolved mechanisms to respond, survive and, eventually, adapt to changing habitats. The initial response to drought involves a large number of genes that are involved also in response to other stresses. According to current models, this initial response is non-specific, becoming stress-specific only at later time points. The question, then, is whether non-specific activation of various stress-signalling systems leading to the expression of numerous stress-regulated genes is a false-alarm (panicky) response or whether it has biologically relevant consequences for the plant. Here, it is argued that the initial activation of genes associated other stresses reflects an important event during which stress-specific mechanisms are generated to prevent subsequent activation of non-drought signalling pathways. How plants discriminate between a first and a repeated dehydration stress and how repression of non-drought specific genes is achieved will be discussed on the example of jasmonic acid-associated Arabidopsis genes activated by a first, but not subsequent, dehydration stresses. Revealing how expression of various biotic/abiotic stress responding genes is prevented under recurring drought spells may be critical for our understanding of how plants respond to dynamically changing environments.
Collapse
Affiliation(s)
- Zoya Avramova
- School of Biological Sciences, University of Nebraska, Lincoln, NE, 68588, USA
| |
Collapse
|
194
|
Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC PLANT BIOLOGY 2017; 17:127. [PMID: 28716054 PMCID: PMC5513356 DOI: 10.1186/s12870-017-1074-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND In nature, plants are frequently exposed to simultaneous biotic stresses that activate distinct and often antagonistic defense signaling pathways. How plants integrate this information and whether they prioritize one stress over the other is not well understood. RESULTS We investigated the transcriptome signature of the wild annual crucifer, Brassica nigra, in response to eggs and caterpillars of Pieris brassicae butterflies, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. raphani (Xcr). Pretreatment with egg extract, aphids, or Xcr had a weak impact on the subsequent transcriptome profile of plants challenged with caterpillars, suggesting that the second stress dominates the transcriptional response. Nevertheless, P. brassicae larval performance was strongly affected by egg extract or Xcr pretreatment and depended on the site where the initial stress was applied. Although egg extract and Xcr pretreatments inhibited insect-induced defense gene expression, suggesting salicylic acid (SA)/jasmonic acid (JA) pathway cross talk, this was not strictly correlated with larval performance. CONCLUSION These results emphasize the need to better integrate plant responses at different levels of biological organization and to consider localized effects in order to predict the consequence of multiple stresses on plant resistance.
Collapse
Affiliation(s)
- Christelle Bonnet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Steve Lassueur
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Camille Ponzio
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
195
|
Nawaz F, Naeem M, Zulfiqar B, Akram A, Ashraf MY, Raheel M, Shabbir RN, Hussain RA, Anwar I, Aurangzaib M. Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15959-15975. [PMID: 28540554 DOI: 10.1007/s11356-017-9163-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/01/2017] [Indexed: 05/25/2023]
Abstract
Brassinosteroids (BRs) are steroidal plant hormones involved in regulation of physiological and molecular processes to ameliorate various biotic and abiotic stresses. Exogenous application of BRs to improve stress tolerance in plants has recently become a high research priority. Several studies have revealed the involvement of these steroidal hormones in upregulation of stress-related defense genes and their cross talk with other metabolic pathways. This is likely to stimulate research on many unanswered questions regarding their role in enhancing the ability of plants to tolerate adverse environmental conditions. Thus, this review appraises new insights on mechanisms mediating BR-regulated changes in plants, focused mainly on their involvement in regulation of physiological and molecular mechanisms under stress conditions. Herein, examples of BR-stimulated modulation of antioxidant defense system and upregulation of transcription factors in plants exposed to various biotic (bacterial, viral, and fungal attack) and abiotic stresses (drought, salinity, heat, low temperature, and heavy metal stress) are discussed. Based on these insights, future research in the current direction can be helpful to increase our understanding of BR-mediated complex and interrelated processes under stress conditions.
Collapse
Affiliation(s)
- Fahim Nawaz
- Department of Agronomy, MNS University of Agriculture, Multan, Pakistan.
| | - Muhammad Naeem
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bilal Zulfiqar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Asim Akram
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Yasin Ashraf
- Crop Stress Management Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Raheel
- Department of Plant Pathology, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rana Nauman Shabbir
- Department of Agronomy, Agriculture College, Bahauddin Zakariya University, Multan, Pakistan
| | - Rai Altaf Hussain
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Irfan Anwar
- Department of Agronomy, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | |
Collapse
|
196
|
Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M. Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 2017; 7:4017. [PMID: 28638069 PMCID: PMC5479852 DOI: 10.1038/s41598-017-03907-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Global transcriptome studies demonstrated the existence of unique plant responses under combined stress which are otherwise not seen during individual stresses. In order to combat combined stress plants use signaling pathways and 'cross talk' mediated by hormones involved in stress and growth related processes. However, interactions among hormones' pathways in combined stressed plants are not yet known. Here we studied dynamics of different hormones under individual and combined drought and pathogen infection in Arabidopsis thaliana by liquid chromatography-mass spectrometry (LC-MS) based profiling. Our results revealed abscisic acid (ABA) and salicylic acid (SA) as key regulators under individual drought and pathogen stress respectively. Under combined drought and host pathogen stress (DH) we observed non-induced levels of ABA with an upsurge in SA and jasmonic acid (JA) concentrations, underscoring their role in basal tolerance against host pathogen. Under a non-host pathogen interaction with drought (DNH) stressed plants, ABA, SA and JA profiles were similar to those under DH or non-host pathogen alone. We propose that plants use SA/JA dependent signaling during DH stress which antagonize ABA biosynthesis and signaling pathways during early stage of stress. The study provides insights into hormone modulation at different time points during combined stress.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India.
| |
Collapse
|
197
|
Subramanian S, Schnoor JL, Van Aken B. Effects of Polychlorinated Biphenyls (PCBs) and Their Hydroxylated Metabolites (OH-PCBs) on Arabidopsis thaliana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7263-7270. [PMID: 28541669 PMCID: PMC5772893 DOI: 10.1021/acs.est.7b01538] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants metabolize polychlorinated biphenyls (PCBs) into hydroxylated derivatives (OH-PCBs), which are sometimes more toxic than the parent PCBs. The objective of this research was to compare the toxicity of a suite of PCBs and OH-PCBs toward the model plant, Arabidopsis thaliana. While parent PCBs and higher-chlorinated OH-PCBs exhibited a low or nondetectable toxicity, lower-chlorinated OH-PCBs significantly inhibited the germination rate and plant growth, with inhibition concentration 50% (IC50) ranging from 1.6 to 12.0 mg L-1. The transcriptomic response of A. thaliana to 2,5-dichlorobiphenyl (2,5-DCB), and its OH metabolite, 4'-OH-2,5-DCB, was then examined using whole-genome expression microarrays (Affymetrix). Exposure to 2,5-DCB and 4'-OH-2,5-DCB resulted in different expression patterns, with the former leading to enrichment of genes involved in response to toxic stress and detoxification functions. Exposure to 2,5-DCB induced multiple xenobiotic response genes, such as cytochrome P-450 and glutathione S-transferases, potentially involved in the PCB metabolism. On the contrary, exposure to both compounds resulted in the down-regulation of genes involved in stresses not directly related to toxicity. Unlike its OH derivative, 2,5-DCB was shown to induce a transcriptomic profile similar to plant safeners, which are nontoxic chemicals stimulating detoxification pathways in plants. The differentiated induction of detoxification enzymes by 2,5-DCB may explain its lower phytotoxicity compared to 4'-OH-2,5-DCB.
Collapse
Affiliation(s)
- Srishty Subramanian
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jerald L. Schnoor
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Benoit Van Aken
- Department of Civil & Environmental Engineering, Temple University, Philadelphia, Pennsylvania 19122, United States
- Corresponding Author, . Phone: 215-204-7087. Fax: 215-204-4696
| |
Collapse
|
198
|
Cotrozzi L, Pellegrini E, Guidi L, Landi M, Lorenzini G, Massai R, Remorini D, Tonelli M, Trivellini A, Vernieri P, Nali C. Losing the Warning Signal: Drought Compromises the Cross-Talk of Signaling Molecules in Quercus ilex Exposed to Ozone. FRONTIERS IN PLANT SCIENCE 2017; 8:1020. [PMID: 28674543 PMCID: PMC5475409 DOI: 10.3389/fpls.2017.01020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/29/2017] [Indexed: 05/27/2023]
Abstract
Understanding the interactions between drought and acute ozone (O3) stress in terms of signaling molecules and cell death would improve the predictions of plant responses to climate change. The aim was to investigate whether drought stress influences the responses of plants to acute episodes of O3 exposure. In this study, the behavior of 84 Mediterranean evergreen Quercus ilex plants was evaluated in terms of cross-talk responses among signaling molecules. Half of the sample was subjected to drought (20% of the effective daily evapotranspiration, for 15 days) and was later exposed to an acute O3 exposure (200 nL L-1 for 5 h). First, our results indicate that in well-water conditions, O3 induced a signaling pathway specific to O3-sensitive behavior. Second, different trends and consequently different roles of phytohormones and signaling molecules (ethylene, ET; abscisic acid, ABA; salycilic acid, SA and jasmonic acid, JA) were observed in relation to water stress and O3. A spatial and functional correlation between these signaling molecules was observed in modulating O3-induced responses in well-watered plants. In contrast, in drought-stressed plants, these compounds were not involved either in O3-induced signaling mechanisms or in leaf senescence (a response observed in water-stressed plants before the O3-exposure). Third, these differences were ascribable to the fact that in drought conditions, most defense processes induced by O3 were compromised and/or altered. Our results highlight how Q. ilex plants suffering from water deprivation respond differently to an acute O3 episode compared to well-watered plants, and suggest new effect to be considered in plant responses to environmental changes. This poses the serious question as to whether or not multiple high-magnitude O3 events (as predicted) can change these cross-talk responses, thus opening it up possible further investigations.
Collapse
Affiliation(s)
- Lorenzo Cotrozzi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Elisa Pellegrini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Giacomo Lorenzini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Rossano Massai
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Damiano Remorini
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Mariagrazia Tonelli
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | - Paolo Vernieri
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| | - Cristina Nali
- Department of Agriculture, Food and Environment, University of PisaPisa, Italy
| |
Collapse
|
199
|
El Aou-Ouad H, Pou A, Tomás M, Montero R, Ribas-Carbo M, Medrano H, Bota J. Combined effect of virus infection and water stress on water flow and water economy in grapevines. PHYSIOLOGIA PLANTARUM 2017; 160:171-184. [PMID: 28044321 DOI: 10.1111/ppl.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 05/21/2023]
Abstract
Water limitation is one of the major threats affecting grapevine production. Thus, improving water-use efficiency (WUE) is crucial for a sustainable viticulture industry in Mediterranean regions. Under field conditions, water stress (WS) is often combined with viral infections as those are present in major grape-growing areas worldwide. Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting grapevines. Indeed, the optimization of water use in a real context of virus infection is an important topic that needs to be understood. In this work, we have focused our attention on determining the interaction of biotic and abiotic stresses on WUE and hydraulic conductance (Kh ) parameters in two white grapevine cultivars (Malvasia de Banyalbufar and Giró Ros). Under well-watered (WW) conditions, virus infection provokes a strong reduction (P < 0.001) in Kpetiole in both cultivars; however, Kleaf was only reduced in Malvasia de Banyalbufar. Moreover, the presence of virus also reduced whole-plant hydraulic conductance (Khplant ) in 2013 and 2014 for Malvasia de Banyalbufar and in 2014 for Giró Ros. Thus, the effect of virus infection on water flow might explain the imposed stomatal limitation. Under WS conditions, the virus effect on Kplant was negligible, because of the bigger effect of WS than virus infection. Whole-plant WUE (WUEWP ) was not affected by the presence of virus neither under WW nor under WS conditions, indicating that plants may adjust their physiology to counteract the virus infection by maintaining a tight stomatal control and by sustaining a balanced carbon change.
Collapse
Affiliation(s)
- Hanan El Aou-Ouad
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Alicia Pou
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Magdalena Tomás
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Rafael Montero
- Institut de Recerca i Formació Agrària i Pesquera (IRFAP), Conselleria d'Agricultura, Medi Ambient i Territori, Govern de les Illes Balears, C/Eusebio Estada no. 145, 07009, Palma de Mallorca, Balears, Spain
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| | - Josefina Bota
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, km 7.5, 07122, Palma de Mallorca, Balears, Spain
| |
Collapse
|
200
|
Lima MRM, Machado AF, Gubler WD. Metabolomic Study of Chardonnay Grapevines Double Stressed with Esca-Associated Fungi and Drought. PHYTOPATHOLOGY 2017; 107:669-680. [PMID: 28402211 DOI: 10.1094/phyto-11-16-0410-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera 'Chardonnay' plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.
Collapse
Affiliation(s)
- Marta R M Lima
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| | - Antoinette F Machado
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| | - Walter D Gubler
- University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616
| |
Collapse
|