151
|
Wolf J, Hajdu RI, Boneva S, Schlecht A, Lapp T, Wacker K, Agostini H, Reinhard T, Auw-Hädrich C, Schlunck G, Lange C. Characterization of the Cellular Microenvironment and Novel Specific Biomarkers in Pterygia Using RNA Sequencing. Front Med (Lausanne) 2022; 8:714458. [PMID: 35174178 PMCID: PMC8841401 DOI: 10.3389/fmed.2021.714458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/24/2021] [Indexed: 01/04/2023] Open
Abstract
With a worldwide prevalence of ~12%, pterygium is a common degenerative and environmentally triggered ocular surface disorder characterized by wing-shaped growth of conjunctival tissue onto the cornea that can lead to blindness if left untreated. This study characterizes the transcriptional profile and the cellular microenvironment of conjunctival pterygia and identifies novel pterygia-specific biomarkers. Formalin-fixed and paraffin-embedded pterygia as well as healthy conjunctival specimens were analyzed using MACE RNA sequencing (n = 8 each) and immunohistochemistry (pterygia n = 7, control n = 3). According to the bioinformatic cell type enrichment analysis using xCell, the cellular microenvironment of pterygia was characterized by an enrichment of myofibroblasts, T-lymphocytes and various antigen-presenting cells, including dendritic cells and macrophages. Differentially expressed genes that were increased in pterygia compared to control tissue were mainly involved in autophagy (including DCN, TMBIM6), cellular response to stress (including TPT1, DDX5) as well as fibroblast proliferation and epithelial to mesenchymal transition (including CTNNB1, TGFBR1, and FN1). Immunohistochemical analysis confirmed a significantly increased FN1 stromal immunoreactivity in pterygia when compared to control tissue. In addition, a variety of factors involved in apoptosis were significantly downregulated in pterygia, including LCN2, CTSD, and NISCH. Furthermore, 450 pterygia-specific biomarkers were identified by including transcriptional data of different ocular surface pathologies serving as controls (training group), which were then validated using transcriptional data of cultured human pterygium cells. Among the most pterygia-specific factors were transcripts such as AHNAK, RTN4, TPT1, FSTL1, and SPARC. Immunohistochemical validation of SPARC revealed a significantly increased stromal immunoreactivity in pterygia when compared to controls, most notably in vessels and intravascular vessel wall-adherent mononuclear cells. Taken together, the present study provides new insights into the cellular microenvironment and the transcriptional profile of pterygia, identifies new and specific biomarkers and in addition to fibrosis-related genes, uncovers autophagy, stress response and apoptosis modulation as pterygium-associated processes. These findings expand our understanding of the pathophysiology of pterygia, provide new diagnostic tools, and may enable new targeted therapeutic options for this common and sight-threatening ocular surface disease.
Collapse
Affiliation(s)
- Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Rozina Ida Hajdu
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Institute of Anatomy and Cell Biology, Wuerzburg University, Wuerzburg, Germany
| | - Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katrin Wacker
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany
- *Correspondence: Clemens Lange
| |
Collapse
|
152
|
Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves' Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol (Lausanne) 2022; 13:891922. [PMID: 35663306 PMCID: PMC9157422 DOI: 10.3389/fendo.2022.891922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common orbital disease that threatens visual function and appearance. Orbital fibroblasts (OFs) are considered key target and effector cells in GO. In addition, hyaluronan (HA) production, inflammation, and orbital fibrosis are intimately linked to the pathogenesis of GO. In this study, we explored the therapeutic effects of dihydroartemisinin (DHA), an antimalarial drug, on GO-derived, primary OFs. CCK8 and EdU assays were applied to evaluate the antiproliferative effect of DHA on OFs. Wound healing assays were conducted to assess OF migration capacity, while qRT-PCR, western blotting, ELISA, and immunofluorescence were used to determine the expression of fibrosis-related and pro-inflammatory markers in these cells. Moreover, RNA sequencing was conducted to identify differentially expressed genes (DEGs) in DHA-treated OFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed to explore potential mechanisms mediating the antifibrotic effect of DHA on GO-derived OFs. Results showed that DHA dose-dependently inhibited OF proliferation and downregulated, at the mRNA and protein levels, TGF-β1-induced expression of fibrosis markers, including alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Furthermore, DHA inhibited TGF-β1 induced phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3), which suggested that DHA exerted antifibrotic effects via suppression of the ERK and STAT3 signaling pathways. In addition, DHA suppressed the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, CXCL-1, MCP-1, and ICAM-1, and attenuated HA production induced by IL-1β in GO-derived OFs. In conclusion, our study provides first-time evidence that DHA may significantly alleviate pathogenic manifestations of GO by inhibiting proliferation, fibrosis- and inflammation-related gene expression, and HA production in OFs. These data suggest that DHA may be a promising candidate drug for treatment of GO.
Collapse
|
153
|
Yang G, Wu Y, Tang S. TRPM7 Elicits Proliferation and Differentiation of Human Lens Epithelial Cells through the TGF-β/Smad Pathways. Folia Biol (Praha) 2022; 68:72-77. [PMID: 36384264 DOI: 10.14712/fb2022068020072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) plays a crucial role in the development of cataract. This study aimed to explore the effects of TRPM7 on the proliferation and differentiation of human lens epithelial cells. TRPM7 was over-expressed in LECs treated with TGF-β2. Down-regulation of TRPM7 attenuated the increase in cell viability and cell proliferation induced by TGF-β2. The LEC migration induced by TGF-β2 was also repressed by down-regulation of TRPM7. Epithelial-specific protein E-cadherin was up-regulated through knock-down of TRPM7. EMT-specific proteins, α-SMA, fibronectin and vimentin, were down-regulated through knockdown of TRPM7. Moreover, phosphorylation of Smad2 and Smad3 was also prevented by inhibition of TRPM7. Therefore, TRPM7 elicited LEC proliferation and EMT through enhancing activation of the TGF-β/Smad pathways, implying a new therapeutic target for cataract.
Collapse
Affiliation(s)
- G Yang
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - Y Wu
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| | - S Tang
- Department of Ophthalmology, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
154
|
Wu P, Lin B, Huang S, Meng J, Zhang F, Zhou M, Hei X, Ke Y, Yang H, Huang D. IL-11 Is Elevated and Drives the Profibrotic Phenotype Transition of Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2022; 13:846106. [PMID: 35273577 PMCID: PMC8902078 DOI: 10.3389/fendo.2022.846106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
Orbital fibrosis is a hallmark of tissue remodeling in thyroid-associated ophthalmopathy (TAO). Previous studies have shown that interleukin (IL)-11 plays a pivotal profibrotic role in various inflammatory and autoimmune diseases. However, the expression pattern of IL-11 in patients with TAO and whether IL-11 is mechanistically linked with pathological fibrosis remains unknown. In this study, we investigated IL-11 levels in the serum and orbital connective tissue of patients with TAO, and evaluated the correlation of these levels with the patient's clinical activity score. We also evaluated the expression pattern of IL-11Rα in orbital connective tissue. Furthermore, we elucidated the regulatory factors, profibrotic function, and downstream signaling pathways for IL-11 in TAO using in vitro studies. IL-11 levels in serum and orbital connective tissues were increased in patients with TAO, as compared with healthy controls. In addition, both levels were positively correlated with disease activity. Single-cell RNA sequencing of orbital connective tissue indicated that IL-11Rα was dominantly expressed in orbital fibroblasts (OFs). RNA sequencing of paired unstimulated and transforming growth factor (TGF)-β1-stimulated samples demonstrated that upregulation of IL-11 expression defined the dominant transcriptional response. IL-11 signaling was also confirmed to be downstream of TGF-β1 and IL-1β. Therefore, we deduced that IL-11 protein is secreted in an autocrine loop in TAO. We also indicated that IL-11 mediated the profibrotic phenotype switch by inducing the expression of myofibroblast differentiation markers, including α-smooth muscle actin and collagen type I α1, which could be abrogated by an anti-IL-11 neutralizing antibody. Furthermore, we revealed that extracellular regulated protein kinase may be a crucial factor in the pro-fibrotic, translationally specific signaling activity of IL-11. These data demonstrate that IL-11 plays a crucial role in orbital fibroblast phenotype switching and may be a potential therapeutic target candidate for the treatment of TAO.
Collapse
Affiliation(s)
- Pengsen Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siyu Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jie Meng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Min Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangqing Hei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Danping Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
155
|
Li J, Tao T, Yu Y, Xu N, Du W, Zhao M, Jiang Z, Huang L. Expression profiling suggests the involvement of hormone-related, metabolic, and Wnt signaling pathways in pterygium progression. Front Endocrinol (Lausanne) 2022; 13:943275. [PMID: 36187094 PMCID: PMC9515788 DOI: 10.3389/fendo.2022.943275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Pterygium is an ocular surface disease that can cause visual impairment if it progressively invades the cornea. Although many pieces of research showed ultraviolet radiation is a trigger of pterygium pathological progress, the underlying mechanism in pterygium remains indistinct. METHODS In this study, we used microarray to evaluate the changes of transcripts between primary pterygium and adjacent normal conjunctiva samples in China. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Moreover, we constructed protein-protein interaction (PPI) and miRNA-mRNA regulatory networks to predict possible regulatory relationships. We next performed gene set enrichment analysis (GSEA) to explore the similarities and differences of transcripts between Asian studies from the Gene Expression Omnibus database. Furthermore, we took the intersection of differentially expressed genes (DEGs) with other data and identified hub genes of the development of pterygium. Finally, we utilized real-time quantitative PCR to verify the expression levels of candidate genes. RESULTS A total of 49 DEGs were identified. The enrichment analyses of DEGs showed that pathways such as the Wnt-signaling pathway and metabolism-related pathways were upregulated, while pathways such as hormone-related and transcription factor-associated pathways were downregulated. The PPI and miRNA-mRNA regulatory networks provide ideas for future research directions. The GSEA of selecting Asian data revealed that epithelial-mesenchymal transition and myogenesis existed in the pathology of pterygium in the Asian group. Furthermore, five gene sets (interferon-gamma response, Wnt beta-catenin signaling, oxidative phosphorylation, DNA repair, and MYC targets v2) were found only in our Chinese datasets. After taking an intersection between selecting datasets, we identified two upregulated (SPP1 and MYH11) and five downregulated (ATF3, FOS, EGR1, FOSB, and NR4A2) hub genes. We finally chose night genes to verify their expression levels, including the other two genes (SFRP2 and SFRP4) involved in Wnt signaling; Their expression levels were significantly different between pterygium and conjunctiva. CONCLUSIONS We consider hormone-related, metabolic, and Wnt signaling pathways may be important in the pathology of pterygium development. Nine candidate genes we identified deserve further study and can be potential therapeutic targets.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Tianchang Tao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Ningda Xu
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People’s Hospital Eye diseases, and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Peking University People’s Hospital, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
- *Correspondence: Lvzhen Huang, ; Zhengxuan Jiang,
| |
Collapse
|
156
|
Swarup A, Ta CN, Wu AY. Molecular mechanisms and treatments for ocular symblephara. Surv Ophthalmol 2022; 67:19-30. [PMID: 33932469 PMCID: PMC8553799 DOI: 10.1016/j.survophthal.2021.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023]
Abstract
There are currently no effective methods to prevent or durably treat ocular symblephara, the adhesions between the palpebral and bulbar conjunctiva. How symblephara form at the molecular level is largely unknown. We present here an overview of current clinical symblephara treatments and describe potential molecular mechanisms behind conjunctival adhesion formation that may inform future symblephara treatment and prevention options. Understanding how symblephara form at the molecular level will facilitate treatment development. Preventative therapies may be possible by targeting symblephara progenitor cells immediately after injuries, while novel therapeutics should be aimed at modulating TGF-β pathways and effector cells in conjunctival scarring to treat symblephara formation more effectively.
Collapse
Affiliation(s)
- Aditi Swarup
- Department of Ophthalmology, Stanford University School of Medicine
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine
| | - Albert Y Wu
- Department of Ophthalmology, Stanford University School of Medicine.
| |
Collapse
|
157
|
Liu Z, Yu C, Song Y, Pang M, Jin Y. The Clinical Guiding Role of the Distribution of Corneal Nerves in the Selection of Incision for Penetrating Corneal Surgery in Canines. Vet Sci 2021; 8:vetsci8120313. [PMID: 34941840 PMCID: PMC8704701 DOI: 10.3390/vetsci8120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
The cornea is one of the regions with the highest density of nerve terminals in the animal body and it bears such functions as nourishing the cornea and maintaining corneal sensation. In veterinary clinical practice, the corneoscleral limbus incision is frequently applied in cataract surgery, peripheral iridectomy, and other procedures for glaucoma. Inevitably, it would cause damage to the nerve roots that enter the cornea from the corneal limbus, thus inducing a series of complications. In this paper, the in vitro cornea (39 corneas from 23 canines, with ages ranging from 8 months old to 3 years old, including 12 male canines and 11 female canines) was divided into 6 zones, and the whole cornea was stained with gold chloride. After staining, corneal nerves formed neural networks at different levels of cornea. There was no significant difference in the number of nerve roots at the corneoscleral limbus between different zones (F = 1.983, p = 0.082), and the nerve roots at the corneoscleral limbus (mean value, 24.43; 95% CI, 23.43-25.42) were evenly distributed. Additionally, there was no significant difference in the number of corneal nerve roots between male and female canines (p = 0.143). There was also no significant difference in the number of corneal nerve roots between adult canines and puppies (p = 0.324). The results of the above analysis will provide a reasonable anatomical basis for selecting the incision location and orientation of penetrating surgery for the canine cornea in veterinary practice.
Collapse
|
158
|
Primary Human Trabecular Meshwork Model for Pseudoexfoliation. Cells 2021; 10:cells10123448. [PMID: 34943956 PMCID: PMC8700223 DOI: 10.3390/cells10123448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/06/2023] Open
Abstract
The lack of an animal model or an in vitro model limits experimental options for studying temporal molecular events in pseudoexfoliation syndrome (PXF), an age related fibrillopathy causing trabecular meshwork damage and glaucoma. Our goal was to create a workable in vitro model of PXF using primary human TM (HTM) cell lines simulating human disease. Primary HTM cells harvested from healthy donors (n = 3), were exposed to various concentrations (5 ng/mL, 10 ng/mL, 15 ng/mL) of transforming growth factor-beta1 (TGF-β1) for different time points. Morphological change of epithelial–mesenchymal transition (EMT) was analyzed by direct microscopic visualization and immunoblotting for EMT markers. Expression of pro-fibrotic markers were analyzed by quantitative RT-PCR and immunoblotting. Cell viability and death in treated cells was analyzed using FACS and MTT assay. Protein complex and amyloid aggregate formation was analyzed by Immunofluorescence of oligomer11 and amyloid beta fibrils. Effect of these changes with pharmacological inhibitors of canonical and non-canonical TGF pathway was done to analyze the pathway involved. The expression of pro-fibrotic markers was markedly upregulated at 10 ng/mL of TGF-β1 exposure at 48–72 h of exposure with associated EMT changes at the same time point. Protein aggregates were seen maximally at these time points that were found to be localized around the nucleus and in the extracellular matrix (ECM). EMT and pro-fibrotic expression was differentially regulated by different canonical and non-canonical pathways suggesting complex regulatory mechanisms. This in vitro model using HTM cells simulated the main characteristics of human disease in PXF like pro-fibrotic gene expression, EMT, and aggregate formation.
Collapse
|
159
|
Lei Y, Bortolin L, Benesch-Lee F, Oguntolu T, Dong Z, Bondah N, Billiar K. Hyaluronic acid regulates heart valve interstitial cell contraction in fibrin-based scaffolds. Acta Biomater 2021; 136:124-136. [PMID: 34592445 DOI: 10.1016/j.actbio.2021.09.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/30/2022]
Abstract
Heart valve disease is associated with high morbidity and mortality worldwide resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. As native unmodified hyaluronic acid (HA) is known to promote healthy tissue development in native heart valves, we hypothesize that adding unmodified HA to fibrin-based scaffolds common to tissue engineering will reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a custom high-throughput culture system, we found that incorporating HA into millimeter-scale fibrin-based cell-populated scaffolds increases initial fiber diameter and cell-scaffold interactions, causing a cascade of mechanical, morphological, and cellular responses. These changes lead to higher levels of scaffold compaction and stiffness, increased cell alignment, and less bundling of fibrin fibers by the cells during culture. These effects significantly reduce scaffold retraction and total contractile force each by around 25%. These findings increase our understanding of how HA alters tissue remodeling and could inform the design of the next generation of tissue engineered heart valves to help reduce retraction. STATEMENT OF SIGNIFICANCE: Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction induced by excessive myofibroblast activation has led to failure in preclinical studies. Developing valves are rich in hyaluronic acid (HA), which helps maintain a physiological environment for tissue remodeling without retraction. We hypothesized that adding unmodified HA to TEHVs would reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a high-throughput tissue culture platform, we demonstrate that HA incorporation into a fibrin-based scaffold can significantly reduce tissue retraction and total contractile force by increasing fiber bundling and altering cell-mediated matrix remodeling, therefore increasing gel density and stiffness. These finding increase our knowledge of native HA's effects within the extracellular matrix, and provide a new tool for TEHV design.
Collapse
Affiliation(s)
- Ying Lei
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Luciano Bortolin
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Frank Benesch-Lee
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Teniola Oguntolu
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Zhijie Dong
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Narda Bondah
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA
| | - Kristen Billiar
- Biomedical Engineering Department, Worcester Polytechnic Institute, Gateway Park 4008, 60 Prescott, Worcester, MA 01605, USA.
| |
Collapse
|
160
|
Lee SY, Chae MK, Yoon JS, Kim CY. The Effect of CHIR 99021, a Glycogen Synthase Kinase-3β Inhibitor, on Transforming Growth Factor β-Induced Tenon Fibrosis. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 34940783 PMCID: PMC8711002 DOI: 10.1167/iovs.62.15.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study investigated the effect of glycogen synthase kinase-3β (GSK-3β) inhibition on the fibrosis of human Tenon's fibroblasts (HTFs) induced by transforming growth factor-β (TGF-β). Methods Quantitative real-time PCR and Western blot analyses were performed to determine the expression levels of molecules associated with the fibrosis of HTFs by TGF-β (fibronectin, collagen Iα, and α-smooth muscle actin) and GSK-3β. The levels of phosphorylated Smad2 and Smad3 were also analyzed in the presence of the GSK-3β inhibitor CHIR 99021. The wound healing assay was performed to determine the effect of CHIR 99021 on the migration of HTFs. All experiments were conducted using primary cultured HTFs or human tenon tissues obtained from normal subjects and patients with glaucoma. Results Treatment with TGF-β resulted in an increase in the levels of molecules associated with the fibrosis of HTFs. The expression levels of these molecules were higher in the tenon tissues obtained from patients with glaucoma than those from normal subjects. When the HTFs were treated with TGF-β, a significant increase in the active form of GSK-3β (Y216) was observed. A significant decrease in the active form of GSK-3β and molecules associated with fibrosis by TGF-β was noted in HTFs treated with CHIR 99021. CHIR 99021 treatment reduced the phosphorylated Smad2/Smad2 and phosphorylated Smad3/Smad3 ratios in HTFs and attenuated HTF migration. Conclusions Our results demonstrated the effect of GSK-3β inhibition on the regulation of TGF-β–mediated fibrosis of HTFs, suggesting GSK-3β to be a potential target for maintaining bleb function after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Sang Yeop Lee
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.,Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi-do, Republic of Korea
| | - Min Kyoung Chae
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Chan Yun Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
161
|
Fan J, Zhang X, Jiang Y, Chen L, Sheng M, Chen Y. SPARC knockdown attenuated TGF-β1-induced fibrotic effects through Smad2/3 pathways in human pterygium fibroblasts. Arch Biochem Biophys 2021; 713:109049. [PMID: 34624278 DOI: 10.1016/j.abb.2021.109049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Secreted protein acidic and rich in cysteine (SPARC), a matricellular glycoprotein, has been found to regulate processes involved in fibrotic diseases. The aim of this study was to investigate the anti-fibrotic effects of SPARC in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHODS The expression of SPARC in HPFs was knocked down by RNA interference-based approach. Subsequently, we examined the expression of profibrotic markers induced by transforming growth factor-β1 (TGF-β1), including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin (FN). The changes in signaling pathways and matrix metalloproteinases (MMPs) were also detected by western blotting. The cellular migration ability, proliferation ability, apoptosis, and contractile phenotype were detected using the wound healing assay, Cell Counting Kit-8 assay, flow cytometry, and collagen gel contraction assay, respectively. The interaction between SPARC and TGF-β RII was detected by Co-IP RESULTS: Silencing of SPARC inhibited the basal and TGF-β1-induced expression of COL1, α-SMA, and FN in HPFs, and suppressed the expression of p-Smad2, p-Smad3, Smad4 and MMP2, MMP9. The downregulation of SPARC also attenuated the cell migration and contractile phenotype of HPFs. SPARC could bind to TGF-βRII under TGF-β1 treatment. However, knockdown of SPARC did not affect the proliferation and apoptosis of HPFs. CONCLUSION SPARC knockdown attenuated the fibrotic effect induced by TGF-β1 at least in part by inactivating the Smad2/3 pathways in HPFs. Therefore, SPARC may be a promising therapeutic target for the treatment of pterygium.
Collapse
Affiliation(s)
- Jianwu Fan
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Xin Zhang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Yaping Jiang
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Li Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Minjie Sheng
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Yihui Chen
- Department of Ophthalmology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| |
Collapse
|
162
|
da Silva RA, Roda VMDP, Matsuda M, Siqueira PV, Lustoza-Costa GJ, Wu DC, Hamassaki DE. Cellular components of the idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 2021; 260:1435-1444. [PMID: 34842983 DOI: 10.1007/s00417-021-05492-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Idiopathic epiretinal membrane (iERM) is a fibrocellular proliferation on the inner surface of the retina, which leads to decreased visual acuity and even central visual loss. As iERM is associated to advanced age and posterior vitreous detachment, a higher prevalence is expected with increasing life expectancy and aging of the global population. Although various cell types of retinal and extra-retinal origin have been described in iERMs (Müller glial cells, astrocytes, hyalocytes, retinal pigment epithelium cells, myofibroblasts, and fibroblasts), myofibroblasts have a central role in collagen production and contractile activity. Thus, myofibroblast differentiation is considered a key event for the iERM formation and progression, and fibroblasts, Müller glial cells, hyalocytes, and retinal pigment epithelium have been identified as myofibroblast precursors. On the other side, the different cell types synthesize growth factors, cytokines, and extracellular matrix, which have a crucial role in ERM pathogenesis. In the present review, the major cellular components and their functions are summarized, and their possible roles in the iERM formation are discussed. By exploring in detail the cellular and molecular aspects of iERM, we seek to contribute for better understanding of this fibrotic disease and the origin of myofibroblasts, which may eventually drive to more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Rafael André da Silva
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Vinicius Moraes de Paiva Roda
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Monique Matsuda
- Laboratory of Investigation in Ophthalmology (LIM-33), Division of Ophthalmology, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Veloso Siqueira
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Gabriela Jesus Lustoza-Costa
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi Chen Wu
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Department of Ophthalmology, Irmandade de Misericórdia da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Dânia Emi Hamassaki
- Department of Cell & Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
163
|
Zhang X, Lai K, Li S, Wang J, Li J, Wang W, Ni S, Lu B, Grzybowski A, Ji J, Han H, Yao K. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioact Mater 2021; 9:343-357. [PMID: 34820575 PMCID: PMC8586266 DOI: 10.1016/j.bioactmat.2021.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cataract is the leading cause of visual impairment, and posterior capsular opacification (PCO) is the most common long-term complication of modern cataract surgery, which can cause severe visual impairment after surgery. The proliferation, migration, and epithelial-mesenchymal transition (EMT) of residual lens epithelial cells (LECs) stimulated by growth factors and cytokines, are the key pathological mechanisms involved in the development of PCO. This study demonstrated that non-steroidal anti-inflammatory drug (NSAID), bromfenac, was capable of effectively inhibiting cell migration, overexpression of EMT markers, such as fibronectin (FN), matrix metalloproteinase 2 (MMP2), α-smooth muscle actin (α-SMA), and transcription factor Snail, and extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3β (GSK-3β) signaling induced by transforming growth factor-β2 (TGF-β2) in vitro. The inhibitory effect of bromfenac on TGF-β2-induced EMT was also verified on a primary lens epithelial cell model using human anterior capsules. Furthermore, based on ultrasonic spray technology, we developed a drug-eluting intraocular lens (IOL) using poly (lactic-co-glycolic acid) (PLGA) with sustained bromfenac release ability for the prevention of PCO development. In the rabbit models of cataract surgery, bromfenac-eluting IOL exhibited remarkable PCO prevention and inflammation suppression effects with excellent biocompatibility. In conclusion, bromfenac can inhibit TGF-β2-induced cell migration and the EMT of LECs via ERK/GSK-3β/Snail signaling. The present study offers a novel approach for preventing PCO through PLGA-based drug sustained-release IOLs. Bromfenac inhibited TGF-β2-induced migration and EMT of LECs through ERK/GSK-3β/Snail signaling. Drug-eluting IOLs with sustained bromfenac release were developed based on ultrasonic spray technology. Bromfenac-eluting IOLs exhibited remarkable PCO prevention and inflammation suppression effects in vivo. Bromfenac-eluting IOLs hold great potential for clinical application of PCO prevention.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Kairan Lai
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Su Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jiayong Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Wei Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shuang Ni
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 60-554 Olsztyn, Poland.,Institute for Research in Ophthalmology, Gorczyczewskiego 2/3, 61-553 Poznan, Poland
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| |
Collapse
|
164
|
Shu G, Yusuf A, Dai C, Sun H, Deng X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct 2021; 12:11686-11703. [PMID: 34730139 DOI: 10.1039/d1fo02657g] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-β1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-β1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-β1. Modulatory effects of PIP on the TGF-β1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-β1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis are implicated in the hepatoprotective activity of PIP.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
165
|
Carver W, Fix E, Fix C, Fan D, Chakrabarti M, Azhar M. Effects of emodin, a plant-derived anthraquinone, on TGF-β1-induced cardiac fibroblast activation and function. J Cell Physiol 2021; 236:7440-7449. [PMID: 34041746 PMCID: PMC8530838 DOI: 10.1002/jcp.30416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Cardiac fibrosis accompanies a number of pathological conditions and results in altered myocardial structure, biomechanical properties and function. The signaling networks leading to fibrosis are complex, contributing to the general lack of progress in identifying effective therapeutic approaches to prevent or reverse this condition. Several studies have shown protective effects of emodin, a plant-derived anthraquinone, in animal models of fibrosis. A number of questions remain regarding the mechanisms whereby emodin impacts fibrosis. Transforming growth factor beta 1 (TGF-β1) is a potent stimulus of fibrosis and fibroblast activation. In the present study, experiments were performed to evaluate the effects of emodin on activation and function of cardiac fibroblasts following treatment with TGF-β1. We demonstrate that emodin attenuates TGF-β1-induced fibroblast activation and collagen accumulation in vitro. Emodin also inhibits activation of several canonical (SMAD2/3) and noncanonical (Erk1/2) TGF-β signaling pathways, while activating the p38 pathway. These results suggest that emodin may provide an effective therapeutic agent for fibrosis that functions via specific TGF-β signaling pathways.
Collapse
Affiliation(s)
- Wayne Carver
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Ethan Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Charity Fix
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mrinmay Chakrabarti
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| | - Mohamad Azhar
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209
| |
Collapse
|
166
|
Understanding Drivers of Ocular Fibrosis: Current and Future Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222111748. [PMID: 34769176 PMCID: PMC8584003 DOI: 10.3390/ijms222111748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFβ or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFβ-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.
Collapse
|
167
|
Cell transdifferentiation in ocular disease: Potential role for connexin channels. Exp Cell Res 2021; 407:112823. [PMID: 34506760 DOI: 10.1016/j.yexcr.2021.112823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/22/2022]
Abstract
Cell transdifferentiation is the conversion of a cell type to another without requiring passage through a pluripotent cell state, and encompasses epithelial- and endothelial-mesenchymal transition (EMT and EndMT). EMT and EndMT are well defined processes characterized by a loss of epithelial/endothelial phenotype and gain in mesenchymal spindle shaped morphology, which results in increased cell migration and decreased apoptosis and cellular senescence. Such cells often develop invasive properties. Physiologically, these processes may occur during embryonic development and can resurface, for example, to promote wound healing in later life. However, they can also be a pathological process. In the eye, EMT, EndMT and cell transdifferentiation have all been implicated in development, homeostasis, and multiple diseases affecting different parts of the eye. Connexins, constituents of connexin hemichannels and intercellular gap junctions, have been implicated in many of these processes. In this review, we firstly provide an overview of the molecular mechanisms induced by transdifferentiation (including EMT and EndMT) and its involvement in eye diseases. We then review the literature for the role of connexins in transdifferentiation in the eye and eye diseases. The evidence presented in this review supports the need for more studies into the therapeutic potential for connexin modulators in prevention and treatment of transdifferentiation related eye diseases, but does indicate that connexin channel modulation may be an upstream and unifying approach for regulating these otherwise complex processes.
Collapse
|
168
|
Immune responses to injury and their links to eye disease. Transl Res 2021; 236:52-71. [PMID: 34051364 PMCID: PMC8380715 DOI: 10.1016/j.trsl.2021.05.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.
Collapse
Key Words
- 2ryERM
- A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function
- A cytokine expressed early during inflammation that attracts neutrophils
- A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1))
- A mouse model that lacks functional T and B cells and used to study the immune response
- A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection
- A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages
- A strain of pigmented mice used in glaucoma research
- ACAID
- APCs
- ASC
- An albino mouse strain used for research and known to mount a primarily Th2 response to infection
- Antigen Presenting Cells, this class includes dendritic cells and monocytes
- BALB/c
- BM
- C57BL6
- CCL2
- CD45
- CNS
- CXCL1
- Central Nervous System
- Cluster of differentiation 45 antigen
- DAMPs
- DBA/2J
- EBM
- ECM
- EMT
- ERM
- Epithelial Basement Membrane
- F4/80
- FGF2
- HA =hyaluronic acid
- HSK
- HSP
- HSPGs
- HSV
- ICN
- IL-20
- IL6
- ILM
- IOP
- Inner (or internal) limiting membrane
- Interleukin 6
- Interleukin-20
- MAGP1
- MHC-II
- Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs
- Microfibril-associated glycoprotein 1
- N-cad
- N-cadherin
- NEI
- NK
- National Eye Institute
- Natural killer T cells
- PCO
- PDGF
- PDR
- PVD
- PVR
- Platelet derived growth factor
- Posterior capsular opacification
- RGC
- RPE
- RRD
- Rag1-/-
- Retinal ganglion cells
- Retinal pigment epithelial cells
- SMAD
- Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling
- T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity
- T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines
- T-regulatory cell
- TG
- TGF1
- TM
- TNF
- Th1
- Th17
- Th2
- Transforming growth factor 1
- Treg
- Tumor necrosis factor a cytokine produced during inflammation
- VEGF
- Vascular endothelial growth factor
- WHO
- World Health Organization
- anterior chamber immune deviation
- anterior subcapsular cataracts
- basement membrane
- damage-associated molecular patterns
- epiretinal membrane
- epiretinal membrane secondary to disease pathology
- epithelial-mesenchymal transition
- extracellular matrix
- fibroblast growth factor 2, also referred to as basic FGF
- heat shock protein
- heparan sulfate proteoglycans
- herpes simplex virus
- herpes stromal keratitis
- iERM
- idiopathic epiretinal membrane
- intraepithelial corneal nerves
- intraocular pressure
- mTOR
- mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton
- posterior vitreous detachment
- proliferative diabetic retinopathy
- proliferative vitreoretinopathy
- rhegmatogenous (rupture, tear) retinal detachment
- trabecular meshwork
- trigeminal ganglion
- αSMA
- α−Smooth muscle actin, a class of actin expressed in mesenchymal cells
Collapse
|
169
|
Shu DY, Lovicu FJ. Insights into Bone Morphogenetic Protein-(BMP-) Signaling in Ocular Lens Biology and Pathology. Cells 2021; 10:cells10102604. [PMID: 34685584 PMCID: PMC8533954 DOI: 10.3390/cells10102604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess osteogenic properties, BMPs have since been identified as critical regulators of many biological processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental developmental processes such as induction of lens morphogenesis, and specialized differentiation of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) and apoptosis. In this review, we summarize recent insights in this topic and discuss the complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. By understanding the molecular mechanisms underlying BMP activity, we can advance their potential therapeutic role in cataract prevention and lens regeneration.
Collapse
Affiliation(s)
- Daisy Y. Shu
- Department of Ophthalmology, Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA;
| | - Frank J. Lovicu
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
- Correspondence: ; Tel.: +61-2-9351-5170
| |
Collapse
|
170
|
Korhonen A, Gucciardo E, Lehti K, Loukovaara S. Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement. Sci Rep 2021; 11:18810. [PMID: 34552123 PMCID: PMC8458546 DOI: 10.1038/s41598-021-97970-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Proliferative diabetic retinopathy (PDR) is a sight-threatening diabetic complication in urgent need of new therapies. In this study we identify potential molecular mechanisms and target candidates in the pathogenesis of PDR fibrovascular tissue formation. We performed mRNA sequencing of RNA isolated from eleven excised fibrovascular membranes of type 1 diabetic PDR patients and two non-diabetic patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy. We determined differentially expressed genes between these groups and performed pathway and gene ontology term enrichment analyses to identify potential underlying mechanisms, pathways, and regulators. Multiple pro-angiogenic processes, including VEGFA-dependent and -independent pathways, as well as processes related to lymphatic development, epithelial to mesenchymal transition (EMT), wound healing, inflammation, fibrosis, and extracellular matrix (ECM) composition, were overrepresented in PDR. Overrepresentation of different angiogenic processes may help to explain the transient nature of the benefits that many patients receive from current intravitreal anti-angiogenic therapies, highlighting the importance of combinatorial treatments. Enrichment of genes and pathways related to lymphatic development indicates that targeting lymphatic involvement in PDR progression could have therapeutic relevance. Together with overrepresentation of EMT and fibrosis as well as differential ECM composition, these findings demonstrate the complexity of PDR fibrovascular tissue formation and provide avenues for the development of novel treatments.
Collapse
Affiliation(s)
- Ani Korhonen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sirpa Loukovaara
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Unit of Vitreoretinal Surgery, Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
171
|
Wang L, Tian Y, Shang Z, Zhang B, Hua X, Yuan X. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-β/Smad2/3 signalling pathway. Exp Eye Res 2021; 212:108763. [PMID: 34517004 DOI: 10.1016/j.exer.2021.108763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 01/10/2023]
Abstract
Posterior capsule opacification (PCO) is a common ocular fibrosis disease related to the epithelial-mesenchymal transition (EMT) of human lens epithelial cells (HLECs). However, safe and effective drugs that prevent or treat PCO are lacking. Metformin (Mtf) has been used to treat fibrosis-related diseases affecting many organs and tissues, but its effect on ocular fibrosis-related diseases is unclear. We investigated whether Mtf can inhibit EMT and fibrosis in HLECs to prevent and treat PCO and elucidated the potential molecular mechanism. Here, we established an HLEC model of TGF-β-induced EMT and found that 400 μM Mtf inhibited vertical and lateral migration and EMT-related gene and protein expression in HLECs. Smad2/3 are downstream molecules of TGF-β that enter the nucleus to regulate EMT-related gene expression during the occurrence and development of PCO. We revealed that Mtf suppressed TGF-β-induced Smad2/3 phosphorylation and nuclear translocation. Mtf induces AMP-activated protein kinase (AMPK) phosphorylation. In this study, we found that Mtf induced the activation of AMPK phosphorylation in HLECs. To further explore the mechanism of Mtf, we pretreated HLECs with Compound C (an AMPK inhibitor) to repeat the above experiments and found that Compound C abolished the inhibitory effect of Mtf on HLEC EMT and the TGF-β/Smad2/3 signalling pathway. Thus, Mtf targets AMPK phosphorylation to inhibit the TGF-β/Smad2/3 signalling pathway and prevent HLEC EMT. Notably, we first illustrated the AMPK/TGF-β/Smad2/3 signalling pathway in HLECs, which may provide a new therapeutic strategy for PCO.
Collapse
Affiliation(s)
- Ling Wang
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Ye Tian
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Boya Zhang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xia Hua
- Tianjin Aier Eye Hospital, Tianjin, 300191, China; Aier Eye Institute, Changsha, 410000, China.
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, 300020, China; Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China.
| |
Collapse
|
172
|
Song Y, Liao M, Zhao X, Han H, Dong X, Wang X, Du M, Yan H. Vitreous M2 Macrophage-Derived Microparticles Promote RPE Cell Proliferation and Migration in Traumatic Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34554178 PMCID: PMC8475283 DOI: 10.1167/iovs.62.12.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize vitreous microparticles (MPs) in patients with traumatic proliferative vitreoretinopathy (PVR) and investigate their role in PVR pathogenesis. Methods Vitreous MPs were characterized in patients with traumatic PVR, patients with rhegmatogenous retinal detachment (RRD) complicated with PVR, and control subjects by flow cytometry. The presence of M2 macrophages in epiretinal membranes was measured by immunostaining. Vitreous cytokines were quantified by ELISA assay. For in vitro studies, MPs isolated from THP-1 cell differentiated M1 and M2 macrophages, termed M1-MPs and M2-MPs, were used. The effects and mechanisms of M1-MPs and M2-MPs on RPE cell proliferation, migration, and epithelial to mesenchymal transition were analyzed. Results Vitreous MPs derived from photoreceptors, microglia, and macrophages were significantly increased in patients with traumatic PVR in comparison with control and patients with RRD (PVR), whereas no significance was identified between the two control groups. M2 macrophages were present in epiretinal membranes, and their signature cytokines were markedly elevated in the vitreous of patients with traumatic PVR. Moreover, MPs from M2 macrophages were increased in the vitreous of patients with traumatic PVR. In vitro analyses showed that M2-MPs promoted the proliferation and migration of RPE cells via activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. However, M2-MPs did not induce the expression of fibrotic proteins, including fibronectin, α-smooth muscle actin, and N-cadherin in RPE cells. Conclusions This study demonstrated increased MP shedding in the vitreous of patients with traumatic PVR; specifically, MPs derived from M2 polarized macrophages may contribute to PVR progression by stimulating RPE cell proliferation and migration.
Collapse
Affiliation(s)
- Yinting Song
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiao Zhao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Han Han
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Du
- Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Molecular Ophthalmology, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
173
|
Miricescu D, Badoiu SC, Stanescu-Spinu II, Totan AR, Stefani C, Greabu M. Growth Factors, Reactive Oxygen Species, and Metformin-Promoters of the Wound Healing Process in Burns? Int J Mol Sci 2021; 22:ijms22179512. [PMID: 34502429 PMCID: PMC8431501 DOI: 10.3390/ijms22179512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Burns can be caused by various factors and have an increased risk of infection that can seriously delay the wound healing process. Chronic wounds caused by burns represent a major health problem. Wound healing is a complex process, orchestrated by cytokines, growth factors, prostaglandins, free radicals, clotting factors, and nitric oxide. Growth factors released during this process are involved in cell growth, proliferation, migration, and differentiation. Reactive oxygen species are released in acute and chronic burn injuries and play key roles in healing and regeneration. The main aim of this review is to present the roles of growth factors, reactive oxygen species, and metformin in the healing process of burn injuries.
Collapse
Affiliation(s)
- Daniela Miricescu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Silviu Constantin Badoiu
- Department of Anatomy and Embriology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Department of Plastic and Reconstructive Surgery, Life Memorial Hospital, 365 Grivitei Street, 010719 Bucharest, Romania
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
- Correspondence: (S.C.B.); (I.-I.S.-S.)
| | - Alexandra Ripszky Totan
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.M.); (A.R.T.); (M.G.)
| |
Collapse
|
174
|
Nuwormegbe S, Park NY, Kim SW. Lobeglitazone attenuates fibrosis in corneal fibroblasts by interrupting TGF-beta-mediated Smad signaling. Graefes Arch Clin Exp Ophthalmol 2021; 260:149-162. [PMID: 34468828 DOI: 10.1007/s00417-021-05370-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Transforming growth factor beta 1 (TGF-β1) is an important cytokine released after ocular surface injury to promote wound healing. However, its persistence at the injury site triggers a fibrotic response that leads to corneal scarring and opacity. Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands used to regulate glucose and lipid metabolism in the management of type 2 diabetes. Studies have also showed TZDs have antifibrotic effect. In this study, we investigated the antifibrotic effect of the TZD lobeglitazone on TGF-β1-induced fibrosis in corneal fibroblasts. METHODS Human primary corneal fibroblasts were cultivated and treated with TGF-β1 (5 ng/mL) to induce fibrosis, with or without pre-treatments with different concentrations of lobeglitazone. Myofibroblast differentiation and extracellular matrix (ECM) protein expression was evaluated by western blotting, immunofluorescence, real-time PCR, and collagen gel contraction assay. The effect of lobeglitazone on TGF-β1-induced reactive oxygen species (ROS) generation was evaluated by DCFDA-cellular ROS detection assay kit. Signaling proteins were evaluated by western blotting to determine the mechanism underlying the antifibrotic effect. RESULTS Our results showed lobeglitazone attenuated TGF-β1-induced ECM synthesis and myofibroblast differentiation of corneal fibroblasts. This antifibrotic effect appeared to be independent of PPAR signaling and rather due to the inhibition of the TGF-β1-induced Smad signaling. Lobeglitazone also blocked TGF-β1-induced ROS generation and nicotinamide adenine dinucleotide phosphate oxidase (Nox) 4 transcription. CONCLUSION These findings indicate that lobeglitazone may be a promising therapeutic agent for corneal scarring. KEY MESSAGES.
Collapse
Affiliation(s)
- Selikem Nuwormegbe
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Na-Young Park
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea
| | - Sun Woong Kim
- Department of Ophthalmology, Wonju College of Medicine, Yonsei University, Wonju, Ilsan-ro, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
175
|
Wang L, Zhang L, Gong X, Fu J, Gan Y, Hou M, Nie Q, Xiang J, Xiao Y, Wang Y, Zheng S, Yang L, Chen H, Xiang M, Liu Y, Li DW. PP-1β and PP-2Aα modulate cAMP response element-binding protein (CREB) functions in aging control and stress response through de-regulation of αB-crystallin gene and p300-p53 signaling axis. Aging Cell 2021; 20:e13458. [PMID: 34425033 PMCID: PMC8441381 DOI: 10.1111/acel.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The function of the transcription factor, cAMP response element‐binding protein (CREB), is activated through S133 phosphorylation by PKA and others. Regarding its inactivation, it is not well defined. cAMP response element‐binding protein plays an essential role in promoting cell proliferation, neuronal survival and the synaptic plasticity associated with long‐term memory. Our recent studies have shown that CREB is an important player in mediating stress response. Here, we have demonstrated that CREB regulates aging process through suppression of αB‐crystallin and activation of the p300‐p53‐Bak/Bax signaling axis. First, we determined that two specific protein phosphatases, PP‐1β and PP‐2Aα, can inactivate CREB through S133 dephosphorylation. Subsequently, we demonstrated that cells expressing the S133A‐CREB, a mutant mimicking constant dephosphorylation at S133, suppress CREB functions in aging control and stress response. Mechanistically, S133A‐CREB not only significantly suppresses CREB control of αB‐crystallin gene, but also represses CREB‐mediated activation of p53 acetylation and downstream Bak/Bax genes. cAMP response element‐binding protein suppression of αB‐crystallin and its activation of p53 acetylation are major molecular events observed in human cataractous lenses of different age groups. Together, our results demonstrate that PP‐1β and PP‐2Aα modulate CREB functions in aging control and stress response through de‐regulation of αB‐crystallin gene and p300‐p53‐Bax/Bak signaling axis, which regulates human cataractogenesis in the aging lens.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiao‐Dong Gong
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Ling Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yu‐Wen Gan
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Min Hou
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Wen Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shu‐Yu Zheng
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Meng‐Qing Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - David Wan‐Cheng Li
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
176
|
Wong HL, Hung LT, Kwok SS, Bu Y, Lin Y, Shum HC, Wang H, Lo ACY, Yam GHF, Jhanji V, Shih KC, Chan YK. The anti-scarring role of Lycium barbarum polysaccharide on cornea epithelial-stromal injury. Exp Eye Res 2021; 211:108747. [PMID: 34450184 DOI: 10.1016/j.exer.2021.108747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/22/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Cornea epithelial-stromal scarring is related to the differentiation of fibroblasts into opaque myofibroblasts. Our study aims to assess the effectiveness of Lycium barbarum polysaccharide (LBP) solution as a pre-treatment in minimizing corneal scarring. METHODS Human corneal fibroblasts were cultured in a three-dimensional collagen type I-based hydrogel in an eye-on-a-chip model. Fibroblasts were pre-treated with 2 mg/mL LBP for 24 h, followed by another 24-h incubation with 10 ng/mL transforming growth factor-beta 1 (TGF-β1) to induce relevant physiological events after stromal injury. Intracellular pro-fibrotic proteins, extracellular matrix proteins, and pro-inflammatory cytokines that involved in fibrosis, were assessed using immunocytochemistry and enzyme-linked immunosorbent assays. RESULTS Compared to the positive control TGF-β1 group, LBP pre-treated cells had a significantly lower expression of alpha-smooth muscle actin, marker of myofibroblasts, vimentin (p < 0.05), and also extracellular matrix proteins both collagen type II and type III (p < 0.05) that can be found in scar tissues. Moreover, LBP pre-treated cells had a significantly lower secretion of pro-inflammatory cytokines interleukin-6 and interleukin-8 (p < 0.05). The cell-laden hydrogel contraction and stiffness showed no significant difference between LBP pre-treatment and control groups. Fibroblasts pretreated with LBP as well had reduced angiogenic factors expression and suppression of undesired proliferation (p < 0.05). CONCLUSION Our results showed that LBP reduced both pro-fibrotic proteins and pro-inflammatory cytokines on corneal injury in vitro. We suggest that LBP, as a natural Traditional Chinese Medicine, may potentially be a novel topical pre-treatment option prior to corneal refractive surgeries with an improved prognosis.
Collapse
Affiliation(s)
- Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lap Tak Hung
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Sum Sum Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yashan Bu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuan Lin
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hua Wang
- Eye Center of Xiangya Hospital, Central South University, China; Hunan Key Laboratory of Ophthalmology, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gary Hin Fai Yam
- Department of Ophthalmology, University of Pittsburgh Medical Centre, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Centre, USA
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
177
|
Grigoryan EN, Markitantova YV. Molecular Strategies for Transdifferentiation of Retinal Pigment Epithelial Cells in Amphibians and Mammals In Vivo. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
178
|
Forkhead domain inhibitory-6 attenuates subconjunctival fibrosis in rabbit model with trabeculectomy. Exp Eye Res 2021; 210:108725. [PMID: 34375589 DOI: 10.1016/j.exer.2021.108725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Antiproliferative therapies are crucially important for improving the success rate of the glaucoma filtration surgeries. In this study, we investigated the potential efficacy of Forkhead Domain Inhibitory-6 (FDI-6) in inhibiting post-trabeculectomy subconjunctival fibrosis. In vitro, the effect of FDI-6 (10 μM) on fibrotic response and its underlying mechanism were investigated in rabbit tenon's fibroblasts (RTFs) treated with or without transforming growth factor-β1 (TGF-β1, 20 ng/mL). In vivo, FDI-6 (40 μM) was injected subconjunctivally to a rabbit trabeculectomy model. Intraocular pressure (IOP) changes were monitored within the 14-day period post-surgery. Bleb morphology and subepithelial fibrosis at the operating area were evaluated with slit lamp and confocal microscopic examinations and with histologic examinations. The results showed that, in cell culture studies, FDI-6 suppressed the proliferation, migration, collagen gel contraction and the expression levels of fibronectin (FN) and α-smooth muscle actin (α-SMA) in RTFs with TGF-β treatment by down-regulating the TGF-β1/Smad2/3 signaling pathway. In animal studies, the IOPs of the FDI-6-treated group were significantly lower than those of the saline-treated group after trabeculectomy. The FDI-6-treated eyes showed a better bleb appearance with fewer blood vessels compared to the saline-treated eyes. The analysis of confocal microscopy in vivo and histopathology revealed that subconjunctival fibrosis after trabeculectomy was significantly attenuated in the FDI-6-treated group compared to the controls. In conclusion, our studies indicate that FDI-6 exerts an inhibitory effect on subconjunctival fibrosis caused by trabeculectomy, holding potentials as a new antiproliferative agent used in anti-glaucoma filtration surgeries in the future.
Collapse
|
179
|
Menko AS, DeDreu J, Logan CM, Paulson H, Levin AV, Walker JL. Resident immune cells of the avascular lens: Mediators of the injury and fibrotic response of the lens. FASEB J 2021; 35:e21341. [PMID: 33710665 PMCID: PMC8200928 DOI: 10.1096/fj.202002200r] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Tissues typically harbor subpopulations of resident immune cells that function as rapid responders to injury and whose activation leads to induction of an adaptive immune response, playing important roles in repair and protection. Since the lens is an avascular tissue, it was presumed that it was absent of resident immune cells. Our studies now show that resident immune cells are a shared feature of the human, mouse, and chicken lens epithelium. These resident immune cells function as immediate responders to injury and rapidly populate the wound edge following mock cataract surgery to function as leader cells. Many of these resident immune cells also express MHCII providing them with antigen presenting ability to engage an adaptive immune response. We provide evidence that during development immune cells migrate on the ciliary zonules and localize among the equatorial epithelial cells of the lens adjacent to where the ciliary zonules associate with the lens capsule. These findings suggest that the vasculature‐rich ciliary body is a source of lens resident immune cells. We identified a major role for these cells as rapid responders to wounding, quickly populating each wound were they can function as leaders of lens tissue repair. Our findings also show that lens resident immune cells are progenitors of myofibroblasts, which characteristically appear in response to lens cataract surgery injury, and therefore, are likely agents of lens pathologies to impair vision like fibrosis.
Collapse
Affiliation(s)
- A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - JodiRae DeDreu
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Heather Paulson
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alex V Levin
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Wills Eye Hospital, Philadelphia, PA, USA
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
180
|
Yu B, Yang L, Song S, Li W, Wang H, Cheng J. LRG1 facilitates corneal fibrotic response by inducing neutrophil chemotaxis via Stat3 signaling in alkali-burned mouse corneas. Am J Physiol Cell Physiol 2021; 321:C415-C428. [PMID: 34260299 DOI: 10.1152/ajpcell.00517.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-β (TGF-β) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.
Collapse
Affiliation(s)
- Bingjie Yu
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Shan Song
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Chengwu Hospital Affiliated to Shandong First Medical University, Heze, People's Republic of China
| | - Weina Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, Liuzhou, People's Republic of China
| | - Huifeng Wang
- Qingdao University, Qingdao, People's Republic of China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Jun Cheng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, People's Republic of China.,Qingdao Eye Hospital of Shandong First University, Qingdao, People's Republic of China
| |
Collapse
|
181
|
Zhou Y, Bennett TM, Shiels A. Mutation of the TRPM3 cation channel underlies progressive cataract development and lens calcification associated with pro-fibrotic and immune cell responses. FASEB J 2021; 35:e21288. [PMID: 33484482 DOI: 10.1096/fj.202002037r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Transient-receptor-potential cation channel, subfamily M, member 3 (TRPM3) serves as a polymodal calcium sensor in diverse mammalian cell-types. Mutation of the human TRPM3 gene (TRPM3) has been linked with inherited forms of early-onset cataract with or without other eye abnormalities. Here, we have characterized the ocular phenotypes of germline "knock-in" mice that harbor a human cataract-associated isoleucine-to-methionine mutation (p.I65M) in TRPM3 (Trpm3-mutant) compared with germline "knock-out" mice that functionally lack TRPM3 (Trpm3-null). Despite strong expression of Trpm3 in lens epithelial cells, neither heterozygous (Trpm3+/- ) nor homozygous (Trpm3-/- ) Trpm3-null mice developed cataract; however, the latter exhibited a mild impairment of lens growth. In contrast, homozygous Trpm3-M/M mutants developed severe, progressive, anterior pyramid-like cataract with microphthalmia, whereas heterozygous Trpm3-I/M and hemizygous Trpm3-M/- mutants developed anterior pyramidal cataract with delayed onset and progression-consistent with a semi-dominant lens phenotype. Histochemical staining revealed abnormal accumulation of calcium phosphate-like deposits and collagen fibrils in Trpm3-mutant lenses and immunoblotting detected increased αII-spectrin cleavage products consistent with calpain hyper-activation. Immunofluorescent confocal microscopy of Trpm3-M/M mutant lenses revealed fiber cell membrane degeneration that was accompanied by accumulation of alpha-smooth muscle actin positive (α-SMA+ve) myofibroblast-like cells and macrosialin positive (CD68+ve) macrophage-like cells. Collectively, our mouse model data support an ocular disease association for TRPM3 in humans and suggest that (1) Trpm3 deficiency impaired lens growth but not lens transparency and (2) Trpm3 dysfunction resulted in progressive lens degeneration and calcification coupled with pro-fibrotic (α-SMA+ve) and immune (CD68+ve) cell responses.
Collapse
Affiliation(s)
- Yuefang Zhou
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas M Bennett
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
182
|
Ashrafizadeh M, Mirzaei S, Hashemi F, Zarrabi A, Zabolian A, Saleki H, Sharifzadeh SO, Soleymani L, Daneshi S, Hushmandi K, Khan H, Kumar AP, Aref AR, Samarghandian S. New insight towards development of paclitaxel and docetaxel resistance in cancer cells: EMT as a novel molecular mechanism and therapeutic possibilities. Biomed Pharmacother 2021; 141:111824. [PMID: 34175815 DOI: 10.1016/j.biopha.2021.111824] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis and migration of cancer cells to neighboring cells and tissues. Morphologically, epithelial cells are transformed to mesenchymal cells, and at molecular level, E-cadherin undergoes down-regulation, while an increase occurs in N-cadherin and vimentin levels. Increasing evidence demonstrates role of EMT in mediating drug resistance of cancer cells. On the other hand, paclitaxel (PTX) and docetaxel (DTX) are two chemotherapeutic agents belonging to taxene family, capable of inducing cell cycle arrest in cancer cells via preventing microtubule depolymerization. Aggressive behavior of cancer cells resulted from EMT-mediated metastasis can lead to PTX and DTX resistance. Upstream mediators of EMT such as ZEB1/2, TGF-β, microRNAs, and so on are involved in regulating response of cancer cells to PTX and DTX. Tumor-suppressing factors inhibit EMT to promote PTX and DTX sensitivity of cancer cells. Furthermore, three different strategies including using anti-tumor compounds, gene therapy and delivery systems have been developed for suppressing EMT, and enhancing cytotoxicity of PTX and DTX against cancer cells that are mechanistically discussed in the current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leyla Soleymani
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA 02210, USA
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
183
|
Domínguez-López A, Magaña-Guerrero FS, Buentello-Volante B, Bautista-Hernández LA, Reyes-Grajeda JP, Bautista-de Lucio VM, Garfias Y. Amniotic membrane conditioned medium (AMCM) reduces inflammatory response on human limbal myofibroblast, and the potential role of lumican. Mol Vis 2021; 27:370-383. [PMID: 34447239 PMCID: PMC8370574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/13/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Viral infections such as herpetic keratitis (HSK) activate the innate immune response in the cornea triggering opacity and loss of vision. This condition is performed mainly by myofibroblasts that exacerbate secretion of inflammatory cytokines. Amniotic membrane transplantation (AMT) reduces ocular opacity and scarring inhibiting secretion of inflammatory cytokines and proliferation of myofibroblasts. We previously reported that the amniotic membrane (AM) favors an anti-inflammatory microenvironment inhibiting the secretion of inflammatory cytokines, expression of innate immune receptors, and translocation of nuclear NF-κB on human limbal myofibroblasts (HLMs). The aim of the present study was to determine whether the soluble factors of the AM decrease the immune response of HLMs stimulated with polyinosinic-polycytidylic acid sodium salt (poly I:C). METHODS The AM was incubated in Dulbecco's modified eagle medium (DMEM)/F12, and the supernatant was collected to obtain amniotic membrane conditioned medium (AMCM). HLMs were isolated from cadaveric sclera-corneal rims. HLMs were cultured in DMEM/F12 or AMCM and stimulated or not with poly I:C (10 µg/ml) for 12 h to analyze synthesis of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3 or for 2 h to analyze translocation of nuclear NF-kB, IRF3, and IRF7. The proteins contained on AMCM were analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and the acquired peptide ions were analyzed with the Mascot program using both National Center for Biotechnology Information (NCBI) and expressed sequence tag (EST) databases. RESULTS AMCM downregulated the mRNA levels of CCL2, CCL5, CXCL10, MDA5, RIG-1, and TLR3. In addition, AMCM decreased secretion of CCL2, CCL5, and CXCL10 and translocation of nuclear NF-κB. Interestingly, AMCM increased translocation of nuclear IRF3 and synthesis and secretion of type I IFN-β. We also identified small leucine-rich proteoglycan lumican in the AMCM. The administration of rh-lumican to poly I:C-stimulated HLMs reduced the mRNA levels of CCL2, CCL5, and CXCL10. CONCLUSIONS These results suggest that the AM can trigger an anti-inflammatory response on HLMs through soluble factors, and that lumican could play an important role in these effects.
Collapse
Affiliation(s)
- Alfredo Domínguez-López
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Mexico City, Mexico,Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | | | | | | | | | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Mexico City, Mexico,Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
184
|
Walker JL, Menko AS. Immune cells in lens injury repair and fibrosis. Exp Eye Res 2021; 209:108664. [PMID: 34126081 DOI: 10.1016/j.exer.2021.108664] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022]
Abstract
Immune cells, both tissue resident immune cells and those immune cells recruited in response to wounding or degenerative conditions, are essential to both the maintenance and restoration of homeostasis in most tissues. These cells are typically provided to tissues by their closely associated vasculatures. However, the lens, like many of the tissues in the eye, are considered immune privileged sites because they have no associated vasculature. Such absence of immune cells was thought to protect the lens from inflammatory responses that would bring with them the danger of causing vision impairing opacities. However, it has now been shown, as occurs in other immune privileged sites in the eye, that novel pathways exist by which immune cells come to associate with the lens to protect it, maintain its homeostasis, and function in its regenerative repair. Here we review the discoveries that have revealed there are both innate and adaptive immune system responses to lens, and that, like most other tissues, the lens harbors a population of resident immune cells, which are the sentinels of danger or injury to a tissue. While resident and recruited immune cells are essential elements of lens homeostasis and repair, they also become the agents of disease, particularly as progenitors of pro-fibrogenic myofibroblasts. There still remains much to learn about the function of lens-associated immune cells in protection, repair and disease, the knowledge of which will provide new tools for maintaining the core functions of the lens in the visual system.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
185
|
Romdhoniyyah DF, Harding SP, Cheyne CP, Beare NAV. Metformin, A Potential Role in Age-Related Macular Degeneration: A Systematic Review and Meta-Analysis. Ophthalmol Ther 2021; 10:245-260. [PMID: 33846958 PMCID: PMC8079568 DOI: 10.1007/s40123-021-00344-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently, no generally approved medical treatment can delay the onset of age-related macular degeneration (AMD) or slow the progression of degenerative changes. Repurposing drugs with beneficial effects on AMD pathophysiology offers a route to new treatments which is faster, cost-effective, and safer for patients. Recent studies indicate a potential role for metformin in delaying AMD development and progression. In this context, we conducted a systematic review and meta-analysis to look for beneficial associations between metformin and AMD. METHODS We systematically searched Medline and Embase (via Ovid), Web of Science, and ClinicalTrials.gov databases for clinical studies in humans that examined the associations between metformin treatment and AMD published from inception to February 2021. We calculated pooled odds ratio (OR) with 95% confidence interval (CI) considering a random effect model in the meta-analysis. RESULTS Five retrospective studies met the inclusion criteria. There are no prospective studies that have reported the effect of metformin in AMD. The meta-analysis showed that people taking metformin were less likely to have AMD although statistical significance was not met (pooled adjusted OR = 0.80, 95% CI 0.54-1.05, I2 = 98.8%). Subgroup analysis of the association between metformin and early and late AMD could not be performed since the data was not available from the included studies. CONCLUSIONS Analysis of retrospective data suggests a signal that metformin may be associated with decreased risk of any AMD. It should be interpreted with caution because of the failure to meet statistical significance, the small number of studies, and the limitation of routine record data. However prospective studies are warranted in generalizable populations without diabetes, of varied ethnicities, and AMD stages. Clinical trials are needed to determine if metformin has efficacy in treating early and late-stage AMD.
Collapse
Affiliation(s)
- Dewi Fathin Romdhoniyyah
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Simon P Harding
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| | - Christopher P Cheyne
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, UK
| | - Nicholas A V Beare
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK
- St. Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Member of Liverpool Health Partners, Liverpool, UK
| |
Collapse
|
186
|
Sun C, Ma Q, Yin J, Zhang H, Liu X. WISP-1 induced by mechanical stress contributes to fibrosis and hypertrophy of the ligamentum flavum through Hedgehog-Gli1 signaling. Exp Mol Med 2021; 53:1068-1079. [PMID: 34158608 PMCID: PMC8257797 DOI: 10.1038/s12276-021-00636-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Ongoing chronic fibrosis and hypertrophy of the ligamentum flavum (LF) is an important cause of lumbar spinal canal stenosis (LSCS). Our previous work showed that WNT1-inducible signaling pathway protein 1 (WISP-1) is a critical driver of LF fibrosis. However, the potential mechanism has not been explored. Here, we found that Gli1 was upregulated in hypertrophic LF tissues and required for fibrogenesis in fibroblasts. Moreover, mechanical stretching increased the expression of WISP-1 in LF fibroblasts. Furthermore, WISP-1 induced fibrogenesis in vitro through the Hedgehog-Gli1 pathway. This conclusion was supported by the fact that WISP-1 activated the Hedgehog-Gli1 pathway in LF fibroblasts and that cyclopamine attenuated the effect of WISP-1-induced fibrogenesis. WISP-1 also promoted the transition of fibroblasts into myofibroblasts via the Hedgehog pathway. Importantly, a hypertrophic LF rabbit model induced by mechanical stress also showed pathological changes in fibrosis and elevated expression of WISP-1, Gli1, and α-SMA. Therapeutic administration of cyclopamine reduced collagen expression, fibroblast proliferation, and myofibroblast differentiation and ameliorated fibrosis in the mechanical stress-induced rabbit model. Collectively, our findings show mechanical stress/WISP-1/Hedgehog signaling as a new fibrotic axis contributing to LF hypertrophy and identify Hedgehog signaling as a therapeutic target for the prevention and treatment of LF fibrosis.
Collapse
Affiliation(s)
- Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Jian Yin
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Han Zhang
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Xinhui Liu
- Department of Spine Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
187
|
Li K, Zhao J, Wang M, Niu L, Wang Y, Li Y, Zheng Y. The Roles of Various Prostaglandins in Fibrosis: A Review. Biomolecules 2021; 11:biom11060789. [PMID: 34073892 PMCID: PMC8225152 DOI: 10.3390/biom11060789] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Organ fibrosis is a common pathological result of various chronic diseases with multiple causes. Fibrosis is characterized by the excessive deposition of extracellular matrix and eventually leads to the destruction of the tissue structure and impaired organ function. Prostaglandins are produced by arachidonic acid through cyclooxygenases and various prostaglandin-specific synthases. Prostaglandins bind to homologous receptors on adjacent tissue cells in an autocrine or paracrine manner and participate in the regulation of a series of physiological or pathological processes, including fibrosis. This review summarizes the properties, synthesis, and degradation of various prostaglandins, as well as the roles of these prostaglandins and their receptors in fibrosis in multiple models to reveal the clinical significance of prostaglandins and their receptors in the treatment of fibrosis.
Collapse
|
188
|
Extracellular Vesicles Derived From Human Adipose-Derived Stem Cell Prevent the Formation of Hypertrophic Scar in a Rabbit Model. Ann Plast Surg 2021; 84:602-607. [PMID: 32282497 PMCID: PMC7357540 DOI: 10.1097/sap.0000000000002357] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Preventing scar formation during wound healing has important clinical implications. Numerous studies have indicated that adipose-derived stem cell culture mediums, which are rich in cytokines and extracellular vesicles (EVs), regulate matrix remodeling and prevent scar formation after wound healing. Therefore, using a rabbit scar model, we tried to demonstrate which factor in adipose-derived stem cell culture mediums plays a major role in preventing scar formation (EVs or cytokines), as well as revealing the underlying mechanism.
Collapse
|
189
|
Wang Y, Sima X, Ying Y, Huang Y. Exogenous BMP9 promotes lung fibroblast HFL-1 cell activation via ALK1/Smad1/5 signaling in vitro. Exp Ther Med 2021; 22:728. [PMID: 34007337 PMCID: PMC8120641 DOI: 10.3892/etm.2021.10160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP9) has recently been described as a crucial regulator in modulating fibroblast-type cell activation. Activin receptor-like kinase 1 (ALK1) is a high affinity receptor for BMP9 that exerts its role via Smad1/5. However, the functional roles of BMP9 in activating lung fibroblasts and the underlying signaling pathway are not completely understood. The present study aimed to explore the effect of exogenous BMP9 on human lung fibroblast HFL-1 cell proliferation and differentiation, as well as the potential role of the ALK1/Smad1/5 signaling pathway. In the present study, fibroblast proliferation was assessed using Cell Counting Kit-8 and colony formation assays, and the mRNA and protein expression of target genes was examined using reverse transcription-quantitative PCR and western blot assays, respectively. Compared with the control group, BMP9 treatment increased HFL-1 cell proliferation, mRNA and protein expression of differentiated markers, including α-smooth muscle actin, type I collagen and type III collagen, and the expression of ALK1 and phosphorylated Smad1/5 expression. Furthermore, the effects of BMP9 were partially rescued by dorsomorphin-1, an inhibitor of ALK1. The results indicated that BMP9 may serve as a key inducer of lung fibroblast activation and ALK1/Smad1/5 signaling might be associated with BMP9-mediated effects in HFL-1 cells. Therefore, the present study highlighted that the potential role of the BMP9/ALK1/Smad1/5 signaling pathway in the development of pulmonary fibrosis requires further investigation.
Collapse
Affiliation(s)
- Yaqun Wang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Graduate College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaonan Sima
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Ying Ying
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yonghong Huang
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
190
|
Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22094701. [PMID: 33946753 PMCID: PMC8124188 DOI: 10.3390/ijms22094701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.
Collapse
|
191
|
Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene therapy in the anterior eye segment. Curr Gene Ther 2021; 22:104-131. [PMID: 33902406 DOI: 10.2174/1566523221666210423084233] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/04/2021] [Indexed: 11/22/2022]
Abstract
This review provides comprehensive information about the advances in gene therapy in the anterior segment of the eye including cornea, conjunctiva, lacrimal gland, and trabecular meshwork. We discuss gene delivery systems including viral and non-viral vectors as well as gene editing techniques, mainly CRISPR-Cas9, and epigenetic treatments including antisense and siRNA therapeutics. We also provide a detailed analysis of various anterior segment diseases where gene therapy has been tested with corresponding outcomes. Disease conditions include corneal and conjunctival fibrosis and scarring, corneal epithelial wound healing, corneal graft survival, corneal neovascularization, genetic corneal dystrophies, herpetic keratitis, glaucoma, dry eye disease, and other ocular surface diseases. Although most of the analyzed results on the use and validity of gene therapy at the ocular surface have been obtained in vitro or using animal models, we also discuss the available human studies. Gene therapy approaches are currently considered very promising as emerging future treatments of various diseases, and this field is rapidly expanding.
Collapse
Affiliation(s)
- Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
192
|
The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol 2021; 2021:5565178. [PMID: 33953964 PMCID: PMC8064804 DOI: 10.1155/2021/5565178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate the effects of intravitreal anti-VEGF agents in a rabbit model of open-globe injury (OGI). Methods OGI was induced in the right eyes of 75 Belgian rabbits by making 5 mm circumferential incision placed 6 mm behind the limbus. The rabbits were divided into 4 groups: control (n = 5), OGI group (n = 40), and intravitreal Ranibizumab and Conbercept (n = 15 each). Ranibizumab or Conbercept was injected into the vitreous at 0.5 hours, 3 days, or 7 days. Vitreous fluid was collected, and levels of growth factors and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). On day 28 after OGI, B scan examination and histological examination were performed to evaluate intravitreal proliferation and formation of epiretinal fibrosis. Results Vitreous levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-β), and plasminogen activator inhibitor-1 (PAI-1) were significantly increased in rabbit eyes after OGI. Compared to eyes in OGI group, anti-VEGF treatments significantly reduced these growth factors and cytokines. Among the 7 eyes examined from each group for intravitreal proliferative changes, they were found in 7 of 7 (100%) in OGI group and were decreased by Ranibizumab and Conbercept to 5 of 7 (71.4%) and 4 of 7 (57.1%), respectively. Both Ranibizumab and Conbercept inhibited epiretinal scar formation at the wound site, with Conbercept showing the greatest effect (maximal length of scar (L), LOGI = 503 ± 82.44 μm, LRanibizumab = 355 ± 43.66 μm, and LConbercept = 250.33 ± 36.02 μm). Conclusion Anti-VEGF treatments after OGI significantly attenuated the upregulation of growth factors and cytokines in the vitreous and prevented intravitreal proliferation and epiretinal scar formation and thus may protect against the development of posttraumatic complications such as proliferative vitreoretinopathy (PVR).
Collapse
|
193
|
Wan P, Long E, Li Z, Zhu Y, Su W, Zhuo Y. TET-dependent GDF7 hypomethylation impairs aqueous humor outflow and serves as a potential therapeutic target in glaucoma. Mol Ther 2021; 29:1639-1657. [PMID: 33388417 PMCID: PMC8058441 DOI: 10.1016/j.ymthe.2020.12.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 01/03/2023] Open
Abstract
Glaucoma is the leading cause of irreversible vision loss, affecting more than 70 million individuals worldwide. Circulatory disturbances of aqueous humor (AH) have long been central pathological contributors to glaucomatous lesions. Thus, targeting the AH outflow is a promising approach to treat glaucoma. However, the epigenetic mechanisms initiating AH outflow disorders and the targeted treatments remain to be developed. Studying glaucoma patients, we identified GDF7 (growth differentiation factor 7) hypomethylation as a crucial event in the onset of AH outflow disorders. Regarding the underlying mechanism, the hypomethylated GDF7 promoter was responsible for the increased GDF7 production and secretion in primary open-angle glaucoma (POAG). Excessive GDF7 protein promoted trabecular meshwork (TM) fibrosis through bone morphogenetic protein receptor type 2 (BMPR2)/Smad signaling and upregulated pro-fibrotic genes, α-smooth muscle actin (α-SMA) and fibronectin (FN). GDF7 protein expression formed a positive feedback loop in glaucomatous TM (GTM). This positive feedback loop was dependent on the activated TET (ten-eleven translocation) enzyme, which kept the GDF7 promoter region hypomethylated. The phenotypic transition in TM fortified the AH outflow resistance, thus elevating the intraocular pressure (IOP) and attenuating the nerve fiber layer. This methylation-dependent mechanism is also confirmed by a machine-learning model in silico with a specificity of 84.38% and a sensitivity of 89.38%. In rhesus monkeys, we developed GDF7 neutralization therapy to inhibit TM fibrosis and consequent AH outflow resistance that contributes to glaucoma. The neutralization therapy achieved high-efficiency control of the IOP (from 21.3 ± 0.3 to 17.6 ± 0.2 mmHg), a three-fold improvement in the outflow facility (from 0.1 to 0.3 μL/min · mmHg), and protection of nerve fibers. This study provides new insights into the epigenetic mechanism of glaucoma and proposes an innovative GDF7 neutralization therapy as a promising intervention.
Collapse
Affiliation(s)
- Peixing Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erping Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
194
|
Shu DY, Ng K, Wishart TFL, Chui J, Lundmark M, Flokis M, Lovicu FJ. Contrasting roles for BMP-4 and ventromorphins (BMP agonists) in TGFβ-induced lens EMT. Exp Eye Res 2021; 206:108546. [PMID: 33773977 DOI: 10.1016/j.exer.2021.108546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) signaling play opposing roles in epithelial-mesenchymal transition (EMT) of lens epithelial cells, a cellular process integral to the pathogenesis of fibrotic cataract. We previously showed that BMP-7-induced Smad1/5 signaling blocks TGFβ-induced Smad2/3-signaling and EMT in rat lens epithelial cell explants. To further explore the antagonistic role of BMPs on TGFβ-signaling, we tested the capability of BMP-4 or newly described BMP agonists, ventromorphins, in blocking TGFβ-induced lens EMT. Primary rat lens epithelial explants were treated with exogenous TGFβ2 alone, or in combination with BMP-4 or ventromorphins. Treatment with TGFβ2 induced lens epithelial cells to undergo EMT and transdifferentiate into myofibroblastic cells with upregulated α-SMA and nuclear translocation of Smad2/3 immunofluorescence. BMP-4 was able to suppress this EMT without blocking TGFβ2-nuclear translocation of Smad2/3. In contrast, the BMP agonists, ventromorphins, were unable to block TGFβ2-induced EMT, despite a transient and early ability to significantly reduce TGFβ2-induced nuclear translocation of Smad2/3. This intriguing disparity highlights new complexities in the responsiveness of the lens to differing BMP-related signaling. Further research is required to better understand the antagonistic relationship between TGFβ and BMPs in lens EMT leading to cataract.
Collapse
Affiliation(s)
- Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia
| | - Kevin Ng
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | | | - Juanita Chui
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Malin Lundmark
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
195
|
JNK and p38 Inhibitors Prevent Transforming Growth Factor-β1-Induced Myofibroblast Transdifferentiation in Human Graves' Orbital Fibroblasts. Int J Mol Sci 2021; 22:ijms22062952. [PMID: 33799469 PMCID: PMC7998969 DOI: 10.3390/ijms22062952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.
Collapse
|
196
|
Ji Q, Hou J, Yong X, Gong G, Muddassir M, Tang T, Xie J, Fan W, Chen X. Targeted Dual Small Interfering Ribonucleic Acid Delivery via Non-Viral Polymeric Vectors for Pulmonary Fibrosis Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007798. [PMID: 33604928 DOI: 10.1002/adma.202007798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Inhibiting the myofibroblast differentiation of lung-resident mesenchymal stem cells (LR-MSCs) is a promising yet challenging approach for pulmonary fibrosis (PF) therapy. Here, micelles formed by a graft copolymer of multiple PEGs modified branched polyethylenimine are used for delivering runt-related transcription factor-1 (RUNX1) small interfering RNA (siRNA) (siRUNX1) to the lung, aiming to inhibit the myofibroblast differentiation of LR-MSCs. LR-MSC targeting is achieved by functionalizing the micelle surface with an anti-stem-cell antigen-1 antibody fragment (Fab'). Consequently, therapeutic benefits are obtained by successful suppression of myofibroblast differentiation of LR-MSCs in bleomycin-induced PF model mice treated with siRUNX1-loaded micelles. Furthermore, an excellent synergistic effect of PF therapy is achieved for this micelle system loaded siRUNX1 and glioma-associated oncogene homolog-1 (Gli1) small interfering RNA (siGli1), a traditional anti-PF siRNA of glioma-associated oncogene homolog-1. Hence, this work not only provides RUNX1 as a novel PF therapeutic target, but also as a promising dual siRNA-loaded nanocarrier system for the therapy of PF.
Collapse
Affiliation(s)
- Qijian Ji
- Department of Critical Care Medicine, Xuyi People's Hospital, 28 Hongwu Road, Xuyi, Huai'an, Jiangsu, 211700, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xueqing Yong
- Department of Nuclear Science & Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 211106, China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Mohd Muddassir
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Tianyu Tang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, 87 Dingjiaqiao Road, Nanjing, Jiangsu, 210009, China
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
197
|
He J, Fang B, Shan S, Xie Y, Wang C, Zhang Y, Zhang X, Li Q. Mechanical stretch promotes hypertrophic scar formation through mechanically activated cation channel Piezo1. Cell Death Dis 2021; 12:226. [PMID: 33649312 PMCID: PMC7921104 DOI: 10.1038/s41419-021-03481-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022]
Abstract
Hypertrophic scar (HS) formation is a skin fibroproliferative disease that occurs following a cutaneous injury, leading to functional and cosmetic impairment. To date, few therapeutic treatments exhibit satisfactory outcomes. The mechanical force has been shown to be a key regulator of HS formation, but the underlying mechanism is not completely understood. The Piezo1 channel has been identified as a novel mechanically activated cation channel (MAC) and is reportedly capable of regulating force-mediated cellular biological behaviors. However, the mechanotransduction role of Piezo1 in HS formation has not been investigated. In this work, we found that Piezo1 was overexpressed in myofibroblasts of human and rat HS tissues. In vitro, cyclic mechanical stretch (CMS) increased Piezo1 expression and Piezo1-mediated calcium influx in human dermal fibroblasts (HDFs). In addition, Piezo1 activity promoted HDFs proliferation, motility, and differentiation in response to CMS. More importantly, intradermal injection of GsMTx4, a Piezo1-blocking peptide, protected rats from stretch-induced HS formation. Together, Piezo1 was shown to participate in HS formation and could be a novel target for the development of promising therapies for HS formation.
Collapse
Affiliation(s)
- Jiahao He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Bin Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), 200092, Shanghai, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
198
|
Shetty R, Kumar NR, Subramani M, Krishna L, Murugeswari P, Matalia H, Khamar P, Dadachanji ZV, Mohan RR, Ghosh A, Das D. Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Sci Rep 2021; 11:4392. [PMID: 33623133 PMCID: PMC7902619 DOI: 10.1038/s41598-021-83881-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Corneal haze post refractive surgery is prevented by mitomycin c (MMC) treatment though it can lead to corneal endothelial damage, persistent epithelial defects and necrosis of cells. Suberanilohydroxamic acid (SAHA) however has been proposed to prevent corneal haze without any adverse effects. For clinical application we have investigated the short and long term outcome of cells exposed to SAHA. Human donor cornea, cultured limbal epithelial cells, corneal rims and lenticules were incubated with SAHA and MMC. The cells/tissue was then analyzed by RT-qPCR, immunofluorescence and western blot for markers of apoptosis and fibrosis. The results reveal that short term exposure of SAHA and SAHA + MMC reduced apoptosis levels and increased αSMA expression compared to those treated with MMC. Epithelial cells derived from cultured corneal rim that were incubated with the MMC, SAHA or MMC + SAHA revealed enhanced apoptosis, reduced levels of CK3/CK12, ∆NP63 and COL4A compared to other treatments. In SAHA treated lenticules TGFβ induced fibrosis was reduced. The results imply that MMC treatment for corneal haze has both short term and long term adverse effects on cells and the cellular properties. However, a combinatorial treatment of SAHA + MMC prevents expression of corneal fibrotic markers without causing any adverse effect on cellular properties.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Nimisha Rajiv Kumar
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Ponnalagu Murugeswari
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Zelda V Dadachanji
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Rajiv R Mohan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, 65211, USA. .,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Harry S Truman Veterans' Memorial Hospital, Columbia, MO, 65201, USA.
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India.
| | - Debashish Das
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India.
| |
Collapse
|
199
|
Pitak-Arnnop P, Subbalekha K, Meningaud JP, Sirintawat N, Auychai P, Tangmanee C, Wunsch A, Neff A. Factors associated with epiphora following orbital-sparing maxillectomy via modified Weber-Ferguson incision with lower blepharoplasty. J Surg Oncol 2021; 123:1246-1252. [PMID: 33523470 DOI: 10.1002/jso.26408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 11/12/2022]
Abstract
PURPOSE The aims of the study were to estimate the frequency of epiphora and to identify factors associated with epiphora after orbital-sparing maxillectomy via modified Weber-Ferguson incision with lower blepharoplasty (OSOSM-MWFILB). METHODS We performed a retrospective cohort study enrolling a sample derived from the patient population undergoing OSM-MWFILB over a 7-year period. The predictor variables were grouped into demographic, related health status, anatomic, tumor-specific, and therapeutic categories. The primary outcome variable was the presence of postmaxillectomy epiphora (PME). Descriptive, univariate, and multivariate regression mixed-effect models were computed. RESULTS The study sample was composed of 134 patients (46.3% females; 71.6% squamous cell carcinomas) with a mean age of 64.7 ± 12.2 years. There were 23 (17.2%) PME events, which were significantly associated with eight variables: male gender, poor general health (ASA III-IV), large vertical defect (Brown and Shaw's class III-IV), squamous cell carcinoma tumor type, big tumor size (T3-4), cervical lymph node metastasis (N1-2), long operating time > 3 h, and adjuvant radio(chemo)therapy in both univariate mixed regression and multivariate Cox hazards analyses. Healing of PME in irradiated patients was significantly delayed. CONCLUSIONS Ophthalmologic consequences in patients undergoing OSM-MWFILB require particular attention, especially in case of advanced tumors, multiple comorbidities, or long surgery with postoperative radio(chemo)therapy. This emphasizes the importance of appropriate cooperation between the surgeons and ophthalmic colleagues.
Collapse
Affiliation(s)
- Poramate Pitak-Arnnop
- Department of Oral and Maxillofacial Surgery, University Hospital of Giessen and Marburg, Campus Marburg, UKGM GmbH, Faculty of Medicine, Philipps-University of Marburg, Marburg, Germany
| | - Keskanya Subbalekha
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jean-Paul Meningaud
- Department of Plastic, Reconstructive, Esthetic and Maxillofacial Surgery, Henri Mondor University Hospital, AP-HP, Faculty of Medicine, University Paris-Est Créteil Val de Marne (Paris XII), Créteil, France
| | - Nattapong Sirintawat
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Prim Auychai
- Department of Pediatric Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chatpong Tangmanee
- Department of Statistics, Chulalongkorn Business School, Bangkok, Thailand
| | - Annette Wunsch
- Department of Otolaryngology/Head and Neck Surgery, Division of Oral and Maxillofacial Surgery, Faculty of Medicine Campus Trier, Klinikum Mutterhaus der Borromäerinnen Mitte, Johannes Gutenberg University of Mainz, Trier, Germany
| | - Andreas Neff
- Department of Oral and Maxillofacial Surgery, University Hospital of Giessen and Marburg, Campus Marburg, UKGM GmbH, Faculty of Medicine, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
200
|
Xu XH, Liu Y, Feng L, Yang YS, Liu SG, Guo W, Zhou HX, Li ZQ, Zhang L, Meng WX. Interleukin-6 released by oral lichen planus myofibroblasts promotes angiogenesis. Exp Ther Med 2021; 21:291. [PMID: 33717234 PMCID: PMC7885057 DOI: 10.3892/etm.2021.9722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Oral lichen planus (OLP), defined as a potential for malignant transformation, is a chronic inflammatory disease in which abnormal angiogenesis serves a role in the malignant changes of the disease. OLP-associated fibroblasts (OLP-MFs), derived from the stroma of OLP tissues, are characterized by the presence of myofibroblasts and contribute to the secretion of pro-inflammatory cytokines, which may be involved in the molecular pathogenesis of OLP. However, the associated mechanisms of angiogenesis in OLP remain unknown. The present study aimed to verify the expression of intercellular adhesion molecular 1, vascular cell adhesion molecule 1, VEGF and CD34 in OLP, and to investigate whether IL-6 secreted by OLP-MFs promoted OLP angiogenesis and the effect of its corresponding antibody inhibition. The results of the experiments demonstrated that inflammation was present and OLP upregulated the secretion of IL-6 by OLP stromal fibroblasts, thereby enhancing OLP angiogenesis. Anti-IL-6 receptor antibody inhibited OLP-stroma IL-6 signaling and suppressed OLP angiogenesis. The antibody inhibited the inflammatory response by inhibiting the secretion of inflammatory factors, including IL-6, to suppress angiogenesis and reduce disease progression, thus indicating that this could be a potential target to develop a treatment for OLP.
Collapse
Affiliation(s)
- Xiao-Heng Xu
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yang Liu
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Lu Feng
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yin-Shen Yang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shu-Guang Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei Guo
- Department of Oral Pathology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Hui-Xi Zhou
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhi-Qiang Li
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Lin Zhang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wen-Xia Meng
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|