151
|
Wahlich J, Desai A, Greco F, Hill K, Jones AT, Mrsny RJ, Pasut G, Perrie Y, Seib FP, Seymour LW, Uchegbu IF. Nanomedicines for the Delivery of Biologics. Pharmaceutics 2019; 11:E210. [PMID: 31058802 PMCID: PMC6572454 DOI: 10.3390/pharmaceutics11050210] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 01/24/2023] Open
Abstract
A special symposium of the Academy of Pharmaceutical Sciences Nanomedicines Focus Group reviewed the current status of the use of nanomedicines for the delivery of biologics drugs. This meeting was particularly timely with the recent approval of the first siRNA-containing product Onpattro™ (patisiran), which is formulated as a lipid nanoparticle for intravenous infusion, and the increasing interest in the use of nanomedicines for the oral delivery of biologics. The challenges in delivering such molecules were discussed with specific emphasis on the delivery both across and into cells. The latest developments in Molecular Envelope Technology® (Nanomerics Ltd, London, UK), liposomal drug delivery (both from an academic and industrial perspective), opportunities offered by the endocytic pathway, delivery using genetically engineered viral vectors (PsiOxus Technologies Ltd, Abingdon, UK), Transint™ technology (Applied Molecular Transport Inc., South San Francisco, CA, USA), which has the potential to deliver a wide range of macromolecules, and AstraZeneca's initiatives in mRNA delivery were covered with a focus on their uses in difficult to treat diseases, including cancers. Preclinical data were presented for each of the technologies and where sufficiently advanced, plans for clinical studies as well as early clinical data. The meeting covered the work in progress in this exciting area and highlighted some key technologies to look out for in the future.
Collapse
Affiliation(s)
- John Wahlich
- The Academy of Pharmaceutical Sciences, 4 Heydon Road, Great Chishill, Royston SG8 8SR, UK.
| | - Arpan Desai
- Advanced Drug Delivery, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Granta Park, Cambridge CB21 6GH, UK.
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AP, UK.
| | - Kathryn Hill
- Global Product Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, UK.
| | - Arwyn T Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK.
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| | - Gianfranco Pasut
- Pharmaceutical and Pharmacological Sciences Department, University of Padova, F. Marzolo 5, 35131 Padova, Italy.
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | - Leonard W Seymour
- Department of Oncology, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
152
|
Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. Biochimie 2019; 160:61-75. [DOI: 10.1016/j.biochi.2019.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
|
153
|
Seo YE, Suh HW, Bahal R, Josowitz A, Zhang J, Song E, Cui J, Noorbakhsh S, Jackson C, Bu T, Piotrowski-Daspit A, Bindra R, Saltzman WM. Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials 2019; 201:87-98. [PMID: 30802686 PMCID: PMC6451656 DOI: 10.1016/j.biomaterials.2019.02.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/27/2023]
Abstract
Glioblastoma (GBM) is the most common and deadly form of malignant brain tumor in the United States, and current therapies fail to provide significant improvement in survival. Local delivery of nanoparticles is a promising therapeutic strategy that bypasses the blood-brain barrier, minimizes systemic toxicity, and enhances intracranial drug distribution and retention. Here, we developed nanoparticles loaded with agents that inhibit miR-21, an oncogenic microRNA (miRNA) that is strongly overexpressed in GBM compared to normal brain tissue. We synthesized, engineered, and characterized two different delivery systems. One was designed around an anti-miR-21 composed of RNA and employed a cationic poly(amine-co-ester) (PACE). The other was designed around an anti-miR-21 composed of peptide nucleic acid (PNA) and employed a block copolymer of poly(lactic acid) and hyperbranched polyglycerol (PLA-HPG). We show that both nanoparticle products facilitate efficient intracellular delivery and miR-21 suppression that leads to PTEN upregulation and apoptosis of human GBM cells. Further, when administered by convection-enhanced delivery (CED) to animals with intracranial gliomas, they both induced significant miR-21 knockdown and provided chemosensitization, resulting in improved survival when combined with chemotherapy. The challenges involved in optimizing the two delivery systems differed, and despite offering distinct advantages and limitations, results showed significant therapeutic efficacy with both methods of treatment. This study demonstrates the feasibility and promise of local administration of miR-21 inhibiting nanoparticles as an adjuvant therapy for GBM.
Collapse
Affiliation(s)
- Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Alexander Josowitz
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Junwei Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Jiajia Cui
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | - Seth Noorbakhsh
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Christopher Jackson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - Tom Bu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States
| | | | - Ranjit Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06520, United States
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, United States.
| |
Collapse
|
154
|
Slooter MD, Janssen A, Bemelman WA, Tanis PJ, Hompes R. Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters: a systematic review. Tech Coloproctol 2019; 23:305-313. [PMID: 31030340 PMCID: PMC6536635 DOI: 10.1007/s10151-019-01973-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
Background Iatrogenic ureteral injury (IUI) following abdominal surgery has a relatively low incidence, but is associated with high risks of morbidity and mortality. Conventional assessment of IUI includes visual inspection and palpation. This is especially challenging during laparoscopic procedures and has translated into an increased risk of IUI. The use of near-infrared fluorescent (NIRF) imaging is currently being considered as a novel method to identify the ureters intraoperatively. The aim of this review is to describe the currently available and experimental dyes for ureter visualization and to evaluate their feasibility of using them and their effectiveness. Methods This article adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) standard for systematic reviews. A systematic literature search was performed in the PubMed database. All included articles were screened for eligibility by two authors. Three clinical trial databases were consulted to identify ongoing or completed unpublished trials. Risk of bias was assessed for all articles. Results The search yielded 20 articles on ureter visualization. Two clinically available dyes, indocyanine green (ICG) and methylene blue (MB), and eight experimental dyes were described and assessed for their feasibility to identify the ureter. Two ongoing clinical trials on CW800-BK and one trial on ZW800-1 for ureter visualization were identified. Conclusions Currently available dyes, ICG and MB, are safe, but suboptimal for ureter visualization based on the route of administration and optical properties, respectively. Currently, MB has potential to be routinely used for ureter visualization in most patients, but (cRGD-)ZW800-1 holds potential for this role in the future, owing to its exclusive renal clearance and the near absence of background. To assess the benefit of NIRF imaging for reducing the incidence of IUI, larger patient cohorts need to be examined. Electronic supplementary material The online version of this article (10.1007/s10151-019-01973-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M D Slooter
- Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Postbox 22660, 1100 DD, Amsterdam, The Netherlands
| | - A Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Postbox 22660, 1100 DD, Amsterdam, The Netherlands
| | - W A Bemelman
- Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Postbox 22660, 1100 DD, Amsterdam, The Netherlands
| | - P J Tanis
- Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Postbox 22660, 1100 DD, Amsterdam, The Netherlands
| | - R Hompes
- Department of Surgery, Amsterdam UMC, University of Amsterdam, G4, Postbox 22660, 1100 DD, Amsterdam, The Netherlands.
| |
Collapse
|
155
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
156
|
Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev 2019; 144:90-111. [PMID: 31419450 PMCID: PMC6986687 DOI: 10.1016/j.addr.2019.08.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
Abstract
The complexity of nanoscale interactions between biomaterials and cells has limited the realization of the ultimate vision of nanotechnology in diagnostics and therapeutics. As such, significant effort has been devoted to advancing our understanding of the biophysical interactions of the myriad nanoparticles. Endocytosis of nanomedicine has drawn tremendous interest in the last decade. Here, we highlight the ever-present barriers to efficient intracellular delivery of nanoparticles as well as the current advances and strategies deployed to breach these barriers. We also introduce new barriers that have been largely overlooked such as the glycocalyx and macromolecular crowding. Additionally, we draw attention to the potential complications arising from the disruption of the newly discovered functions of the lysosomes. Novel strategies of exploiting the inherent intracellular defects in disease states to enhance delivery and the use of exosomes for bioanalytics and drug delivery are explored. Furthermore, we discuss the advances in imaging techniques like electron microscopy, super resolution fluorescence microscopy, and single particle tracking which have been instrumental in our growing understanding of intracellular pathways and nanoparticle trafficking. Finally, we advocate for the push towards more intravital analysis of nanoparticle transport phenomena using the multitude of techniques available to us. Unraveling the underlying mechanisms governing the cellular barriers to delivery and biological interactions of nanoparticles will guide the innovations capable of breaching these barriers.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Marco Herrera
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Anindit Mukherjee
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA
| | - Alexander V Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA; Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA; Department of Biomedical Engineering, Oregon Health and Science University, Robertson Life Science Building, 2730 SW Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
157
|
|
158
|
Light-Triggered Cellular Delivery of Oligonucleotides. Pharmaceutics 2019; 11:pharmaceutics11020090. [PMID: 30795565 PMCID: PMC6410276 DOI: 10.3390/pharmaceutics11020090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/09/2023] Open
Abstract
The major challenge in the therapeutic applicability of oligonucleotide-based drugs is the development of efficient and safe delivery systems. The carriers should be non-toxic and stable in vivo, but interact with the target cells and release the loaded oligonucleotides intracellularly. We approached this challenge by developing a light-triggered liposomal delivery system for oligonucleotides based on a non-cationic and thermosensitive liposome with indocyanine green (ICG) as photosensitizer. The liposomes had efficient release properties, as 90% of the encapsulated oligonucleotides were released after 1-minute light exposure. Cell studies using an enhanced green fluorescent protein (EGFP)-based splicing assay with HeLa cells showed light-activated transfection with up to 70%–80% efficacy. Moreover, free ICG and oligonucleotides in solution transfected cells upon light induction with similar efficacy as the liposomal system. The light-triggered delivery induced moderate cytotoxicity (25%–35% reduction in cell viability) 1–2 days after transfection, but the cell growth returned to control levels in 4 days. In conclusion, the ICG-based light-triggered delivery is a promising method for oligonucleotides, and it can be used as a platform for further optimization and development.
Collapse
|
159
|
Tran TT, Yu H, Vidaillac C, Lim AYH, Abisheganaden JA, Chotirmall SH, Hadinoto K. An evaluation of inhaled antibiotic liposome versus antibiotic nanoplex in controlling infection in bronchiectasis. Int J Pharm 2019; 559:382-392. [PMID: 30731256 DOI: 10.1016/j.ijpharm.2019.01.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 01/26/2019] [Indexed: 01/28/2023]
Abstract
Inhaled antibiotic nanoparticles have emerged as an effective strategy to control infection in bronchiectasis lung owed to their mucus-penetrating ability. Using ciprofloxacin (CIP) as the model antibiotic, we evaluated dry powder inhaler (DPI) formulations of two classes of antibiotic nanoparticles (i.e. liposome and nanoplex) in their (1) physical characteristics (i.e. size, zeta potential, CIP payload, preparation efficiency), (2) dissolution in artificial sputum medium, (3) ex vivo mucus permeability, (4) antimicrobial activity against Pseudomonas aeruginosa in mucus, (5) cytotoxicity towards human lung epithelium cells, and (6) in vitro aerosolization efficiency. The results showed that the CIP nanoplex exhibited fast dissolution with CIP supersaturation generation, in contrast to the slower release of the liposome (80 versus 30% dissolution after 1 h). Both nanoparticles readily overcame the mucus barrier attributed to their nanosize and mucus-inert surface (50% permeation after 1 h), leading to their similarly high antipseudomonal activity. The CIP liposome, however, possessed much lower CIP payload than the nanoplex (84% versus 3.5%), resulting in high lipid contents in its DPI formulation that led to higher cytotoxicity and lower aerosolization efficiency. The CIP nanoplex thus represented a superior formulation owed to its simpler preparation, higher CIP payload hence lower dosage, better aerosolization, and lower cytotoxicity.
Collapse
Affiliation(s)
- The-Thien Tran
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hong Yu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Celine Vidaillac
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Albert Y H Lim
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - John A Abisheganaden
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
160
|
Beals N, Kasibhatla N, Basu S. Efficient Delivery of Plasmid DNA Using Incorporated Nucleotides for Precise Conjugation of Targeted Nanoparticles. ACS APPLIED BIO MATERIALS 2019; 2:717-727. [DOI: 10.1021/acsabm.8b00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nathan Beals
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nithya Kasibhatla
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
161
|
Chan LY, Khung YL, Lin CY. Preparation of Messenger RNA Nanomicelles via Non-Cytotoxic PEG-Polyamine Nanocomplex for Intracerebroventicular Delivery: A Proof-of-Concept Study in Mouse Models. NANOMATERIALS 2019; 9:nano9010067. [PMID: 30621291 PMCID: PMC6359661 DOI: 10.3390/nano9010067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
The specific delivery of messenger RNA (mRNA) is an excellent alternative to plasmid DNA, due to the latter’s potential risk for random integration into the host genome. In this study, we propose the use of specially tailored polyplex nanomicelles for the intravenous delivery of mRNA into the brain of mice. In brief, along the backbone of a polyaspartamide polymer that is terminated with a 42k Polyethylene glycol chain (PEG), aminoethylene-repeating groups (two, three, and four units, respectively) were conjugated to side-chains to promote electrostatic interactions with mRNA. This structural configuration would ultimately condense into a polyplex nanomicelle ranging between 24 and 34 nm, as was confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) while the chemistry of the synthesis was validated through NMR analysis. Subsequently, we hypothesized an important correlation pertaining to the role of hydrogen bonding between the interaction of polyamine and mRNA in due course. As a proof of concept, we encapsulated the luciferase (Luc2) mRNA as a reporter gene through in vitro transcription (IVT) and subsequently infused the polyplex nanomicelles into mouse brains via an intracerebroventricular (ICV) injection to bypass the blood–brain barriers (BBB). Data revealed that PEGylated polyplex nanomicelles possessing four repeating units of aminoethylene groups had exhibited the best Luc2 mRNA delivery efficiency with no significant immune response registered.
Collapse
Affiliation(s)
- Long Yi Chan
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Yit Lung Khung
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| | - Chin-Yu Lin
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
- Tsuzuki Institute for Traditional Medicine, Collage of Pharmacy, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
162
|
Choi WI, Sahu A, Wurm FR, Jo SM. Magnetoliposomes with size controllable insertion of magnetic nanoparticles for efficient targeting of cancer cells. RSC Adv 2019; 9:15053-15060. [PMID: 35516322 PMCID: PMC9064235 DOI: 10.1039/c9ra02529d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023] Open
Abstract
Liposomes with embedded magnetic nanoparticles (magnetoliposomes; MLs) are promising nano-platforms for various biomedical applications. The magnetic behavior of MLs depends on the size of embedded magnetic nanoparticles (MNPs); in general, larger MNPs are more advantageous (e.g. increased magnetic signals). However, the insertion of large MNPs into liposome bilayers is constrained by the thickness of the membrane (∼3.4 nm); thus, the incorporation of larger magnetic nanoparticles (>3.4 nm) into liposomes is a major challenge. We developed a solvent-guided approach for the simple and efficient insertion of large MNPs (6 nm or 15 nm) into the liposomal bilayer. MLs with 6 nm MNPs were used for the magnetic field-guided separation of cancer cells by targeting to human epidermal receptor 2 and folate receptor. We also evaluated the nuclear delivery of oligonucleotides by MLs with a cationic lipid formula. The MLs are expected to be versatile nano-platforms for biomedical applications (e.g. disease diagnosis, therapeutics and cell tracking). Cationic magnetoliposomes enable to achieve efficient capture of cells and intracellular delivery of oligonucleotides into nucleus through cancer cell-specific targeting.![]()
Collapse
Affiliation(s)
- Won Il Choi
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Abhishek Sahu
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology
- Gwangju 61005
- Republic of Korea
| | | | - Seong-Min Jo
- Max Planck Institute for Polymer Research
- D-55128 Mainz
- Germany
| |
Collapse
|
163
|
Yin Y, Lee MS, Lee JE, Lim SY, Kim ES, Jeong J, Kim D, Kim J, Lee DS, Jeong JH. Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomater Sci 2019; 7:3297-3306. [DOI: 10.1039/c9bm00369j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG-dex-dopa nanohydrogel containing a CaP/siRNA core could achieve extended circulation with reduced RES accumulation, resulting in increased tumor accumulation.
Collapse
|
164
|
Lin Z, Bao M, Yu Z, Xue L, Ju C, Zhang C. The development of tertiary amine cationic lipids for safe and efficient siRNA delivery. Biomater Sci 2019; 7:2777-2792. [DOI: 10.1039/c9bm00494g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tertiary amine-derived cationic lipid serves as the primary lipid of cationic liposomes, which can balance the effectiveness and safety of siRNA vectors.
Collapse
Affiliation(s)
- Ziming Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Moxyel Bao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Zexuan Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
165
|
Hossen S, Hossain MK, Basher M, Mia M, Rahman M, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J Adv Res 2019; 15:1-18. [PMID: 30581608 PMCID: PMC6300464 DOI: 10.1016/j.jare.2018.06.005] [Citation(s) in RCA: 521] [Impact Index Per Article: 104.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Nonspecific distribution and uncontrollable release of drugs in conventional drug delivery systems (CDDSs) have led to the development of smart nanocarrier-based drug delivery systems, which are also known as Smart Drug Delivery Systems (SDDSs). SDDSs can deliver drugs to the target sites with reduced dosage frequency and in a spatially controlled manner to mitigate the side effects experienced in CDDSs. Chemotherapy is widely used to treat cancer, which is the second leading cause of death worldwide. Site-specific drug delivery led to a keen interest in the SDDSs as an alternative to chemotherapy. Smart nanocarriers, nanoparticles used to carry drugs, are at the focus of SDDSs. A smart drug delivery system consists of smart nanocarriers, targeting mechanisms, and stimulus techniques. This review highlights the recent development of SDDSs for a number of smart nanocarriers, including liposomes, micelles, dendrimers, meso-porous silica nanoparticles, gold nanoparticles, super paramagnetic iron-oxide nanoparticles, carbon nanotubes, and quantum dots. The nanocarriers are described in terms of their structures, classification, synthesis and degree of smartness. Even though SDDSs feature a number of advantages over chemotherapy, there are major concerns about the toxicity of smart nanocarriers; therefore, a substantial study on the toxicity and biocompatibility of the nanocarriers has been reported. Finally, the challenges and future research scope in the field of SDDSs are also presented. It is expected that this review will be widely useful for those who have been seeking new research directions in this field and for those who are about to start their studies in smart nanocarrier-based drug delivery.
Collapse
Affiliation(s)
- Sarwar Hossen
- Department of Physics, Khulna Govt. Mahila College, National University, Gazipur 1704, Bangladesh
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.K. Basher
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.N.H. Mia
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M.T. Rahman
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - M. Jalal Uddin
- Department of Radio Sciences and Engineering, KwangWoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
166
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
167
|
Safety of novel liposomal drugs for cancer treatment: Advances and prospects. Chem Biol Interact 2018; 295:13-19. [DOI: 10.1016/j.cbi.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/02/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
|
168
|
Liu Q, Chen X, Jia J, Lu T, Yang T, Wang L. Potential Hepatitis B Vaccine Formulation Prepared by Uniform-Sized Lipid Hybrid PLA Microparticles with Adsorbed Hepatitis B Surface Antigen. Mol Pharm 2018; 15:5227-5235. [PMID: 30350642 DOI: 10.1021/acs.molpharmaceut.8b00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For the purpose of strengthening the immunogenicity of the hepatitis B vaccine, which contains hepatitis B surface antigen (HBsAg), the development of biodegradable poly(lactic acid) (PLA) microparticles (MPs) modified with the cationic surfactant didodecyldimethylammonium bromide (DDAB) was attempted. DDAB-PLA MPs with an uniform size of about 1 μm were prepared in a simple and mild way. DDAB-PLA MPs with increased surface charge enhanced antigen adsorption capacity compared to plain PLA MPs. After immunization, DDAB-PLA MPs induced the gene expression of inflammatory cytokines and chemokines, which facilitated the following immune responses. DDAB-PLA MPs augmented the expression of co-stimulatory molecules along with the activation of bone-marrow-derived dendritic cells (BMDCs). DDAB-PLA MP-based vaccine formulations efficiently induced antibody production more than the aluminum-based vaccine and plain PLA MP-based formulation in vivo. Moreover, DDAB-PLA MPs were more likely to generate the polarization of the Th1 response indicating the cytotoxic ability against infectious pathogens. In conclusion, DDAB-PLA MPs could be a potent vaccine formulation to prime robust cellular and humoral immune responses.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Xiaoming Chen
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Jilei Jia
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Ting Lu
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China.,University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Tingyuan Yang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| | - Lianyan Wang
- State Key Laboratory of Biochemical Engineering , Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190 , P.R. China
| |
Collapse
|
169
|
Sybachin AV, Khlynina PO, Spiridonov VV, Panova IG, Melik-Nubarov NS, Yaroslavov AA. Amino-terminated polylactide micelles with an external poly(ethylene oxide) corona as carriers of drug-loaded anionic liposomes. POLYM INT 2018. [DOI: 10.1002/pi.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Andrey V Sybachin
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | - Polina O Khlynina
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | | | - Irina G Panova
- Chemistry Department of Lomonosov; Moscow State University; Moscow Russia
| | | | | |
Collapse
|
170
|
Dos Santos Rodrigues B, Oue H, Banerjee A, Kanekiyo T, Singh J. Dual functionalized liposome-mediated gene delivery across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. J Control Release 2018; 286:264-278. [PMID: 30071253 PMCID: PMC6138570 DOI: 10.1016/j.jconrel.2018.07.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022]
Abstract
Gene therapy has become a promising approach for neurodegenerative disease treatment, however there is an urgent need to develop an efficient gene carrier to transport gene across the blood brain barrier (BBB). In this study, we strategically designed dual functionalized liposomes for efficient neuronal transfection by combining transferrin (Tf) receptor targeting and enhanced cell penetration utilizing penetratin (Pen). A triple cell co-culture model of BBB confirmed the ability of the liposomes to cross the barrier layer and transfect primary neuronal cells. In vivo quantification of PenTf-liposomes demonstrated expressive accumulation in the brain (12%), without any detectable cellular damage or morphological change. The efficacy of these nanoparticles containing plasmid β-galactosidase in modulating transfection was assessed by β-galactosidase expression in vivo. As a consequence of accumulation in the brain, PenTf-liposomes significantly induced gene expression in mice. Immunofluorescence studies of brain sections of mice after tail vein injection of liposomes encapsulating pDNA encoding GFP (pGFP) illustrate the superior ability of dual-functionalized liposomes to accumulate in the brain and transfect neurons. Taken together, the multifunctional liposomes provide an excellent gene delivery platform for neurodegenerative diseases.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Hiroshi Oue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Amrita Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA.
| |
Collapse
|
171
|
Mu X, Li J, Yan S, Zhang H, Zhang W, Zhang F, Jiang J. siRNA Delivery with Stem Cell Membrane-Coated Magnetic Nanoparticles for Imaging-Guided Photothermal Therapy and Gene Therapy. ACS Biomater Sci Eng 2018; 4:3895-3905. [PMID: 33429596 DOI: 10.1021/acsbiomaterials.8b00858] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xupeng Mu
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jing Li
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Shaohua Yan
- Department of Biological Engineering, College of Pharmacy, Jilin University, 1163 Xinmin Street, Changchun 130021, P. R. China
| | - Hongmei Zhang
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Wenjing Zhang
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Fuqiang Zhang
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jinlan Jiang
- Department of Central Laboratory, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| |
Collapse
|
172
|
A.V. T, Dinda AK, Koul V. Evaluation of nano hydrogel composite based on gelatin/HA/CS suffused with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:378-386. [DOI: 10.1016/j.msec.2018.03.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/16/2018] [Accepted: 03/30/2018] [Indexed: 11/26/2022]
|
173
|
Kim KR, Röthlisberger P, Kang SJ, Nam K, Lee S, Hollenstein M, Ahn DR. Shaping Rolling Circle Amplification Products into DNA Nanoparticles by Incorporation of Modified Nucleotides and Their Application to In Vitro and In Vivo Delivery of a Photosensitizer. Molecules 2018; 23:molecules23071833. [PMID: 30041480 PMCID: PMC6099487 DOI: 10.3390/molecules23071833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
Rolling circle amplification (RCA) is a robust way to generate DNA constructs, which are promising materials for biomedical applications including drug delivery because of their high biocompatibility. To be employed as a drug delivery platform, however, the DNA materials produced by RCA need to be shaped into nanoparticles that display both high cellular uptake efficiency and nuclease resistance. Here, we showed that the DNA nanoparticles (DNPs) can be prepared with RCA and modified nucleotides that have side-chains appended on the nucleobase are capable of interacting with the DNA strands of the resulting RCA products. The incorporation of the modified nucleotides improved cellular uptake efficiency and nuclease resistance of the DNPs. We also demonstrated that these DNPs could be employed as carriers for the delivery of a photosensitizer into cancer cells to achieve photodynamic therapy upon irradiation at both the in vitro and in vivo levels.
Collapse
Affiliation(s)
- Kyoung-Ran Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Pascal Röthlisberger
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Seong Jae Kang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Kihwan Nam
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Sangyoup Lee
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| | - Marcel Hollenstein
- Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, Institut Pasteur, CNRS UMR3523, 28, rue du Docteur Roux, 75724 Paris CEDEX 15, France.
| | - Dae-Ro Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
- Division of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea.
| |
Collapse
|
174
|
Li Y, Cui XL, Chen QS, Yu J, Zhang H, Gao J, Sun DX, Zhang GQ. Cationic liposomes induce cytotoxicity in HepG2 via regulation of lipid metabolism based on whole-transcriptome sequencing analysis. BMC Pharmacol Toxicol 2018; 19:43. [PMID: 29996945 PMCID: PMC6042442 DOI: 10.1186/s40360-018-0230-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
Backgroud Cationic liposomes (CLs) can be used as non-viral vectors in gene transfer and drug delivery. However, the underlying molecular mechanism of its cytotoxicity has not been well elucidated yet. Methods We herein report a systems biology approach based on whole-transcriptome sequencing coupled with computational method to identify the predominant genes and pathways involved in the cytotoxicity of CLs in HepG2 cell line. Results Firstly, we validated the concentration-dependent cytotoxicity of CLs with an IC50 of 120 μg/ml in HepG2 exposed for 24 h. Subsequently, we used whole-transcriptome sequencing to identify 220 (77 up- and 143 down-regulated) differentially expressed genes (DEGs). Gene ontology (GO) and pathway analysis showed that these DEGs were mainly related to cholesterol, steroid, lipid biosynthetic and metabolic processes. Additionally, “key regulatory” genes were identified using gene act, pathway act and co-expression network analysis, and expression levels of 11 interested altered genes were confirmed by quantitative real time PCR. Interestingly, no cell cycle arrest was observed through flow cytometry. Conclusions These data are expected to provide deep insights into the molecular mechanism of CLs cytotoxicity.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Xiu-Liang Cui
- National Center for Liver Cancer, Shanghai, 201805, China.,The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, China
| | - Qing-Shan Chen
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Jing Yu
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Jie Gao
- Department of Pharmaceutical Sciences, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Du-Xin Sun
- Department of Pharmaceutical Science, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Guo-Qing Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.
| |
Collapse
|
175
|
Apsite G, Timofejeva I, Vezane A, Vigante B, Rucins M, Sobolev A, Plotniece M, Pajuste K, Kozlovska T, Plotniece A. Synthesis and Comparative Evaluation of Novel Cationic Amphiphile C12-Man-Q as an Efficient DNA Delivery Agent In Vitro. Molecules 2018; 23:E1540. [PMID: 29949910 PMCID: PMC6100083 DOI: 10.3390/molecules23071540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/15/2018] [Accepted: 06/21/2018] [Indexed: 02/06/2023] Open
Abstract
New amphiphilic 1,4-DHP derivative C12-Man-Q with remoted cationic moieties at positions 2 and 6 was synthesised to study DNA delivery activity. The results were compared with data obtained for cationic 1,4-DHP derivative D19, which is known to be the most efficient one among the previously tested 1,4-DHP amphiphiles. We analysed the effects of C12-Man-Q concentration, complexation media, and complex/cell contact time on the gene delivery effectiveness and cell viability. Transmission electron microscopy data confirms that lipoplexes formed by the compound C12-Man-Q were quite uniform, vesicular-like structures with sizes of about 50 nm, and lipoplexes produced by compound D19 were of irregular shapes, varied in size in the range of 25⁻80 nm. Additionally, confocal microscopy results revealed that both amphiphiles effectively delivered green fluorescent protein expression plasmid into BHK-21 cells and produced a fluorescent signal with satisfactory efficiency, although compound C12-Man-Q was more cytotoxic to the BHK-21 cells with an increase of concentration. It can be concluded that optimal conditions for C12-Man-Q lipoplexes delivery in BHK-21 cells were the serum free media without 0.15 M NaCl, at an N/P ratio of 0.9. Compound D19 showed higher transfection efficiency to transfect BHK-21 and Cos-7 cell lines, when transfecting active proliferating cells. Although D19 was not able to transfect all studied cell lines we propose that it could be cell type specific. The compound C12-Man-Q showed modest delivery activity in all used cell lines, and higher activity was obtained in the case of H2-35 and B16 cells. The transfection efficiency in cell lines MCF-7, HeLa, and Huh-7 appears to be comparable to the reference compound D19 and minimal in the HepG2 cell line.
Collapse
Affiliation(s)
- Gunita Apsite
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, LV-1067 Riga, Latvia.
| | - Irena Timofejeva
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, LV-1067 Riga, Latvia.
| | - Aleksandra Vezane
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, LV-1067 Riga, Latvia.
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
| | - Martins Rucins
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
| | - Mara Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
- Rīga Stradiņš University, Dzirciema iela 16, LV-1007 Riga, Latvia.
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
| | - Tatjana Kozlovska
- Latvian Biomedical Research and Study Centre, Ratsupites iela 1, LV-1067 Riga, Latvia.
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia.
| |
Collapse
|
176
|
Du G, Leone M, Romeijn S, Kersten G, Jiskoot W, Bouwstra JA. Immunogenicity of diphtheria toxoid and poly(I:C) loaded cationic liposomes after hollow microneedle-mediated intradermal injection in mice. Int J Pharm 2018; 547:250-257. [PMID: 29870743 DOI: 10.1016/j.ijpharm.2018.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to investigate the immunogenicity of cationic liposomes loaded with diphtheria toxoid (DT) and poly(I:C) after hollow microneedle-mediated intradermal vaccination in mice. The following liposomal formulations were studied: DT loaded liposomes, a mixture of free DT and poly(I:C)-loaded liposomes, a mixture of DT-loaded liposomes and free poly(I:C), and liposomal formulations with DT and poly(I:C) either individually or co-encapsulated in the liposomes. Reference groups were DT solution adjuvanted with or without poly(I:C) (DT/poly(I:C)). The liposomal formulations were characterized in terms of particle size, zeta potential, loading and release of DT and poly(I:C). After intradermal injection of BALB/c mice with the formulations through a hollow microneedle, the immunogenicity was assessed by DT-specific ELISAs. All formulations induced similar total IgG and IgG1 titers. However, all the liposomal groups containing both DT and poly(I:C) showed enhanced IgG2a titers compared to DT/poly(I:C) solution, indicating that the immune response was skewed towards a Th1 direction. This enhancement was similar for all liposomal groups that contain both DT and poly(I:C) in the formulations. Our results reveal that a mixture of DT encapsulated liposomes and poly(I:C) encapsulated liposomes have a similar effect on the antibody responses as DT and poly(I:C) co-encapsulated liposomes. These findings may have implications for future design of liposomal vaccine delivery systems.
Collapse
Affiliation(s)
- Guangsheng Du
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Mara Leone
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Stefan Romeijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Gideon Kersten
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands; Department of Analytical Development and Formulation, Intravacc, Bilthoven 3720 AL, The Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands.
| |
Collapse
|
177
|
Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, Becker S, Dehghani Esmatabad F, Eslampanah Seyedi HA, Bardania H, Tayaranian Marvian A, Collingwood JF, Christiansen G, Zweckstetter M, Otzen DE, Morshedi D. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease. NANOSCALE 2018; 10:9174-9185. [PMID: 29725687 DOI: 10.1039/c8nr00632f] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Bioprocess Engineering Research group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Liu L, Liu Y, Xu B, Liu C, Jia Y, Liu T, Fang C, Wang W, Ren J, He Z, Men K, Liang X, Luo M, Shao B, Mao Y, Xiao H, Qian Z, Geng J, Dong B, Mi P, Jiang Y, Wei Y, Wei X. Negative regulation of cationic nanoparticle-induced inflammatory toxicity through the increased production of prostaglandin E2 via mitochondrial DNA-activated Ly6C + monocytes. Theranostics 2018; 8:3138-3152. [PMID: 29896308 PMCID: PMC5996362 DOI: 10.7150/thno.21693] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/13/2018] [Indexed: 02/05/2023] Open
Abstract
Rationale: Cationic nanocarriers present with well-known toxicities, including inflammatory toxicity, which limit their clinical application. How the cationic nanocarrier-induced inflammatory response is negatively regulated is unknown. Herein, we found that following a sublethal dose of cationic nanocarriers, the induced inflammatory response is characterized by early neutrophil infiltration and spontaneous resolution within 1 week. Methods: C57BL/6 mice were intravenously injected with a dosage of 1-100 mg/kg cationic DOTAP liposomes as well as other cationic materials. Cell necrosis was detected by flow cytometry. Release of mitochondrial DNA was quantified by qPCR via Taqman probes. Signal proteins were detected by Western blotting. PGE2 production in the supernatant was quantitated using an enzyme immunoassay (EIA). The infiltrated inflammatory cells were observed in WT mice, Ccr2-/- mice, Sting-/-mice and Tlr9-/-mice. Results: The early stage (24-48 h) inflammatory neutrophil infiltration was followed by an increasing percentage of monocytes; and, compared with WT mice, Ccr2-/- mice presented with more severe pulmonary inflammation. A previously uncharacterized population of regulatory monocytes expressing both inflammatory and immunosuppressive cytokines was identified in this model. The alteration in monocyte phenotype was directly induced by mtDNA release from cationic nanocarrier-induced necrotic cells via a STING- or TLR9-dependent pathway. Neutrophil activation was specifically inhibited by PGE2 from Ly6C+ inflammatory monocytes, and intravenous injections of dual-phenotype monocytes beneficially modified the immune response; this inhibitory effect was abolished after treatment with indomethacin. Moreover, we provide clear evidence that mitochondrial DNA activated Ly6C+ monocytes and increased PGE2 production through TLR9- or STING-mediated MAPK-NF-κB-COX2 pathways. Conclusion: Our findings suggest that Ly6C+ monocytes and mtDNA-induced Ly6C+ monocyte PGE2 production may be part of a feedback mechanism that contributes to the resolution of cationic nanocarrier-induced inflammatory toxicity and may have important implications for understanding nanoparticle biocompatibility and designing better, safer drug delivery systems.
Collapse
|
179
|
Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today 2018; 23:944-959. [PMID: 28919437 PMCID: PMC7108348 DOI: 10.1016/j.drudis.2017.08.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/13/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022]
Abstract
The intracellular delivery of nanomaterials and drugs has been attracting increasing research interest, mainly because of their important effects and functions in several organelles. Targeting specific organelles can help treat or decrease the symptoms of diabetes, cancer, infectious, and autoimmune diseases. Tuning biological and chemical properties enables the creation of functionalized nanomaterials with enhanced intracellular uptake, ability to escape premature lysosome degradation, and to reach a specific target. Here, we provide an update of recent advances in the intracellular delivery mechanisms that could help drugs reach their target more efficiently.
Collapse
Affiliation(s)
- Cláudia Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
180
|
Devulapally R, Lee T, Barghava-Shah A, Sekar TV, Foygel K, Bachawal SV, Willmann JK, Paulmurugan R. Ultrasound-guided delivery of thymidine kinase-nitroreductase dual therapeutic genes by PEGylated-PLGA/PIE nanoparticles for enhanced triple negative breast cancer therapy. Nanomedicine (Lond) 2018; 13:1051-1066. [PMID: 29790803 PMCID: PMC6219432 DOI: 10.2217/nnm-2017-0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
AIM Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype. Since no targeted therapy is available, gene-directed enzyme prodrug therapy (GDEPT) could be an attractive strategy for treating TNBC. MATERIALS & METHODS Polyethylene glycol (PEG)ylated-poly(lactic-co-glycolic acid)/polyethyleneimine nanoparticles (PLGA/PEI NPs) were synthesized and complexed with TK-NTR fusion gene. Ultrasound (US) and microbubble (MB) mediated sonoporation was used for efficient delivery of the TK-NTR-DNA-NP complex to TNBC tumor in vivo for cancer therapy. Therapeutic effect was evaluated by treating TNBC cells in vitro and tumor xenograft in vivo by using prodrugs ganciclovir (GCV) and CB1954. RESULTS TNBC cells treated with GCV/CB1954 prodrugs after transfection of TK-NTR-DNA by PEGylated-PLGA/PEI NP resulted in high apoptotic-index. US-MB image-guided delivery of TK-NTR-DNA-NP complex displayed significant expression level of TK-NTR protein and showed tumor reduction when treated with GCV/CB1954 prodrugs in TNBC xenograft in vivo. CONCLUSION US-MB image-guided delivery of TK-NTR gene by PEGylated-PLGA/PEI NPs could be a potential prodrug therapy for TNBC in the clinic.
Collapse
Affiliation(s)
| | - Taehwa Lee
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | - Thillai V Sekar
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Kira Foygel
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
181
|
Nehate C, Moothedathu Raynold AA, Haridas V, Koul V. Comparative Assessment of Active Targeted Redox Sensitive Polymersomes Based on pPEGMA-S-S-PLA Diblock Copolymer with Marketed Nanoformulation. Biomacromolecules 2018; 19:2549-2566. [DOI: 10.1021/acs.biomac.8b00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Aji Alex Moothedathu Raynold
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V. Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
182
|
Sau S, Tatiparti K, Alsaab HO, Kashaw SK, Iyer AK. A tumor multicomponent targeting chemoimmune drug delivery system for reprograming the tumor microenvironment and personalized cancer therapy. Drug Discov Today 2018; 23:1344-1356. [PMID: 29551455 DOI: 10.1016/j.drudis.2018.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/11/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023]
Abstract
Nanoparticle library engineered with tunable size, shape, and geometry will provide a better idea of targeting multicomponent of tumor microenvironment consisting of epithelial cells, tumor hypoxia, tumor immune cells and angiogenic blood vessels.
Collapse
Affiliation(s)
- Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | - Katyayani Tatiparti
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hashem O Alsaab
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour Central University, Sagar, MP 470003, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
183
|
Rajendrakumar SK, Cherukula K, Park HJ, Uthaman S, Jeong YY, Lee BI, Park IK. Dual-stimuli-responsive albumin-polyplex nanoassembly for spatially controlled gene release in metastatic breast cancer. J Control Release 2018; 276:72-83. [PMID: 29499218 DOI: 10.1016/j.jconrel.2018.02.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/10/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
Stimuli-responsive polymeric nanoparticles are useful for overcoming challenges such as transfection efficiency and the specific and safe delivery of genes to cancer cells. Transfection outcomes can be improved through spatially and temporally controlled gene release. We formulated a nanoassembly comprising a disulfide-crosslinked polyethylenimine (ssPEI) conjugated with a tumor-specific cell-penetrating peptide (DS 4-3) (SPD) polyplex and bovine serum albumin (BSA)-loaded IR780 (BI) nanoparticle, thereby forming a dual-stimulus-triggered, tumor-penetrating and gene-carrying nanoassembly (BI-SPD) via electrostatic complexing. BI-SPD nanoassembly were composed of highly stable nanosized complexes with an average size of 457 ± 27.5 nm, exhibiting an up to two-fold enhanced transfection efficiency with no sign of potential cytotoxicity in breast cancer cells. Moreover, upon laser irradiation, a four-fold increase in transfection efficiency was achieved due to the rapid endosomal escape of polyplexes triggered by the local heat induced by the BI-SPD nanoassembly. Additionally, the high redox environment in tumor cells facilitated the disassembly of the SPD polyplex for efficient plasmid release in the cytosol. The BI-SPD nanoassembly also exhibited high penetration and enhanced photothermally triggered gene expression in the 4T1 spheroid model. This BI-SPD nanoassembly has the potential to enhance the expression of therapeutic genes in tumor models without causing significant toxicity to surrounding healthy tissues, since it has shown higher tumor targeting and accumulation in the 4T1 tumor in mice model.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Hyeong Ju Park
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanam-do 58128, South Korea
| | - Byeong-Il Lee
- Medical Photonics Research Center, Korea Photonics Technology Institute, Gwangju 61007, South Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 501-746, South Korea.
| |
Collapse
|
184
|
Liu L, Yang J, Men K, He Z, Luo M, Qian Z, Wei X, Wei Y. Current Status of Nonviral Vectors for Gene Therapy in China. Hum Gene Ther 2018; 29:110-120. [PMID: 29320893 DOI: 10.1089/hum.2017.226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Li Liu
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingyun Yang
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Men
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyao He
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Min Luo
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyong Qian
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Xiawei Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
185
|
Aliakbari F, Shabani AA, Bardania H, Mohammad-Beigi H, Tayaranian Marvian A, Dehghani Esmatabad F, Vafaei AA, Shojaosadati SA, Saboury AA, Christiansen G, Otzen DE, Morshedi D. Formulation and anti-neurotoxic activity of baicalein-incorporating neutral nanoliposome. Colloids Surf B Biointerfaces 2018; 161:578-587. [DOI: 10.1016/j.colsurfb.2017.11.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
|
186
|
Yu J, Chen J, Zhao H, Gao J, Li Y, Li Y, Xue J, Dahan A, Sun D, Zhang G, Zhang H. Integrative proteomics and metabolomics analysis reveals the toxicity of cationic liposomes to human normal hepatocyte cell line L02. Mol Omics 2018; 14:362-372. [PMID: 30247494 DOI: 10.1039/c8mo00132d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changes in the expression of proteins and profiles of metabolites in L02 cells were investigated after exposure to CLs based on the iTRAQ and UHPLC-Q-TOF/MS, and proteomics data were coupled with metabolomics data to comprehensively assess the potential toxicity mechanisms of CLs.
Collapse
|
187
|
Greyling G, Pasch H. Characterization of charged polymer self-assemblies by multidetector thermal field-flow fractionation in aqueous mobile phases. J Chromatogr A 2017; 1532:175-181. [PMID: 29223324 DOI: 10.1016/j.chroma.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022]
Abstract
Charged block copolymer self-assemblies, such as charged micelles, have attracted much attention as versatile drug delivery systems due to their readily tunable characteristics such as size and surface charge. However, current column-based analytical techniques are not suitable to fractionate and comprehensively characterize charged micelles in terms of size, molar mass, chemical composition and morphology. Multidetector thermal field-flow fractionation (ThFFF) is shown to be a unique characterization platform that can be used to characterize charged micelles in terms of size, molar mass, chemical composition and morphology in aqueous mobile phases with various ionic strengths and pH. This is demonstrated by the characterization of poly(methacrylic acid)-b-poly(methyl methacrylate) self-assemblies in high pH buffers as well as the characterization of cationic poly(2-vinyl pyridine)-b-polystyrene and poly(4-vinyl pyridine)-b-polystyrene self-assemblies in low pH buffers. Moreover, it is shown that ThFFF is capable of separating charged micelles according to the corona composition. These investigations prove convincingly that ThFFF is broadly applicable to the comprehensive characterization of amphiphilic self-assemblies even when aqueous mobile phases are used.
Collapse
Affiliation(s)
- Guilaume Greyling
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602, Stellenbosch, South Africa.
| | - Harald Pasch
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602, Stellenbosch, South Africa
| |
Collapse
|
188
|
Kermanizadeh A, Jacobsen NR, Roursgaard M, Loft S, Møller P. Hepatic toxicity assessment of cationic liposome exposure in healthy and chronic alcohol fed mice. Heliyon 2017; 3:e00458. [PMID: 29234737 PMCID: PMC5717320 DOI: 10.1016/j.heliyon.2017.e00458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 02/01/2023] Open
Abstract
The utilisation of nanoparticles as the means of targeted delivery of therapeutics and/or imaging agents could greatly enhance the specific transport of biologically active payloads to target tissues while avoiding or reducing undesired side-effects. To allow for this to become a reality, the question of potential toxicological effects needs to be addressed. In the present investigation, a cationic liposome with prospective for medical applications was constructed and thoroughly assessed for any material-induced hepatic adverse effects in vivo − in healthy and alcoholic hepatic disease models and in vitro − (HepG2 cells). The data demonstrated that intravenous injection of liposomes did not cause any significant in vivo hepatic toxicity (inflammation, alterations in blood parameters, anti-oxidant depletion, acute phase response and histopathology) at doses of 200 μg per mouse in either healthy or chronically alcohol fed mice. Additionally, the in vitro material-induced adverse effects (cytotoxicity, inflammation or albumin secretion) were all also minimal. The data from this study demonstrated that the intravenous injection of cationic liposomes does not cause hepatic toxicity. This investigation is important as it investigates the toxicity of a nano-sized material in a model of alcoholic hepatic disease in vitro and in vivo. This is an area of research in the field of nanotoxicology that is currently almost entirely overlooked.
Collapse
Affiliation(s)
- Ali Kermanizadeh
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Martin Roursgaard
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| | - Steffen Loft
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| | - Peter Møller
- University of Copenhagen, Department of Public Health, Section of Environmental Health, Copenhagen, Denmark
| |
Collapse
|
189
|
Ng DYW, Vill R, Wu Y, Koynov K, Tokura Y, Liu W, Sihler S, Kreyes A, Ritz S, Barth H, Ziener U, Weil T. Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nat Commun 2017; 8:1850. [PMID: 29185444 PMCID: PMC5707410 DOI: 10.1038/s41467-017-02020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Self-assembly in situ, where synthetic molecules are programmed to organize in a specific and complex environment i.e., within living cells, can be a unique strategy to influence cellular functions. Here we present a small series of rationally designed oligothiophene analogues that specifically target, locate and dynamically self-report their supramolecular behavior within the confinement of a cell. Through the recognition of the terminal alkyl substituent and the amphiphilic pyridine motif, we show that the cell provides different complementary pathways for self-assembly that can be traced easily with fluorescence microscopy as their molecular organization emits in distinct fluorescent bands. Importantly, the control and induction of both forms are achieved by time, temperature and the use of the intracellular transport inhibitor, bafilomycin A1. We showcase the importance of both intrinsic (cell) and extrinsic (stimulus) factors for self-organization and the potential of such a platform toward developing synthetic functional components within living cells.
Collapse
Affiliation(s)
- David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Roman Vill
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yu Tokura
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Weina Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Sihler
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Kreyes
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sandra Ritz
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
190
|
Nehate C, Moothedathu Raynold AA, Koul V. ATRP Fabricated and Short Chain Polyethylenimine Grafted Redox Sensitive Polymeric Nanoparticles for Codelivery of Anticancer Drug and siRNA in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39672-39687. [PMID: 29048878 DOI: 10.1021/acsami.7b11716] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To overcome the limitations of conventional chemotherapy, nanoparticle-mediated combinatorial delivery of siRNA and drugs represents a new approach to overcome its associated side effects. Designing safe and efficient vehicles for their codelivery has emerged as a potential challenge in the clinical translation of these formulations. Herein, we have demonstrated a novel "two-in-one" polyplex nanosystem developed from redox sensitive, short chain polyethylenimine modified poly[(poly(ethylene)glycol methacrylate]-s-s-polycaprolactone copolymer synthesized by atom-transfer free-radical polymerization (ATRP), which can deliver doxorubicin and polo-like kinase I (plk1) siRNA, simultaneously for an enhanced chemotherapeutic effect. The nanoparticles were found to be stable at physiological buffer with and without fetal bovine serum (FBS). The developed polymeric nanosystem was found to be biocompatible and hemocompatible in vitro and in vivo at repeated dose administrations. The polymer could easily self-assemble into ∼100 nm spherical nanoparticles with enhanced doxorubicin loading (∼18%) and effective siRNA complexation at a polymer to siRNA weight ratio of 15. The doxorubicin loaded nanoparticles exhibited ∼4-fold higher drug release in endosomal pH (pH 5) containing 10 mmol of GSH compared to pH 7.4, depicting their redox-sensitive behavior. The polyplexes were capable of delivering both cargos simultaneously to cancer cells in vitro as observed by their excellent colocalization in the cytoplasm of MDA-MB-231 and HeLa cells using confocal laser microscopy. Moreover, in vitro transfection of the cells with polyplexes exhibited 50-70% knockdown of plk1-mRNA expression in both cell lines. In vivo administration of the drug loaded polyplexes to EAT tumor bearing (EAT, Ehrlich ascites tumor) Swiss albino mice showed a ∼29-fold decrease in percent tumor volume in comparison to the control group. The results highlight the therapeutic potential of the polyplexes as a combined delivery of doxorubicin and plk1-siRNA in cancer therapy.
Collapse
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Aji Alex Moothedathu Raynold
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| |
Collapse
|
191
|
De Leo V, Milano F, Paiano A, Bramato R, Giotta L, Comparelli R, Ruscigno S, Agostiano A, Bucci C, Catucci L. Luminescent CdSe@ZnS nanocrystals embedded in liposomes: a cytotoxicity study in HeLa cells. Toxicol Res (Camb) 2017; 6:947-957. [PMID: 30090555 PMCID: PMC6062261 DOI: 10.1039/c7tx00172j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
The use of fluorescent nanocrystals (NCs) as probes for bioimaging applications has emerged as an advantageous alternative to conventional organic fluorescent dyes. Therefore their toxicological evaluation and intracellular delivery are currently a primary field of research. In this work, hydrophobic and highly fluorescent CdSe@ZnS NCs were encapsulated into the lipid bilayer of liposomes by the micelle-to-vesicle transition (MVT) method. The obtained aqueous NC-liposome suspensions preserved the spectroscopic characteristics of the native NCs. A systematic study of the in vitro toxicological effect on HeLa cells of these red emitting NC-liposomes was then carried out and compared to that of empty liposomes. By using liposomes of different phospholipid composition, we evaluated the effect of the lipid carrier on the cytotoxicity towards HeLa cells. Surprisingly, a cell proliferation and death study along with the MTT test on HeLa cells treated with NC-liposomes have shown that the toxic effects of NCs, at concentrations up to 20 nM, are negligible compared to those of the lipid carrier, especially when this is constituted by the cationic phospholipid DOTAP. In particular, obtained data suggest that DOTAP has a dose- and time-dependent toxic effect on HeLa cells. In contrast, the addition of PEG to the liposomes does not alter significantly the viability of the cells. In addition, the ability of NC-liposomes to penetrate the HeLa cells was assessed by fluorescence and confocal microscopy investigation. Captured images show that NC-liposomes are internalized into cells through the endocytic pathway, enter early endosomes and reach lysosomes in 1 h. Interestingly, red emitting NCs co-localized with endosomes and were positioned at the limiting membrane of the organelles. The overall results suggest that the fluorescent system as a whole, NCs and their carrier, should be considered for the development of fully safe biological applications of CdSe@ZnS NCs, and provide essential indications to define the optimal experimental conditions to use the proposed system as an optical probe for future in vivo experiments.
Collapse
Affiliation(s)
- Vincenzo De Leo
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Francesco Milano
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberta Bramato
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Roberto Comparelli
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Silvia Ruscigno
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
| | - Angela Agostiano
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Via Provinciale Lecce-Monteroni n. 165 , 73100 Lecce , Italy .
| | - Lucia Catucci
- Chemistry Department , University of Bari "Aldo Moro" , Via Orabona 4 , 70125 Bari , Italy .
- CNR-IPCF , Institute for Chemical and Physical processes , Via Orabona 4 , 70125 Bari , Italy
| |
Collapse
|
192
|
Fan Y, Wang Q, Lin G, Shi Y, Gu Z, Ding T. Combination of using prodrug-modified cationic liposome nanocomplexes and a potentiating strategy via targeted co-delivery of gemcitabine and docetaxel for CD44-overexpressed triple negative breast cancer therapy. Acta Biomater 2017; 62:257-272. [PMID: 28859899 DOI: 10.1016/j.actbio.2017.08.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/27/2017] [Indexed: 12/31/2022]
Abstract
In this study, novel prodrug-modified cationic liposome nanocomplexes (Combo NCs) were reported for gemcitabine (GEM) and docetaxel (DTX) co-delivery. This nanoplatform exhibited multiple favorable characteristics, such as a 'green' fabrication with a one-step chemical reaction, appropriate size (∼200nm) and distribution (PDI<0.2), low zeta potential (-31.1mv), high drug-loading efficiency (9.3% GEM plus 3.1% DTX, wt%) and pH and enzymatic dual-stimulus-responsive release properties. Immunofluorescence and cellular uptake studies showed that Combo NCs efficiently targeted overexpressed CD44 in MDA-MB-231 carcinoma. In vitro studies revealed that Combo NCs played a critical role in the synergistic induction of cytotoxicity, apoptosis and inhibition of wound healing. Combo NCs were confirmed to exhibit great potency for increasing S phase arrest and remodeling the CDA and dCK balance by decreasing the mRNA expression of CDA down to 0.09-fold and increasing the mRNA expression of dCK by 1.36-fold, remarkably increasing the dCK/CDA ratio to 15.3-fold compared with the blank control. The biodistribution results obtained in vivo revealed an effective accumulation in tumor foci. All of these advantages of Combo NCs contributed to their remarkable anti-tumor efficacy without systemic toxicity as well as their apoptosis-enhancing and anti-proliferative capacities, as determined by TUNEL and Ki67 immunohistochemistry in vivo. Consequently, such a rationally contemplated co-delivery system demonstrated the promising potential of clinical applications for triple-negative breast cancer therapy. STATE OF SIGNIFICANCE The Combo NCs were innovatively applied for co-delivery of hydrophilic GEM and hydrophobic DTX. The ester bond linking and shielding effect of HA-GEM made the carriers achieve synchronous release properties, which was determined in in vitro release study. Due to the HA modification, the vectors own great potency for positive targeting to CD44 overexpressed triple-negative breast cancer cells MDA-MB-231. Cytotoxicity and apoptosis studies confirmed the targeting effect and synergism between two drugs. Interestingly, we found in cell cycle study, drug combinations (free combination or Combo NCs) didn't show a rise in G2M phase, which was significantly higher when treated DTX alone. We further discovered the role of DTX in combinations may involve in modulating GEM associated enzymes thus enhancing the efficacy of GEM. Consequently, this nanoplatform provided a novel solution for achieving targeted co-delivery and potentiating effect in cancer therapy.
Collapse
|
193
|
Beilhartz GL, Sugiman-Marangos SN, Melnyk RA. Repurposing bacterial toxins for intracellular delivery of therapeutic proteins. Biochem Pharmacol 2017; 142:13-20. [DOI: 10.1016/j.bcp.2017.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
|
194
|
Lolli A, Penolazzi L, Narcisi R, van Osch GJVM, Piva R. Emerging potential of gene silencing approaches targeting anti-chondrogenic factors for cell-based cartilage repair. Cell Mol Life Sci 2017; 74:3451-3465. [PMID: 28434038 PMCID: PMC11107620 DOI: 10.1007/s00018-017-2531-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
The field of cartilage repair has exponentially been growing over the past decade. Here, we discuss the possibility to achieve satisfactory regeneration of articular cartilage by means of human mesenchymal stem cells (hMSCs) depleted of anti-chondrogenic factors and implanted in the site of injury. Different types of molecules including transcription factors, transcriptional co-regulators, secreted proteins, and microRNAs have recently been identified as negative modulators of chondroprogenitor differentiation and chondrocyte function. We review the current knowledge about these molecules as potential targets for gene knockdown strategies using RNA interference (RNAi) tools that allow the specific suppression of gene function. The critical issues regarding the optimization of the gene silencing approach as well as the delivery strategies are discussed. We anticipate that further development of these techniques will lead to the generation of implantable hMSCs with enhanced potential to regenerate articular cartilage damaged by injury, disease, or aging.
Collapse
Affiliation(s)
- Andrea Lolli
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands.
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Narcisi
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Gerjo J V M van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
195
|
Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, Nadagouda MN, Aminabhavi TM. Polymeric micelles: Basic research to clinical practice. Int J Pharm 2017; 532:249-268. [PMID: 28882486 DOI: 10.1016/j.ijpharm.2017.09.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/02/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Rapidly developing polymeric micelles as potential targeting carriers has intensified the need for better understanding of the underlying principles related to the selection of suitable delivery materials for designing, characterizing, drug loading, improving stability, targetability, biosafety and efficacy. The emergence of advanced analytical tools such as fluorescence resonance energy transfer and dissipative particle dynamics has identified new dimensions of these nanostructures and their behavior in much greater details. This review summarizes recent efforts in the development of polymeric micelles with respect to their architecture, formulation strategy and targeting possibilities along with their preclinical and clinical aspects. Literature of the past decade is discussed critically with special reference to the chemistry involved in the formation and clinical applications of these versatile materials. Thus, our main objective is to provide a timely update on the current status of polymeric micelles highlighting their applications and the important parameters that have led to successful delivery of drugs to the site of action.
Collapse
Affiliation(s)
- Anand S Deshmukh
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India.
| | - Pratik N Chauhan
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Malleshappa N Noolvi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Kiran Chaturvedi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Kuntal Ganguly
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Shyam S Shukla
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Mallikarjuna N Nadagouda
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutical Research, Shree Dhanvantary Pharmacy College, Kim, Surat, Gujarat 394 110, India.
| |
Collapse
|
196
|
Abdelbary GA, Amin MM, Zakaria MY, El Awdan SA. Adefovir dipivoxil loaded proliposomal powders with improved hepatoprotective activity: formulation, optimization, pharmacokinetic, and biodistribution studies. J Liposome Res 2017; 28:259-274. [PMID: 28768431 DOI: 10.1080/08982104.2017.1363228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The present study aimed to prepare proliposomal formulae for improving the oral bioavailability of adefovir dipivoxil (AD), a nucleoside reverse transcriptase inhibitor effective against hepatitis B virus (HBV). The prepared proliposomal formulae were characterized for entrapment efficiency (E.E.%), vesicle size and in vitro drug release after reconstitution to conventional liposomes. The optimized formula (F9) with a maximum desirability value of 0.858 was selected having E.E.% of 71 ± 3.3% with an average vesicle size of 164.6 ± 5 nm. Moreover, the crystallization of AD within the optimized formula investigated via powder X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed the presence of the drug in an amorphous state within the lipid vesicles with enhanced stability over a storage period of 12 months. Thioacetamide-induced liver damage in rats evidenced by elevated liver enzymes was significantly improved after treatment with the optimum formula. Pharmacokinetic and biodistribution studies of formula F9 showed a higher accumulation of AD in the liver with enhanced bioavailability compared to AD suspension which highlights its potential advantage for an effective treatment of chronic HBV. Hence, proliposomal drug delivery is considered as a better choice for the oral delivery of AD.
Collapse
Affiliation(s)
- Ghada A Abdelbary
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Maha M Amin
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt
| | - Mohamed Y Zakaria
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Sinai University , Cairo , Egypt
| | - Sally A El Awdan
- c Pharmacology Department , National Research Center , Giza , Egypt
| |
Collapse
|
197
|
İzgü F, Bayram G, Tosun K, İzgü D. Stratum corneum lipid liposome-encapsulated panomycocin: preparation, characterization, and the determination of antimycotic efficacy against Candida spp. isolated from patients with vulvovaginitis in an in vitro human vaginal epithelium tissue model. Int J Nanomedicine 2017; 12:5601-5611. [PMID: 28831255 PMCID: PMC5548276 DOI: 10.2147/ijn.s141949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a liposomal lyophilized powder formulation of panomycocin was developed for therapeutic purposes against vulvovaginal candidiasis which affects 80% of women worldwide. Panomycocin is a potent antimycotic protein secreted by the yeast Wickerhamomyces anomalus NCYC 434. This study involved the preparation of panomycocin-loaded stratum corneum lipid liposomes (SCLLs), characterization of the SCLLs, and determination of antimycotic efficacy of the formulation against Candida albicans and Candida glabrata clinical vaginal isolates in a human vaginal epithelium tissue model. The encapsulation and loading efficiencies of SCLLs were 73% and 76.8%, respectively. In transmission electron microscopy images, the SCLLs appeared in the submicron size range. Dynamic light scattering analyses showed that the SCLLs had uniform size distribution. Zeta potential measurements revealed stable and positively charged SCLLs. In Fourier transform infrared spectroscopy analyses, no irreversible interactions between the encapsulated panomycocin and the SCLLs were detected. The SCLLs retained >98% of encapsulated panomycocin in aqueous solution up to 12 hours. The formulation was fungicidal at the same minimum fungicidal concentration values for non-formulated pure panomycocin when tested on an in vitro model of vaginal candidiasis. This is the first study in which SCLLs and a protein as an active ingredient have been utilized together in a formulation. The results obtained in this study led us to conduct further preclinical trials of this formulation for the development of an effective topical anti-candidal drug with improved safety.
Collapse
Affiliation(s)
- Fatih İzgü
- Department of Molecular Biology and Genetics, Middle East Technical University, Ankara, Turkey
| | - Günce Bayram
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Kübra Tosun
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey
| | - Demet İzgü
- Biology Department, TED Ankara College, Ankara, Turkey
| |
Collapse
|
198
|
Fotoran WL, Santangelo R, de Miranda BNM, Irvine DJ, Wunderlich G. DNA-Loaded Cationic Liposomes Efficiently Function as a Vaccine against Malarial Proteins. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:1-10. [PMID: 28879213 PMCID: PMC5581859 DOI: 10.1016/j.omtm.2017.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022]
Abstract
The delivery of antigens as DNA vaccines is an efficient alternative to induce immune responses against antigens, which are difficult to produce in recombinant form. However, the delivery of naked DNA is ineffective or relies on sophisticated ballistic devices. Here, we show a combination of liposome application and naked DNA vaccine that successfully overcomes these problems. Upon entrapment of plasmids encoding different antigens in cationic particles, transfection efficiencies similar to commercial kits were achieved in in vitro cell cultures. The liposome-based approach provided strong humoral responses against three malarial antigens, namely the Circumsporozoite protein and the C terminus of merozoite surface protein 1 from Plasmodium vivax (titers 104 or 103–104, respectively) and P. falciparum Rhoptry antigen 5 from Plasmodium falciparum (titers 103–104). When employed in P. falciparum growth-inhibition assays, antibodies demonstrated consistent reinvasion-blocking activities that were dose dependent. Liposome-formulated DNA vaccines may prove useful when targets cannot be produced as recombinant proteins and when conformation-dependent and highly specific antibodies are mandatory.
Collapse
Affiliation(s)
- Wesley L Fotoran
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Rachele Santangelo
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| | - Beatriz N M de Miranda
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos, 13566-590, Brazil
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research and Department of Biomedical Engineering and Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Ragon Institute of MGH, MIT and Harvard University, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, 05508000, Brazil
| |
Collapse
|
199
|
Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem 2017; 409:5779-5787. [PMID: 28762066 DOI: 10.1007/s00216-017-0527-z] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 01/17/2023]
Abstract
Zeta potential is often used to approximate a nanoparticle's surface charge, i.e., cationic, anionic, or neutral character, and has become a standard characterization technique to evaluate nanoparticle surfaces. While useful, zeta potential values provide only very general conclusions about surface charge character. Without a thorough understanding of the measurement parameters and limitations of the technique, these values can become meaningless. This case study attempts to explore the sensitivity of zeta potential measurement using specifically formulated cationic, anionic, and neutral liposomes. This study examines zeta potential dependence on pH and ionic strength, resolving power, and highlights the sensitivity of zeta potential to charged liposomes. Liposomes were prepared with cholesterol, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), and varying amounts of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS). A strong linear relationship was noted between zeta potential values and the mole percentage of charged lipids within a liposome (e.g., cationic DOTAP or anionic DOPS). This finding could be used to formulate similar liposomes to a specific zeta potential, potentially of importance for systems sensitive to highly charged species. In addition, cationic and anionic liposomes were titrated with up to two mole percent of the neutral lipid 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (lipid-PEG; LP). Very small amounts of the lipid-PEG (<0.2 mol%) were found to impart stability to the DOTAP- and DOPS-containing liposomes without significantly affecting other physicochemical properties of the formulation, providing a simple approach to making stable liposomes with cationic and anionic surface charge.
Collapse
Affiliation(s)
- Mackensie C Smith
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| | - Scott E McNeil
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| |
Collapse
|
200
|
Kim JT, Liu Y, Kulkarni RP, Lee KK, Dai B, Lovely G, Ouyang Y, Wang P, Yang L, Baltimore D. Dendritic cell-targeted lentiviral vector immunization uses pseudotransduction and DNA-mediated STING and cGAS activation. Sci Immunol 2017; 2:2/13/eaal1329. [PMID: 28733470 DOI: 10.1126/sciimmunol.aal1329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/14/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
Dendritic cell (DC) activation and antigen presentation are critical for efficient priming of T cell responses. Here, we study how lentiviral vectors (LVs) deliver antigen and activate DCs to generate T cell immunization in vivo. We report that antigenic proteins delivered in vector particles via pseudotransduction were sufficient to stimulate an antigen-specific immune response. The delivery of the viral genome encoding the antigen increased the magnitude of this response in vivo but was irrelevant in vitro. Activation of DCs by LVs was independent of MyD88, TRIF, and MAVS, ruling out an involvement of Toll-like receptor or RIG-I-like receptor signaling. Cellular DNA packaged in LV preparations induced DC activation by the host STING (stimulator of interferon genes) and cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase) pathway. Envelope-mediated viral fusion also activated DCs in a phosphoinositide 3-kinase-dependent but STING-independent process. Pseudotransduction, transduction, viral fusion, and delivery of cellular DNA collaborate to make the DC-targeted LV preparation an effective immunogen.
Collapse
Affiliation(s)
- Jocelyn T Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Infectious Diseases, Department of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yarong Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Rajan P Kulkarni
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin K Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bingbing Dai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Geoffrey Lovely
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yong Ouyang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|