151
|
Adenosine and ATPγS protect against bacterial pneumonia-induced acute lung injury. Sci Rep 2020; 10:18078. [PMID: 33093565 PMCID: PMC7581771 DOI: 10.1038/s41598-020-75224-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, disrupts the alveolar-capillary barrier, triggering pulmonary vascular leak thus inducing acute lung injury (ALI). Extracellular purines, adenosine and ATP, protected against ALI induced by purified LPS. In this study, we investigated whether these purines can impact vascular injury in more clinically-relevant E.coli (non-sterile LPS) murine ALI model. Mice were inoculated with live E. coli intratracheally (i.t.) with or without adenosine or a non-hydrolyzable ATP analog, adenosine 5'-(γ-thio)-triphosphate (ATPγS) added intravenously (i.v.). After 24 h of E. coli treatment, we found that injections of either adenosine or ATPγS 15 min prior or adenosine 3 h after E.coli insult significantly attenuated the E.coli-mediated increase in inflammatory responses. Furthermore, adenosine prevented weight loss, tachycardia, and compromised lung function in E. coli-exposed mice. Accordingly, treatment with adenosine or ATPγS increased oxygen saturation and reduced histopathological signs of lung injury in mice exposed to E. coli. Lastly, lung-targeting gene delivery of adenosine or ATPγS downstream effector, myosin phosphatase, significantly attenuated the E. coli-induced compromise of lung function. Collectively, our study has demonstrated that adenosine or ATPγS mitigates E. coli-induced ALI in mice and may be useful as an adjuvant therapy in future pre-clinical studies.
Collapse
|
152
|
Zhao YT, Chen XX, Jiang WL, Li Y, Fei J, Li CY. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47840-47847. [PMID: 32981314 DOI: 10.1021/acsami.0c13003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is mainly produced in mitochondria and plays an important role in lots of pathological processes such as colitis. Unfortunately, to date, few suitable fluorescence probes have been developed for monitoring the ATP level in colitis. Herein, a fluorescence nanoprobe named NIR@ZIF-90 is proposed and prepared by encapsulating a rhodamine-based near-infrared (NIR) dye into zeolitic imidazolate frameworks (ZIF-90). The nanoprobe is nonfluorescent because the emission of NIR is suppressed by the encapsulation, while in the presence of ATP, the framework of ZIF-90 is dissembled to release NIR and thus NIR fluorescence at 750 nm is observed. The nanoprobe shows high sensitivity to ATP with a 72-fold increase and excellent selectivity to ATP over other nucleotides. Moreover, with low cytotoxicity and good mitochondria-targeted ability, NIR@ZIF-90 is used to image ATP in colorectal cancer cells (HCT116). In addition, due to the NIR emission, the nanoprobe is further employed to successfully monitor the ATP level in a colitis mouse model. To the best of our knowledge, the nanoprobe is the first example to study colitis in vivo with the guidance of ATP, which will provide an efficient tool for understanding colitis.
Collapse
Affiliation(s)
- Yi-Ting Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xi-Xi Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Wen-Li Jiang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Yongfei Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China
| | - Junjie Fei
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| |
Collapse
|
153
|
Faroqi AH, Lim MJ, Kee EC, Lee JH, Burgess JD, Chen R, Di Virgilio F, Delenclos M, McLean PJ. In Vivo Detection of Extracellular Adenosine Triphosphate in a Mouse Model of Traumatic Brain Injury. J Neurotrauma 2020; 38:655-664. [PMID: 32935624 PMCID: PMC7898407 DOI: 10.1089/neu.2020.7226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Traumatic brain injury (TBI) is traditionally characterized by primary and secondary injury phases, both contributing to pathological and morphological changes. The mechanisms of damage and chronic consequences of TBI remain to be fully elucidated, but synaptic homeostasis disturbances and impaired energy metabolism are proposed to be a major contributor. It has been proposed that an increase of extracellular (eATP) adenosine triphosphate (ATP) in the area immediately surrounding impact may play a pivotal role in this sequence of events. After tissue injury, rupture of cell membranes allows release of intracellular ATP into the extracellular space, triggering a cascade of toxic events and inflammation. ATP is a ubiquitous messenger; however, simple and reliable techniques to measure its concentration have proven elusive. Here, we integrate a sensitive bioluminescent eATP sensor known as pmeLUC, with a controlled cortical impact mouse model to monitor eATP changes in a living animal after injury. Using the pmeLUC probe, a rapid increase of eATP is observed proximal to the point of impact within minutes of the injury. This event is significantly attenuated when animals are pretreated with an ATP hydrolyzing agent (apyrase) before surgery, confirming the contribution of eATP. This new eATP reporter could be useful for understanding the role of eATP in the pathogenesis in TBI and may identify a window of opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Ayman H Faroqi
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Melina J Lim
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Emma C Kee
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Jannifer H Lee
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Ridong Chen
- APT Therapeutics, Inc., St. Louis, Missouri, USA
| | - Francesco Di Virgilio
- Department of Morphology Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA.,Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
154
|
Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2020; 42:545-556. [DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
|
155
|
Ledderose C, Junger WG. Mitochondria Synergize With P2 Receptors to Regulate Human T Cell Function. Front Immunol 2020; 11:549889. [PMID: 33133068 PMCID: PMC7550529 DOI: 10.3389/fimmu.2020.549889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Intracellular ATP is the universal energy carrier that fuels many cellular processes. However, immune cells can also release a portion of their ATP into the extracellular space. There, ATP activates purinergic receptors that mediate autocrine and paracrine signaling events needed for the initiation, modulation, and termination of cell functions. Mitochondria contribute to these processes by producing ATP that is released. Here, we summarize the synergistic interplay between mitochondria and purinergic signaling that regulates T cell functions. Specifically, we discuss how mitochondria interact with P2X1, P2X4, and P2Y11 receptors to regulate T cell metabolism, cell migration, and antigen recognition. These mitochondrial and purinergic signaling mechanisms are indispensable for host immune defense. However, they also represent an Achilles heel that can render the host susceptible to infections and inflammatory disorders. Hypoxia and mitochondrial dysfunction deflate the purinergic signaling mechanisms that regulate T cells, while inflammation and tissue damage generate excessive systemic ATP levels that distort autocrine purinergic signaling and impair T cell function. An improved understanding of the metabolic and purinergic signaling mechanisms that regulate T cells may lead to novel strategies for the diagnosis and treatment of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
156
|
Jacobo-Baca G, Salazar-Ybarra RA, Torres-de-la-Cruz V, Guzmán-López S, Elizondo-Omaña RE, Guzmán-López A, Vázquez-Barragán MÁ, Martínez-de-Villarreal LE. Proteomic profile of preeclampsia in the first trimester of pregnancy. J Matern Fetal Neonatal Med 2020; 35:3446-3452. [PMID: 32957816 DOI: 10.1080/14767058.2020.1820980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Preeclampsia (PE) is a leading cause of pregnancy-associated maternal and neonatal morbidity and mortality. Detection of patients at risk before the clinical onset of PE is a priority. Proteomics have become a valuable tool for the discovery of new biomarkers; however, the understanding of the underlying mechanism is necessary. The aim of the study was to determine differences between proteomic serum profiles of PE and normotensive pregnancies using quantitative and qualitative approaches. STUDY DESIGN Serum samples from pregnant women were taken at 10-12 weeks of gestation with follow-up to determine PE development. Samples were analyzed using nano 2-D liquid chromatography UPLC and qTOF-MS/MS. RESULTS A total of 136 women were recruited, of which eight (5.9%) developed PE, and eight normotensive were randomly selected as a control group for comparison. A different profile was obtained between groups. Nine proteins showed quantitative differences with fold-change over 1.5: PRRC2C (217.02), HEATR5A (179.46), ATP6 (162.38), PRRC2B (83.09), RBM25 (5.36), NUP205 (3.38), HLA-I (2.27), ZC3H13 (2.15), and SREK1 (1.66); and two under 0.66: Importin-4 (0.55) and Cytochrome b (0.26). Using bilateral Fisher's exact test for the qualitative approach, LRRK1 had statistical significance (p = .044), while PRRC2B (p = .121), PRRC2C (p = .134), and NUP205 (p = .134) showed a tendency to be present in PE. CONCLUSION The found proteins have plausibility with the early pathophysiological events that have been associated with this pathology. Further studies should be performed to confirm these findings and elucidate their specific roles.
Collapse
Affiliation(s)
- Guillermo Jacobo-Baca
- Department of Human Anatomy, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Víctor Torres-de-la-Cruz
- Department of Genetics, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Santos Guzmán-López
- Department of Human Anatomy, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | - Abel Guzmán-López
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | | | | |
Collapse
|
157
|
Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A, Umapathy NS, Kotamarthi J, Gokhale YS, Karoor V, Stenmark KR, Gerasimovskaya E. P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21186855. [PMID: 32962005 PMCID: PMC7555413 DOI: 10.3390/ijms21186855] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs). Endothelial dysfunction can be defined as a shift from a “calm” or non-activated state, characterized by low permeability, anti-thrombotic, and anti-inflammatory properties, to a “activated” state, characterized by vasoconstriction and increased permeability, pro-thrombotic, and pro-inflammatory properties. This state of ED is observed in many diseases, including atherosclerosis, diabetes, hypertension, metabolic syndrome, sepsis, and pulmonary hypertension. Herein, we review the recent advances in P2Y receptor physiology and emphasize some of their unique signaling features in pulmonary endothelial cells.
Collapse
Affiliation(s)
- Derek Strassheim
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Robert Batori
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Hala Nijmeh
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Nana Burns
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | | | - Janavi Kotamarthi
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Yash S. Gokhale
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Vijaya Karoor
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Kurt R. Stenmark
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Evgenia Gerasimovskaya
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
158
|
eATP/P2X7R Axis: An Orchestrated Pathway Triggering Inflammasome Activation in Muscle Diseases. Int J Mol Sci 2020; 21:ijms21175963. [PMID: 32825102 PMCID: PMC7504480 DOI: 10.3390/ijms21175963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
In muscle ATP is primarily known for its function as an energy source and as a mediator of the "excitation-transcription" process, which guarantees muscle plasticity in response to environmental stimuli. When quickly released in massive concentrations in the extracellular space as in presence of muscle membrane damage, ATP acts as a damage-associated molecular pattern molecule (DAMP). In experimental murine models of muscular dystrophies characterized by membrane instability, blockade of eATP/P2X7 receptor (R) purinergic signaling delayed the progression of the dystrophic phenotype dampening the local inflammatory response and inducing Foxp3+ T Regulatory lymphocytes. These discoveries highlighted the relevance of ATP as a harbinger of immune-tissue damage in muscular genetic diseases. Given the interactions between the immune system and muscle regeneration, the comprehension of ATP/purinerigic pathway articulated organization in muscle cells has become of extreme interest. This review explores ATP release, metabolism, feedback control and cross-talk with members of muscle inflammasome in the context of muscular dystrophies.
Collapse
|
159
|
Brisson L, Chadet S, Lopez-Charcas O, Jelassi B, Ternant D, Chamouton J, Lerondel S, Le Pape A, Couillin I, Gombault A, Trovero F, Chevalier S, Besson P, Jiang LH, Roger S. P2X7 Receptor Promotes Mouse Mammary Cancer Cell Invasiveness and Tumour Progression, and Is a Target for Anticancer Treatment. Cancers (Basel) 2020; 12:cancers12092342. [PMID: 32825056 PMCID: PMC7565976 DOI: 10.3390/cancers12092342] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
The P2X7 receptor is an ATP-gated cation channel with a still ambiguous role in cancer progression, proposed to be either pro- or anti-cancerous, depending on the cancer or cell type in the tumour. Its role in mammary cancer progression is not yet defined. Here, we show that P2X7 receptor is functional in highly aggressive mammary cancer cells, and induces a change in cell morphology with fast F-actin reorganization and formation of filopodia, and promotes cancer cell invasiveness through both 2- and 3-dimensional extracellular matrices in vitro. Furthermore, P2X7 receptor sustains Cdc42 activity and the acquisition of a mesenchymal phenotype. In an immunocompetent mouse mammary cancer model, we reveal that the expression of P2X7 receptor in cancer cells, but not in the host mice, promotes tumour growth and metastasis development, which were reduced by treatment with specific P2X7 antagonists. Our results demonstrate that P2X7 receptor drives mammary tumour progression and represents a pertinent target for mammary cancer treatment.
Collapse
Affiliation(s)
- Lucie Brisson
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Chadet
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Osbaldo Lopez-Charcas
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Bilel Jelassi
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - David Ternant
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Julie Chamouton
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Stéphanie Lerondel
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Alain Le Pape
- CNRS UPS44 TAAM, PHENOMIN, Centre d’Imagerie du Petit Animal, 45071 Orléans, France; (S.L.); (A.L.P.)
| | - Isabelle Couillin
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | - Aurélie Gombault
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS, University of Orléans, 45071 Orléans, France; (I.C.); (A.G.)
| | | | - Stéphan Chevalier
- Inserm UMR1069-Nutrition, Growth and Cancer, University of Tours, 37032 Tours, France; (L.B.); (J.C.); (S.C.)
| | - Pierre Besson
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
| | - Lin-Hua Jiang
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Sébastien Roger
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, 37032 Tours, France; (S.C.); (O.L.-C.); (B.J.); (D.T.); (P.B.); (L.-H.J.)
- Institut Universitaire de France, 75005 Paris, France
- Correspondence: ; Tel.: +33-2-47-36-61-30
| |
Collapse
|
160
|
Abstract
PURPOSE Hyperlipidemia, characterized by an increase in circulating lipid levels, doubles the chance of developing cardiovascular diseases. It prompts inflammation, immune activation, and oxidative stress in the bloodstream and organs of rats. Thus, we theorized that the metabolism of purines, an immunomodulatory mechanism, is altered in cells involved in the development of cardiovascular diseases. METHODS Therefore, we induced acute hyperlipidemia in Wistar rats with Poloxamer-407 and euthanized the animals 36 h later. The leucocyte differential, the rate of purine metabolism on the surface of platelets and heart cells, and markers of oxidative stress in the heart tissue were evaluated. These parameters were also assessed in animals pretreated for 30 days with curcumin and/or rutin. RESULTS Hyperlipidemia increased the hydrolyses of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in platelets. In heart cells, the metabolism of ATP and adenosine (ADO) were increased, while ADP hydrolysis was reduced. Additionally, lipid damage and antioxidant defenses were increased in heart homogenates. Hyperlipidemic rats also exhibited a reduced percentage of eosinophils and lymphocytes. CONCLUSION Together, these findings are indicative of an increased risk of developing cardiovascular diseases in hyperlipidemic rats. The pretreatments with antioxidants reverted some of the changes prompted by hyperlipidemia preventing detrimental changes in the cells and tissues. Graphical Abstract.
Collapse
|
161
|
Rivas-Yáñez E, Barrera-Avalos C, Parra-Tello B, Briceño P, Rosemblatt MV, Saavedra-Almarza J, Rosemblatt M, Acuña-Castillo C, Bono MR, Sauma D. P2X7 Receptor at the Crossroads of T Cell Fate. Int J Mol Sci 2020; 21:E4937. [PMID: 32668623 PMCID: PMC7404255 DOI: 10.3390/ijms21144937] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
The P2X7 receptor is a ligand-gated, cation-selective channel whose main physiological ligand is ATP. P2X7 receptor activation may also be triggered by ARTC2.2-dependent ADP ribosylation in the presence of extracellular NAD. Upon activation, this receptor induces several responses, including the influx of calcium and sodium ions, phosphatidylserine externalization, the formation of a non-selective membrane pore, and ultimately cell death. P2X7 receptor activation depends on the availability of extracellular nucleotides, whose concentrations are regulated by the action of extracellular nucleotidases such as CD39 and CD38. The P2X7 receptor has been extensively studied in the context of the immune response, and it has been reported to be involved in inflammasome activation, cytokine production, and the migration of different innate immune cells in response to ATP. In adaptive immune responses, the P2X7 receptor has been linked to T cell activation, differentiation, and apoptosis induction. In this review, we will discuss the evidence of the role of the P2X7 receptor on T cell differentiation and in the control of T cell responses in inflammatory conditions.
Collapse
Affiliation(s)
- Elizabeth Rivas-Yáñez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Carlos Barrera-Avalos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile;
| | - Brian Parra-Tello
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Pedro Briceño
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mariana V. Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
| | - Juan Saavedra-Almarza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile
- Fundación Ciencia & Vida, Santiago 7780272, Chile
| | - Claudio Acuña-Castillo
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (E.R.-Y.); (B.P.-T.); (P.B.); (M.V.R.); (J.S.-A.); (M.R.)
| |
Collapse
|
162
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
163
|
Icel E, Suleyman H, Yazici GN, Bakan N, Sunar M. Effects of adenosine triphosphate on methanol-induced experimental optic nerve damage in rats: biochemical and histopathological evaluation. Cutan Ocul Toxicol 2020; 39:244-248. [PMID: 32543996 DOI: 10.1080/15569527.2020.1778017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Acute methanol exposure leads to systemic intoxication and toxic optic neuropathy. In this experimental study, we aimed to determine the protective effects of intravenous administration of ATP in methanol-induced optic neuropathy. MATERIALS AND METHODS A total of 18 male albino Wistar rats weighing between 267 and 282 g were used for the experiment. The animals were divided into three groups as healthy control (HC), methanol (M), and methanol + ATP (M-ATP) groups. Distilled water was given to the healthy control group (n = 6) as the solvent, while 20% methanol was administered orally to the rats in M (n = 6) and M-ATP (n = 6) groups at a dose of 3 g/kg. Four hours after the administration of 20% methanol orally to the M-ATP group, ATP was injected intraperitoneally at a dose of 4 mg/kg. Eight hours after ATP injection, the animals were sacrificed by high-dose (50 mg/kg) thiopental anaesthesia and biochemical and histopathological examinations were performed on the removed optic nerve tissues. Malondialdehyde (MDA), total glutathione (tGSH), total oxidant status (TOS) and total anti-oxidant status (TAS) were analysed with biochemical tests. RESULTS MDA, TOS and OSI were significantly higher and tGSH and TAS levels were significantly lower in methanol administered group compared with the healthy controls or M-ATP group (p: 0.001). There was not any significant difference between healthy controls and M-ATP group regarding the oxidative stress parameters. There was a significant destruction and increase in thickness and astrocyte numbers and edema-vacuolization in methanol administered group compared with the healthy controls or M-ATP group (p: 0.001). CONCLUSION Intravenous ATP administration had a significant positive effect on the oxidative stress parameters and optic nerve structure in methanol-intoxicated rats. Antioxidant therapies should be considered in future studies as a possible therapy for methanol-induced toxic optic neuropathy.
Collapse
Affiliation(s)
- Erel Icel
- Faculty of Medicine, Department of Ophthalmology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Suleyman
- Faculty of Medicine, Department of Pharmacology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Gulce Naz Yazici
- Faculty of Medicine, Department of Histology and Embryology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nuri Bakan
- Faculty of Medicine, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| | - Mukadder Sunar
- Faculty of Medicine, Department of Anatomy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
164
|
Verkhratsky A, Zimmermann H, Abbracchio MP, Illes P, DiVirgilio F. In Memoriam Geoffrey Burnstock: Creator of Purinergic Signaling. FUNCTION 2020. [PMCID: PMC8788863 DOI: 10.1093/function/zqaa006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Geoff Burnstock (1929–2020) discovered purinergic signaling in a fastidious research that started in early 1960 and culminated in a concept of purinergic nerves in 1972. Subsequently, Geoff developed the concept of purinergic transmission and demonstrated ATP storage, release, and degradation in the context of cotransmission, which was another fundamental concept developed by him. Purinergic transmission contributes to the most fundamental physiological functions such as sensory transduction, regulation of heart rate, smooth muscle contraction, bile secretion, endocrine regulation, immune responses, as well as to various pathophysiological conditions, including inflammation, cancer, neuropathic pain, diabetes, and kidney failure.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Goethe-University, Frankfurt am Main, Germany
| | - Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, University of Milan, Milan, Italy
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Germany
| | | |
Collapse
|
165
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
166
|
Losenkova K, Zuccarini M, Karikoski M, Laurila J, Boison D, Jalkanen S, Yegutkin GG. Compartmentalization of adenosine metabolism in cancer cells and its modulation during acute hypoxia. J Cell Sci 2020; 133:jcs241463. [PMID: 32317394 PMCID: PMC10681022 DOI: 10.1242/jcs.241463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/02/2020] [Indexed: 12/20/2022] Open
Abstract
Extracellular adenosine mediates diverse anti-inflammatory, angiogenic and vasoactive effects, and has become an important therapeutic target for cancer, which has been translated into clinical trials. This study was designed to comprehensively assess adenosine metabolism in prostate and breast cancer cells. We identified cellular adenosine turnover as a complex cascade, comprising (1) the ectoenzymatic breakdown of ATP via sequential ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1, officially known as ENPP1), ecto-5'-nucleotidase (CD73, also known as NT5E), and adenosine deaminase reactions, and ATP re-synthesis through a counteracting adenylate kinase and members of the nucleoside diphosphate kinase (NDPK, also known as NME/NM23) family; (2) the uptake of nucleotide-derived adenosine via equilibrative nucleoside transporters; and (3) the intracellular adenosine phosphorylation into ATP by adenosine kinase and other nucleotide kinases. The exposure of cancer cells to 1% O2 for 24 h triggered an ∼2-fold upregulation of CD73, without affecting nucleoside transporters, adenosine kinase activity and cellular ATP content. The ability of adenosine to inhibit the tumor-initiating potential of breast cancer cells via a receptor-independent mechanism was confirmed in vivo using a xenograft mouse model. The existence of redundant pathways controlling extracellular and intracellular adenosine provides a sufficient justification for reexamination of the current concepts of cellular purine homeostasis and signaling in cancer.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | - Mariachiara Zuccarini
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
- Department of Medical, Oral and Biotechnological Sciences, 'G. D'Annunzio' University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marika Karikoski
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Juha Laurila
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson and New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, 20520 Turku, Finland
| | | |
Collapse
|
167
|
Inhibition of P2X7 Purinergic Receptor Ameliorates Cardiac Fibrosis by Suppressing NLRP3/IL-1 β Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7956274. [PMID: 32566102 PMCID: PMC7261319 DOI: 10.1155/2020/7956274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023]
Abstract
P2X7 purinergic receptor (P2X7R) has been implicated in several cardiovascular diseases. However, whether it regulates cardiac fibrosis remains elusive. Herein, its involvement in the development of cardiac fibrosis was examined using a transverse aortic constriction (TAC) mice model and cardiac fibroblasts (CFs) hyperstimulated by TGF-β1 for 48 hours. Results showed that TAC and TGF-β1 treatment increased the expression of P2X7R. Silencing of P2X7R expression with siP2X7R ameliorated TGF-β1 effects on fibroblasts activation. Similarly, P2X7R inhibition by Brilliant Blue G (BBG) reduced mRNA and protein levels of profibrosis markers, while the P2X7R agonist BzATP accelerated the TGF-β1-induced CFs activation. Moreover, it was found that TGF-β1-induced CFs activation was mediated by the NLRP3/IL-1β inflammasome pathway. BBG or siP2X7R treatment suppressed NLRP3/IL-1β pathway signaling. In vivo, BBG significantly alleviated TAC-induced cardiac fibrosis, cardiac dysfunction, and NLRP3/IL-1β activation. Collectively, our findings imply that suppressing P2X7R may limit cardiac fibrosis and abnormal activation of CFs.
Collapse
|
168
|
Verin AD, Batori R, Kovacs-Kasa A, Cherian-Shaw M, Kumar S, Czikora I, Karoor V, Strassheim D, Stenmark KR, Gerasimovskaya EV. Extracellular adenosine enhances pulmonary artery vasa vasorum endothelial cell barrier function via Gi/ELMO1/Rac1/PKA-dependent signaling mechanisms. Am J Physiol Cell Physiol 2020; 319:C183-C193. [PMID: 32432925 DOI: 10.1152/ajpcell.00505.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vasa vasorum (VV), the microvascular network around large vessels, has been recognized as an important contributor to the pathological vascular remodeling in cardiovascular diseases. In bovine and rat models of hypoxic pulmonary hypertension (PH), we have previously shown that chronic hypoxia profoundly increased pulmonary artery (PA) VV permeability, associated with infiltration of inflammatory and progenitor cells in the arterial wall, perivascular inflammation, and structural vascular remodeling. Extracellular adenosine was shown to exhibit a barrier-protective effect on VV endothelial cells (VVEC) via cAMP-independent mechanisms, which involved adenosine A1 receptor-mediated activation of Gi-phosphoinositide 3-kinase-Akt pathway and actin cytoskeleton remodeling. Using VVEC isolated from the adventitia of calf PA, in this study we investigated in more detail the mechanisms linking Gi activation to downstream barrier protection pathways. Using a small-interference RNA (siRNA) technique and transendothelial electrical resistance assay, we found that the adaptor protein, engulfment and cell motility 1 (ELMO1), the tyrosine phosphatase Src homology region 2 domain-containing phosphatase-2, and atypical Gi- and Rac1-mediated protein kinase A activation are implicated in VVEC barrier enhancement. In contrast, the actin-interacting GTP-binding protein, girdin, and the p21-activated kinase 1 downstream target, LIM kinase, are not involved in this response. In addition, adenosine-dependent cytoskeletal rearrangement involves activation of cofilin and inactivation of ezrin-radixin-moesin regulatory cytoskeletal proteins, consistent with a barrier-protective mechanism. Collectively, our data indicate that targeting adenosine receptors and downstream barrier-protective pathways in VVEC may have a potential translational significance in developing pharmacological approach for the VV barrier protection in PH.
Collapse
Affiliation(s)
| | - Robert Batori
- Augusta University Vascular Biology Center, Augusta, Georgia
| | | | | | - Sanjiv Kumar
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Istvan Czikora
- Augusta University Vascular Biology Center, Augusta, Georgia
| | - Vijaya Karoor
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Derek Strassheim
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | | |
Collapse
|
169
|
Abouelkhair MA, Frank LA, Bemis DA, Giannone RJ, Kania SA. Staphylococcus pseudintermedius 5'-nucleotidase suppresses canine phagocytic activity. Vet Microbiol 2020; 246:108720. [PMID: 32605759 DOI: 10.1016/j.vetmic.2020.108720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus pseudintermedius is a major opportunistic bacterial pathogen and the leading cause of pyoderma in dogs. In canines it is also often associated with infections of the urinary system and wounds and occasionally infects people. Widespread antimicrobial resistance has made the development of alternative treatments a high priority. The development of a staphylococcal vaccine, however, has proven challenging. Identification of virulence factors that inhibit phagocytosis and avoid innate immunity may play a significant role in preventing or treating infection with S. pseudintermedius. In this study, we identified a putative 5'-nucleotidase provisionally named SpAdsA, a S. pseudintermedius cell- wall protein encoded by SpAdsA. SpAdsA shares approximately 52% identity with the orthologous protein of Staphylococcus aureus and 14.8% identity with that of Streptococcus suis type2. It catalyzes the dephosphorylation of adenosine triphosphate and attenuation of this enzyme with critical amino acid substitutions nearly eliminated its hydrolytic activity. Exogenous adenosine inhibited phagocytosis of S. pseudintermedius by canine neutrophils and monocytes. Conversely, the addition of SpAdsA inhibitor or A2A adenosine receptor antagonist impaired the capacity of S. pseudintermedius to escape from killing by phagocytic cells. The neutralizing ability of canine antibody produced against SpAdsA-M was determined. Taken together, these results suggest that SpAdsA likely plays an important role in S. pseudintermedius virulence and that attenuated SpAdsA may be a good candidate for inclusion in a vaccine against S. pseudintermedius.
Collapse
Affiliation(s)
- Mohamed A Abouelkhair
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA; Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Menoufia, Egypt
| | - Linda A Frank
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA
| | - David A Bemis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Richard J Giannone
- Chemical Sciences Division, Mass Spectrometry and Laser Spectrometry, Oakridge National Laboratories, Oakridge, TN, USA
| | - Stephen A Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA.
| |
Collapse
|
170
|
Angioni R, Liboni C, Herkenne S, Sánchez-Rodríguez R, Borile G, Marcuzzi E, Calì B, Muraca M, Viola A. CD73 + extracellular vesicles inhibit angiogenesis through adenosine A 2B receptor signalling. J Extracell Vesicles 2020; 9:1757900. [PMID: 32489531 PMCID: PMC7241475 DOI: 10.1080/20013078.2020.1757900] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/04/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Pathological angiogenesis is a hallmark of several conditions including eye diseases, inflammatory diseases, and cancer. Stromal cells play a crucial role in regulating angiogenesis through the release of soluble factors or direct contact with endothelial cells. Here, we analysed the properties of the extracellular vesicles (EVs) released by bone marrow mesenchymal stromal cells (MSCs) and explored the possibility of using them to therapeutically target angiogenesis. We demonstrated that in response to pro-inflammatory cytokines, MSCs produce EVs that are enriched in TIMP-1, CD39 and CD73 and inhibit angiogenesis targeting both extracellular matrix remodelling and endothelial cell migration. We identified a novel anti-angiogenic mechanism based on adenosine production, triggering of A2B adenosine receptors, and induction of NOX2-dependent oxidative stress within endothelial cells. Finally, in pilot experiments, we exploited the anti-angiogenic EVs to inhibit tumour progression in vivo. Our results identify novel pathways involved in the crosstalk between endothelial and stromal cell and suggest new therapeutic strategies to target pathological angiogenesis.
Collapse
Affiliation(s)
- Roberta Angioni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Cristina Liboni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | | | - Ricardo Sánchez-Rodríguez
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Giulia Borile
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Elisabetta Marcuzzi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Bianca Calì
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| | - Maurizio Muraca
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
- Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, Padua, Italy
| |
Collapse
|
171
|
Gong M, Ye S, Li WX, Zhang J, Liu Y, Zhu J, Lv W, Zhang H, Wang J, Lu A, He K. Regulatory function of praja ring finger ubiquitin ligase 2 mediated by the P2rx3/P2rx7 axis in mouse hippocampal neuronal cells. Am J Physiol Cell Physiol 2020; 318:C1123-C1135. [PMID: 32267716 DOI: 10.1152/ajpcell.00070.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Praja2 (Pja2), a member of the growing family of mammalian RING E3 ubiquitin ligases, is reportedly involved in not only several types of cancer but also neurological diseases and disorders, but the genetic mechanism underlying the regulation of Pja2 in the nervous system remains unclear. To study the cellular and molecular functions of Pja2 in mouse hippocampal neuronal cells (MHNCs), we used gain- and loss-of-function manipulations of Pja2 in HT-22 cells and tested their regulatory effects on three Alzheimer's disease (AD) genes and cell proliferation. The results revealed that the expression of AD markers, including amyloid beta precursor protein (App), microtubule-associated protein tau (Mapt), and gamma-secretase activating protein (Gsap), could be inhibited by Pja2 overexpression and activated by Pja2 knockdown. In addition, HT-22 cell proliferation was enhanced by Pja2 upregulation and suppressed by its downregulation. We also evaluated and quantified the targets that responded to the enforced expression of Pja2 by RNA-Seq, and the results showed that purinergic receptor P2X, ligand-gated ion channel 3 and 7 (P2rx3 and P2rx7), which show different expression patterns in the critical calcium signaling pathway, mediated the regulatory effect of Pja2 in HT-22 cells. Functional studies indicated that Pja2 regulated HT-22 cells development and AD marker genes by inhibiting P2rx3 but promoting P2rx7, a gene downstream of P2rx3. In conclusion, our results provide new insights into the regulatory function of the Pja2 gene in MHNCs and thus underscore the potential relevance of this molecule to the pathophysiology of AD.
Collapse
Affiliation(s)
- Mengting Gong
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Shoudong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wen-Xing Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jian Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Yanjun Liu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jie Zhu
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Wenwen Lv
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Jing Wang
- Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, China.,Department of Biostatistics, School of Life Sciences, Anhui University, Hefei, Anhui, China.,School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
172
|
Scholl JN, de Fraga Dias A, Pizzato PR, Lopes DV, Moritz CEJ, Jandrey EHF, Souto GD, Colombo M, Rohden F, Sévigny J, Pohlmann AR, Guterres SS, Battastini AMO, Figueiró F. Characterization and antiproliferative activity of glioma-derived extracellular vesicles. Nanomedicine (Lond) 2020; 15:1001-1018. [PMID: 32249669 DOI: 10.2217/nnm-2019-0431] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To characterize a method to isolate glioma-derived extracellular vesicles (GEVs) and understand their role in immune system modulation and glioma progression. Materials & methods: GEVs were isolated by differential centrifugation from C6 cell supernatant and characterized by size and expression of CD9, HSP70, CD39 and CD73. The glioma model was performed by injecting C6 glioma cells into the right striatum of Wistar rats in the following groups: controls (C6 cells alone), coinjection (C6 cells + GEVs) and GEVs by intranasal administration followed by immune cells, tumor size and cells proliferation analyses. Results: GEVs presented uniform size (175 nm), expressed CD9, HSP70, CD39, CD73 and produced adenosine. In vivo, we observed a reduction in tumor size, in cell proliferation (Ki-67) and in a regulatory cell marker (FoxP3). Conclusion: GEVs, administered before or at tumor challenge, have antiproliferative properties and reduce regulatory cells in the glioma microenvironment.
Collapse
Affiliation(s)
- Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Pauline Rafaela Pizzato
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Daniela Vasconcelos Lopes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Cesar Eduardo Jacintho Moritz
- Programa de Pós-Graduação em Ciências do Movimento Humano, Escola de Educação Física, Fisioterapia e Dança (ESEFID), Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90690-200, Brazil
| | - Elisa Helena Farias Jandrey
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Gabriele Dadalt Souto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Mariana Colombo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Francieli Rohden
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC, G1V 4G2, Canada.,Département de Microbiologie-Infectiologie et D'immunologie, Faculté de Médecine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Sílvia Stanisçuaski Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Fabrício Figueiró
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
173
|
Torres-Pineda DB, Mora-García MDL, García-Rocha R, Hernández-Montes J, Weiss-Steider B, Montesinos-Montesinos JJ, Don-López CA, Marín-Aquino LA, Muñóz-Godínez R, Ibarra LRÁ, López Romero R, Monroy-García A. Adenosine augments the production of IL-10 in cervical cancer cells through interaction with the A 2B adenosine receptor, resulting in protection against the activity of cytotoxic T cells. Cytokine 2020; 130:155082. [PMID: 32259773 DOI: 10.1016/j.cyto.2020.155082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Cervical cancer (CeCa) produces large amounts of IL-10, which downregulates the major histocompatibility complex class I molecules (HLA-I) in cancer cells and inhibits the immune response mediated by cytotoxic T lymphocytes (CTLs). In this study, we analyzed the ability of CeCa cells to produce IL-10 through the CD73-adenosine pathway and its effect on the downregulation of HLA-I molecules to evade CTL-mediated immune recognition. CeCa cells cultured in the presence of ≥10 µM AMP or adenosine produced 4.5-6 times as much IL-10 as unstimulated cells. The silencing of CD73 or the blocking of A2BR with the specific antagonist MRS1754 reversed this effect. In addition, IL-10 decreased the expression of HLA-I molecules, resulting in the protection of CeCa cells against the cytotoxic activity of CTLs. The addition of MRS1754 or anti-IL-10 reversed the decrease in HLA-I molecules and favored the cytotoxic activity of CTLs. These results strongly suggest the presence of a feedback loop encompassing the adenosinergic pathway, the production of IL-10, and the downregulation of HLA-I molecules in CeCa cells that favors immune evasion and thus tumor progression. This pathway may have clinical importance as a therapeutic target.
Collapse
Affiliation(s)
- Daniela Berenice Torres-Pineda
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Programa de Posgrado en Ciencias Biológicas, UNAM, Ciudad de México, Mexico.
| | | | - Rosario García-Rocha
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Jorge Hernández-Montes
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Benny Weiss-Steider
- Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico
| | - Juan José Montesinos-Montesinos
- Laboratorio de Células Troncales Mesenquimales, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Luis Antonio Marín-Aquino
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Ricardo Muñóz-Godínez
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | | | - Ricardo López Romero
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico
| | - Alberto Monroy-García
- Laboratorio de Inmunología y Cáncer, UIMEO, H Oncología, CMN SXXI, Instituto Mexicano del Seguro Social, Ciudad de México, Mexico; Laboratorio de Inmunobiología, UIDCC-UMIEZ, FES-Zaragoza, UNAM, Ciudad de México, Mexico.
| |
Collapse
|
174
|
Bhattarai S, Pippel J, Scaletti E, Idris R, Freundlieb M, Rolshoven G, Renn C, Lee SY, Abdelrahman A, Zimmermann H, El-Tayeb A, Müller CE, Sträter N. 2-Substituted α,β-Methylene-ADP Derivatives: Potent Competitive Ecto-5'-nucleotidase (CD73) Inhibitors with Variable Binding Modes. J Med Chem 2020; 63:2941-2957. [PMID: 32045236 DOI: 10.1021/acs.jmedchem.9b01611] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,β-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.
Collapse
Affiliation(s)
- Sanjay Bhattarai
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Jan Pippel
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Emma Scaletti
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| | - Riham Idris
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Marianne Freundlieb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Georg Rolshoven
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christian Renn
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Aliaa Abdelrahman
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Goethe-University, D-60438 Frankfurt am Main, Germany
| | - Ali El-Tayeb
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Center for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, D-04103 Leipzig, Germany
| |
Collapse
|
175
|
Strassheim D, Karoor V, Nijmeh H, Weston P, Lapel M, Schaack J, Sullivan T, Dempsey EC, Stenmark KR, Gerasimovskaya E. c-Jun, Foxo3a, and c-Myc Transcription Factors are Key Regulators of ATP-Mediated Angiogenic Responses in Pulmonary Artery Vasa Vasorum Endothelial Cells. Cells 2020; 9:cells9020416. [PMID: 32054096 PMCID: PMC7072142 DOI: 10.3390/cells9020416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Angiogenic vasa vasorum (VV) expansion plays an essential role in the pathogenesis of hypoxia-induced pulmonary hypertension (PH), a cardiovascular disease. We previously showed that extracellular ATP released under hypoxic conditions is an autocrine/paracrine, the angiogenic factor for pulmonary artery (PA) VV endothelial cells (VVECs), acting via P2Y purinergic receptors (P2YR) and the Phosphoinositide 3-kinase (PI3K)-Akt-Mammalian Target of Rapamycin (mTOR) signaling. To further elucidate the molecular mechanisms of ATP-mediated VV angiogenesis, we determined the profile of ATP-inducible transcription factors (TFs) in VVECs using a TranSignal protein/DNA array. C-Jun, c-Myc, and Foxo3 were found to be upregulated in most VVEC populations and formed nodes connecting several signaling networks. siRNA-mediated knockdown (KD) of these TFs revealed their critical role in ATP-induced VVEC angiogenic responses and the regulation of downstream targets involved in tissue remodeling, cell cycle control, expression of endothelial markers, cell adhesion, and junction proteins. Our results showed that c-Jun was required for the expression of ATP-stimulated angiogenic genes, c-Myc was repressive to anti-angiogenic genes, and Foxo3a predominantly controlled the expression of anti-apoptotic and junctional proteins. The findings from our study suggest that pharmacological targeting of the components of P2YR-PI3K-Akt-mTOR axis and specific TFs reduced ATP-mediated VVEC angiogenic response and may have a potential translational significance in attenuating pathological vascular remodeling.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Hala Nijmeh
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Philip Weston
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Martin Lapel
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Jerome Schaack
- Department of Microbiology, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (V.K.); (T.S.); (E.C.D.); (K.R.S.)
- Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA; (H.N.); (P.W.); (M.L.)
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
176
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
177
|
Kutryb-Zajac B, Jablonska P, Serocki M, Bulinska A, Mierzejewska P, Friebe D, Alter C, Jasztal A, Lango R, Rogowski J, Bartoszewski R, Slominska EM, Chlopicki S, Schrader J, Yacoub MH, Smolenski RT. Nucleotide ecto-enzyme metabolic pattern and spatial distribution in calcific aortic valve disease; its relation to pathological changes and clinical presentation. Clin Res Cardiol 2020; 109:137-160. [PMID: 31144065 PMCID: PMC6989624 DOI: 10.1007/s00392-019-01495-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Extracellular nucleotide metabolism contributes to chronic inflammation, cell differentiation, and tissue mineralization by controlling nucleotide and adenosine concentrations and hence its purinergic effects. This study investigated location-specific changes of extracellular nucleotide metabolism in aortic valves of patients with calcific aortic valve disease (CAVD). Individual ecto-enzymes and adenosine receptors involved were analyzed together with correlation with CAVD severity and risk factors. RESULTS Nucleotide and adenosine degradation rates were adversely modified on the aortic surface of stenotic valve as compared to ventricular side, including decreased ATP removal (1.25 ± 0.35 vs. 2.24 ± 0.61 nmol/min/cm2) and adenosine production (1.32 ± 0.12 vs. 2.49 ± 0.28 nmol/min/cm2) as well as increased adenosine deamination (1.28 ± 0.31 vs. 0.67 ± 0.11 nmol/min/cm2). The rates of nucleotide to adenosine conversions were lower, while adenosine deamination was higher on the aortic sides of stenotic vs. non-stenotic valve. There were no differences in extracellular nucleotide metabolism between aortic and ventricular sides of non-stenotic valves. Furthermore, nucleotide degradation rates, measured on aortic side in CAVD (n = 62), negatively correlated with echocardiographic and biochemical parameters of disease severity (aortic jet velocity vs. ATP hydrolysis: r = - 0.30, p < 0.05; vs. AMP hydrolysis: r = - 0.44, p < 0.001; valvular phosphate concentration vs. ATP hydrolysis: r = - 0.26, p < 0.05; vs. AMP hydrolysis: r = - 0.25, p = 0.05) while adenosine deamination showed positive correlation trend with valvular phosphate deposits (r = 0.23, p = 0.07). Nucleotide and adenosine conversion rates also correlated with CAVD risk factors, including hyperlipidemia (AMP hydrolysis vs. serum LDL cholesterol: r = - 0.28, p = 0.05; adenosine deamination vs. total cholesterol: r = 0.25, p = 0.05; LDL cholesterol: r = 0.28, p < 0.05; triglycerides: r = 0.32, p < 0.05), hypertension (adenosine deamination vs. systolic blood pressure: r = 0.28, p < 0.05) and thrombosis (ATP hydrolysis vs. prothrombin time: r = - 0.35, p < 0.01). Functional assays as well as histological and immunofluorescence, flow cytometry and RT-PCR studies identified all major ecto-enzymes engaged in nucleotide metabolism in aortic valves that included ecto-nucleotidases, alkaline phosphatase, and ecto-adenosine deaminase. We have shown that changes in nucleotide-converting ecto-enzymes were derived from their altered activities on valve cells and immune cell infiltrate. We have also demonstrated a presence of A1, A2a and A2b adenosine receptors with diminished expression of A2a and A2b in stenotic vs. non-stenotic valves. Finally, we revealed that augmenting adenosine effects by blocking adenosine deamination with deoxycoformycin decreased aortic valve thickness and reduced markers of calcification via adenosine-dependent pathways in a mouse model of CAVD. CONCLUSIONS This work highlights profound changes in extracellular nucleotide and adenosine metabolism in CAVD. Altered extracellular nucleotide hydrolysis and degradation of adenosine in stenotic valves may affect purinergic responses to support a pro-stenotic milieu and valve calcification. This emphasizes a potential mechanism and target for prevention and therapy. .
Collapse
Affiliation(s)
- Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 Street, 80-416, Gdańsk, Poland
| | - Alicja Bulinska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Daniela Friebe
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Christina Alter
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Street, 30-348, Kraków, Poland
| | - Romuald Lango
- Department of Cardiac Anesthesiology, Medical University of Gdansk, Dębinki 7 Street, 80-211, Gdańsk, Poland
| | - Jan Rogowski
- Chair and Clinic of Cardiac and Vascular Surgery, Medical University of Gdansk, Dębinki 7 Street, 80-211, Gdańsk, Poland
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107 Street, 80-416, Gdańsk, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Street, 30-348, Kraków, Poland
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Magdi H Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield, Middlesex, UB9 6JH, UK
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Dębinki 1 Street, 80-211, Gdańsk, Poland.
| |
Collapse
|
178
|
Corciulo C, Cronstein BN. Signaling of the Purinergic System in the Joint. Front Pharmacol 2020; 10:1591. [PMID: 32038258 PMCID: PMC6993121 DOI: 10.3389/fphar.2019.01591] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
The joint is a complex anatomical structure consisting of different tissues, each with a particular feature, playing together to give mobility and stability at the body. All the joints have a similar composition including cartilage for reducing the friction of the movement and protecting the underlying bone, a synovial membrane that produces synovial fluid to lubricate the joint, ligaments to limit joint movement, and tendons for the interaction with muscles. Direct or indirect damage of one or more of the tissues forming the joint is the foundation of different pathological conditions. Many molecular mechanisms are involved in maintaining the joint homeostasis as well as in triggering disease development. The molecular pathway activated by the purinergic system is one of them.The purinergic signaling defines a group of receptors and intermembrane channels activated by adenosine, adenosine diphosphate, adenosine 5’-triphosphate, uridine triphosphate, and uridine diphosphate. It has been largely described as a modulator of many physiological and pathological conditions including rheumatic diseases. Here we will give an overview of the purinergic system in the joint describing its expression and function in the synovium, cartilage, ligament, tendon, and bone with a therapeutic perspective.
Collapse
Affiliation(s)
- Carmen Corciulo
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Krefting Research Centre-Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, NYU School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
179
|
Li S, Chen X, Li J, Li X, Zhang T, Hao G, Sun J. Extracellular ATP is a potent signaling molecule in the activation of the Japanese flounder ( Paralichthys olivaceus) innate immune responses. Innate Immun 2020; 26:413-423. [PMID: 31914841 PMCID: PMC7903527 DOI: 10.1177/1753425918804635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Innate immunity is the first line of defense against pathogen infections. Extracellular ATP (eATP) is one of the most studied danger-associated molecular pattern molecules that can activate host innate immune responses through binding with and activating purinergic receptors on the plasma membrane. The detailed actions of eATP on fish innate immunity, however, remain poorly understood. In this study, we investigated bacterial pathogen-induced ATP release in head kidney cells of the Japanese flounder Paralichthys olivaceus. We also examined the actions of eATP on pro-inflammatory cytokine and immune-related gene expression, the activity of induced NO synthase (iNOS), and the production of reactive oxygen species (ROS) and NO in Japanese flounder immune cells. We demonstrate that ATP is dynamically released from Japanese flounder head kidney cells into the extracellular milieu during immune challenge by formalin-inactivated Edwardsiella tarda and Vibrio anguillarum. In addition, we show that eATP administration results in profound up-regulation of pro-inflammatory cytokine gene expression, iNOS activity, and inflammatory mediator production, including ROS and NO, in Japanese flounder immune cells. Altogether, our findings demonstrate that eATP is a potent signaling molecule for the activation of innate immune responses in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Tianxu Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, China
| |
Collapse
|
180
|
Immunometabolic approaches to prevent, detect, and treat neonatal sepsis. Pediatr Res 2020; 87:399-405. [PMID: 31689710 DOI: 10.1038/s41390-019-0647-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/12/2022]
Abstract
The first days of postnatal life are energetically demanding as metabolic functions change dramatically to accommodate drastic environmental and physiologic transitions after birth. It is increasingly appreciated that metabolic pathways are not only crucial for nutrition but also play important roles in regulating inflammation and the host response to infection. Neonatal susceptibility to infection is increased due to a functionally distinct immune response characterized by high reliance on innate immune mechanisms. Interactions between metabolism and the immune response are increasingly recognized, as changes in metabolic pathways drive innate immune cell function and activation and consequently host response to pathogens. Moreover, metabolites, such as acetyl-coenzyme A (acetyl-CoA) and succinate have immunoregulatory properties and serve as cofactors for enzymes involved in epigenetic reprogramming or "training" of innate immune cells after an initial infectious exposure. Highly sensitive metabolomic approaches allow us to define alterations in metabolic signatures as they change during ontogeny and as perturbed by immunization or infection, thereby linking metabolic pathways to immune cell effector functions. Characterizing the ontogeny of immunometabolism will offer new opportunities to prevent, diagnose, and treat neonatal sepsis.
Collapse
|
181
|
Wu Chuang A, Kepp O, Kroemer G, Bezu L. Endoplasmic reticulum stress in the cellular release of damage-associated molecular patterns. BIOLOGY OF THE ENDOPLASMIC RETICULUM 2020; 350:1-28. [DOI: 10.1016/bs.ircmb.2019.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
182
|
Boison D, Yegutkin GG. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell 2019; 36:582-596. [PMID: 31821783 PMCID: PMC7224341 DOI: 10.1016/j.ccell.2019.10.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Adenosine is a key metabolic and immune-checkpoint regulator implicated in the tumor escape from the host immune system. Major gaps in knowledge that impede the development of effective adenosine-based therapeutics include: (1) lack of consideration of redundant pathways controlling ATP and adenosine levels; (2) lack of distinction between receptor-dependent and -independent effects of adenosine, and (3) focus on extracellular adenosine without consideration of intracellular metabolism and compartmentalization. In light of current clinical trials, we provide an overview of adenosine metabolism and point out the need for a more careful evaluation of the entire purinome in emerging cancer therapies.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Brain Health Institute, Piscataway, NJ 08854, USA.
| | - Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, 20520, Finland.
| |
Collapse
|
183
|
Kany S, Janicova A, Relja B. Innate Immunity and Alcohol. J Clin Med 2019; 8:jcm8111981. [PMID: 31739600 PMCID: PMC6912266 DOI: 10.3390/jcm8111981] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
The innate immunity has evolved during millions of years, and thus, equivalent or comparable components are found in most vertebrates, invertebrates, and even plants. It constitutes the first line of defense against molecules, which are either pathogen-derived or a danger signal themselves, and not seldom both. These molecular patterns are comprised of highly conserved structures, a common trait in innate immunity, and constitute very potent triggers for inflammation mediated via extracellular or intracellular pattern recognition receptors. Human culture is often interweaved with the consumption of alcohol, in both drinking habits, its acute or chronical misuse. Apart from behavioral effects as often observed in intoxicated individuals, alcohol consumption also leads to immunological modulation on the humoral and cellular levels. In the last 20 years, major advances in this field of research have been made in clinical studies, as well as in vitro and in vivo research. As every physician will experience intoxicated patients, it is important to be aware of the changes that this cohort undergoes. This review will provide a summary of the current knowledge on the influence of alcohol consumption on certain factors of innate immunity after a hit, followed by the current studies that display the effect of alcohol with a description of the model, the mode of alcohol administration, as well as its dose. This will provide a way for the reader to evaluate the findings presented.
Collapse
|
184
|
Zhao R, Qiao J, Zhang X, Zhao Y, Meng X, Sun D, Peng X. Toll-Like Receptor-Mediated Activation of CD39 Internalization in BMDCs Leads to Extracellular ATP Accumulation and Facilitates P2X7 Receptor Activation. Front Immunol 2019; 10:2524. [PMID: 31736956 PMCID: PMC6834529 DOI: 10.3389/fimmu.2019.02524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Toll-like receptors (TLRs) trigger innate immune responses through their recognition of conserved molecular ligands of either endogenous or microbial origin. Although activation, function, and signaling pathways of TLRs were already well-studied, their precise function in specific cell types, especially innate immune cells, needs to be further clarified. In this study, we showed that when significantly decreased amounts of membrane CD39, an adenosine triphosphate (ATP)-degrading enzyme, were detected in lipopolysaccharide (LPS)-treated bone marrow-derived dendritic cells (BMDCs), Cd39 mRNA expression, and whole-cell CD39 expression were at the same levels as those in untreated BMDCs. Further experiments demonstrated that the downregulation of membrane CD39 expression in LPS-treated BMDCs was mediated by endocytosis, leading to membrane-exposed CD39 downregulation, which was positively associated with decreased enzymatic activity in ATP metabolism and increased extracellular ATP accumulation. The accumulated ATP promoted intracellular calcium accumulation and IL-1β production in BMDCs through P2X7 signaling activation. Further research revealed that not only LPS but also other TLR ligands, excluding polyI:C, induced CD39 internalization in BMDCs and that the MyD88 pathway was critical in this process. The results suggested that the activation of CD39 internalization in DCs induced by a TLR ligand caused increased ATP accumulation, leading to P2X7 receptor activation that mediated a proinflammatory effect. Considering the strong modulatory effect of extracellular ATP accumulation on the immune response and inflammation, the manipulation of membrane CD39 expression on DCs may have implications on the regulation and treatment of inflammatory responses.
Collapse
Affiliation(s)
- Ronglan Zhao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Jinjuan Qiao
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Xumei Zhang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiangying Meng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| | - Deming Sun
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Doheny Eye Institute, Los Angeles, CA, United States
| | - Xiaoxiang Peng
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.,Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, China
| |
Collapse
|
185
|
de Leve S, Wirsdörfer F, Jendrossek V. The CD73/Ado System-A New Player in RT Induced Adverse Late Effects. Cancers (Basel) 2019; 11:cancers11101578. [PMID: 31623231 PMCID: PMC6827091 DOI: 10.3390/cancers11101578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy (RT) is a central component of standard treatment for many cancer patients. RT alone or in multimodal treatment strategies has a documented contribution to enhanced local control and overall survival of cancer patients, and cancer cure. Clinical RT aims at maximizing tumor control, while minimizing the risk for RT-induced adverse late effects. However, acute and late toxicities of IR in normal tissues are still important biological barriers to successful RT: While curative RT may not be tolerable, sub-optimal tolerable RT doses will lead to fatal outcomes by local recurrence or metastatic disease, even when accepting adverse normal tissue effects that decrease the quality of life of irradiated cancer patients. Technical improvements in treatment planning and the increasing use of particle therapy have allowed for a more accurate delivery of IR to the tumor volume and have thereby helped to improve the safety profile of RT for many solid tumors. With these technical and physical strategies reaching their natural limits, current research for improving the therapeutic gain of RT focuses on innovative biological concepts that either selectively limit the adverse effects of RT in normal tissues without protecting the tumor or specifically increase the radiosensitivity of the tumor tissue without enhancing the risk of normal tissue complications. The biology-based optimization of RT requires the identification of biological factors that are linked to differential radiosensitivity of normal or tumor tissues, and are amenable to therapeutic targeting. Extracellular adenosine is an endogenous mediator critical to the maintenance of homeostasis in various tissues. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (NT5E, CD73) that catabolize ATP to adenosine. Recent work revealed a role of the immunoregulatory CD73/adenosine system in radiation-induced fibrotic disease in normal tissues suggesting a potential use as novel therapeutic target for normal tissue protection. The present review summarizes relevant findings on the pathologic roles of CD73 and adenosine in radiation-induced fibrosis in different organs (lung, skin, gut, and kidney) that have been obtained in preclinical models and proposes a refined model of radiation-induced normal tissue toxicity including the disease-promoting effects of radiation-induced activation of CD73/adenosine signaling in the irradiated tissue environment. However, expression and activity of the CD73/adenosine system in the tumor environment has also been linked to increased tumor growth and tumor immune escape, at least in preclinical models. Therefore, we will discuss the use of pharmacologic inhibition of CD73/adenosine-signaling as a promising strategy for improving the therapeutic gain of RT by targeting both, malignant tumor growth and adverse late effects of RT with a focus on fibrotic disease. The consideration of the therapeutic window is particularly important in view of the increasing use of RT in combination with various molecularly targeted agents and immunotherapy to enhance the tumor radiation response, as such combinations may result in increased or novel toxicities, as well as the increasing number of cancer survivors.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
186
|
Impacts of Escherichia coli infection in young breeder chicks on the animal behavior and cerebral activity of purinergic and cholinergic enzymes involved in the regulation of molecules with neurotransmitter and neuromodulator function. Microb Pathog 2019; 138:103787. [PMID: 31604153 DOI: 10.1016/j.micpath.2019.103787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/20/2019] [Accepted: 10/07/2019] [Indexed: 12/20/2022]
Abstract
The objective of this study was to evaluate if infection by Escherichia coli in juvenile breeder chicks alters the activity of enzymes involved in neurotransmission and cerebral immunomodulation, including acetylcholinesterase (AChE), nucleoside triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase (5'NT) and adenosine deaminase (ADA), as well as their effects on the pathogenesis of the disease. We divided 20 growing breeder chicks into two groups (n = 10 per group). One group was experimentally infected with 1 mL of culture medium containing 1 × 108 CFU of E. coli intraperitoneally. The other was the negative control. On the tenth day after infection, the animals were euthanized and brain samples were collected. Macroscopically, pericarditis and hepatic congestion were observed in the birds, but without histopathological lesions in the encephalon although the bacterium was present in the cerebral cortex of all animals in the infected group (i.e., they were PCR-positive). The activity of AChE, NTPDase, 5'-NT and ADA were evaluated in the cerebral homogenates of the birds after 10 days of infection. AChE activity in the cerebral cortex was lower in the infected group than in the control; there was an increase in the activity of NTPDase, 5'-nucleotidase and ADA, possibly indicating greater hydrolysis of ATP (P < 0.001), ADP (P < 0.01) and AMP (P < 0.01), followed by increased adenosine deamination (P < 0.001). Despite these changes, no apparently diseased animals were observed throughout the experimental period. Therefore, such changes in enzymatic activity may affect the functioning of the central nervous system because these enzymes are responsible for extracellular regulation of molecules that act on neurotransmission and immunomodulation such as acetylcholine, ATP and adenosine.
Collapse
|
187
|
Wu J, Lin S, Wan B, Velani B, Zhu Y. Pyroptosis in Liver Disease: New Insights into Disease Mechanisms. Aging Dis 2019; 10:1094-1108. [PMID: 31595205 PMCID: PMC6764727 DOI: 10.14336/ad.2019.0116] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/16/2019] [Indexed: 12/12/2022] Open
Abstract
There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of caspase enzymes—caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.
Collapse
Affiliation(s)
- Jiali Wu
- 1Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Su Lin
- 1Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bo Wan
- 2Faculty of Life Sciences and Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Bharat Velani
- 3Basildon and Thurrock University Hospitals NHS Foundation Trust, Nethermayne, Basildon, Essex SS16 5NL, United Kingdom
| | - Yueyong Zhu
- 1Liver research center of the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| |
Collapse
|
188
|
Guo G, Wang H, Ye L, Shi X, Yan K, Lin K, Huang Q, Li B, Lin Q, Zhu L, Xue X, Zhang H. Hsa_circ_0000479 as a Novel Diagnostic Biomarker of Systemic Lupus Erythematosus. Front Immunol 2019; 10:2281. [PMID: 31608065 PMCID: PMC6771011 DOI: 10.3389/fimmu.2019.02281] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Accumulating evidence suggests that differentially expressed non-coding circular RNAs (circRNAs) play critical roles in the progress of autoimmune diseases. However, the role of circRNAs in systemic lupus erythematosus (SLE) remains unclear. Methods: We initially used next-generation sequencing (NGS) to comprehensively analyze circRNA expression profiles in peripheral blood mononuclear cells (PBMCs) from 10 SLE patients, stratified by their disease activity characteristics (stable or active SLE), and 10 healthy controls (HCs). Candidate circRNAs identified were first validated by quantitative reverse-transcription (qRT)-PCR in PBMC samples from a training-phase cohort of five SLE patients and five HCs. The significantly dysregulated circRNAs were then confirmed by qRT-PCR in a validation cohort of 23 SLE patients and 21 HCs, and in an external validation cohort with 64 SLE patients, 58 HCs, and 50 patients with rheumatoid arthritis (RA). In addition, we conducted bioinformatics analysis and western blotting investigating the relationships between the candidate circRNAs and SLE progression. Results: Multilayer integrative analysis of circRNA regulation showed that 84 circRNAs were upregulated and 30 were downregulated in patients with SLE compared with HCs. We then analyzed the intersection of these differentially expressed circRNAs in an SLE-stable cohort, an SLE-active cohort, and HCs. This enabled us to narrow down dysregulated circRNAs to 15 upregulated circRNAs. Only hsa_circ_0000479 was significantly upregulated in PBMCs of patients with SLE compared with HCs (P < 0.05). Furthermore, the diagnostic potential of hsa_circ_0000479 expression to distinguish SLE patients from HCs and RA patients was also significantly increased in the validation-phase and external-validation-phase cohorts (P < 0.05). When distinguishing SLE patients from HCs, the diagnostic specificities of hsa_circ_0000479 were 0.619 and 1.0 in two validation cohorts, respectively (AUCs = 0.731 and 0.730, respectively). It was also significantly increased in either stable SLE patients or active SLE patients compared with HCs in these two cohorts (P < 0.05). We also used bioinformatics analysis to show that hsa_circ_0000479 regulates SLE progression by modulating metabolic pathways and the Wnt signaling pathway. Western blotting revealed that the expression of Wnt-16 protein was significantly decreased in SLE. Conclusion: Our results suggest that hsa_circ_0000479 has potential as a novel biomarker for the diagnosis of SLE.
Collapse
Affiliation(s)
- Gangqiang Guo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lele Ye
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kangmin Lin
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qunjia Huang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Baoqing Li
- Department of Laboratory Medicine, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lejiang Zhu
- Department of Nephrology, Wenzhou Central Hospital, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
189
|
Fodor P, White B, Khan R. Inflammation-The role of ATP in pre-eclampsia. Microcirculation 2019; 27:e12585. [PMID: 31424615 DOI: 10.1111/micc.12585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/23/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
Sterile inflammation may be initiated by molecules in the host organism that signal "damage" or "danger" also known as danger-associated molecular pattern (DAMPs). In pre-eclampsia (PE), a variety of DAMPs may be involved in the etiology or exacerbation of the disorder. Adenosine 5'-triphosphate (ATP) is a key intracellular energy molecule as well as a ligand for purinergic receptors. In humans, under physiological conditions, extracellular ATP (eATP) levels are distinctly low, but can rise to several hundred fold when cells become injured, stressed, or even necrotic. This often initiates a sterile inflammatory response with eATP acting as a DAMP. Extracellular ATP and its derivative nucleotides synthetized by endonucleotidases exhibit many of their effects through purinergic receptors, via inflammatory cascades and the production of proinflammatory molecules. This is clearly seen in the P2X7 gated receptor, which is linked to release of cytokines of the interleukin-1 family. Considering its fundamental role in innate immunity, an imbalance of P2X7 receptor activation may lead to deleterious effects in the coordination of placental vessel tone via the synthesis of various proinflammatory cytokines. This review explores the implication of DAMPs, specifically ATP and uric acid in the inflammation associated with PE.
Collapse
Affiliation(s)
- Paul Fodor
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Benjamin White
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| | - Raheela Khan
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Medical School, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
190
|
Barreto M, Capi M, Lionetto L, Caiazzo I, Salerno G, Cardelli P, Simmaco M, Villa MP. Urinary and exhaled biomarkers of exercise-induced bronchoconstriction in atopic asthmatic children. Pediatr Pulmonol 2019; 54:1447-1456. [PMID: 31218848 DOI: 10.1002/ppul.24419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/07/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) reflects poor asthma control. Assessing noninvasive biomarkers associated with EIB could help to monitor patients in the pediatric age. AIMS To test exhaled and urinary biomarkers for assessing EIB in atopic asthmatic children. METHODS In 45 atopic patients (11.1 ± 1.8 years, 25 males) we measured the fractional exhaled nitric oxide (FENO ), its alveolar (CaNO), and bronchial (J'awNO) components corrected for the trumpet shape of the airways and axial NO diffusion (TMAD), concentrations of urinary adenosine and 8-hydroxy-2'-deoxyguanosine (8-OxodG), blood eosinophils count, total immunoglobulin E , skin prick tests, and baseline spirometry before a treadmill exercise challenge. Forty healthy control subjects participated solely to baseline measurements. RESULTS Patients yielded higher FENO and urinary adenosine concentrations than healthy controls. After the challenge, 18 patients (40%) had EIB; these patients had higher levels of CaNO, CaNO TMAD, and urinary adenosine than patients without EIB. Baseline spirometry, FE NO , JawNO, JawNO TMAD, urinary 8-OxodG, allergy, and blood eosinophil counts were found similar in both groups. In multiple linear regression, the fall in FEV 1 was explained by CaNO TMAD, urinary adenosine and blood eosinophil count, whereas the fall in FEF 25-75 was explained by CaNO TMAD and blood eosinophil count. Both CaNO TMAD ≥10.5 ppb and urinary adenosine ≥406 nmol/mmol Cr predicted a fall in FEV 1 ≥10%, while only CaNO TMAD ≥10.5 ppb predicted a fall in FEF 25-75 ≥26%. CONCLUSION Concentrations of peripheral airway NO are complementary with urinary adenosine for assessing EIB and promising tools of asthma control in pediatric patients with the atopic phenotype.
Collapse
Affiliation(s)
- Mario Barreto
- Pediatric Unit Sant'Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Matilde Capi
- Analytical Laboratory - Clinical Biochemistry Unit, Sant'Andrea University Hospital, Rome, Sapienza, Italy
| | - Luana Lionetto
- Analytical Laboratory - Clinical Biochemistry Unit, Sant'Andrea University Hospital, Rome, Sapienza, Italy
| | - Ilaria Caiazzo
- Pediatric Unit Sant'Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Gerardo Salerno
- Analytical Laboratory - Clinical Biochemistry Unit, Sant'Andrea University Hospital, Rome, Sapienza, Italy
| | - Patrizia Cardelli
- Analytical Laboratory - Clinical Biochemistry Unit, Sant'Andrea University Hospital, Rome, Sapienza, Italy
| | - Maurizio Simmaco
- Analytical Laboratory - Clinical Biochemistry Unit, Sant'Andrea University Hospital, Rome, Sapienza, Italy
| | - Maria Pia Villa
- Pediatric Unit Sant'Andrea Hospital, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
191
|
Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. Eur J Pharmacol 2019; 859:172538. [DOI: 10.1016/j.ejphar.2019.172538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
|
192
|
da Silva JLG, Passos DF, Bernardes VM, Leal DBR. ATP and adenosine: Role in the immunopathogenesis of rheumatoid arthritis. Immunol Lett 2019; 214:55-64. [PMID: 31479688 DOI: 10.1016/j.imlet.2019.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a classic inflammatory autoimmune disease. Local joint destruction and extra-articular manifestations of RA deeply compromise the life quality of the affected patients. RA immunopathogenesis depends on continuous immunogenic activation in which the purinergic system participates. The purinergic system comprises the signaling and metabolism of purines such as adenosine triphosphate (ATP) and adenosine. ATP signaling is involved in the activation and maintenance of the inflammatory state of RA through the activation of P2X7 and the production of cytokines, which orchestrate the pathogenesis of RA. The breakdown of ATP through the CD39/CD73 axis produces adenosine, which mostly inhibits the inflammatory process through activation of specific P1 receptors. Adenosine is hydrolyzed by adenosine deaminase (ADA) that interacts with other molecules playing additional roles in this disease. This review explores the release, metabolism, and the effects of binding of ATP and adenosine to their respective receptors in the context of RA, as well as their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jean L G da Silva
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela F Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Viviane M Bernardes
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
193
|
Colamatteo A, Micillo T, Bruzzaniti S, Fusco C, Garavelli S, De Rosa V, Galgani M, Spagnuolo MI, Di Rella F, Puca AA, de Candia P, Matarese G. Metabolism and Autoimmune Responses: The microRNA Connection. Front Immunol 2019; 10:1969. [PMID: 31555261 PMCID: PMC6722206 DOI: 10.3389/fimmu.2019.01969] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Distinct metabolic pathways are known to regulate growth, differentiation, survival, and activation of immune cells by providing energy and specific biosynthetic precursors. Compelling experimental evidence demonstrates that effector T cell functions are coupled with profound changes in cellular metabolism. Importantly, the effector T cell-dependent “anti-self” response characterizing the autoimmune diseases is accompanied by significant metabolic alterations. MicroRNAs (miRNAs), evolutionary conserved small non-coding RNA molecules that affect gene expression by binding to target messenger RNAs, are now known to regulate multiple functions of effector T cells, including the strength of their activation, thus contributing to immune homeostasis. In this review, we will examine the most recent studies that describe miRNA direct involvement in the metabolic reprogramming that marks effector T cell functions. In particular, we will focus on the work showing a connection between miRNA regulatory function and the molecular network dysregulation that leads to metabolic pathway derangement in autoimmunity. Finally, we will also speculate on the possibility that the interplay between miRNAs and metabolism in T cells may help identify novel miRNA-based therapeutic strategies to treat effector T cell immunometabolic alterations in pathological conditions such as autoimmunity and chronic inflammation.
Collapse
Affiliation(s)
- Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Clorinda Fusco
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy
| | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy.,Fondazione Santa Lucia, Unità di Neuroimmunologia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Annibale A Puca
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Paola de Candia
- Department of Cardiovascular Diseases, IRCCS MultiMedica, Milan, Italy
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federi II", Naples, Italy.,Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Naples, Italy
| |
Collapse
|
194
|
Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw 2019; 19:e23. [PMID: 31501711 PMCID: PMC6722273 DOI: 10.4110/in.2019.19.e23] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/30/2019] [Accepted: 07/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has been introduced into cancer treatment methods, but different problems have restricted the efficacy of these protocols in clinical trials such as the presence of various immunomodulatory factors in the tumor microenvironment. Adenosine is an immunosuppressive metabolite produced by the tumor to promote growth, invasion, metastasis, and immune evasion. Many studies about adenosine and its metabolism in cancer have heightened interest in pursuing this treatment approach. It seems that targeting the adenosine pathway in combination with immunotherapy may lead to efficient antitumor response. In this review, we provide information on the roles of both adenosine and CD73 in the immune system and tumor development. We also describe recent studies about combination therapy with both purinergic inhibitors and other immunotherapeutic methods.
Collapse
Affiliation(s)
- Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
195
|
Hümmeke-Oppers F, Hemelaar P, Pickkers P. Innovative Drugs to Target Renal Inflammation in Sepsis: Alkaline Phosphatase. Front Pharmacol 2019; 10:919. [PMID: 31507417 PMCID: PMC6716471 DOI: 10.3389/fphar.2019.00919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis-related mortality roughly doubles when acute kidney injury (AKI) occurs and end-stage renal disease is more common in sepsis-associated AKI survivors. So far, no licensed treatment for the prevention of AKI is available, however the data on alkaline phosphatase (AP) is promising and might change this. Sepsis-associated AKI is believed to be the result of inflammation and hypoxia combined. Systemic inflammation started by recognition of ‘pathogen-associated molecular patterns’ (PAMPs) such as lipopolysaccharide (LPS) which binds to Toll-like receptor 4 and leads to the production of inflammatory mediators. Due to this inflammatory process renal microcirculation gets impaired leading to hypoxia resulting in cell damage or cell death. In the process of cell damage so called ‘danger-associated molecular patterns’ (DAMPs) are released resulting in a sustained inflammatory effect. Apart from the systemic inflammation DAMPs and PAMPs also interact with receptors in the proximal tubule of the kidney causing a local inflammatory response leading to leukocyte infiltration and tubular lesions, combined with renal cell apoptosis and ultimately to AKI. In the longer-term, inflammation-mediated inadequate repair mechanism may lead to fibrosis and development of chronic kidney disease. AP is an endogenous enzyme that dephosphorylates and thereby detoxifies several compounds, including LPS. A small phase 2 clinical trial in sepsis patients showed that urinary excretion of tubular injury markers was attenuated and creatinine clearance improved in sepsis patients treated with AP. This renal protective effect was confirmed in a second small clinical phase 2 trial in sepsis patients with AKI. Subsequently, a large trial in sepsis patients with AKI was conducted using a human recombinant AP. In 301 patients no improvement of kidney function within 7 days after enrolment was observed, but kidney function was significantly better on day 21 and day 28 and all-cause 28-day mortality was significantly lower (14.4% in AP group versus 26.7% in the placebo group). Possible explanations of this lack of short-term kidney function improvement are discussed and potential effects of AP on renal repair mechanisms, including inflammation-mediated induction of fibrosis, that may explain the beneficial longer-term effects of AP are proposed.
Collapse
Affiliation(s)
- Femke Hümmeke-Oppers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Pleun Hemelaar
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
196
|
Aouey B, Fares E, Chtourou Y, Bouchard M, Fetoui H. Lambda-cyhalothrin exposure alters purine nucleotide hydrolysis and nucleotidase gene expression pattern in platelets and liver of rats. Chem Biol Interact 2019; 311:108796. [PMID: 31421116 DOI: 10.1016/j.cbi.2019.108796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022]
Abstract
Lambda-cyhalothrin (LCT) is a broad-spectrum pesticide widely used in agriculture throughout the world. This pesticide is considered a potential contaminant of surface and underground water as well as food, posing a risk to ecosystems and humans. In this sense, we decided to evaluate the activity of enzymes belonging to the purinergic system, which is linked with regulation of extracellular nucleotides and nucleosides, such as adenosine triphosphate (ATP) and adenosine (Ado) molecules involved in the regulation of inflammatory response. However, there are no data concerning the effects of LCT exposure on the purinergic system, where extracellular nucleotides act as signaling molecules. The aim of this study was to evaluate nucleotide hydrolysis by E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase), Ecto-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase), ecto-5'-nucleotidase and ecto-adenosine deaminase (E-ADA) in platelets and liver of adult rats on days 7, 30, 45 and 60 after daily gavage with 6.2 and 31.1 mg/kg bw of LCT. Gene expression patterns of NTPDases1-3 and 5'-nucleotidase were also determined in those tissues. In parallel, lambda-cyhalothrin metabolites [3-(2-chloro-3,3,3- trifluoroprop-1-enyl)-2,2-dimethyl-cyclopropane carboxylic acid (CFMP), 4-hydroxyphenoxybenzoic acid (4-OH-3-PBA), and 3-phenoxybenzoic acid (3-PBA)] were measured in plasma. Results showed that exposure rats to LCT caused a significant increase in the assessed enzymes activities. Gene expression pattern of ectonucleotidases further revealed a significant increase in E-NTPDase1, E-NTPDase2, and E-NTPDase3 mRNA levels after LCT administration at all times. A dose-dependent increase in LCT metabolite levels was also observed but there no significant variations in levels from weeks to week, suggesting steady-steady equilibrium. Correlation analyses revealed that LCT metabolites in the liver and plasma were positively correlated with the adenine nucleotides hydrolyzing enzyme, E-ADA and E-NPP activities in platelets and liver of rats exposed to lambda-cyhalothin. Our results show that LCT and its metabolites may affect purinergic enzymatic cascade and cause alterations in energy metabolism.
Collapse
Affiliation(s)
- Bakhta Aouey
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Elghali Fares
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Yassine Chtourou
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Institute of Research in Publish Health (IRSPUM), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
197
|
Burr A, Parekkadan B. Kinetics of MSC-based enzyme therapy for immunoregulation. J Transl Med 2019; 17:263. [PMID: 31409424 PMCID: PMC6693124 DOI: 10.1186/s12967-019-2000-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) demonstrate innate and regulatory immunologic functions and have been widely explored for cell therapy applications. Mechanisms by which MSCs achieve therapeutic effects are theorized, though appropriate dosing and duration of these mechanisms in vivo warrant deeper investigation. One, rapid immunosuppressive function of MSCs is through ectoenzyme expression of CD73 and CD39 which cooperatively hydrolyze inflammatory, extracellular adenosine triphosphate (ATP) to anti-inflammatory adenosine. Extracellular ATP has a key role in autoimmune and inflammatory diseases, which administered MSCs have the potential to modulate in a timescale that is befitting of shorter acting therapeutic function. METHODS In vitro experiments were performed to determine the hydrolysis rates of ATP by MSCs. Through kinetic modeling from experimental results, the rate at which a single cell can metabolize ATP was determined. Based on these rates, the ability of MSCs to downregulate inflammatory signaling pathways was prospectively validated using model system parameters with respect to two different mechanisms: extracellular ATP stimulates lymphocytes to suppress proliferation and induce apoptosis and with co-stimulation, it stimulates monocytes to release pro-inflammatory IL-1β. MSCs were co-cultured with immune cells using transwell inserts and compared to immune cell only groups. RESULTS Hydrolysis of ATP was efficiently modeled by first-order enzyme kinetics. For in vitro culture, the rate at which a single cell can hydrolyize ATP is 8.9 nmol/min. In the presence of extracellular ATP, cocultures of MSCs reduced cytotoxicity and allows for proliferation of lymphocytes while limiting IL-1β secretion from monocytes. CONCLUSIONS Such use of these models may allow for better dosing predictions for MSCs to be used therapeutically for chronic inflammatory diseases such as rheumatoid arthritis, diabetes, pancreatitis, and other systemic inflammatory response syndromes. For the first time, the effect of MSCs on ATP hydrolysis in immune cell response is quantitatively analyzed on a cell-molecule basis by modeling the hydrolysis as an enzyme-substrate reaction. The results also give insight into MSCs' dynamic response mechanisms to ameliorate effects of extracellular ATP whether it be through positive or negative regulation.
Collapse
Affiliation(s)
- Alexandra Burr
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Biju Parekkadan
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
- Department of Medicine, Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA.
- Department of Surgery, Center for Surgery, Innovation & Bioengineering, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
198
|
Saccol RDSP, da Silveira KL, Adefegha SA, Manzoni AG, da Silveira LL, Coelho APV, Castilhos LG, Abdalla FH, Becker LV, Martins NMB, Oliveira JS, Casali EA, Leal DBR. Effect of quercetin on E-NTPDase/E-ADA activities and cytokine secretion of complete Freund adjuvant-induced arthritic rats. Cell Biochem Funct 2019; 37:474-485. [PMID: 31365139 DOI: 10.1002/cbf.3413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/05/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
Abstract
The effect of quercetin was assessed in rats induced with complete Freund adjuvant (CFA). Arthritis scores, paw oedema, latency, activities of myeloperoxidase (MPO), ectonucleoside triphosphate diphosphohydrolase (E-NTPDase), and ectoadenosine deaminase (E-ADA) in lymphocytes were determined. Furthermore, nucleotide and nucleoside levels as well as the secretion of pro- and anti-inflammatory cytokines were evaluated. Animals were treated with saline and quercetin in doses of 5, 25, and 50 mg/kg for 45 days. The result revealed that quercetin (50 mg/kg) reduced arthritis score and paw oedema, and increased the latency in the thermal hyperalgesia test. Histopathological analysis showed that all the doses of quercetin reduced infiltration of inflammatory cells. MPO activity was increased in the arthritis group; however, quercetin reduced this activity. E-NTPDase activity was increased in lymphocytes of arthritis rats, and treatment with quercetin reversed this increase. However, E-ADA activity was reduced in the arthritis group, and treatment with quercetin modulated the activity of this enzyme in arthritis rat groups. Serum adenosine levels were increased in arthritis, and the levels were lowered with quercetin treatment. Quercetin treatment in arthritis groups decreased the elevated levels of cytokines in the arthritis control group. Thus, quercetin demonstrated an anti-inflammatory effect, and this flavonoid may be a promising natural compound for the treatment of arthritis. SIGNIFICANCE OF THE STUDY: Quercetin may represent a potential therapeutic compound in the treatment of rheumatoid arthritis. Findings from this study indicate that quercetin suppresses swelling and attenuates the underlying inflammatory responses. This is the first report where quercetin was shown to modulate the immune response to arthritis via attenuation of the purinergic system (E-NTPDase and E-ADA activities) and the levels of IFN-gamma and IL-4. Thus, this work is relevant to basic research and may be translated into clinical practice.
Collapse
Affiliation(s)
- Renata da Silva Pereira Saccol
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Karine Lanes da Silveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Stephen Adeniyi Adefegha
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Alessandra Guedes Manzoni
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Lanes da Silveira
- Centro de Ciências da Saúde, Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Paula Visintainer Coelho
- Centro de Ciências da Saúde, Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Livia Gelain Castilhos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fátima Husein Abdalla
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lara Vargas Becker
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nara Maria Beck Martins
- Centro de Ciências da Saúde, Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juliana Sorraila Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Emerson André Casali
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.,Centro de Ciências da Saúde, Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
199
|
Neurath MF, Leppkes M. Resolution of ulcerative colitis. Semin Immunopathol 2019; 41:747-756. [DOI: 10.1007/s00281-019-00751-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
|
200
|
Aterido A, Cañete JD, Tornero J, Blanco F, Fernández-Gutierrez B, Pérez C, Alperi-López M, Olivè A, Corominas H, Martínez-Taboada V, González I, Fernández-Nebro A, Erra A, López-Lasanta M, López Corbeto M, Palau N, Marsal S, Julià A. A Combined Transcriptomic and Genomic Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy in Rheumatoid Arthritis. Front Immunol 2019; 10:1459. [PMID: 31312201 PMCID: PMC6614444 DOI: 10.3389/fimmu.2019.01459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Rheumatoid arthritis (RA) is the most frequent autoimmune disease involving the joints. Although anti-TNF therapies have proven effective in the management of RA, approximately one third of patients do not show a significant clinical response. The objective of this study was to identify new genetic variation associated with the clinical response to anti-TNF therapy in RA. Methods: We performed a sequential multi-omic analysis integrating different sources of molecular information. First, we extracted the RNA from synovial biopsies of 11 RA patients starting anti-TNF therapy to identify gene coexpression modules (GCMs) in the RA synovium. Second, we analyzed the transcriptomic association between each GCM and the clinical response to anti-TNF therapy. The clinical response was determined at week 14 using the EULAR criteria. Third, we analyzed the association between the GCMs and anti-TNF response at the genetic level. For this objective, we used genome-wide data from a cohort of 348 anti-TNF treated patients from Spain. The GCMs that were significantly associated with the anti-TNF response were then tested for validation in an independent cohort of 2,706 anti-TNF treated patients. Finally, the functional implication of the validated GCMs was evaluated via pathway and cell type epigenetic enrichment analyses. Results: A total of 149 GCMs were identified in the RA synovium. From these, 13 GCMs were found to be significantly associated with anti-TNF response (P < 0.05). At the genetic level, we detected two of the 13 GCMs to be significantly associated with the response to adalimumab (P = 0.0015) and infliximab (P = 0.021) in the Spain cohort. Using the independent cohort of RA patients, we replicated the association of the GCM associated with the response to adalimumab (P = 0.0019). The validated module was found to be significantly enriched for genes involved in the nucleotide metabolism (P = 2.41e-5) and epigenetic marks from immune cells, including CD4+ regulatory T cells (P = 0.041). Conclusions: These findings show the existence of a drug-specific genetic basis for anti-TNF response, thereby supporting treatment stratification in the search for response biomarkers in RA.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clínic de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesús Tornero
- Rheumatology Department, Hospital Universitario De Guadalajara, Guadalajara, Spain
| | - Francisco Blanco
- Rheumatology Department, INIBIC-Hospital Universitario A Coruña, A Coruña, Spain
| | | | - Carolina Pérez
- Rheumatology Department, Parc de Salut Mar, Barcelona, Spain
| | | | - Alex Olivè
- Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Héctor Corominas
- Rheumatology Department, Hospital Moisès Broggi, Barcelona, Spain
| | | | - Isidoro González
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | - Antonio Fernández-Nebro
- UGC Reumatología, Instituto Investigación Biomédica Málaga, Hospital Regional Universitario, Universidad de Málaga, Málaga, Spain
| | - Alba Erra
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Barcelona, Spain
| |
Collapse
|