151
|
Teo AED, Garg S, Johnson TI, Zhao W, Zhou J, Gomez-Sanchez CE, Gurnell M, Brown MJ. Physiological and Pathological Roles in Human Adrenal of the Glomeruli-Defining Matrix Protein NPNT (Nephronectin). Hypertension 2017; 69:1207-1216. [PMID: 28416583 PMCID: PMC5424579 DOI: 10.1161/hypertensionaha.117.09156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/08/2023]
Abstract
Primary aldosteronism is a common cause of hypertension, which becomes refractory if undiagnosed, but potentially curable when caused by an aldosterone-producing adenoma (APA). The discovery of somatic mutations and differences in clinical presentations led to recognition of small but common zona glomerulosa (ZG)-like adenomas, distinct from classical large zona fasciculata-like adenomas. The inverse correlation between APA size and aldosterone synthase expression prompted us to undertake a systematic study of genotype-phenotype relationships. After a microarray comparing tumor subtypes, in which NPNT (nephronectin) was the most highly (>12-fold) upregulated gene in ZG-like APAs, we aimed to determine its role in physiological and pathological aldosterone production. NPNT was identified by immunohistochemistry as a secreted matrix protein expressed exclusively around aldosterone-producing glomeruli in normal adrenal ZG and in aldosterone-dense ZG-like APAs; the highest expression was in ZG-like APAs with gain-of-function CTNNB1 mutations, whose removal cured hypertension in our patients. NPNT was absent from normal zona fasciculata, zona fasciculata-like APAs, and ZG adjacent to an APA. NPNT production was regulated by canonical Wnt pathway, and NPNT overexpression or silencing increased or reduced aldosterone, respectively. NPNT was proadhesive in primary adrenal and APA cells but antiadhesive and antiapoptotic in immortalized adrenocortical cells. The discovery of NPNT in the adrenal helped recognition of a common subtype of APAs and a pathway by which Wnt regulates aldosterone production. We propose that this arises through NPNT's binding to cell-surface integrins, stimulating cell-cell contact within glomeruli, which define ZG. Therefore, NPNT or its cognate integrin could present a novel therapeutic target.
Collapse
Affiliation(s)
- Ada Ee Der Teo
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Sumedha Garg
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Timothy Isaac Johnson
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Wanfeng Zhao
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Junhua Zhou
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Celso Enrique Gomez-Sanchez
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Mark Gurnell
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.)
| | - Morris Jonathan Brown
- From the Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke's Hospital (A.E.D.T., S.G., J.Z., M.J.B.), Tissue Bank, Department of Histopathology, Addenbrooke's Hospital (W.Z.), NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital (M.G.), MRC Cancer Unit, Hutchison/MRC Research Centre (T.I.J.), and Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science (M.G.), University of Cambridge, United Kingdom; Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson (C.E.G.-S.); and Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS (C.E.G.-S.).
| |
Collapse
|
152
|
Nanba K, Vaidya A, Williams GH, Zheng I, Else T, Rainey WE. Age-Related Autonomous Aldosteronism. Circulation 2017; 136:347-355. [PMID: 28566337 DOI: 10.1161/circulationaha.117.028201] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Both aging and inappropriate secretion of aldosterone increase the risk for developing cardiovascular disease; however, the influence of aging on aldosterone secretion and physiology is not well understood. METHODS The relationship between age and adrenal aldosterone synthase (CYP11B2) expression was evaluated in 127 normal adrenal glands from deceased kidney donors (age, 9 months to 68 years). Following immunohistochemistry, CYP11B2-expressing area and areas of abnormal foci of CYP11B2-expressing cells, called aldosterone-producing cell clusters, were analyzed. In a separate ancillary clinical study of 677 participants without primary aldosteronism, who were studied on both high and restricted sodium diets (age, 18-71 years), we used multivariable linear regression to assess the independent associations between age and renin-angiotensin-aldosterone system physiology. RESULTS In adrenal tissue, the total CYP11B2-expressing area was negatively correlated with age (r=-0.431, P<0.0001), whereas the total aldosterone-producing cell cluster area was positively correlated with age (r=0.390, P<0.0001). The integrated ratio of aldosterone-producing cell cluster to CYP11B2-expressing area was most strongly and positively correlated with age (r=0.587, P<0.0001). When participants in the clinical study were maintained on a high sodium balance, renin activity progressively declined with older age, whereas serum and urinary aldosterone did not significantly decline. Correspondingly, the aldosterone-to-renin ratio was positively and independently associated with older age (adjusted β=+5.54 ng/dL per ng/mL per hour per 10 years, P<0.001). In contrast, when participants were assessed under sodium-restricted conditions, physiological stimulation of aldosterone was blunted with older age (β=-4.6 ng/dL per 10 years, P<0.0001). CONCLUSIONS Aging is associated with a pattern of decreased normal zona glomerulosa CYP11B2 expression and increased aldosterone-producing cell cluster expression. This histopathologic finding parallels an age-related autonomous aldosteronism and abnormal aldosterone physiology that provides 1 potential explanation for age-related cardiovascular risk.
Collapse
Affiliation(s)
- Kazutaka Nanba
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Anand Vaidya
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Gordon H Williams
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Isabel Zheng
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - Tobias Else
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.)
| | - William E Rainey
- From Departments of Molecular and Integrative Physiology & Internal Medicine, University of Michigan, Ann Arbor (K.N., I.Z., W.E.R.); Center for Adrenal Disorders, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (A.V., G.H.W.); and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor (T.E., W.E.R.).
| |
Collapse
|
153
|
Li Q, Gao T, Yuan Y, Wu Y, Huang Q, Xie F, Ran P, Sun L, Xiao C. Association of CYP17A1 Genetic Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese Population. Med Sci Monit 2017; 23:2488-2499. [PMID: 28537227 PMCID: PMC5450854 DOI: 10.12659/msm.902109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The CYP17A1 gene encodes for cytochrome P450 enzyme CYP17A1, which is involved with the steroidogenic pathway including mineralocorticoids. The CYP17A1 polymorphisms might affect enzyme activity, then leading to a state of mineralocorticoid 11-deoxycorticosterone excess characterized by hypertension, suppressed plasma renin activity, and low aldosterone concentrations. The aim of this study was to investigate the contribution of CYP17A1 polymorphisms in inducing the susceptibility to essential hypertension among the Southwest Han Chinese population. Material/Methods Eight single nucleotide polymorphisms of CYP17A1 were genotyped in a case-control study for samples by polymerase chain reaction-restriction fragment length polymorphism analysis. Results The polymorphisms rs11191548 and rs4919687 were significantly associated with hypertension risk, which was confirmed by systolic and diastolic blood pressure distribution analyses between different genotype groups, and these two polymorphisms were found in linkage disequilibrium. The rs4919687 polymorphism was estimated to cause the destruction of exonic splicing silencer (ESR and Motif 3) sites and to transform the transcription factor AREB6 binding site, respectively, in the bioinformatics analyses. The haplotypes rs4919686A-rs3740397G -rs4919687C-rs743572C-rs11191548C and rs4919686A-rs3740397G-rs4919687T-rs743572C- rs11191548T were found to be susceptible to essential hypertension. Conclusions Our findings suggest that the CYP17A1 polymorphisms could be a genetic risk factor for essential hypertension among the Yunnan Han Chinese population, which would have implications for the treatment of this complex disorder.
Collapse
Affiliation(s)
- Qian Li
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Tangxin Gao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Yanrui Wu
- Department of Cell Biology and Genetics, Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Qionglin Huang
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Fei Xie
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Pengzhan Ran
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Lijuan Sun
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
154
|
Arlt W, Lang K, Sitch AJ, Dietz AS, Rhayem Y, Bancos I, Feuchtinger A, Chortis V, Gilligan LC, Ludwig P, Riester A, Asbach E, Hughes BA, O'Neil DM, Bidlingmaier M, Tomlinson JW, Hassan-Smith ZK, Rees DA, Adolf C, Hahner S, Quinkler M, Dekkers T, Deinum J, Biehl M, Keevil BG, Shackleton CH, Deeks JJ, Walch AK, Beuschlein F, Reincke M. Steroid metabolome analysis reveals prevalent glucocorticoid excess in primary aldosteronism. JCI Insight 2017; 2:93136. [PMID: 28422753 PMCID: PMC5396526 DOI: 10.1172/jci.insight.93136] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/14/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess. METHODS We performed mass spectrometry-based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis. RESULTS Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients. CONCLUSION Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism. FUNDING Medical Research Council UK, Wellcome Trust, European Commission.
Collapse
Affiliation(s)
- Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Katharina Lang
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Alice J Sitch
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Anna S Dietz
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yara Rhayem
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irina Bancos
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Division of Endocrinology, Metabolism and Nutrition, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, Oberschleißheim, Germany
| | - Vasileios Chortis
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - Lorna C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philippe Ludwig
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Riester
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Evelyn Asbach
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Beverly A Hughes
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Donna M O'Neil
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Martin Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Zaki K Hassan-Smith
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
| | - D Aled Rees
- Neurosciences and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie Hahner
- Department of Medicine I, Endocrine and Diabetes Unit, University Hospital Würzburg, Würzburg, Germany
| | | | - Tanja Dekkers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jaap Deinum
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Michael Biehl
- Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen, Netherlands
| | - Brian G Keevil
- Department of Clinical Biochemistry, University Hospital South Manchester, Manchester, United Kingdom
| | - Cedric Hl Shackleton
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,University of California at San Francisco Benioff Children's Hospital, Oakland, California, USA
| | - Jonathan J Deeks
- Institute for Applied Health Research, University of Birmingham, Birmingham, United Kingdom
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum Munich, Oberschleißheim, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
155
|
Nakamura Y, Yamazaki Y, Tezuka Y, Satoh F, Sasano H. Expression of CYP11B2 in Aldosterone-Producing Adrenocortical Adenoma: Regulatory Mechanisms and Clinical Significance. TOHOKU J EXP MED 2017; 240:183-190. [PMID: 27853054 DOI: 10.1620/tjem.240.183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aldosterone-producing adrenocortical adenoma (APA) is responsible for the majority of cases clinically diagnosed as primary aldosteronism. Aldosterone synthase (CYP11B2) is one of the enzymes that play essential roles in aldosterone synthesis and is involved in the pathogenesis of APA. Recent studies have demonstrated that various factors and regulators influence the expression and function of CYP11B2 in APA. In particular, somatic mutations, such as gain-of-function and loss-of-function mutations, have been identified in several genes, each of which encodes a pivotal protein that affects the calcium signaling pathway, the expression of CYP11B2, and aldosterone production. The gain-of-function mutations were reported in KCNJ5 that encodes G-protein activated inward rectifier K+ channel 4 (Kir3.4) and in CACNA1D, encoding calcium channel, voltage-dependent, L type, alpha subunit Cav1.3. The loss-of-function mutations were found in ATP1A1 that encodes Na+/K+ ATPase α subunit and in ATP2B3, encoding Ca2+ ATPase. Furthermore, the aberrant expression of gonadotropin-releasing hormone receptor is associated with the overexpression of CYP11B2 and overproduction of aldosterone in APA with activating mutations in CTNNB1 encoding β-catenin. On the other hand, CYP11B2 also catalyzes the conversion of cortisol to 18-hydroxycortisol and subsequently converts 18-hydroxycortisol to 18-oxocortisol. The recent studies have identified 18-oxocortisol as an important and distinct biomarker to diagnose primary aldosteronism. In this review, we summarize the recent findings on CYP11B2 and discuss the molecular pathogenesis of APA and the clinical significance of CYP11B2.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | | | | | | | | |
Collapse
|
156
|
Yamazaki Y, Nakamura Y, Omata K, Ise K, Tezuka Y, Ono Y, Morimoto R, Nozawa Y, Gomez-Sanchez CE, Tomlins SA, Rainey WE, Ito S, Satoh F, Sasano H. Histopathological Classification of Cross-Sectional Image-Negative Hyperaldosteronism. J Clin Endocrinol Metab 2017; 102:1182-1192. [PMID: 28388725 PMCID: PMC5460723 DOI: 10.1210/jc.2016-2986] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 01/28/2023]
Abstract
Context Approximately half of patients with primary aldosteronism (PA) have clinically evident disease according to clinical (hypertension) and/or laboratory (aldosterone and renin levels) findings but do not have nodules detectable in routine cross-sectional imaging. However, the detailed histopathologic, steroidogenic, and pathobiological features of cross-sectional image-negative PA are controversial. Objective To examine histopathology, steroidogenic enzyme expression, and aldosterone-driver gene somatic mutation status in cross-sectional image-negative hyperaldosteronism. Methods Twenty-five cross-sectional image-negative cases were retrospectively reviewed. In situ adrenal aldosterone production capacity was determined using immunohistochemistry (IHC) of steroidogenic enzymes. Aldosterone-driver gene somatic mutation status (ATP1A1, ATP2B3, CACNA1D, and KCNJ5) was determined in the CYP11B2 immunopositive areas [n = 35; micronodule, n = 32; zona glomerulosa (ZG), n = 3] using next-generation sequencing after macrodissection. Results Cases were classified as multiple adrenocortical micronodules (MN; n = 13) or diffuse hyperplasia (DH) of ZG (n = 12) based upon histopathological evaluation and CYP11B2 IHC. Aldosterone-driver gene somatic mutations were detected in 21 of 26 (81%) of CYP11B2-positive cortical micronodules in MN; 17 (65%) mutations were in CACNA1D, 2 (8%) in KCNJ5, and 1 each (4% each) in ATP1A1 and ATP2B. One of 6 (17%) of nodules in DH harbored somatic aldosterone-driver gene mutations (CACNA1D); however, no mutations were detected in CYP11B2-positive nonnodular DH areas. Conclusion Morphologic evaluation and CYP11B2 IHC enabled the classification of cross-sectional image-negative hyperaldosteronism into MN and DH. Somatic mutations driving aldosterone overproduction are common in micronodules of MN, suggesting a histological entity possibly related to aldosterone-producing cell cluster development.
Collapse
Affiliation(s)
| | - Yasuhiro Nakamura
- Department of Pathology, and
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Kei Omata
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi 39216
- Research and Medicine Services, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi 39216
- Pathology
- Michigan Center for Translational Pathology, and
| | - Kazue Ise
- Department of Pathology, and
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Yuta Tezuka
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
| | - Yukinaga Nozawa
- Division of Cardiology, Asahikawa Red Cross Hospital, Hokkaido 070-0061, Japan
| | - Celso E. Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi 39216
- Research and Medicine Services, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi 39216
| | - Scott A. Tomlins
- Pathology
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | - Sadayoshi Ito
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
| | - Fumitoshi Satoh
- Division of Pathology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, Sendai 980-8577, Japan
| | | |
Collapse
|
157
|
Ito A, Yamazaki Y, Sasano H, Matsubara D, Fukushima N, Tamba M, Tabata K, Ashizawa K, Takei A, Koizumi M, Sakuma Y, Sata N, Oshiro H. A case of primary aldosteronism caused by unilateral multiple adrenocortical micronodules presenting as muscle cramps at rest: The importance of functional histopathology for identifying a culprit lesion. Pathol Int 2017; 67:214-221. [PMID: 28261922 DOI: 10.1111/pin.12521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
Unilateral multiple adrenocortical micronodules (UMNs) constitute a rare subset of primary aldosteronism (PA) characterized by the hypersecretion of aldosterone derived from multiple small nodules in the zona glomerulosa of the unilateral adrenal grand. This case study describes a 49-year-old man with PA and UMNs who presented with muscle cramps at rest due to hypokalemia. The patient had a 6-year history of hypertension treated with antihypertensive drugs. Imaging studies revealed bilateral adrenal nodules as large as 5 mm. Adrenal venous sampling confirmed unilateral PA; therefore, the patient underwent the removal of the affected adrenal gland. Macroscopically, the removed adrenal gland exhibited irregular adrenocortical thickening accompanied by ill-defined, adrenocortical macronodules as large as 6 mm. The zona glomerulosa was histologically hyperplastic. However, an immunohistochemistry test of the steroidogenic enzymes revealed that these macronodules and the hyperplastic glomerular layer tested negative for CYB11B2. Moreover, we observed adrenocortical micronodules as large as 0.5 mm that tested immunohistochemically positive for CYP11B2 and HSD3B2 but negative for CYP17A1 and CYP11B1. Thus, UMNs were diagnosed. This case instructively indicates that a grossly or histologically detectable nodular lesion is not necessarily a culprit lesion for PA. Therefore, functional histopathology is indispensable for the correct subclassification of PA.
Collapse
Affiliation(s)
- Atsushi Ito
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Matsubara
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Noriyoshi Fukushima
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Mio Tamba
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Kenichi Tabata
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Kentaro Ashizawa
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Masaru Koizumi
- Department of Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Hisashi Oshiro
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| |
Collapse
|
158
|
Uchida T, Nishimoto K, Fukumura Y, Asahina M, Goto H, Kawano Y, Shimizu F, Tsujimura A, Seki T, Mukai K, Kabe Y, Suematsu M, Gomez-Sanchez CE, Yao T, Horie S, Watada H. Disorganized Steroidogenesis in Adrenocortical Carcinoma, a Case Study. Endocr Pathol 2017; 28:27-35. [PMID: 27430645 PMCID: PMC5465226 DOI: 10.1007/s12022-016-9441-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Most adrenocortical carcinomas (ACCs) produce excessive amounts of steroid hormones including aldosterone, cortisol, and steroid precursors. However, aldosterone- and cortisol-producing cells in ACCs have not yet been immunohistochemically described. We present a case of ACC causing mild primary aldosteronism and subclinical Cushing's syndrome. Removal of the tumor cured both conditions. In order to examine the expression patterns of the steroidogenic enzymes responsible for adrenocortical hormone production, 10 tumor portions were immunohistochemically analyzed for aldosterone synthase (CYP11B2), 11β-hydroxylase (CYP11B1, cortisol-synthesizing enzyme), 3β-hydroxysteroid dehydrogenase (3βHSD, upstream enzyme for both CYP11B2 and CYP11B1), and 17α-hydroxylase/C17-20 lyase (CYP17, upstream enzyme for CYP11B1, but not for CYP11B1). CYP11B2, CYP11B1, and 3βHSD were expressed sporadically, and their expression patterns varied significantly among the different tumor portions examined. The expression of these enzymes was random and not associated with each other. CYP17 was expressed throughout the tumor, even in CYP11B2-positive cells. Small tumor cell populations were aldosterone- or cortisol-producing cells, as judged by 3βHSD coinciding with either CYP11B2 or CYP11B1, respectively. These results suggest that the tumor produced limited amounts of aldosterone and cortisol due to the lack of the coordinated expression of steroidogenic enzymes, which led to mild clinical expression in this case. We delineated the expression patterns of steroidogenic enzymes in ACC. The coordinated expression of steroidogenic enzymes in normal and adenoma cells was disturbed in ACC cells, resulting in the inefficient production of steroid hormones in relation to the large tumor volume.
Collapse
Affiliation(s)
- Toyoyoshi Uchida
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka, Japan.
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan.
| | - Yuki Fukumura
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Miki Asahina
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Hiromasa Goto
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yui Kawano
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Fumitaka Shimizu
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Tsugio Seki
- Department of Medical Education, College of Medicine, California University of Science and Medicine, 1405 West Valley Blvd #101, Colton, CA, 92324, USA
| | - Kuniaki Mukai
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
- Medical Education Center, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Celso E Gomez-Sanchez
- Endocrinology Section, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Takashi Yao
- Department of Human Pathology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Shigeo Horie
- Department of Urology, Juntendo University, Graduate School, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Departments of Metabolism & Endocrinology, Juntendo University, Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
159
|
Nishimoto K, Koga M, Seki T, Oki K, Gomez-Sanchez EP, Gomez-Sanchez CE, Naruse M, Sakaguchi T, Morita S, Kosaka T, Oya M, Ogishima T, Yasuda M, Suematsu M, Kabe Y, Omura M, Nishikawa T, Mukai K. Immunohistochemistry of aldosterone synthase leads the way to the pathogenesis of primary aldosteronism. Mol Cell Endocrinol 2017; 441:124-133. [PMID: 27751767 PMCID: PMC5470036 DOI: 10.1016/j.mce.2016.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
Our group previously purified human and rat aldosterone synthase (CYP11B2 and Cyp11b2, respectively) from their adrenals and verified that it is distinct from steroid 11β-hydroxylase (CYP11B1 or Cyp11b1), the cortisol- or corticosterone-synthesizing enzyme. We now describe their distributions immunohistochemically with specific antibodies. In rats, there is layered functional zonation with the Cyp11b2-positive zona glomerulosa (ZG), Cyp11b1-positive zona fasciculata (ZF), and Cyp11b2/Cyp11b1-negative undifferentiated zone between the ZG and ZF. In human infants and children (<12 years old), the functional zonation is similar to that in rats. In adults, the adrenal cortex remodels and subcapsular aldosterone-producing cell clusters (APCCs) replace the continuous ZG layer. We recently reported possible APCC-to-APA transitional lesions (pAATLs) in 2 cases of unilateral multiple adrenocortical micro-nodules. In this review, we present 4 additional cases of primary aldosteronism, from which the extracted adrenals contain pAATLs, with results of next generation sequencing for these lesions. Immunohistochemistry for CYP11B2 and CYP11B1 has become an important tool for the diagnosis of and research on adrenocortical pathological conditions and suggests that APCCs may be the origin of aldosterone-producing adenoma.
Collapse
Affiliation(s)
- Koshiro Nishimoto
- Department of Uro-Oncology, Saitama Medical University International Medical Center, Hidaka 350-1241, Japan; Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Minae Koga
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama 222-0036, Japan
| | - Tsugio Seki
- Department of Medical Education, School of Medicine, California University of Science and Medicine, 1405 West Valley Blvd #101, Colton, CA 92324, USA
| | - Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Elise P Gomez-Sanchez
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Celso E Gomez-Sanchez
- Endocrinology Section, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Mitsuhide Naruse
- Department of Endocrinology, Metabolism and Hypertension, Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Tomokazu Sakaguchi
- Department of Surgery, Misato Kenwa Hospital, 4-494-1 Takano, Misato, Saitama 341-8555, Japan
| | - Shinya Morita
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tadashi Ogishima
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka 350-1241, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masao Omura
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama 222-0036, Japan
| | - Tetsuo Nishikawa
- Endocrinology & Diabetes Center, Yokohama Rosai Hospital, Yokohama 222-0036, Japan
| | - Kuniaki Mukai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Medical Education Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
160
|
van Rooyen D, du Toit T, Louw-du Toit R, Africander D, Swart P, Swart AC. The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone. Mol Cell Endocrinol 2017; 441:86-98. [PMID: 27664517 DOI: 10.1016/j.mce.2016.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/17/2016] [Accepted: 09/21/2016] [Indexed: 01/14/2023]
Abstract
16α-hydroxyprogesterone (16OHP4) is not well characterised in terms of metabolism and receptor interaction. We therefore investigated its metabolism by adrenal CYP11B and peripheral steroidogenic enzymes, SRD5A and AKR1C2. UHPLC-MS/MS analyses identified novel steroids: the biosynthesis of 4-pregnen-11β,16α-diol-3,20-dione catalysed by CYP11B2; the 5α-reduction of the latter and 16OHP4 catalysed by SRD5A yielding 5α-pregnan-11β,16α-diol-3,20-diovne and 5α-pregnan-16α-ol-3,20-dione (16OH-DHP4); and 16OH-DHP4 converted by AKR1C2 to 5α-pregnan-3α,16α-diol-20-one. Receptor studies showed 16OHP4, 16OH-DHP4, progesterone and dihydroprogesterone (DHP4) were weak partial AR agonists; 16OHP4, 16OH-DHP4 and DHP4 exhibited weak partial agonist activity towards PR-B with DHP4 also exhibiting partial agonist activity towards PR-A. Data showed that while the 5α-reduction of P4 decreased PR activation significantly, 16OHP4 and 16OH-DHP4 exhibited comparable receptor activation. Although the clinical relevance of 16OHP4 remains unclear the elevated 16OHP4 levels characteristic of 21OHD, CAH, PCOS, prostate cancer, testicular feminization syndrome and cryptorchidism likely contribute towards these clinical conditions, inducing receptor-activated target genes.
Collapse
Affiliation(s)
- Desmaré van Rooyen
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Therina du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Renate Louw-du Toit
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Donita Africander
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
161
|
Louiset E, Duparc C, Lenglet S, Gomez-Sanchez CE, Lefebvre H. Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Mol Cell Endocrinol 2017; 441:99-107. [PMID: 27743992 PMCID: PMC5465225 DOI: 10.1016/j.mce.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/30/2016] [Accepted: 10/09/2016] [Indexed: 11/29/2022]
Abstract
In human adrenal, serotonin (5-HT), produced by mast cells located in zona glomerulosa, stimulates production of corticosteroids through a paracrine mechanism involving the 5-HT receptor type 4 (5-HT4). The aim of the present study was to investigate the transduction mechanisms associated with activation of 5-HT4 receptors in human adrenocortical cells. Our results show that 5-HT4 receptors are present in the outer adrenal cortex, both in glomerulosa and fasciculata zonae. In the zona glomerulosa. 5-HT4 receptor was detected both in immunopositive and immunonegative cells for 11β-hydroxylase, an enzyme involved in cortisol synthesis. The data demonstrate that 5-HT4 receptors are positively coupled to adenylyl cyclases and cAMP-dependent protein kinases (PKA). The activation of the cAMP-PKA pathway is associated with calcium influx through T-type calcium channels. Both the adenylyl cyclase/PKA pathway and the calcium influx are involved in 5-HT-induced cortisol secretion.
Collapse
Affiliation(s)
- Estelle Louiset
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Céline Duparc
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France
| | - Sébastien Lenglet
- Unit of Toxicology, University Center of Legal Medicine, CH-1211 Geneva 4, Switzerland
| | - Celso E Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hervé Lefebvre
- Normandie Univ, UNIROUEN, INSERM, DC2N, 76000, Rouen, France; Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Rouen, Rouen, France.
| |
Collapse
|
162
|
Pignatti E, Leng S, Carlone DL, Breault DT. Regulation of zonation and homeostasis in the adrenal cortex. Mol Cell Endocrinol 2017; 441:146-155. [PMID: 27619404 PMCID: PMC5235909 DOI: 10.1016/j.mce.2016.09.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
The adult adrenal cortex is organized into concentric zones, each specialized to produce distinct steroid hormones. Cellular composition of the cortex is highly dynamic and subject to diverse signaling controls. Cortical homeostasis and regeneration rely on centripetal migration of steroidogenic cells from the outer to the inner cortex, which is accompanied by direct conversion of zona glomerulosa (zG) into zona fasciculata (zF) cells. Given the important impact of tissue structure and growth on steroidogenic function, it is essential to understand the mechanisms governing adrenal zonation and homeostasis. Towards this end, we review the distinctions between each zone by highlighting their morphological and ultra-structural features, discuss key signaling pathways influencing zonal identity, and evaluate current evidence for long-term self-renewing stem cells in the adult cortex. Finally, we review data supporting zG-to-zF transdifferentiation/direct conversion as a major mechanism of adult cortical renewal.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
163
|
The prevalence of CTNNB1 mutations in primary aldosteronism and consequences for clinical outcomes. Sci Rep 2017; 7:39121. [PMID: 28102204 PMCID: PMC5244399 DOI: 10.1038/srep39121] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/17/2016] [Indexed: 12/22/2022] Open
Abstract
Constitutive activation of the Wnt pathway/β-catenin signaling may be important in aldosterone-producing adenoma (APA). However, significant gaps remain in our understanding of the prevalence and clinical outcomes after adrenalectomy in APA patients harboring CTNNB1 mutations. The molecular expression of CYP11B2 and gonadal receptors in adenomas were also explored. Adenomas from 219 APA patients (95 men; 44.2%; aged 50.5 ± 11.9 years) showed a high rate of somatic mutations (n = 128, 58.4%). The majority of them harbored KCNJ5 mutations (n = 116, 52.9%); 8 patients (3.7%, 6 women) had CTNNB1 mutations. Patients with APAs harboring CTNNB1 mutations were older and had shorter duration of hypertension. After adrenalectomy, CTNNB1 mutation carriers had a higher possibility (87.5%) of residual hypertension than other APA patients. APAs harboring CTNNB1 mutations have heterogeneous staining of β-catenin and variable expression of gonadal receptors and both CYP11B1 and CYP11B2. This suggests that CTNNB1 mutations may be more related to tumorigenesis rather than excessive aldosterone production.
Collapse
|
164
|
Gomez-Sanchez CE, Qi X, Gomez-Sanchez EP, Sasano H, Bohlen MO, Wisgerhof M. Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Mol Cell Endocrinol 2017; 439:74-80. [PMID: 27793677 PMCID: PMC5123946 DOI: 10.1016/j.mce.2016.10.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 11/27/2022]
Abstract
Three forms of familial primary aldosteronism have been recognized. Familial Hyperaldosteronism type 1 (FH1) or dexamethasone suppressible hyperaldosteronism, FH2, the most common form of as yet unknown cause(s), and FH3. FH3 is due to activating mutations of the potassium channel gene KCNJ5 that increase constitutive and angiotensin II-induced aldosterone synthesis. In this study we examined the cellular distribution of CYP11B2, CYP11B1, CYP17A1 and KCNJ5 in adrenals from two FH3 siblings using immunohistochemistry and immunofluorescence and obtained unexpected results. The adrenals were markedly enlarged with loss of zonation. CYP11B2 was expressed sporadically throughout the adrenal cortex. CYP11B2 was most often expressed by itself, relatively frequently with CYP17A1, and less frequently with CYP11B1. KCNJ5 was co-expressed with CYP11B2 and in some cells with CYP11B1. This aberrant co-expression of enzymes likely explains the abnormally high secretion rate of the hybrid steroid, 18-oxocortisol.
Collapse
Affiliation(s)
- Celso E Gomez-Sanchez
- Endocrinology Division, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, United States; University of Mississippi Medical Center, Jackson, MS, United States.
| | - Xin Qi
- University of Mississippi Medical Center, Jackson, MS, United States
| | - Elise P Gomez-Sanchez
- Department of Pharmacology and Toxicology and Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | | | - Martin O Bohlen
- Department of Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Max Wisgerhof
- Division of Endocrinology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
165
|
Tong A, Liu G, Wang F, Jiang J, Yan Z, Zhang D, Zhang Y, Cai J. A Novel Phenotype of Familial Hyperaldosteronism Type III: Concurrence of Aldosteronism and Cushing's Syndrome. J Clin Endocrinol Metab 2016; 101:4290-4297. [PMID: 27403928 PMCID: PMC5095249 DOI: 10.1210/jc.2016-1504] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT To date, all the familial hyperaldosteronism type III (FH-III) patients reported presenting with typical primary aldosteronism (PA), without showing other adrenal hormone abnormalities. OBJECTIVE This study characterized a novel phenotype of FH-III and explored the possible pathogenesis. PATIENTS AND METHODS A male patient presented with severe hypertension and hypokalemia at the age of 2 years and developed Cushing's syndrome at 20 years. He was diagnosed with PA and Cushing's syndrome on the basis of typical biochemical findings. He had massive bilateral adrenal hyperplasia and underwent left adrenalectomy. KCNJ5 was sequenced, and secretion of aldosterone and cortisol were observed both in vivo and in vitro. RESULTS A heterozygous germline p.Glu145Gln mutation of KCNJ5 was identified. ARMC5, PRKAR1A, PDE8B, PDE11A, and PRKACA genes and β-catenin, P53 immunoactivity were normal in the adrenal. CYP11B2 was highly expressed, whereas mRNA expression of CYP11B1, CYP17A1, and STAR was relatively low in the hyperplastic adrenal, compared with normal adrenal cortex and other adrenal diseases. In the primary cell culture of the resected hyperplastic adrenal, verapamil and nifedipine, two calcium channel blockers, markedly inhibited the secretion of both aldosterone and cortisol and the mRNA expression of CYP11B1, CYP11B2, CYP17A1, and STAR. CONCLUSIONS We presented the first FH-III patient who had both severe PA and Cushing's syndrome. Hypersecretion of cortisol might be ascribed to overly large size of the hyperplastic adrenal because CYP11B1 expression was relatively low in his adrenal. Like aldosterone, synthesis and secretion of cortisol in the mutant adrenal may be mediated by voltage-gated Ca2+ channels.
Collapse
|
166
|
Zhou J, Lam B, Neogi SG, Yeo GSH, Azizan EAB, Brown MJ. Transcriptome Pathway Analysis of Pathological and Physiological Aldosterone-Producing Human Tissues. Hypertension 2016; 68:1424-1431. [PMID: 27777363 PMCID: PMC5100803 DOI: 10.1161/hypertensionaha.116.08033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/08/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
Supplemental Digital Content is available in the text. Primary aldosteronism is present in ≈10% of hypertensives. We previously performed a microarray assay on aldosterone-producing adenomas and their paired zona glomerulosa and fasciculata. Confirmation of top genes validated the study design and functional experiments of zona glomerulosa selective genes established the role of the encoded proteins in aldosterone regulation. In this study, we further analyzed our microarray data using AmiGO 2 for gene ontology enrichment and Ingenuity Pathway Analysis to identify potential biological processes and canonical pathways involved in pathological and physiological aldosterone regulation. Genes differentially regulated in aldosterone-producing adenoma and zona glomerulosa were associated with steroid metabolic processes gene ontology terms. Terms related to the Wnt signaling pathway were enriched in zona glomerulosa only. Ingenuity Pathway Analysis showed "NRF2-mediated oxidative stress response pathway" and "LPS (lipopolysaccharide)/IL-1 (interleukin-1)–mediated inhibition of RXR (retinoid X receptor) function" were affected in both aldosterone-producing adenoma and zona glomerulosa with associated genes having up to 21- and 8-fold differences, respectively. Comparing KCNJ5-mutant aldosterone-producing adenoma, zona glomerulosa, and zona fasciculata samples with wild-type samples, 138, 56, and 59 genes were differentially expressed, respectively (fold-change >2; P<0.05). ACSS3, encoding the enzyme that synthesizes acetyl-CoA, was the top gene upregulated in KCNJ5-mutant aldosterone-producing adenoma compared with wild-type. NEFM, a gene highly upregulated in zona glomerulosa, was upregulated in KCNJ5 wild-type aldosterone-producing adenomas. NR4A2, the transcription factor for aldosterone synthase, was highly expressed in zona fasciculata adjacent to a KCNJ5-mutant aldosterone-producing adenoma. Further interrogation of these genes and pathways could potentially provide further insights into the pathology of primary aldosteronism.
Collapse
Affiliation(s)
- Junhua Zhou
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.)
| | - Brian Lam
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.)
| | - Sudeshna G Neogi
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.)
| | - Giles S H Yeo
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.)
| | - Elena A B Azizan
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.).
| | - Morris J Brown
- From the Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, United Kingdom (J.Z., M.J.B.); Clinical Pharmacology Unit, Department of Medicine, University of Cambridge (J.Z.), University of Cambridge Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science (B.L., G.S.H.Y.), Cambridge University Hospitals NHS Foundation Trust (S.G.N.), Addenbrooke's Hospital, United Kingdom; and Department of Medicine, Faculty of Medicine, The National University of Malaysia (UKM) Medical Centre, Kuala Lumpur (E.A.B.A.)
| |
Collapse
|
167
|
Yoshii Y, Oki K, Gomez-Sanchez CE, Ohno H, Itcho K, Kobuke K, Yoneda M. Hypomethylation of CYP11B2 in Aldosterone-Producing Adenoma. Hypertension 2016; 68:1432-1437. [PMID: 27754862 DOI: 10.1161/hypertensionaha.116.08313] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 06/30/2016] [Accepted: 09/25/2016] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to evaluate the DNA methylation levels of steroidogenic enzyme genes in aldosterone-producing adenoma (APA) and the effects of gene mutations in APA on the DNA methylation levels. DNA methylation array analysis was conducted using nonfunctioning adrenocortical adenoma (n=12) and APA (n=35) samples, including some with a KCNJ5 mutation (n=21), an ATP1A1 mutation (n=5), and without the known mutations (n=9). The quantitative polymerase chain reaction assay was performed for the detection of CYP11B2 and CYP11B1 expression levels in nonfunctioning adrenocortical adenoma and APA. We introduced the KCNJ5 T158A mutation using lentivirus delivery in the human adrenocortical 15 cell line, and analyzed the effects of the mutation on DNA methylation levels. We analyzed the 83 presumed DNA methylation sites of steroidogenic enzymes. In APA, we found 7 hypomethylated sites in CYP11B2 and 1 hypomethylated and 6 hypermethylated sites in CYP11B1 There were no differences in the steroidogenic enzymes gene DNA methylation of peripheral leukocytes between nonfunctioning adrenocortical adenoma and APA. No CYP11B2 methylation level was associated with CYP11B2 transcription levels in APA. All methylation sites, except for a CYP11B2 region, showed no difference among APAs with or without gene mutations. Human adrenocortical 15 cells with the KCNJ5 mutation showed no changes in CYP11B2 or CYP11B1 methylation levels compared with control cells. We demonstrated that CYP11B2 in APA was extensively hypomethylated, and CYP11B2 methylation in the region with hypomethylation was not induced by KCNJ5 or ATP1A1 mutations that cause aldosterone overproduction in APA and a KCNJ5 mutation human adrenocortical 15 cells.
Collapse
Affiliation(s)
- Yoko Yoshii
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Kenji Oki
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.).
| | - Celso E Gomez-Sanchez
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Haruya Ohno
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Kiyotaka Itcho
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Kazuhiro Kobuke
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| | - Masayasu Yoneda
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan (Y.Y., K.O., H.O., K.I., K.K., M.Y.); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson (C.E.G.-S.)
| |
Collapse
|
168
|
Oki K, Plonczynski MW, Gomez-Sanchez EP, Gomez-Sanchez CE. YPEL4 modulates HAC15 adrenal cell proliferation and is associated with tumor diameter. Mol Cell Endocrinol 2016; 434:93-8. [PMID: 27333825 PMCID: PMC5478919 DOI: 10.1016/j.mce.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Yippee-like (YPEL) proteins are thought to be related to cell proliferation because of their structure and location in the cell. The aim of this study was to clarify the effects of YPEL4 on aldosterone production and cell proliferation in the human adrenocortical cell line (HAC15) and aldosterone producing adenoma (APA). Basal aldosterone levels in HAC15 cells over-expressing YPEL4 was higher than those of control HAC15 cells. The positive effects of YPEL4 on cell proliferation were detected by XTT assay and crystal violet staining. YPEL4 levels in 39 human APA were 2.4-fold higher compared to those in 12 non-functional adrenocortical adenomas, and there was a positive relationship between YPEL4 levels and APA diameter (r = 0.316, P < 0.05). In summary, we have demonstrated that YPEL4 stimulates human adrenal cortical cell proliferation, increasing aldosterone production as a consequence. These results in human adrenocortical cells are consistent with the clinical observations with APA in humans.
Collapse
Affiliation(s)
- Kenji Oki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA.
| | - Maria W Plonczynski
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Elise P Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Departments of Pharmacology & Toxicology, Anatomy and Neurosciences, The University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Center, Jackson, MS, USA; Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA
| |
Collapse
|
169
|
Naccache A, Louiset E, Duparc C, Laquerrière A, Patrier S, Renouf S, Gomez-Sanchez CE, Mukai K, Lefebvre H, Castanet M. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal. Mol Cell Endocrinol 2016; 434:69-80. [PMID: 27302892 DOI: 10.1016/j.mce.2016.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development.
Collapse
Affiliation(s)
- Alexandre Naccache
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Estelle Louiset
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Céline Duparc
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | | | - Sophie Patrier
- Pathology Laboratory, University Hospital of Rouen, Rouen, France.
| | - Sylvie Renouf
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Celso E Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, USA.
| | - Kuniaki Mukai
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan.
| | - Hervé Lefebvre
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Mireille Castanet
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| |
Collapse
|
170
|
Leal LF, Bueno AC, Gomes DC, Abduch R, de Castro M, Antonini SR. Inhibition of the Tcf/beta-catenin complex increases apoptosis and impairs adrenocortical tumor cell proliferation and adrenal steroidogenesis. Oncotarget 2016; 6:43016-32. [PMID: 26515592 PMCID: PMC4767488 DOI: 10.18632/oncotarget.5513] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/05/2015] [Indexed: 11/30/2022] Open
Abstract
Background To date, there is no effective therapy for patients with advanced/metastatic adrenocortical cancer (ACC). The activation of the Wnt/beta-catenin signaling is frequent in ACC and this pathway is a promising therapeutic target. Aim To investigate the effects of the inhibition of the Wnt/beta-catenin in ACC cells. Methods Adrenal (NCI-H295 and Y1) and non-adrenal (HeLa) cell lines were treated with PNU-74654 (5–200 μM) for 24–96 h to assess cell viability (MTS-based assay), apoptosis (Annexin V), expression/localization of beta-catenin (qPCR, immunofluorescence, immunocytochemistry and western blot), expression of beta-catenin target genes (qPCR and western blot), and adrenal steroidogenesis (radioimmunoassay, qPCR and western blot). Results In NCI-H295 cells, PNU-74654 significantly decreased cell proliferation 96 h after treatment, increased early and late apoptosis, decreased nuclear beta-catenin accumulation, impaired CTNNB1/beta-catenin expression and increased beta-catenin target genes 48 h after treatment. No effects were observed on HeLa cells. In NCI-H295 cells, PNU-74654 decreased cortisol, testosterone and androstenedione secretion 24 and 48 h after treatment. Additionally, in NCI-H295 cells, PNU-74654 decreased SF1 and CYP21A2 mRNA expression as well as the protein levels of STAR and aldosterone synthase 48 h after treatment. In Y1 cells, PNU-74654 impaired corticosterone secretion 24 h after treatment but did not decrease cell viability. Conclusions Blocking the Tcf/beta-catenin complex inhibits the Wnt/beta-catenin signaling in adrenocortical tumor cells triggering increased apoptosis, decreased cell viability and impairment of adrenal steroidogenesis. These promising findings pave the way for further experiments inhibiting the Wnt/beta-catenin pathway in pre-clinical models of ACC. The inhibition of this pathway may become a promising adjuvant therapy for patients with ACC.
Collapse
Affiliation(s)
- Letícia F Leal
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Ana Carolina Bueno
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Débora C Gomes
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil.,Department of Pediatrics, School of Medicine, Federal University of Uberlandia, Uberlândia, Minas Gerais, Brazil
| | - Rafael Abduch
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Margaret de Castro
- Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
171
|
Brown MJ, Drake WM. Splitting atoms: the Endocrine Society guideline for the management of primary aldosteronism. Lancet Diabetes Endocrinol 2016; 4:805-7. [PMID: 27474215 DOI: 10.1016/s2213-8587(16)30154-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Morris J Brown
- Barts Heart Centre, William Harvey Research Institute, Queen Mary University London, London WCIM 6BQ, UK; Barts and the London Medical School, London, UK.
| | - William M Drake
- Barts Heart Centre, William Harvey Research Institute, Queen Mary University London, London WCIM 6BQ, UK; Barts and the London Medical School, London, UK
| |
Collapse
|
172
|
Stowasser M, Gordon RD. Primary Aldosteronism: Changing Definitions and New Concepts of Physiology and Pathophysiology Both Inside and Outside the Kidney. Physiol Rev 2016; 96:1327-84. [DOI: 10.1152/physrev.00026.2015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the 60 years that have passed since the discovery of the mineralocorticoid hormone aldosterone, much has been learned about its synthesis (both adrenal and extra-adrenal), regulation (by renin-angiotensin II, potassium, adrenocorticotrophin, and other factors), and effects (on both epithelial and nonepithelial tissues). Once thought to be rare, primary aldosteronism (PA, in which aldosterone secretion by the adrenal is excessive and autonomous of its principal regulator, angiotensin II) is now known to be the most common specifically treatable and potentially curable form of hypertension, with most patients lacking the clinical feature of hypokalemia, the presence of which was previously considered to be necessary to warrant further efforts towards confirming a diagnosis of PA. This, and the appreciation that aldosterone excess leads to adverse cardiovascular, renal, central nervous, and psychological effects, that are at least partly independent of its effects on blood pressure, have had a profound influence on raising clinical and research interest in PA. Such research on patients with PA has, in turn, furthered knowledge regarding aldosterone synthesis, regulation, and effects. This review summarizes current progress in our understanding of the physiology of aldosterone, and towards defining the causes (including genetic bases), epidemiology, outcomes, and clinical approaches to diagnostic workup (including screening, diagnostic confirmation, and subtype differentiation) and treatment of PA.
Collapse
Affiliation(s)
- Michael Stowasser
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| | - Richard D. Gordon
- Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia
| |
Collapse
|
173
|
Nanba K, Omata K, Tomlins SA, Giordano TJ, Hammer GD, Rainey WE, Else T. Double adrenocortical adenomas harboring independent KCNJ5 and PRKACA somatic mutations. Eur J Endocrinol 2016; 175:K1-6. [PMID: 27165862 PMCID: PMC5030510 DOI: 10.1530/eje-16-0262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Co-secretion of cortisol and aldosterone can be observed in adrenal adenomas. The aim of this study was to investigate the molecular characteristics of a co-existing aldosterone- and a cortisol-producing adenoma (CPA) in the same patient. DESIGN AND METHODS Two different adenomas within the same adrenal gland from a 49-year-old female patient with primary aldosteronism (PA) and Cushing's syndrome (CS) were studied. Multiple formalin-fixed paraffin-embedded tumor blocks were used for the analysis. Immunohistochemistry (IHC) was performed using a specific antibody against aldosterone synthase (CYP11B2). DNA and RNA were isolated separately from CYP11B2-positive and -negative tumor regions based on CYP11B2 IHC results. RESULTS CYP11B2 IHC clearly demonstrated that three pieces from one adenoma were positive for CYP11B2 and the remaining three from the other adenoma were negative for CYP11B2. In quantitative real-time RT-PCR, CYP11B2 mRNA was upregulated in CYP11B2-positive tumor specimens (219-fold vs CYP11B2-negative tumor specimens). Targeted next-generation sequencing (NGS) detected novel KCNJ5 gene mutations (p.T148I/T149S, present in the same reads) and a PRKACA gene hotspot mutation (p.L206R) in the CYP11B2-positive and -negative tumors, respectively. Sanger sequencing of DNA from each tumor specimen (CYP11B2-positive tumor, n=3; CYP11B2-negative tumor, n=3) showed concordant results with targeted NGS. CONCLUSION Our findings illustrate the co-existence of two different adrenocortical adenomas causing the concurrent diagnosis of PA and CS in the same patient. Molecular analysis was able to demonstrate that the two diseases resulted from independent somatic mutations seen in double adrenocortical adenomas.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Departments of Molecular and Integrative Physiology & Internal Medicine
| | | | - Scott A Tomlins
- Department of Pathology Comprehensive Cancer Center Michigan Center for Translational Pathology Department of Urology
| | - Thomas J Giordano
- Department of Pathology Comprehensive Cancer Center Division of Metabolism, Endocrinology, and Diabetes
| | - Gary D Hammer
- Departments of Molecular and Integrative Physiology & Internal Medicine Division of Metabolism, Endocrinology, and Diabetes Endocrine Oncology ProgramCenter for Organogenesis, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Departments of Molecular and Integrative Physiology & Internal Medicine
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes
| |
Collapse
|
174
|
Rhayem Y, Perez-Rivas LG, Dietz A, Bathon K, Gebhard C, Riester A, Mauracher B, Gomez-Sanchez C, Eisenhofer G, Schwarzmayr T, Calebiro D, Strom TM, Reincke M, Beuschlein F. PRKACA Somatic Mutations Are Rare Findings in Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 2016; 101:3010-7. [PMID: 27270477 DOI: 10.1210/jc.2016-1700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CONTEXT Somatic mutations have been found causative for endocrine autonomy in aldosterone-producing adenomas (APAs). Whereas mutations of PRKACA (catalytic subunit of protein kinase A) have been identified in cortisol-producing adenomas, the presence of PRKACA variants in APAs is unknown, especially in those that display cosecretion of cortisol. OBJECTIVE The objective of the study was to investigate PRKACA somatic variants identified in APA cases. DESIGN Identification of PRKACA somatic variants in APAs by whole-exome sequencing followed by in vitro analysis of the enzymatic activity of PRKACA variants and functional characterization by double immunofluorescence of CYP11B2 and CYP11B1 expression in the corresponding tumor tissues. SETTING AND PATIENTS APA tissues were collected from 122 patients who underwent unilateral adrenalectomy for primary aldosteronism between 2005 and 2015 at a single institution. RESULTS PRKACA somatic mutations were identified in two APA cases (1.6%). One APA carried a newly identified p.His88Asp variant, whereas in a second case, a p.Leu206Arg mutation was found, previously described only in cortisol-producing adenomas with overt Cushing's syndrome. Functional analysis showed that the p.His88Asp variant was not associated with gain of function. Although CYP11B2 was strongly expressed in the p.His88Asp-mutated APA, the p.Leu206Arg carrying APA predominantly expressed CYP11B1. Accordingly, biochemical Cushing's syndrome was present only in the patient with the p.Leu206Arg mutation. After adrenalectomy, both patients improved with a reduced number of antihypertensive medications and normalized serum potassium levels. CONCLUSIONS We describe for the first time PRKACA mutations as rare findings associated with unilateral primary aldosteronism. As cortisol cosecretion occurs in a subgroup of APAs, other molecular mechanisms are likely to exist.
Collapse
Affiliation(s)
- Yara Rhayem
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Luis G Perez-Rivas
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Anna Dietz
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Kerstin Bathon
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Christian Gebhard
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Anna Riester
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Brigitte Mauracher
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Celso Gomez-Sanchez
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Graeme Eisenhofer
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Thomas Schwarzmayr
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Davide Calebiro
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Tim M Strom
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Martin Reincke
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| | - Felix Beuschlein
- Department of Endocrine Research (Y.R., L.G.P.-R., A.D., C.G., A.R., B.M., M.R., F.B.), Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, D-80336 Munich, Germany; Institute of Pharmacology and Toxicology (K.B., D.C.) and Rudolf Virchow Center for Experimental Biomedicine (D.C.), University of Würzburg, D-97070 Würzburg, Germany; Division of Endocrinology (C.G.-S.), G.V. (Sonny) Montgomery Veterans Affairs Medical Center, and Department of Medicine-Endocrinology (C.G.-S.), University of Mississippi Medical Center, Jackson, Mississippi 39216; Institute of Clinical Chemistry and Laboratory Medicine and Department of Medicine III (G.E.) and Institute of Human Genetics (T.S.), Technische Universität Dresden, D-01307 Dresden, Germany; and Institute of Human Genetics (T.S.), Helmholtz Zentrum München, D-85764 Munich, Germany
| |
Collapse
|
175
|
Normoaldosteronemic aldosterone-producing adenoma: immunochemical characterization and diagnostic implications. J Hypertens 2016; 33:2546-9. [PMID: 26536091 DOI: 10.1097/hjh.0000000000000748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A high aldosterone-renin ratio (ARR) is commonly used to identify primary aldosteronism, but the ARR is high when renin is low, even if plasma aldosterone concentration values are normal, suggesting the existence of 'normoaldosteronemic' primary aldosteronism. However, most such cases did not undergo adrenalectomy; moreover, because of the lack of antibody for the human CYP11B2 (aldosterone synthase), conclusive demonstration of a normoaldosteronemic aldosterone-producing adenoma was not possible thus far. METHOD In 2003, a lady presented with severe hypertension a right adrenal nodule, low renin, high ARR, but normal plasma aldosterone concentration. As adrenal vein sampling showed lateralized aldosterone secretion, she underwent left adrenalectomy, which consistently normalized blood pressure (BP) and renin during 11-year follow-up. RESULT AND CONCLUSION The development of a novel monoclonal antibody for the human CYP11B2 in 2014 allowed immunochemically identification of a CYP11B2-positive adenoma in the resected adrenal. Moreover, this case unequivocally demonstrates for the first time the existence of normoaldosteronemic aldosterone-producing adenoma, which suggests that many cases of 'low renin-essential hypertension' might instead have a surgically curable form of primary aldosteronism.
Collapse
|
176
|
Asakawa M, Yoshimoto T, Ota M, Numasawa M, Sasahara Y, Takeuchi T, Nakano Y, Oohara N, Murakami M, Bouchi R, Minami I, Tsuchiya K, Hashimoto K, Izumiyama H, Kawamura N, Kihara K, Negi M, Akashi T, Eishi Y, Sasano H, Ogawa Y. A Case of Cushing's Syndrome with Multiple Adrenocortical Adenomas Composed of Compact Cells and Clear Cells. Endocr Pathol 2016; 27:136-41. [PMID: 26961704 DOI: 10.1007/s12022-016-9423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A 58-year-old woman was referred to our hospital for Cushingoid features and diagnosed as adrenal Cushing's syndrome due to a right adrenocortical mass (60 × 55 mm). The mass was composed of three different tumors; the first one was homogeneously lipid-poor neoplasm measuring 20 × 13 mm located at the most dorsal region, the second one was heterogeneous and lipid-rich tumor containing multiple foci of calcification measuring 50 × 32 mm located at the central region, and the last one was heterogeneous harboring dilated and tortuous vessels and lipid-poor one measuring 35 × 18 mm at the most ventral region of the adrenal gland. A right adrenalectomy was subsequently performed by open surgery. Macroscopic and microscopic analyses revealed that all three tumors were adrenocortical adenomas; the first one represents a pigmented adrenocortical adenoma, the second one adrenocortical adenoma associated with degeneration, and the third one adrenocortical adenoma harboring extensive degeneration. Immunohistochemical analysis of the steroidogenic enzymes also revealed that all of the tumors had the capacity of synthesizing cortisol. This is a very rare case of Cushing's syndrome caused by multiple adrenocortical adenomas including a pigmented adenoma. Immunohistochemical analysis of steroidogenic enzymes contributed to understanding of steroidogenesis in each of these three different adrenocortical adenomas in this case.
Collapse
Affiliation(s)
- Masahiro Asakawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takanobu Yoshimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Mitsutane Ota
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mitsuyuki Numasawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuriko Sasahara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takato Takeuchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yujiro Nakano
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Norihiko Oohara
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ryotaro Bouchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Isao Minami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyoichiro Tsuchiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hajime Izumiyama
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Medical Welfare and Liaison Services, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Naoko Kawamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kazunori Kihara
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Mariko Negi
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yoshinobu Eishi
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
177
|
Abstract
PURPOSE OF REVIEW Primary aldosteronism is a major cause of hypertension; aldosterone-producing adenomas (APA) cause about half of primary aldosteronism; idiopathic hyperplasia of adrenal glomerulosa cells are responsible for the rest. A surprising variety of mutations have recently been identified in ion channels and pumps in a significant number of APA. The present review addresses histological and molecular aspects of APA and the surrounding adrenal. RECENT FINDINGS Specific antibodies against the CYP11B2 and CYP11B1 enzymes, the last enzyme in aldosterone and cortisol synthesis, respectively, allow for the first time study of the steroidogenic capabilities of cells within the APA and adjacent adrenal. Cells expressing CYP11B2 may be scattered and/or in clusters throughout the normal adrenal zona glomerulosa. APA differ widely in the number of cells expressing CYP11B2; some did not express it at all, but were surrounded by cells, some in clusters or micronodules, that expressed CYP11B2. Some APAs also comprised cells expressing both CYP11B1 and CYP17A1. In some samples, analysis of the tissue adjacent to APA detected ion channel and pump mutations heretofore associated only with APA. SUMMARY APAs have a complex structure and expression of steroidogenic enzymes.
Collapse
Affiliation(s)
- Celso E. Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Elise P. Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
178
|
Kishimoto R, Oki K, Yoneda M, Gomez-Sanchez CE, Ohno H, Kobuke K, Itcho K, Kohno N. Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma. Medicine (Baltimore) 2016; 95:e3659. [PMID: 27196470 PMCID: PMC4902412 DOI: 10.1097/md.0000000000003659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production.Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production.The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P < 0.05). LHCGR levels were also significantly elevated in APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P < 0.05). Patients with APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P < 0.05). Multiple regression analysis revealed that the presence of the KCNJ5 mutation was linked to GNRHR mRNA expression (β = 0.94 and P < 0.01). HAC15 cells with KCNJ5 gene carrying T158A mutation exhibited a significantly lower GNRHR expression than that in control cells (P < 0.05).We clarified increased expression of GNRHR and LHCGR in APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation.
Collapse
Affiliation(s)
- Rui Kishimoto
- From the Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (RK, KO, MY, HO, KK, KI, NK); and Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center, University of Mississippi Medical Center, Jackson, MS, USA (CEG-S)
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
Aldosterone-producing adenomas (APAs) vary in phenotype and genotype. Zona
glomerulosa (ZG)-like APAs frequently have mutations of an L-type calcium channel
(LTCC) CaV1.3. Using a novel antagonist of CaV1.3, compound
8, we investigated the role of CaV1.3 on steroidogenesis in
the human adrenocortical cell line, H295R, and in primary human adrenal cells. This
investigational drug was compared with the common antihypertensive drug nifedipine,
which has 4.5-fold selectivity for the vascular LTCC, CaV1.2, over
CaV1.3. In H295R cells transfected with wild-type or mutant
CaV1.3 channels, the latter produced more aldosterone than wild-type,
which was ameliorated by 100 μM of compound 8. In primary
adrenal and non-transfected H295R cells, compound 8 decreased aldosterone
production similar to high concentration of nifedipine (100 μM).
Selective CaV1.3 blockade may offer a novel way of treating primary
hyperaldosteronism, which avoids the vascular side effects of
CaV1.2-blockade, and provides targeted treatment for ZG-like APAs with
mutations of CaV1.3.
Collapse
|
180
|
Expression of steroidogenic enzymes and their transcription factors in cortisol-producing adrenocortical adenomas: immunohistochemical analysis and quantitative real-time polymerase chain reaction studies. Hum Pathol 2016; 54:165-73. [PMID: 27085553 DOI: 10.1016/j.humpath.2016.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 11/24/2022]
Abstract
Adrenal Cushing syndrome (CS) is caused by the overproduction of cortisol in adrenocortical tumors including adrenal cortisol-producing adenoma (CPA). In CS, steroidogenic enzymes such as 17α-hydroxylase/17, 20-lase (CYP17A1), 3β-hydroxysteroid dehydrogenase (HSD3B), and 11β-hydroxylase (CYP11B1) are abundantly expressed in tumor cells. In addition, several transcriptional factors have been reported to play pivotal roles in the regulation of these enzymes in CPA, but their correlations with those enzymes above have still remained largely unknown. Therefore, in this study, we examined the status of steroidogenic enzymes and their transcriptional factors in 78 and 15 CPA cases by using immunohistochemistry and quantitative real-time polymerase chain reaction (qPCR), respectively. Immunoreactivity of HSD3B2, CYP11B1, CYP17A1, steroidogenic factor-1 (SF1[NR5A1]), GATA6, and nerve growth factor induced-B (NGFIB[NR4A1]) was detected in tumor cells. Results of qPCR analysis revealed that expression of HSD3B2 mRNA was significantly higher than that of HSD3B1, and CYP11B1 mRNA was significantly higher than CYP11B2. In addition, the expression of CYP11B1 mRNA was positively correlated with those of NR5A1, GATA6, and NR4A1. These results all indicated that HSD3B2 but not HSD3B1 was mainly involved in cortisol overproduction in CPA. In addition, NR5A1, GATA6, and NR4A1 were all considered to play important roles in cortisol overproduction through regulating CYP11B1 gene transcription.
Collapse
|
181
|
Lalli E, Barhanin J, Zennaro MC, Warth R. Local Control of Aldosterone Production and Primary Aldosteronism. Trends Endocrinol Metab 2016; 27:123-131. [PMID: 26803728 DOI: 10.1016/j.tem.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
Primary aldosteronism (PA) is caused by excessive production of aldosterone by the adrenal cortex and is determined by a benign aldosterone-producing adenoma (APA) in a significant proportion of cases. Local mechanisms, as opposed to circulatory ones, that control aldosterone production in the adrenal cortex are particularly relevant in the physiopathological setting and in the pathogenesis of PA. A breakthrough in our understanding of the pathogenetic mechanisms in APA has been the identification of somatic mutations in genes controlling membrane potential and intracellular calcium concentrations. However, recent data show that the processes of nodule formation and aldosterone hypersecretion can be dissociated in pathological adrenals and suggest a model envisaging different molecular events for the pathogenesis of APA.
Collapse
Affiliation(s)
- Enzo Lalli
- Institut de Pharmacologie Moléculaire et Cellulaire CNRS, 06560 Valbonne, France; NEOGENEX CNRS International Associated Laboratory, 06560 Valbonne, France; Université de Nice - Sophia Antipolis, 06560 Sophia Antipolis, France.
| | - Jacques Barhanin
- Laboratoire de PhysioMédecine Moléculaire CNRS-UNS UMR 7370, 06108 Nice Cedex 2, France; Laboratories of Excellence, Ion Channel Science and Therapeutics, 06107 Nice, France
| | - Maria-Christina Zennaro
- INSERM, UMRS 970, Paris Cardiovascular Research Center, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, 75015 Paris, France
| | - Richard Warth
- Medical Cell Biology - University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
182
|
Nanba K, Chen AX, Omata K, Vinco M, Giordano TJ, Else T, Hammer GD, Tomlins SA, Rainey WE. Molecular Heterogeneity in Aldosterone-Producing Adenomas. J Clin Endocrinol Metab 2016; 101:999-1007. [PMID: 26765578 PMCID: PMC4803171 DOI: 10.1210/jc.2015-3239] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT The use of next-generation sequencing has resulted in the identification of recurrent somatic mutations underlying primary aldosteronism (PA). However, significant gaps remain in our understanding of the relationship between tumor aldosterone synthase (CYP11B2) expression and somatic mutation status. OBJECTIVE The objective of the study was to investigate tumor CYP11B2 expression and somatic aldosterone-driver gene mutation heterogeneity. METHODS Fifty-one adrenals from 51 PA patients were studied. Immunohistochemistry for CYP11B2 was performed. Aldosterone-producing adenomas with intratumor CYP11B2 heterogeneity were analyzed for mutation status using targeted next-generation sequencing. DNA was isolated from CYP11B2-positive, CYP11B2-negative, and adjacent normal areas from formalin-fixed, paraffin-embedded sections. RESULTS Of 51 adrenals, seven (14 %) showed distinct heterogeneity in CYP11B2 by immunohistochemistry, including six adenomas with intratumor heterogeneity and one multinodular hyperplastic adrenal with both CYP11B2-positive and -negative nodules. Of the six adrenocortical adenomas with CYP11B2 heterogeneity, three had aldosterone-regulating mutations (CACNA1D p.F747C, KCNJ5 p.L168R, ATP1A1 p.L104R) only in CYP11B2-positive regions, and one had two different mutations localized to two histologically distinct CYP11B2-positive regions (ATP2B3 p.L424_V425del, KCNJ5 p.G151R). Lastly, one adrenal with multiple CYP11B2-expressing nodules showed different mutations in each (CACNA1D p.F747V and ATP1A1 p.L104R), and no mutations were identified in CYP11B2-negative nodule or adjacent normal adrenal. CONCLUSIONS Adrenal tumors in patients with PA can demonstrate clear heterogeneity in CYP11B2 expression and somatic mutations in driver genes for aldosterone production. These findings suggest that aldosterone-producing adenoma tumorigenesis can occur within preexisting nodules through the acquisition of somatic mutations that drive aldosterone production.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Andrew X Chen
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Kei Omata
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Michelle Vinco
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Thomas J Giordano
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Tobias Else
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Gary D Hammer
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - Scott A Tomlins
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| | - William E Rainey
- Departments of Molecular and Integrative Physiology and Internal Medicine (K.N., A.X.C., G.D.H., W.E.R.), Pathology (K.O., M.V., T.J.G., S.A.T.), and Urology (S.A.T.), Comprehensive Cancer Center (T.J.G., T.E., S.A.T.), Division of Metabolism, Endocrinology, and Diabetes (T.J.G., T.E., G.D.H.), Endocrine Oncology Program (T.E., G.D.H.), Center for Organogenesis, and Michigan Center for Translational Pathology (S.A.T.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
183
|
Nakamura Y, Kitada M, Satoh F, Maekawa T, Morimoto R, Yamazaki Y, Ise K, Gomez-Sanchez CE, Ito S, Arai Y, Dezawa M, Sasano H. Intratumoral heterogeneity of steroidogenesis in aldosterone-producing adenoma revealed by intensive double- and triple-immunostaining for CYP11B2/B1 and CYP17. Mol Cell Endocrinol 2016; 422:57-63. [PMID: 26597777 PMCID: PMC4827777 DOI: 10.1016/j.mce.2015.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Cytochrome P450 11B2 (CYP11B2) plays a pivotal role in aldosterone synthesis, while cytochrome P450 11B1 (CYP11B1) and cytochrome P450 17A1 (CYP17) are involved in cortisol synthesis in normal human adrenal glands. However, their detailed distribution in aldosterone-producing adenoma (APA) remains incompletely settled. MATERIALS AND METHODS We examined the status of CYP11B1/CYP11B2 and CYP11B2/CYP17A1 expressions in 27 APA (double staining) cases and 21 APA (triple staining) cases by using immunofluorescence staining and semi-quantitative evaluation. RESULTS Tumor cells co-expressing CYP11B1/B2 (hybrid cell type A), CYP11B2/17 (hybrid cell type B), CYP11B1/17 (hybrid cell type C), and CYP11B1/B2/17 (triple-positive cell) were identified. The area and cell number of these cells were relatively small, but the size of individual hybrid cells were different between three hybrid cell types (A/B/C) and triple-positive cells. CONCLUSION The presence of hybrid cells indicated the marked intratumoral heterogeneity of steroidogenesis in APAs, particularly in those producing glucocorticoids and mineralocorticoids.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Masaaki Kitada
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University, Hospital, Sendai, Japan
| | - Takashi Maekawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University, Hospital, Sendai, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, MS, USA
| | - Sadayoshi Ito
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
184
|
Åkerström T, Maharjan R, Sven Willenberg H, Cupisti K, Ip J, Moser A, Stålberg P, Robinson B, Alexander Iwen K, Dralle H, Walz MK, Lehnert H, Sidhu S, Gomez-Sanchez C, Hellman P, Björklund P. Activating mutations in CTNNB1 in aldosterone producing adenomas. Sci Rep 2016; 6:19546. [PMID: 26815163 PMCID: PMC4728393 DOI: 10.1038/srep19546] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation.
Collapse
Affiliation(s)
- Tobias Åkerström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Rajani Maharjan
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Kenko Cupisti
- General, Visceral and Pediatric Surgery University Hospital Düsseldorf, Düsseldorf, Germany
| | - Julian Ip
- University of Sydney, Endocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Ana Moser
- Department of Medicine I, University of Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Peter Stålberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Bruce Robinson
- University of Sydney, Endocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - K Alexander Iwen
- Department of Medicine I, University of Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Henning Dralle
- Department of General, Visceral and Vascular Surgery, University Hospital, University of Halle-Wittenberg, Halle/Saale, Germany. Sweden
| | - Martin K Walz
- Klinik für Chirurgie und Zentrum für Minimal Invasive Chirurgie, Kliniken Essen-Mitte, Essen, Germany
| | - Hendrik Lehnert
- Department of Medicine I, University of Lübeck, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stan Sidhu
- University of Sydney, Endocrine Surgical Unit and Cancer Genetics, Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, Australia
| | - Celso Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, USA
| | - Per Hellman
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Peyman Björklund
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
185
|
Chen AX, Nishimoto K, Nanba K, Rainey WE. Potassium channels related to primary aldosteronism: Expression similarities and differences between human and rat adrenals. Mol Cell Endocrinol 2015; 417:141-8. [PMID: 26375812 PMCID: PMC4646165 DOI: 10.1016/j.mce.2015.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 08/18/2015] [Accepted: 09/10/2015] [Indexed: 11/26/2022]
Abstract
Three potassium channels have been associated with primary aldosteronism (PA) in rodents and humans: KCNK3 (TASK-1), KCNK9 (TASK-3), and KCNJ5 (Kir3.4). Mice with deficiency in Kcnk3 and Kcnk9 have elevated aldosterone production and blood pressure. In humans, adrenal tumors with somatic mutations in KCNJ5 cause PA. However, there are very few reports on the expression patterns of these genes in humans versus rodents. Herein, we compared human and rat mRNA expression (by quantitative real-time polymerase chain reaction (qPCR) and protein levels (by immunohistochemistry) across three tissues (adrenal, brain, heart) and two laser-captured adrenal zones (zona glomerulosa, zona fasciculata). Our findings show that expression patterns of KCNK3, KCNK9, and KCNJ5 are inconsistent between rats and humans across both tissues and adrenal zones. Thus, species variation in the expression of PA-related potassium channels indicates an evolutionary divergence in their role in regulating adrenal aldosterone production.
Collapse
Affiliation(s)
- Andrew X Chen
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Koshiro Nishimoto
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI 48109, USA.
| |
Collapse
|
186
|
Moors M, Williams TA, Deinum J, Eisenhofer G, Reincke M, Lenders JWM. Steroid Hormone Production in Patients with Aldosterone Producing Adenomas. Horm Metab Res 2015; 47:967-72. [PMID: 26667800 DOI: 10.1055/s-0035-1565225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary aldosteronism encompasses 2 major underlying causes: (1) aldosterone producing adenoma and (2) bilateral adrenal hyperplasia. In addition to the aldosterone excess, increased production of other compounds of the steroidogenic pathways may be involved. Until recently, most studies examined the production of steroids other than aldosterone in tumor tissue, urine, or peripheral plasma samples, but several new studies have also addressed steroid levels in adrenal venous blood samples using liquid chromatography tandem mass spectrometry. Plasma and tissue levels of several precursors of aldosterone with mineralocorticoid activity are higher in patients with aldosterone producing adenomas than in those with bilateral hyperplasia. These include corticosterone, deoxycorticosterone, and their 18-hydroxylated metabolites. Similarly, urinary, peripheral, and adrenal venous concentrations of the hybrid steroids 18-oxocortisol and 18-hydroxycortisol are higher in patients with aldosterone producing adenomas than in bilateral hyperplasia. Differences in the pathophysiology and in clinical and biochemical phenotypes caused by aldosterone producing adenomas and bilateral adrenal hyperplasia may be related to the differential expression of steroidogenic enzymes, and associated to specific underlying somatic mutations. Correct appreciation of differences in steroid profiling between aldosterone producing adenomas and bilateral adrenal hyperplasia may not only contribute to a better understanding of the pathogenesis of primary aldosteronism but may also be helpful for future subtyping of primary aldosteronism.
Collapse
Affiliation(s)
- M Moors
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T A Williams
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - J Deinum
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - M Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - J W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
187
|
Murakami M, Yoshimoto T, Minami I, Bouchi R, Tsuchiya K, Hashimoto K, Izumiyama H, Fujii Y, Endo T, Akashi T, Nishimoto K, Mukai K, Kihara K, Ogawa Y. A Novel Somatic Deletion Mutation of ATP2B3 in Aldosterone-Producing Adenoma. Endocr Pathol 2015; 26:328-33. [PMID: 26481629 DOI: 10.1007/s12022-015-9400-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aldosterone-producing adenoma (APA) is a form of primary aldosteronism (PA). Recent studies suggested that somatic mutations in the KCNJ5, ATP1A1, ATP2B3, and CACNA1D genes are involved in the pathogenesis of APA. We report a case of a 62-year-old man diagnosed as PA with left adrenal mass. He underwent adrenalectomy for treatment. We identified a novel somatic deletion mutation in ATP2B3 in the adrenal tumor: c.1269_1274delTGTGCT which spans three codons (423-425) resulting in p.Val424_Leu425del. Immunohistochemical analysis revealed strong expression of aldosterone synthase (CYP11B2) in the tumor tissue, which is consistent with APA. Here, we identified a novel somatic deletion mutation in ATP2B3, which results in the amino acid sequences increasing intracellular calcium concentrations as reported previously, leading to increased aldosterone synthase (CYP11B2) expression and following excess aldosterone production in the APA cells. The novel ATP2B3 mutation detected in our case supports the pathogenic significance of the locus spanning the codon 424-426 of ATP2B3.
Collapse
Affiliation(s)
- Masanori Murakami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takanobu Yoshimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Isao Minami
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ryotaro Bouchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyoichiro Tsuchiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hajime Izumiyama
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Medical Welfare and Liaison Services, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yasuhisa Fujii
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takashi Endo
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Takumi Akashi
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Koshiro Nishimoto
- Department of Urology, Tachikawa Hospital, Tokyo, 190-0022, Japan
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Kuniaki Mukai
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Kazunori Kihara
- Department of Urology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| |
Collapse
|
188
|
Zhou X, Chen K, Wang Y, Schuman M, Lei H, Sun Z. Antiaging Gene Klotho Regulates Adrenal CYP11B2 Expression and Aldosterone Synthesis. J Am Soc Nephrol 2015; 27:1765-76. [PMID: 26471128 DOI: 10.1681/asn.2015010093] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022] Open
Abstract
Deficiency of the antiaging gene Klotho (KL) induces renal damage and hypertension through unknown mechanisms. In this study, we assessed whether KL regulates expression of CYP11B2, a key rate-limiting enzyme in aldosterone synthesis, in adrenal glands. We found that haplodeficiency of KL(+/-) in mice increased the plasma level of aldosterone by 16 weeks of age, which coincided with spontaneous and persistent elevation of BP. Blockade of aldosterone actions by eplerenone reversed KL deficiency-induced hypertension and attenuated the kidney damage. Protein expression of CYP11B2 was upregulated in adrenal cortex of KL(+/-) mice. KL and CYP11B2 proteins colocalized in adrenal zona glomerulosa cells. Silencing of KL upregulated and overexpression of KL downregulated CYP11B2 expression in human adrenocortical cells. Notably, silencing of KL decreased expression of SF-1, a negative transcription factor of CYP11B2, but increased phosphorylation of ATF2, a positive transcription factor of CYP11B2, which may contribute to upregulation of CYP11B2 expression. Therefore, these results show that KL regulates adrenal CYP11B2 expression. KL deficiency-induced spontaneous hypertension and kidney damage may be partially attributed to the upregulation of CYP11B2 expression and aldosterone synthesis.
Collapse
Affiliation(s)
- Xiaoli Zhou
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kai Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yongjun Wang
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Mariano Schuman
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Lei
- Department of Cardiology, First Affiliated Hospital, Chongqing Medical University, Chongqing, China; and
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
189
|
Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemèle EJ. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation 2015; 132:2134-45. [PMID: 26362633 DOI: 10.1161/circulationaha.115.018226] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND In obesity, the excessive synthesis of aldosterone contributes to the development and progression of metabolic and cardiovascular dysfunctions. Obesity-induced hyperaldosteronism is independent of the known regulators of aldosterone secretion, but reliant on unidentified adipocyte-derived factors. We hypothesized that the adipokine leptin is a direct regulator of aldosterone synthase (CYP11B2) expression and aldosterone release and promotes cardiovascular dysfunction via aldosterone-dependent mechanisms. METHODS AND RESULTS Immunostaining of human adrenal cross-sections and adrenocortical cells revealed that adrenocortical cells coexpress CYP11B2 and leptin receptors. Measurements of adrenal CYP11B2 expression and plasma aldosterone levels showed that increases in endogenous (obesity) or exogenous (infusion) leptin dose-dependently raised CYP11B2 expression and aldosterone without elevating plasma angiotensin II, potassium or corticosterone. Neither angiotensin II receptors blockade nor α and β adrenergic receptors inhibition blunted leptin-induced aldosterone secretion. Identical results were obtained in cultured adrenocortical cells. Enhanced leptin signaling elevated CYP11B2 expression and plasma aldosterone, whereas deficiency in leptin or leptin receptors blunted obesity-induced increases in CYP11B2 and aldosterone, ruling out a role for obesity per se. Leptin increased intracellular calcium, elevated calmodulin and calmodulin-kinase II expression, whereas calcium chelation blunted leptin-mediated increases in CYP11B2, in adrenocortical cells. Mineralocorticoid receptor blockade blunted leptin-induced endothelial dysfunction and increases in cardiac fibrotic markers. CONCLUSIONS Leptin is a newly described regulator of aldosterone synthesis that acts directly on adrenal glomerulosa cells to increase CYP11B2 expression and enhance aldosterone production via calcium-dependent mechanisms. Furthermore, leptin-mediated aldosterone secretion contributes to cardiovascular disease by promoting endothelial dysfunction and the expression of profibrotic markers in the heart.
Collapse
Affiliation(s)
- Anne-Cécile Huby
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Galina Antonova
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jake Groenendyk
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Celso E Gomez-Sanchez
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Wendy B Bollag
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Jessica A Filosa
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.)
| | - Eric J Belin de Chantemèle
- From Physiology Department, Medical College of Georgia at Georgia Regents University, Augusta (A.-C.H., G.A., J.G., W.B.B., J.A.F., E.J.D.d.C.); Charlie Norwood VA Medical Center, Augusta, GA (W.B.B.); Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, and University of Mississippi Medical Center, Jackson (C..E.G.-S.).
| |
Collapse
|
190
|
Bloem LM, Storbeck KH, Swart P, du Toit T, Schloms L, Swart AC. Advances in the analytical methodologies: Profiling steroids in familiar pathways-challenging dogmas. J Steroid Biochem Mol Biol 2015; 153:80-92. [PMID: 25869556 DOI: 10.1016/j.jsbmb.2015.04.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/30/2015] [Accepted: 04/08/2015] [Indexed: 02/06/2023]
Abstract
The comprehensive evaluation of the adrenal steroidogenic pathway, given its complexity, requires methodology beyond the standard techniques currently employed. Advances in LC-MS/MS, coupled with in vitro cell models that produce all the steroid metabolites of the mineralo-, glucocorticoid and androgen arms, present a powerful approach for the comprehensive evaluation of adrenal steroidogenesis in response to compounds of interest including bioactives, drug treatments and endocrine disrupting compounds. UHPLC-MS/MS analysis of steroid panels in forskolin, angiotensin II and K(+) stimulated H295R cells provides a snapshot of their effect on intermediates and end products of adrenal steroidogenesis. The impact of full steroid panel evaluations by LC- and GC-MS/MS extends to clinical profiling with the characterization of normal pediatric steroid reference ranges in sexual development and of disease-specific profiles improving diagnosis and sub classification. Comprehensive analyses of steroid profiles may potentially improve patient outcomes together with the application of treatments specifically suited to clinical subgroups. LC-MS/MS and GC-MS/MS applications in the analyses of comprehensive steroid panels are demonstrated in clinical conditions such as congenital adrenal hyperplasia in newborns requiring accurate diagnoses and in predicting metabolic risk in polycystic ovary syndrome patients. Most notable perhaps is the impact of LC-MS/MS evaluations on our understanding of the basic biochemistry of steroidogenesis with the detection of the long forgotten adrenal steroid, 11β-hydroxyandrostenedione, at significant levels. The characterization of its metabolism to androgen receptor ligands in the LNCaP prostate cancel cell model, specifically within the context of recurring prostate cancer, lends new perspectives to old dogmas. We demonstrate that UHPLC-MS/MS has enabled the analyses of novel metabolites of the enzymes, SRD5A, 11βHSD and 17βHSD, in LNCaP cells. Undoubtedly, the continuous advances in the analytical methodologies used for steroid profiling and quantification will give impetus to the unraveling of the remaining enigmas, old and new, of both hormone biosynthesis and metabolism.
Collapse
Affiliation(s)
- Liezl M Bloem
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Pieter Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Therina du Toit
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Lindie Schloms
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Amanda C Swart
- Department of Biochemistry, University of Stellenbosch, Stellenbosch 7600, South Africa.
| |
Collapse
|
191
|
Nakamura Y, Yamazaki Y, Konosu-Fukaya S, Ise K, Satoh F, Sasano H. Aldosterone biosynthesis in the human adrenal cortex and associated disorders. J Steroid Biochem Mol Biol 2015; 153:57-62. [PMID: 26051166 DOI: 10.1016/j.jsbmb.2015.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
Aldosterone is one of the mineralocorticoids synthesized and secreted by the adrenal glands, and it plays pivotal roles in regulating extracellular fluid volume and blood pressure. Autonomous excessive aldosterone secretion resulting from adrenocortical diseases is known as primary aldosteronism, and it constitutes one of the most frequent causes of secondary hypertension. Therefore, it is important to understand the molecular mechanisms of aldosterone synthesis in both normal and pathological adrenal tissues. Various factors have been suggested to be involved in regulation of aldosterone biosynthesis, and several adrenocortical cell lines have been developed for use as in vitro models of adrenal aldosterone-producing cells, for analysis of the underlying molecular mechanisms. In this review, we summarize the available reports on the regulation of aldosterone biosynthesis in the normal adrenal cortex, in associated disorders, and in in vitro models.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
192
|
Xu L, Xia W, Wu X, Wang X, Zhao L, Nie M. Chimeric CYP11B2/CYP11B1 causing 11β-hydroxylase deficiency in Chinese patients with congenital adrenal hyperplasia. Steroids 2015; 101:51-5. [PMID: 26066897 DOI: 10.1016/j.steroids.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
CYP11B1 and CYP11B2 are highly homologous genes that can form chimera following unequal crossing-over during meiosis. A chimeric CYP11B1/CYP11B2 gene causes glucocorticoid-remediable aldosteronism (GRA), while the rare CYP11B2/CYP11B1 chimeric gene leads to 11β-hydroxylase deficiency (11-OHD). The aim of the study was to find the underlying genetic causes of three distinct Chinese pedigrees with 11-OHD. The family history, clinical data, laboratory findings and alterations in the CYP11B1 gene sequence were analyzed in all patients. We found that patient 1 and patient 2 harbored novel homozygotic chimeric CYP11B2/CYP11B1 genes consisting of the promoter, exons 1-6 of CYP11B2, and exons 7-9 of CYP11B1. Patient 3 had compound heterozygotic mutation with one allele containing the promoter and exons 1-6 of CYP11B2 and exons 7-9 of CYP11B1, and the other allele comprising novel, previously undescribed p.W56X (c.168G>A) mutation in exon 1 of CYP11B1. The breakpoints to form Chimeric CYP11B2/CYP11B1 were not the same for the three patients. Rare chimeric CYP11B2/CYP11B1 gene mutations are the underlying cause of disease in three patients with 11-OHD. We hypothesize that the lack expression of CYP11B1 under the control of the CYP11B2 promoter in zona fasciculata may contribute to a cortisol defect as well as the resultant 11-OHD.
Collapse
Affiliation(s)
- Lingling Xu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Xueyan Wu
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Xiaojing Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Lili Zhao
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China
| | - Min Nie
- Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Key Laboratory of Endocrinology, Ministry of Health, Beijing, China.
| |
Collapse
|
193
|
Monticone S, Castellano I, Versace K, Lucatello B, Veglio F, Gomez-Sanchez CE, Williams TA, Mulatero P. Immunohistochemical, genetic and clinical characterization of sporadic aldosterone-producing adenomas. Mol Cell Endocrinol 2015; 411:146-54. [PMID: 25958045 PMCID: PMC4474471 DOI: 10.1016/j.mce.2015.04.022] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/25/2015] [Accepted: 04/26/2015] [Indexed: 10/23/2022]
Abstract
Adrenal glands removed for unilateral primary aldosteronism (PA) display marked histological heterogeneity. Recently reported somatic mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D can partially account for these differences. In this study we aimed at combining phenotypic and genotypic characteristics, integrating genetic and immunohistochemistry correlates in sporadic PA. Seventy-one adrenal glands have been included in the study and analyzed for mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. Histological examination and immunohistochemical staining for CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) were performed on aldosterone-producing adenomas (APAs) and adjacent adrenal cortex. In our cohort, the final histopathological diagnosis was multinodular hyperplasia in 22.5% of the patients and single nodule in 77.5%. Forty-five percent of the removed adrenals displayed extra-APA CYP11B2-positive cell nests (B2-CN). Among adrenal vein sampling parameters the suppression of contralateral adrenal was more frequent and the lateralization index was higher in the subgroup of patients without extra-APA B2-CN compared to the subgroup with extra-APA B2-CN. KCNJ5-mutated APAs were composed mainly of zona fasciculata-like cells with high expression of CYP11B1, while ATP1A1, ATP2B3 and CACNA1D-mutated APAs presented more frequently a zona-glomerulosa-like phenotype with high expression of CYP11B2. We observed a significant inverse correlation between CYP11B2 expression and the size of the nodules and, if CYP11B2 expression was corrected for tumor volume, a significant correlation with plasma aldosterone and aldosterone to renin ratio. Our findings indicate that combination of genotyping and immunohistochemistry improves the final histopathological diagnosis between single nodule and multinodular hyperplasia of the assessed adrenals.
Collapse
Affiliation(s)
- Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy.
| | - Isabella Castellano
- Division of Pathology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Karine Versace
- Division of Radiology, University of Torino, Torino, Italy
| | - Barbara Lucatello
- Division of Endocrinology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Celso E Gomez-Sanchez
- Division of Endocrinology, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Tracy A Williams
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
194
|
Gioco F, Seccia TM, Gomez-Sanchez EP, Rossi GP, Gomez-Sanchez CE. Adrenal histopathology in primary aldosteronism: is it time for a change? Hypertension 2015; 66:724-30. [PMID: 26238443 DOI: 10.1161/hypertensionaha.115.05873] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Gioco
- From the Clinica dell'Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy (F.G., T.M.S., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.), Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and Department of Medicine (C.E.G.-S.), University of Mississippi Medical Center, Jackson
| | - Teresa Maria Seccia
- From the Clinica dell'Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy (F.G., T.M.S., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.), Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and Department of Medicine (C.E.G.-S.), University of Mississippi Medical Center, Jackson
| | - Elise P Gomez-Sanchez
- From the Clinica dell'Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy (F.G., T.M.S., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.), Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and Department of Medicine (C.E.G.-S.), University of Mississippi Medical Center, Jackson
| | - Gian Paolo Rossi
- From the Clinica dell'Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy (F.G., T.M.S., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.), Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and Department of Medicine (C.E.G.-S.), University of Mississippi Medical Center, Jackson.
| | - Celso E Gomez-Sanchez
- From the Clinica dell'Ipertensione Arteriosa, Department of Medicine-DIMED, University of Padua, Padua, Italy (F.G., T.M.S., G.P.R.); and Department of Pharmacology and Toxicology (E.P.G.-S.), Division of Endocrinology, G. V. (Sonny) Montgomery Veterans Affairs Medical Center and Department of Medicine (C.E.G.-S.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
195
|
Aldosterone-stimulating somatic gene mutations are common in normal adrenal glands. Proc Natl Acad Sci U S A 2015; 112:E4591-9. [PMID: 26240369 DOI: 10.1073/pnas.1505529112] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Primary aldosteronism (PA) represents the most common cause of secondary hypertension, but little is known regarding its adrenal cellular origins. Recently, aldosterone-producing cell clusters (APCCs) with high expression of aldosterone synthase (CYP11B2) were found in both normal and PA adrenal tissue. PA-causing aldosterone-producing adenomas (APAs) harbor mutations in genes encoding ion channels/pumps that alter intracellular calcium homeostasis and cause renin-independent aldosterone production through increased CYP11B2 expression. Herein, we hypothesized that APCCs have APA-related aldosterone-stimulating somatic gene mutations. APCCs were studied in 42 normal adrenals from kidney donors. To clarify APCC molecular characteristics, we used microarrays to compare the APCC transcriptome with conventional adrenocortical zones [zona glomerulosa (ZG), zona fasciculata, and zona reticularis]. The APCC transcriptome was most similar to ZG but with an enhanced capacity to produce aldosterone. To determine if APCCs harbored APA-related mutations, we performed targeted next generation sequencing of DNA from 23 APCCs and adjacent normal adrenal tissue isolated from both formalin-fixed, paraffin-embedded, and frozen tissues. Known aldosterone driver mutations were identified in 8 of 23 (35%) APCCs, including mutations in calcium channel, voltage-dependent, L-type, α1D-subunit (CACNA1D; 6 of 23 APCCs) and ATPase, Na(+)/(K+) transporting, α1-polypeptide (ATP1A1; 2 of 23 APCCs), which were not observed in the adjacent normal adrenal tissue. Overall, we show three major findings: (i) APCCs are common in normal adrenals, (ii) APCCs harbor somatic mutations known to cause excess aldosterone production, and (iii) the mutation spectrum of aldosterone-driving mutations is different in APCCs from that seen in APA. These results provide molecular support for APCC as a precursor of PA.
Collapse
|
196
|
Konosu-Fukaya S, Nakamura Y, Satoh F, Felizola SJA, Maekawa T, Ono Y, Morimoto R, Ise K, Takeda KI, Katsu K, Fujishima F, Kasajima A, Watanabe M, Arai Y, Gomez-Sanchez EP, Gomez-Sanchez CE, Doi M, Okamura H, Sasano H. 3β-Hydroxysteroid dehydrogenase isoforms in human aldosterone-producing adenoma. Mol Cell Endocrinol 2015; 408:205-12. [PMID: 25458695 PMCID: PMC4821076 DOI: 10.1016/j.mce.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/29/2014] [Accepted: 10/12/2014] [Indexed: 11/17/2022]
Abstract
It has become important to evaluate the possible involvement of 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) and 2 (HSD3B2) isoforms in aldosterone-producing adenoma (APA). In this study, we studied 67 and 100 APA cases using real-time quantitative PCR (qPCR) and immunohistochemistry, respectively. Results of qPCR analysis demonstrated that HSD3B2 mRNA was significantly more abundant than HSD3B1 mRNA (P < 0.0001), but only HSD3B1 mRNA significantly correlated with CYP11B2 (aldosterone synthase) mRNA (P <0.0001) and plasma aldosterone concentration (PAC) of the patients (P <0.0001). Results of immunohistochemistry subsequently revealed that HSD3B2 immunoreactivity was detected in the great majority of APA but a significant correlation was also detected between HSD3B1 and CYP11B2 (P <0.0001). In KCNJ5 mutated APA, CYP11B2 mRNA (P <0.0001) and HSD3B1 mRNA (P = 0.011) were significantly higher than those of wild type APA. These results suggest that HSD3B1 is involved in aldosterone production, despite its lower levels of expression compared with HSD3B2, and also possibly associated with KCNJ5 mutation in APA.
Collapse
Affiliation(s)
- Sachiko Konosu-Fukaya
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Nakamura
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Saulo J A Felizola
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Maekawa
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikiyo Ono
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Ryo Morimoto
- Division of Nephrology, Endocrinology and Vascular Medicine, Department of Medicine, Tohoku University Hospital, Sendai, Japan
| | - Kazue Ise
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Koshin Katsu
- Tohoku University School of Medicine, Sendai, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsuko Kasajima
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichi Arai
- Department of Urology, Tohoku University School of Medicine, Sendai, Japan
| | - Elise P Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA; Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS, USA; Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Masao Doi
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Department of Systems Biology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
197
|
Abstract
The human adult adrenal cortex is composed of the zona glomerulosa (zG), zona fasciculata (zF), and zona reticularis (zR), which are responsible for production of mineralocorticoids, glucocorticoids, and adrenal androgens, respectively. The final completion of cortical zonation in humans does not occur until puberty with the establishment of the zR and its production of adrenal androgens; a process called adrenarche. The maintenance of the adrenal cortex involves the centripetal displacement and differentiation of peripheral Sonic hedgehog-positive progenitors cells into zG cells that later transition to zF cells and subsequently zR cells.
Collapse
Affiliation(s)
- Yewei Xing
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - Antonio M Lerario
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA
| | - William Rainey
- Internal Medicine, Medical School, University of Michigan, 109 Zina Pitcher Place, 1860 BSRB, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, 2560D MSRB II, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5622, USA
| | - Gary D Hammer
- Endocrine Oncology Program, Center for Organogenesis, University of Michigan, 109 Zina Pitcher Place, 1528 BSRB, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
198
|
Shaikh LH, Zhou J, Teo AED, Garg S, Neogi SG, Figg N, Yeo GS, Yu H, Maguire JJ, Zhao W, Bennett MR, Azizan EAB, Davenport AP, McKenzie G, Brown MJ. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal. J Clin Endocrinol Metab 2015; 100:E836-44. [PMID: 25915569 PMCID: PMC4454794 DOI: 10.1210/jc.2015-1734] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
CONTEXT Aldosterone synthesis and cellularity in the human adrenal zona glomerulosa (ZG) is sparse and patchy, presumably due to salt excess. The frequency of somatic mutations causing aldosterone-producing adenomas (APAs) may be a consequence of protection from cell loss by constitutive aldosterone production. OBJECTIVE The objective of the study was to delineate a process in human ZG, which may regulate both aldosterone production and cell turnover. DESIGN This study included a comparison of 20 pairs of ZG and zona fasciculata transcriptomes from adrenals adjacent to an APA (n = 13) or a pheochromocytoma (n = 7). INTERVENTIONS Interventions included an overexpression of the top ZG gene (LGR5) or stimulation by its ligand (R-spondin-3). MAIN OUTCOME MEASURES A transcriptome profile of ZG and zona fasciculata and aldosterone production, cell kinetic measurements, and Wnt signaling activity of LGR5 transfected or R-spondin-3-stimulated cells were measured. RESULTS LGR5 was the top gene up-regulated in ZG (25-fold). The gene for its cognate ligand R-spondin-3, RSPO3, was 5-fold up-regulated. In total, 18 genes associated with the Wnt pathway were greater than 2-fold up-regulated. ZG selectivity of LGR5, and its absence in most APAs, were confirmed by quantitative PCR and immunohistochemistry. Both R-spondin-3 stimulation and LGR5 transfection of human adrenal cells suppressed aldosterone production. There was reduced proliferation and increased apoptosis of transfected cells, and the noncanonical activator protein-1/Jun pathway was stimulated more than the canonical Wnt pathway (3-fold vs 1.3-fold). ZG of adrenal sections stained positive for apoptosis markers. CONCLUSION LGR5 is the most selectively expressed gene in human ZG and reduces aldosterone production and cell number. Such conditions may favor cells whose somatic mutation reverses aldosterone inhibition and cell loss.
Collapse
Affiliation(s)
- Lalarukh Haris Shaikh
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Junhua Zhou
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Ada E D Teo
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Sumedha Garg
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Sudeshna Guha Neogi
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Nichola Figg
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Giles S Yeo
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Haixiang Yu
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Janet J Maguire
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Wanfeng Zhao
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Martin R Bennett
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Elena A B Azizan
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Anthony P Davenport
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Grahame McKenzie
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| | - Morris J Brown
- Clinical Pharmacology Unit (L.H.S., J.Z., A.E.D.T., S.G., J.J.M., E.A.B.A., A.P.D., M.J.B.) and Cardiovascular Division (N.F., H.Y., M.R.B.), Department of Medicine, University of Cambridge, Cambridge National Institute for Health Research (S.G.N.), Biomedical Research Centre, Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories (G.S.Y.), Institute of Metabolic Science, Addenbrooke's Hospital, and Human Research Tissue Bank (W.Z.), Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdom; Department of Medicine (E.A.B.A.), Faculty of Medicine, The National University of Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia; and Medical Research Council Cancer Unit (G.M.), University of Cambridge, Cambridge CB2 0XZ, United Kingdom
| |
Collapse
|
199
|
Satoh F, Morimoto R, Ono Y, Iwakura Y, Omata K, Kudo M, Takase K, Seiji K, Sasamoto H, Honma S, Okuyama M, Yamashita K, Gomez-Sanchez CE, Rainey WE, Arai Y, Sasano H, Nakamura Y, Ito S. Measurement of peripheral plasma 18-oxocortisol can discriminate unilateral adenoma from bilateral diseases in patients with primary aldosteronism. Hypertension 2015; 65:1096-102. [PMID: 25776074 PMCID: PMC4642692 DOI: 10.1161/hypertensionaha.114.04453] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
Abstract
Adrenal venous sampling is currently the only reliable method to distinguish unilateral from bilateral diseases in primary aldosteronism. In this study, we attempted to determine whether peripheral plasma levels of 18-oxocortisol (18oxoF) and 18-hydroxycortisol could contribute to the clinical differentiation between aldosteronoma and bilateral hyperaldosteronism in 234 patients with primary aldosteronism, including computed tomography (CT)-detectable aldosteronoma (n=113) and bilateral hyperaldosteronism (n=121), all of whom underwent CT and adrenal venous sampling. All aldosteronomas were surgically resected and the accuracy of diagnosis was clinically and histopathologically confirmed. 18oxoF and 18-hydroxycortisol were measured using liquid chromatography tandem mass spectrometry. Receiver operating characteristic analysis of 18oxoF discrimination of adenoma from hyperplasia demonstrated sensitivity/specificity of 0.83/0.99 at a cut-off value of 4.7 ng/dL, compared with that based on 18-hydroxycortisol (sensitivity/specificity: 0.62/0.96). 18oxoF levels above 6.1 ng/dL or of aldosterone >32.7 ng/dL were found in 95 of 113 patients with aldosteronoma (84%) but in none of 121 bilateral hyperaldosteronism, 30 of whom harbored CT-detectable unilateral nonfunctioning nodules in their adrenals. In addition, 18oxoF levels below 1.2 ng/dL, the lowest in aldosteronoma, were found 52 of the 121 (43%) patients with bilateral hyperaldosteronism. Further analysis of 27 patients with CT-undetectable micro aldosteronomas revealed that 8 of these 27 patients had CT-detectable contralateral adrenal nodules, the highest values of 18oxoF and aldosterone were 4.8 and 24.5 ng/dL, respectively, both below their cut-off levels indicated above. The peripheral plasma 18oxoF concentrations served not only to differentiate aldosteronoma but also could serve to avoid unnecessary surgery for nonfunctioning adrenocortical nodules concurrent with hyperplasia or microadenoma.
Collapse
Affiliation(s)
- Fumitoshi Satoh
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.).
| | - Ryo Morimoto
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Yoshikiyo Ono
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Yoshitsugu Iwakura
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Kei Omata
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Masataka Kudo
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Kei Takase
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Kazumasa Seiji
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Hidehiko Sasamoto
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Seijiro Honma
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Mitsunobu Okuyama
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Kouwa Yamashita
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Celso E Gomez-Sanchez
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - William E Rainey
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Yoichi Arai
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Hironobu Sasano
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Yasuhiro Nakamura
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| | - Sadayoshi Ito
- From the Division of Nephrology, Endocrinology, and Vascular Medicine, Departments of Medicine (F.S., R.M., Y.O., Y.I., K.O., M.K., S.I.), Radiology (K.T., K.S.), Urology (Y.A.), and Pathology (H.S., Y.N.), Tohoku University Hospital, Sendai, Japan; Aska Pharma Medical Co Ltd, Kawasaki, Japan (H.S., S.H., M.O.); Division of Faculty of Pharmaceutical Science, Tohoku Pharmaceutical University, Sendai, Japan (K.Y.); Division of Endocrinology, University of Mississippi Medical Center, Jackson (C.E.G.-S.); and Molecular and Integrative Physiology, University of Michigan, Ann Arbor (W.E.R.)
| |
Collapse
|
200
|
Nanba K, Chen A, Nishimoto K, Rainey WE. Role of Ca(2+)/calmodulin-dependent protein kinase kinase in adrenal aldosterone production. Endocrinology 2015; 156:1750-6. [PMID: 25679868 PMCID: PMC4398758 DOI: 10.1210/en.2014-1782] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is considerable evidence supporting the role of calcium signaling in adrenal regulation of both aldosterone synthase (CYP11B2) and aldosterone production. However, there have been no studies that investigated the role played by the Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) in adrenal cells. In this study we investigated the role of CaMKK in adrenal cell aldosterone production. To determine the role of CaMKK, we used a selective CaMKK inhibitor (STO-609) in the HAC15 human adrenal cell line. Cells were treated with angiotensin II (Ang II) or K+ and evaluated for the expression of steroidogenic acute regulatory protein and CYP11B2 (mRNA/protein) as well as aldosterone production. We also transduced HAC15 cells with lentiviral short hairpin RNAs of CaMKK1 and CaMKK2 to determine which CaMKK plays a more important role in adrenal cell regulation of the calcium signaling cascade. The CaMKK inhibitor, STO-609, decreased aldosterone production in cells treated with Ang II or K+ in a dose-dependent manner. STO-609 (20 μM) also inhibited steroidogenic acute regulatory protein and CYP11B2 mRNA/protein induction. CaMKK2 knockdown cells showed significant reduction of CYP11B2 mRNA induction and aldosterone production in cells treated with Ang II, although there was no obvious effect in CaMKK1 knockdown cells. In immunohistochemical analysis, CaMKK2 protein was highly expressed in human adrenal zona glomerulosa with lower expression in the zona fasciculata. In conclusion, the present study suggests that CaMKK2 plays a pivotal role in the calcium signaling cascade regulating adrenal aldosterone production.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | | | | | | |
Collapse
|