151
|
Baldwin GS, Rorison KA. Structural requirements for the binding of non-steroidal anti-inflammatory drugs to the 78 kDa gastrin binding protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:68-76. [PMID: 10366761 DOI: 10.1016/s0304-4165(99)00044-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit the proliferation of colorectal carcinoma cell lines in vitro and reduce the risk of colorectal carcinoma in vivo. The good correlation observed between the potency of NSAIDs as inhibitors of colorectal carcinoma cell proliferation and as antagonists of a 78 kDa gastrin binding protein (GBP) suggested that blockade of the GBP might contribute to the anti-proliferative effects of NSAIDs [G.S. Baldwin, V.J. Murphy, Z. Yang, T. Hashimoto, J. Pharmacol. Exp. Ther. 286 (1998) 1110-1114]. The most potent NSAID investigated was sulindac sulphide, which had an IC50 value of 40 microM. In order to investigate the structural requirements for binding to the GBP, 26 analogues of sulindac sulphide and sulindac sulphoxide were tested for their ability to inhibit the binding of iodinated gastrin to the GBP. Six of the analogues inhibited gastrin binding by more than 50% at a concentration of 1 mM. The IC50 values estimated by computer fitting of titration data were in the range of 280-940 microM. Comparison of the analogue structures suggests that a substituent with a carboxyl group is preferred in the R2 position. In addition the location of the NSAID binding site within the GBP structure was investigated. NSAIDs bound to both the N- and C-terminal halves of the GBP, and the affinities determined were similar to the values previously reported for the full-length GBP. The results reported herein represent the first step in the rational design of more potent GBP antagonists, some of which may be useful for the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- G S Baldwin
- University Department of Surgery, Austin Campus, A&RMC, Studley Rd., Heidelberg, Vic. 3084, Australia.
| | | |
Collapse
|
152
|
Ibdah JA, Bennett MJ, Rinaldo P, Zhao Y, Gibson B, Sims HF, Strauss AW. A fetal fatty-acid oxidation disorder as a cause of liver disease in pregnant women. N Engl J Med 1999; 340:1723-31. [PMID: 10352164 DOI: 10.1056/nejm199906033402204] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute fatty liver of pregnancy and the HELLP syndrome (hemolysis, elevated liver-enzyme levels, and a low platelet count) are serious hepatic disorders that may occur during pregnancy in women whose fetuses are later found to have a deficiency of long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase. This enzyme resides in the mitochondrial trifunctional protein, which also contains the active site of long-chain 2,3-enoyl-CoA hydratase and long-chain 3-ketoacyl-CoA thiolase. We undertook this study to determine the relation between mutations in the trifunctional protein in infants with defects in fatty-acid oxidation and acute liver disease during pregnancy in their mothers. METHODS In 24 children with 3-hydroxyacyl-CoA dehydrogenase deficiency, we used DNA amplification and nucleotide-sequence analyses to identify mutations in the alpha subunit of the trifunctional protein. We then correlated the results with the presence of liver disease during pregnancy in the mothers. RESULTS Nineteen children had a deficiency only of long-chain 3-hydroxyacyl-CoA dehydrogenase and presented with hypoketotic hypoglycemia and fatty liver. In eight children, we identified a homozygous mutation in which glutamic acid at residue 474 was changed to glutamine. Eleven other children were compound heterozygotes, with this mutation in one allele of the alpha-subunit gene and a different mutation in the other allele. While carrying fetuses with the Glu474Gln mutation, 79 percent of the heterozygous mothers had fatty liver of pregnancy or the HELLP syndrome. Five other children, who presented with neonatal dilated cardiomyopathy or progressive neuromyopathy, had complete deficiency of the trifunctional protein (loss of activity of all three enzymes). None had the Glu474Gln mutation, and none of their mothers had liver disease during pregnancy. CONCLUSIONS Women with acute liver disease during pregnancy may have a Glu474Gln mutation in long-chain hydroxyacyl-CoA dehydrogenase. Their infants are at risk for hypoketotic hypoglycemia and fatty liver.
Collapse
Affiliation(s)
- J A Ibdah
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Wanders RJ, Vreken P, den Boer ME, Wijburg FA, van Gennip AH, IJlst L. Disorders of mitochondrial fatty acyl-CoA beta-oxidation. J Inherit Metab Dis 1999; 22:442-87. [PMID: 10407780 DOI: 10.1023/a:1005504223140] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In recent years tremendous progress has been made with respect to the enzymology of the mitochondrial fatty acid beta-oxidation machinery and defects therein. Firstly, a number of new mitochondrial beta-oxidation enzymes have been identified, including very-long-chain acyl-CoA dehydrogenase (VLCAD) and mitochondrial trifunctional protein (MTP). Secondly, the introduction of tandem MS for the analysis of plasma acylcarnitines has greatly facilitated the identification of patients with a defect in fatty acid oxidation (FAO). These two developments explain why the number of defined FAO disorders has increased dramatically, making FAO disorders the most rapidly growing group of inborn errors of metabolism. In this review we describe the current state of knowledge of the enzymes involved in the mitochondrial oxidation of straight-chain, branched-chain and (poly)unsaturated fatty acyl-CoAs as well as disorders of fatty acid oxidation. The laboratory diagnosis of these disorders is described, with particular emphasis on the methods used to identify the underlying enzyme defect and the molecular mutations. In addition, a simple flowchart is presented as a guide to the identification of mitochondrial FAO-disorders. Finally, treatment strategies are discussed briefly.
Collapse
Affiliation(s)
- R J Wanders
- Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
154
|
Glasgow JF, Middleton B, Moore R, Gray A, Hill J. The mechanism of inhibition of beta-oxidation by aspirin metabolites in skin fibroblasts from Reye's syndrome patients and controls. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1454:115-25. [PMID: 10354521 DOI: 10.1016/s0925-4439(99)00025-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of aspirin metabolites on beta-oxidation were studied in skin fibroblasts from eight typical Reye's syndrome (RS) patients and controls. RS patients' cells did not differ from controls in rates of palmitate oxidation or in the three component activities of the mitochondrial trifunctional enzyme (MTE), indicating no inherited beta-oxidation defect. Aspirin metabolites salicylate, hydroxyhippurate and gentisate, but not aspirin, directly inhibited palmitate oxidation in control and RS cells. RS cells were significantly more sensitive to inhibition than controls at 0.5 to 5 mM salicylate. Inhibition was concentration-dependent and reversible. Inhibition did not occur in fibroblasts lacking activity of the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity of MTE. Salicylate was therefore inhibiting beta-oxidation at this step. Hydroxyhippurate and salicylate reversibly inhibited HAD activities in extracts of control and RS cells. Studies with pure short-chain HAD and LCHAD (MTE) showed hydroxyhippurate and salicylate were competitive inhibitors of the former but mixed (not competitive) inhibitors of the latter. Both compounds inhibited the combined, three-step, MTE reaction measured in the physiological direction. We conclude that (1) salicylate and hydroxyhippurate decrease beta-oxidation in intact cells by reversible inhibition of LCHAD activity of the MTE, and (2) beta-oxidation in RS cells is inherently more sensitive to inhibition by low concentrations of salicylate than controls.
Collapse
Affiliation(s)
- J F Glasgow
- Nuffield Department of Child Health, The Queen's University of Belfast, Royal Belfast Hospital for Sick Children, Belfast BT12 6BA, UK
| | | | | | | | | |
Collapse
|
155
|
Strauss AW, Bennett MJ, Rinaldo P, Sims HF, O'Brien LK, Zhao Y, Gibson B, Ibdah J. Inherited long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency and a fetal-maternal interaction cause maternal liver disease and other pregnancy complications. Semin Perinatol 1999; 23:100-12. [PMID: 10331463 DOI: 10.1016/s0146-0005(99)80044-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fetal-maternal interactions are critical determinants of maternal health during pregnancy and perinatal outcome. This review explores the causative relationship of a fetal disorder of mitochondrial fatty acid oxidation, long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, and the serious maternal liver diseases of pregnancy-preeclampsia, the HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet counts), and acute fatty liver of pregnancy. Features of the metabolic adaptation necessitated during the fetal-neonatal transition; common phenotypes of pediatric fatty acid oxidation disorders, including neonatal hypoketotic, hypoglycemia and hepatic crisis; and clinical abnormalities of HELLP and acute fatty liver of pregnancy are presented. Evidence that a common mutation in the alpha-subunit (LCHAD) of trifunctional protein, E474Q, is always one of the mutant alleles in fetal isolated LCHAD deficiency associated with these disorders of pregnancy that cause high maternal, fetal, and newborn morbidity and mortality is reviewed. Recommendations for molecular testing for LCHAD deficiency in families with life-threatening maternal liver disease are given.
Collapse
Affiliation(s)
- A W Strauss
- Department of Pediatrics, Washington University School of Medicine, St Louis Children's Hospital, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The primary presentations of neuromuscular disease in the newborn period are hypotonia and weakness. Although metabolic myopathies are inherited disorders that present from birth and may present with subtle to marked neonatal hypotonia, a number of these defects are diagnosed classically in childhood, adolescence, or adulthood. Disorders of glycogen, lipid, or mitochondrial metabolism may cause three main clinical syndromes in muscle, namely, (1) progressive weakness with hypotonia (e.g., acid maltase, debrancher enzyme, and brancher enzyme deficiencies among the glycogenoses; carnitine uptake and carnitine acylcarnitine translocase defects among the fatty acid oxidation (FAO) defects; and cytochrome oxidase deficiency among the mitochondrial disorders) or (2) acute, recurrent, reversible muscle dysfunction with exercise intolerance and acute muscle breakdown or myoglobinuria (with or without cramps), e.g., phosphorylase, phosphofructokinase, and phosphoglycerate kinase among the glycogenoses and carnitine palmitoyltransferase II deficiency among the disorders of FAO or (3) both (e.g., long-chain or very long-chain acyl coenzyme A (CoA) dehydrogenase, short-chain L-3-hydroxyacyl-CoA dehydrogenase, and trifunctional protein deficiencies among the FAO defects). Episodes of exercise-induced myoglobinuria tend to present in later childhood or adolescence; however, myoglobinuria in the first year of life may occur in FAO disorders during catabolic crises precipitated by fasting or infection. The following is a survey of genetic disorders of glycogen and lipid metabolism resulting in myopathy, focusing primarily on those defects, to date, that have presented in the neonatal or early infancy period. Disorders of mitochondrial metabolism are discussed in another chapter.
Collapse
Affiliation(s)
- I Tein
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Ontario, Canada
| |
Collapse
|
157
|
Orii KE, Orii KO, Souri M, Orii T, Kondo N, Hashimoto T, Aoyama T. Genes for the human mitochondrial trifunctional protein alpha- and beta-subunits are divergently transcribed from a common promoter region. J Biol Chem 1999; 274:8077-84. [PMID: 10075708 DOI: 10.1074/jbc.274.12.8077] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human HADHA and HADHB genes encode the subunits of an enzyme complex, the trifunctional protein, involved in mitochondrial beta-oxidation of fatty acids. Both genes are located in the same region of chromosome 2p23. We isolated genomic clones, including 5' flanking regions, for HADHA and HADHB. Sequencing revealed that both of these genes are linked in a head-to-head arrangement on opposite strands and have in common a 350-bp 5' flanking region. The 5' flanking region has bidirectional promoter activity within this region; two cis elements proved critical for the activity. Transcription factor Sp1 functions as an activator for the bidirectional promoter by binding to both elements. Therefore, expression of trifunctional protein subunits are probably coordinately regulated by a common promoter and by Sp1.
Collapse
Affiliation(s)
- K E Orii
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500-8076, Japan.
| | | | | | | | | | | | | |
Collapse
|
158
|
Eaton S, Middleton B, Bartlett K. Control of mitochondrial beta-oxidation: sensitivity of the trifunctional protein to [NAD+]/[NADH] and [acetyl-CoA]/[CoA]. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:230-8. [PMID: 9920399 DOI: 10.1016/s0167-4838(98)00246-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Isolated human mitochondrial trifunctional protein was incubated with 2-hexadecenoyl-CoA, CoA and NAD+ and the resultant CoA esters measured. Steady state with respect to the concentrations of the intermediates 3-hydroxyhexadecanoyl-CoA and 3-ketohexadecanoyl-CoA and the rate of formation of the product tetradecanoyl-CoA was reached within 4 min. Flux was greatly enhanced by the addition of Tween 20 (0.2% v/v) which stimulated 3-ketoacyl-CoA thiolase activity by over 7-fold. When 3-ketoacyl-CoA thiolase was not stimulated, 3-hydroxyhexadecanoyl-CoA was the prominent CoA ester accumulated, presumably due to inhibition of 3-hydroxyacyl-CoA dehydrogenase activity by accumulated 3-ketoacyl-CoA, analogous to the inhibition of short-chain 3-hydroxyacyl-CoA dehydrogenase by 3-ketoacyl-CoA. When [NAD+]/[NADH] was varied at a fixed total [NAD++NADH], the overall flux was only inhibited by [NAD+]/[NADH] less than 1. In contrast, when [acetyl-CoA]/[CoA] was varied at a fixed total [CoA], much greater sensitivity was observed.
Collapse
Affiliation(s)
- S Eaton
- Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | | | | |
Collapse
|
159
|
Kumamoto T, Ide T. Comparative effects of alpha- and gamma-linolenic acids on rat liver fatty acid oxidation. Lipids 1998; 33:647-54. [PMID: 9688166 DOI: 10.1007/s11745-998-0252-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been reported that both n-3 and n-6 octadecatrienoic acids can increase hepatic fatty acid oxidation activity. It remains unclear, however, whether different enzymes in fatty acid oxidation show a similar response to n-3 and n-6 octadecatrienoic acids. The activity of hepatic fatty acid oxidation enzymes in rats fed an oil mixture rich in alpha-linolenic acid (18:3n-3) and borage oil rich in gamma-linolenic acid (18:3n-6) was therefore compared to that in rats fed an oil mixture rich in linoleic acid (18:2n-6) and a saturated fat (palm oil) in this study. Linseed oil served as the source of 18:3n-3 for the oil mixture rich in this octadecatrienoic acid and contained 30.6% 18:3n-3 but not 18:3n-6. Borage oil contained 25.7% 18:3n-6 and 4.5% 18:3n-3. Groups of seven rats each were fed diets containing 15% various fats for 15 d. The oxidation rate of palmitoyl-CoA in the peroxisomes was higher in rats fed a fat mixture rich in 18:3n-3 (3.03 nmol/min/mg protein) and borage oil (2.89 nmol/min/mg protein) than in rats fed palm oil (2.08 nmol/min/mg protein) and a fat mixture rich in 18:2n-6 (2.15 nmol/min/mg protein). The mitochondrial palmitoyl-CoA oxidation rate was highest in rats fed a fat mixture rich in 18:3n-3 (1.93 nmol/min/mg protein), but no significant differences in this parameter were seen among the other groups (1.25-1.46 nmol/min/mg protein). Compared to palm oil and fat mixtures rich in 18:2n-6, a fat mixture rich in 18:3n-3 and borage oil significantly increased the hepatic activity of carnitine palmitoyltransferase and acyl-CoA oxidase. Compared to palm oil and a fat mixture rich in 18:2n-6, a fat mixture rich in 18:3n-3, but not fats rich in 18:3n-6, significantly decreased 3-hydroxyacyl-CoA dehydrogenase activity. Compared to palm oil and a fat mixture rich in 18:2n-6, borage oil profoundly decreased mitochondrial acyl-CoA dehydrogenase activity, but a fat mixture rich in 18:3n-3 increased it. 2,4-Dienoyl-CoA reductase activity was significantly lower in rats fed palm oil than in other groups. Compared to other fats, borage oil significantly increased delt3,delta2-enoyl-CoA isomerase activity. Activity was also significantly higher in rats fed 18:2n-6 oil than in those fed palm oil. It was confirmed that both dietary 18:3n-6 and 18:3n-3 increased fatty acid oxidation activity in the liver. These two dietary octadecatrienoic acids differ considerably, however, in how they affect individual fatty acid oxidation enzymes.
Collapse
Affiliation(s)
- T Kumamoto
- Laboratory of Nutrition Biochemistry, National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Tsukuba Science City, Japan
| | | |
Collapse
|
160
|
Tyni T, Kivelä T, Lappi M, Summanen P, Nikoskelainen E, Pihko H. Ophthalmologic findings in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency caused by the G1528C mutation: a new type of hereditary metabolic chorioretinopathy. Ophthalmology 1998; 105:810-24. [PMID: 9593380 DOI: 10.1016/s0161-6420(98)95019-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE The purpose of the study was to determine the nature and course of ophthalmic abnormalities in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency, a recently discovered disorder of mitochondrial fatty acid beta-oxidation. STUDY DESIGN The study design was a cohort (case series). PARTICIPANTS A retrospective review of the records of 15 children who had died during their first 2 years was performed. Also performed were a longitudinal reanalysis and cross-sectional clinical examination of four long-term survivors aged 5 to 31 years. MAIN OUTCOME MEASURES Visual acuity, refraction, visual fields, ophthalmoscopy, fluorescein angiography, biometry, corneal topography, electroretinography (ERG), visual-evoked potentials (VEPs), color vision, and dark adaptation were measured. RESULTS In seven children, ophthalmoscopic findings were within normal limits at 3 days to 13 months of age (median, 4.8 months). In 11 children, a granular retinal pigment epithelium (RPE), with or without pigment clumping in the macula, was seen at 4 months to 5 years of age (median, 9 months). Two long-term survivors, 16 and 31 years of age, eventually had circumscribed atrophy of the choroid, RPE, and retina, which coincided with a posterior staphyloma type 1. They had progressive axial myopia starting at 6 and 12 years of age and later paracentral scotomas leading to poor central vision. They suffered from early difficulty with mesopic vision, glare, and a severe generalized color vision deficiency that started as a tritanomaly. A third survivor was mildly myopic at 5 years of age. All four surviving patients had visually insignificant, flake-like supranuclear opacities in the lens. The ERG initially was normal but deteriorated during the first decade and later was unrecordable. The VEP responses remained fairly normal. Initially, angiography showed no blockade of the choroidal fluorescence because of the thin RPE. Filling of choroidal vessels was delayed, and the choriocapillaris and, later, larger choroidal vessels in the posterior pole became nonperfused. CONCLUSIONS In LCHAD deficiency, the fundus is normal at birth (stage 1). Soon, however, pigment dispersion occurs in the RPE (stage 2), followed by circumscribed chorioretinal atrophy, occlusion of choroidal vessels, and deterioration of central vision, often with relative sparing of the peripheral fundus (stage 3). Finally, posterior staphylomas and central scotomas may develop (stage 4). Developmental cataract, progressive myopia, and deterioration of visual fields and color vision are new findings in LCHAD deficiency. The chorioretinopathy and abnormal ERG precede the development of myopia and posterior staphyloma, which, in turn, coincide with the loss of macular vision. The authors postulate that the RPE or choriocapillaris is primarily affected. Awareness of the characteristic ocular features is important because of an opportunity for dietary treatment, genetic counseling, and prenatal diagnosis.
Collapse
Affiliation(s)
- T Tyni
- Department of Child Neurology, Children's Hospital, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
161
|
Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J Biol Chem 1998; 273:5678-84. [PMID: 9488698 DOI: 10.1074/jbc.273.10.5678] [Citation(s) in RCA: 690] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the steroid/nuclear receptor superfamily and mediates the biological and toxicological effects of peroxisome proliferators. To determine the physiological role of PPARalpha in fatty acid metabolism, levels of peroxisomal and mitochondrial fatty acid metabolizing enzymes were determined in the PPARalpha null mouse. Constitutive liver beta-oxidation of the long chain fatty acid, palmitic acid, was lower in the PPARalpha null mice as compared with wild type mice, indicating defective mitochondrial fatty acid catabolism. In contrast, constitutive oxidation of the very long chain fatty acid, lignoceric acid, was not different between wild type and PPARalpha null mice, suggesting that constitutive expression of enzymes involved in peroxisomal beta-oxidation is independent of PPARalpha. Indeed, the PPARalpha null mice had normal levels of the peroxisomal acyl-CoA oxidase, bifunctional protein (hydratase + 3-hydroxyacyl-CoA dehydrogenase), and thiolase but lower constitutive expression of the D-type bifunctional protein (hydratase + 3-hydroxyacyl-CoA dehydrogenase). Several mitochondrial fatty acid metabolizing enzymes including very long chain acyl-CoA dehydrogenase, long chain acyl-CoA dehydrogenase, short chain-specific 3-ketoacyl-CoA thiolase, and long chain acyl-CoA synthetase are also expressed at lower levels in the untreated PPARalpha null mice, whereas other fatty acid metabolizing enzymes were not different between the untreated null mice and wild type mice. A lower constitutive expression of mRNAs encoding these enzymes was also found, suggesting that the effect was due to altered gene expression. In wild type mice, both peroxisomal and mitochondrial enzymes were induced by the peroxisome proliferator Wy-14,643; induction was not observed in the PPARalpha null animals. These data indicate that PPARalpha modulates constitutive expression of genes encoding several mitochondrial fatty acid-catabolizing enzymes in addition to mediating inducible mitochondrial and peroxisomal fatty acid beta-oxidation, thus establishing a role for the receptor in fatty acid homeostasis.
Collapse
Affiliation(s)
- T Aoyama
- Department of Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano 390, Japan.
| | | | | | | | | | | | | |
Collapse
|
162
|
Tyni T, Ekholm E, Pihko H. Pregnancy complications are frequent in long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Am J Obstet Gynecol 1998; 178:603-8. [PMID: 9539533 DOI: 10.1016/s0002-9378(98)70446-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Preeclampsia-related complications of pregnancy have been detected in carriers of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency, a recently discovered disorder of mitochondrial fatty acid oxidation. Because no comprehensive study is available, we studied the frequency of pregnancy complications in mothers who had given birth to children with this disorder. STUDY DESIGN Data of all pregnancies of 18 mothers to 28 diagnosed patients with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency were reviewed retrospectively. From a total 79 pregnancies 16 early abortions were excluded; 63 pregnancies were included, and the fetus was affected in 29. RESULTS One child born prematurely died neonatally but none of the mothers died. Preeclampsia, the syndrome of hemolysis, elevated liver enzymes, and low platelets, and acute fatty liver of pregnancy occurred in 31% and intrahepatic cholestasis in 10% of pregnancies with a long chain 3-hydroxyacyl-coenzyme A-deficient fetus but in none of the pregnancies with a healthy fetus. A total of 40% of affected neonates were born prematurely and 47% had growth restriction, whereas none of the healthy neonates were premature and growth restriction occurred in only 17% (p < 0.01). Prematurity and growth restriction could not be explained solely by the preeclampsia-related conditions. CONCLUSIONS In pregnancies with a long-chain 3-hydroxyacyl-coenzyme A-deficient fetus the frequency of preeclampsia-related conditions is high. The results support the role of fatty acid accumulation in the pathogenesis of preeclampsia. Analysis for the prevalent mutation of this deficiency may be warranted in pregnancies with severe preeclampsia.
Collapse
Affiliation(s)
- T Tyni
- Division of Child Neurology, Children's Hospital, University of Helsinki, Finland
| | | | | |
Collapse
|
163
|
Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 1998; 273:4163-70. [PMID: 9461612 DOI: 10.1074/jbc.273.7.4163] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A gene encoding a novel enoyl-SCoA hydratase/lyase enzyme for the hydration and nonoxidative cleavage of feruloyl-SCoA to vanillin and acetyl-SCoA was isolated and characterized from a strain of Pseudomonas fluorescens. Feruloyl-SCoA is the CoASH thioester of ferulic acid (4-hydroxy-3-methoxy-trans-cinnamic acid), an abundant constituent of plant cell walls and a degradation product of lignin. The gene was isolated by a combination of mutant complementation and biochemical approaches, and its function was demonstrated by heterologous expression in Escherichia coli under the control of a T7 RNA polymerase promoter. The gene product is a member of the enoyl-SCoA hydratase/isomerase superfamily.
Collapse
Affiliation(s)
- M J Gasson
- Department of Genetics, Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Souri M, Aoyama T, Cox GF, Hashimoto T. Catalytic and FAD-binding residues of mitochondrial very long chain acyl-coenzyme A dehydrogenase. J Biol Chem 1998; 273:4227-31. [PMID: 9461620 DOI: 10.1074/jbc.273.7.4227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) is one of four flavoproteins which catalyze the initial step of the mitochondrial beta-oxidation spiral. By sequence comparison with other acyl-CoA dehydrogenases, Glu-422 of VLCAD has been presumed to be the catalytic residue that abstracts the alpha-proton in the alphabeta-dehydrogenation reaction. Replacing Glu-422 with glutamine (E422Q) caused a loss of enzyme activity by preventing the formation of a charge transfer complex between VLCAD and palmitoyl-CoA. This result provides further evidence for Glu-422 being part of the active site of VLCAD. F418L is a disease-causing mutation in human VLCAD deficiency. Unlike wild-type VLCAD, F418L and F418V contained no bound FAD when expressed at extremely high levels in the baculovirus expression system. Although F418T and F418Y bound FAD at a level similar to that of wild-type VLCAD, both showed reduced Vmax values toward palmitoyl-CoA, most likely due to a decrease in the rate of enzyme-bound FAD reduction. These data suggest that Phe-418 is involved in the binding and subsequent reduction of FAD. FAD-deficient VLCADs (F418L, F418V, and apo-VLCAD) showed increased sensitivity to trypsinization. Loss of FAD may change the folding of VLCAD subunit.
Collapse
Affiliation(s)
- M Souri
- Department of Biochemistry, Shinshu University School of Medicine, Matsumoto, Nagano 390, Japan.
| | | | | | | |
Collapse
|
165
|
Kanayama N, Ueda M, Atomi H, Tanaka A. Genetic evaluation of physiological functions of thiolase isoenzymes in the n-alkalane-assimilating yeast Candida tropicalis. J Bacteriol 1998; 180:690-8. [PMID: 9457876 PMCID: PMC106940 DOI: 10.1128/jb.180.3.690-698.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The n-alkane-assimilating diploid yeast Candida tropicalis possesses three thiolase isozymes encoded by two pairs of alleles: cytosolic and peroxisomal acetoacetyl-coenzyme A (CoA) thiolases, encoded by CT-T1A and CT-T1B, and peroxisomal 3-ketoacyl-CoA thiolase, encoded by CT-T3A and CT-T3B. The physiological functions of these thiolases have been examined by gene disruption. The homozygous ct-t1a delta/t1bdelta null mutation abolished the activity of acetoacetyl-CoA thiolase and resulted in mevalonate auxotrophy. The homozygous ct-t3a delta/t3b delta null mutation abolished the activity of 3-ketoacyl-CoA thiolase and resulted in growth deficiency on n-alkanes (C10 to C13). All thiolase activities in this yeast disappeared with the ct-t1a delta/t1bdelta and ct-t3a delta/t3bdelta null mutations. To further clarify the function of peroxisomal acetoacetyl-CoA thiolases, the site-directed mutation leading acetoacetyl-CoA thiolase without a putative C-terminal peroxisomal targeting signal was introduced on the CT-T1A locus in the ct-t1bdelta null mutant. The truncated acetoacetyl-CoA thiolase was solely present in cytoplasm, and the absence of acetoacetyl-CoA thiolase in peroxisomes had no effect on growth on all carbon sources employed. Growth on butyrate was not affected by a lack of peroxisomal acetoacetyl-CoA thiolase, while a retardation of growth by a lack of peroxisomal 3-ketoacyl-CoA thiolase was observed. A defect of both peroxisomal isozymes completely inhibited growth on butyrate. These results demonstrated that cytosolic acetoacetyl-CoA thiolase was indispensable for the mevalonate pathway and that both peroxisomal acetoacetyl-CoA thiolase and 3-ketoacyl-CoA thiolase could participate in peroxisomal beta-oxidation. In addition to its essential contribution to the beta-oxidation of longer-chain fatty acids, 3-ketoacyl-CoA thiolase contributed greatly even to the beta-oxidation of a C4 substrate butyrate.
Collapse
Affiliation(s)
- N Kanayama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Japan
| | | | | | | |
Collapse
|
166
|
Vianey-Saban C, Divry P, Brivet M, Nada M, Zabot MT, Mathieu M, Roe C. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin Chim Acta 1998; 269:43-62. [PMID: 9498103 DOI: 10.1016/s0009-8981(97)00185-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Very-long-chain acyl-CoA dehydrogenase (VLCAD) is an enzyme catalyzing the dehydrogenation of long-chain fatty acids in the first step of mitochondrial fatty acid oxidation. Using an ETF (electron transfer flavoprotein, the physiological electron acceptor of VLCAD) reduction assay, we identified VLCAD deficiency in cultured skin fibroblasts or liver tissue from 30 patients in 27 families. They clinically presented two phenotypes: a 'severe' presentation characterized by an early onset of symptoms, with hypertrophic cardiomyopathy and a high incidence of death, and a 'mild' form with hypoketotic hypoglycaemia, resembling MCAD (medium-chain acyl-CoA dehydrogenase) deficiency. Cells isolated from patients who develop cardiomyopathy characteristically accumulate longer-chain length acylcarnitines (hexadecanoylcarnitine and tetradecanoylcarnitine) when incubated with palmitate. However, cells from patients with the hypoglycaemic presentation produced relatively shorter-chain-length intermediates (mainly dodecanoylcarnitine). Inhibition of carnitine palmitoyl transferase I, in vitro, eliminated these intermediates with cells from both phenotypes indicating their intramitochondrial origin. Although the explanation for these distinct biochemical findings is not obvious, the correlation with the two phenotypes provides an opportunity for accurate prognosis and early implementation of appropriate treatment. Prenatal diagnosis of this life-threatening disorder was successfully performed in seven pregnancies in six of those families by assay of trophoblasts or amniocytes. In an at risk family, diagnosis of an affected fetus by measurement of VLCAD activity in noncultured chorionic villi allowed termination of the pregnancy before 13 weeks of gestation.
Collapse
Affiliation(s)
- C Vianey-Saban
- Unité d'Etude des Maladies Métaboliques, Hôpital Debrousse, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
167
|
Kamijo T, Indo Y, Souri M, Aoyama T, Hara T, Yamamoto S, Ushikubo S, Rinaldo P, Matsuda I, Komiyama A, Hashimoto T. Medium chain 3-ketoacyl-coenzyme A thiolase deficiency: a new disorder of mitochondrial fatty acid beta-oxidation. Pediatr Res 1997; 42:569-76. [PMID: 9357925 DOI: 10.1203/00006450-199711000-00002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A Japanese male neonate died at 13 d of age after presenting at 2 d of age with vomiting, dehydration, metabolic acidosis, liver dysfunction, and terminal rhabdomyolysis with myoglobinuria. Multiple urine organic acid analyses consistently revealed a markedly elevated excretion of lactic acid, 3-hydroxybutyric acid, and saturated and unsaturated C6-C16 dicarboxylic acids, with predominant C12-C16 species. Oxidation of [1-14C]octanoic acid in cultured skin fibroblasts was significantly reduced (0.59 nmol/h/mg of protein; controls, 1.93 +/- 0.65), [1-14C]palmitic acid oxidation was 1.11 nmol/h/mg of protein (controls, 1.63 +/- 0.41). A systematic study of the catalytic activities of nine enzymes of the beta-oxidation cycle using the respective optimal substrate revealed a deficiency of a single enzyme not previously associated with a metabolic disorder, medium chain 3-ketoacyl-CoA thiolase (patient, 3.9 nmol/min/mg protein; controls (n = 6), 10.2 +/- 2.3). Immunoprecipitation with antibodies raised against medium chain 3-ketoacyl-CoA thiolase revealed a 60% decrease compared with controls.
Collapse
Affiliation(s)
- T Kamijo
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Purification and characterization of two novel and kidney-specific proteins related to aminoacylase-1 and lambda-crystallin. Clin Exp Nephrol 1997. [DOI: 10.1007/bf02480639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
169
|
Tyni T, Rapola J, Palotie A, Pihko H. Hypoparathyroidism in a patient with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency caused by the G1528C mutation. J Pediatr 1997; 131:766-8. [PMID: 9403664 DOI: 10.1016/s0022-3476(97)70111-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mitochondrial trifunctional protein (MTP), an enzyme complex participating in fatty acid beta-oxidation, is the potential site of two documented defects: long-chain 3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) and MTP deficiencies. LCHAD deficiency usually manifests as hypoglycemia, with hepatopathy, hypotonia, cardiomyopathy, and retinopathy. Hypoparathyroidism has been detected in a patient with MTP deficiency. We now report on a patient with LCHAD deficiency and hypoparathyroidism, evidenced by hypocalcemia, hyperphosphatemia, and a low level of parathyroid hormone, in whom the parathyroid glands could not be located after death.
Collapse
Affiliation(s)
- T Tyni
- Department of Child Neurology, Children's Hospital, University of Helsinki, Finland
| | | | | | | |
Collapse
|
170
|
Antonenkov VD, Van Veldhoven PP, Waelkens E, Mannaerts GP. Substrate specificities of 3-oxoacyl-CoA thiolase A and sterol carrier protein 2/3-oxoacyl-CoA thiolase purified from normal rat liver peroxisomes. Sterol carrier protein 2/3-oxoacyl-CoA thiolase is involved in the metabolism of 2-methyl-branched fatty acids and bile acid intermediates. J Biol Chem 1997; 272:26023-31. [PMID: 9325339 DOI: 10.1074/jbc.272.41.26023] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The two main thiolase activities present in isolated peroxisomes from normal rat liver were purified to near homogeneity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the first enzyme preparation displayed a single band of 41 kDa that was identified as 3-oxoacyl-CoA thiolase A (thiolase A) by N-terminal amino acid sequencing. The second enzyme preparation consisted of a 58- and a 46-kDa band. The 58-kDa polypeptide reacted with antibodies raised against either sterol carrier protein 2 or the thiolase domain of sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCP-2/thiolase), formerly also called sterol carrier protein X, whereas the 46-kDa polypeptide reacted only with the antibodies raised against the thiolase domain. Internal peptide sequencing confirmed that the 58-kDa polypeptide is SCP-2/thiolase and that the 46-kDa polypeptide is the thiolase domain of SCP-2/thiolase. Thiolase A catalyzed the cleavage of short, medium, and long straight chain 3-oxoacyl-CoAs, medium chain 3-oxoacyl-CoAs being the best substrates. The enzyme was inactive with the 2-methyl-branched 3-oxo-2-methylpalmitoyl-CoA and with the bile acid intermediate 24-oxo-trihydroxycoprostanoyl-CoA. SCP-2/thiolase was active with medium and long straight chain 3-oxoacyl-CoAs but also with the 2-methyl-branched 3-oxoacyl-CoA and the bile acid intermediate. In peroxisomal extracts, more than 90% of the thiolase activity toward straight chain 3-oxoacyl-CoAs was associated with thiolase A. Kinetic parameters (Km and Vmax) were determined for each enzyme with the different substrates. Our results indicate the following: 1) the two (main) thiolases present in peroxisomes from normal rat liver are thiolase A and SCP-2/thiolase; 2) thiolase A is responsible for the thiolytic cleavage of straight chain 3-oxoacyl-CoAs; and 3) SCP-2/thiolase is responsible for the thiolytic cleavage of the 3-oxoacyl-CoA derivatives of 2-methyl-branched fatty acids and the side chain of cholesterol.
Collapse
Affiliation(s)
- V D Antonenkov
- Katholieke Universiteit Leuven, Departement Moleculaire Celbiologie, Afdeling, Campus Gasthuisberg (O & N), Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
171
|
Abstract
Protein folding that is coupled to disulphide bond formation has many experimental advantages. In particular, the kinetic roles and importance of all the disulphide intermediates can be determined, usually unambiguously. This contrasts with other types of protein folding, where the roles of any intermediates detected are usually not established. Nevertheless, there is considerable confusion in the literature about even the best-characterized disulphide folding pathways. This article attempts to set the record straight.
Collapse
|
172
|
IJlst L, Oostheim W, Ruiter JP, Wanders RJ. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of two new mutations. J Inherit Metab Dis 1997; 20:420-2. [PMID: 9266371 DOI: 10.1023/a:1005310903004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- L IJlst
- University of Amsterdam, Department of Clinical Chemistry, The Netherlands
| | | | | | | |
Collapse
|
173
|
Nakagawa J, Moroni C. A 20-amino-acid autonomous RNA-binding domain contained in an enoyl-CoA hydratase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:890-9. [PMID: 9108262 DOI: 10.1111/j.1432-1033.1997.00890.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A+U-rich elements in the 3' untranslated region of mRNA species coding for lymphokines and early response genes play a pivotal role in the control of their rapid turnover. In a search for corresponding trans-acting factors, we have previously affinity-purified and cloned a human 32-kDa A+U-binding protein, termed AUH. AUH exhibited dual activities, namely A+U-specific RNA-binding and catalytic activity as enoyl-CoA hydratase. In this report we map the RNA-binding site by analysis of a series of deletion and substitution recombinant proteins. Ultraviolet cross-linking experiments demonstrated that the deletion of a 20-amino-acid segment, Lys109-Ile128, abolished more than 80% of the relative RNA-binding activity. This segment conferred RNA-binding activity when fused to maltose binding protein. Binding of this fusion protein to A+U-rich RNA was significantly competed by an AUUUA cluster and poly(U), followed by poly(G), but not by poly(A) nor poly(C). Furthermore, RNA binding of the fusion protein was competed by a synthetic peptide corresponding to Lys109-Ile128. Circular dichroic measurement indicated formation of a specific complex between this peptide and poly(U) but not with poly(A). The identified 20 amino acids therefore constitute an automonous RNA-binding domain, distinct from the RNA-recognition motifs of the family of ribonucleoproteins or NAD/RNA-binding sites in dehydrogenases found in hitherto reported A+U-binding proteins. Replacement of Arg125 in this motif with Glu reduced binding twofold, indicating this residue is integral to the binding function. Deletion of other parts of the protein did not impair RNA binding to any significant extent. By contrast, the hydratase activity of AUH required an intact three-dimensional conformation, as most mutations downstream of Ser68 impaired enzymatic activity.
Collapse
Affiliation(s)
- J Nakagawa
- Institute for Medical Microbiology, University of Basel, Switzerland
| | | |
Collapse
|
174
|
Orii T. Molecular basis of Zellweger syndrome, beta-ketothiolase deficiency and mucopolysaccharidoses. THE JAPANESE JOURNAL OF HUMAN GENETICS 1997; 42:1-11. [PMID: 9183994 DOI: 10.1007/bf02766916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. A human peroxisome assembly factor-1 (PAF-1) complementary DNA has been cloned that restores the morphological and biochemical abnormalities (including defective peroxisome assembly) in fibroblasts from a patient with group F Zellweger syndrome. The cause of the syndrome in this patient was a point mutation that resulted in the premature termination of PAF-1. The homozygous patient apparently inherited the mutation from her parents, each of whom was heterozygous for that mutation. Furthermore, we cloned and characterized the rat and human cDNAs for peroxisome-assembly factor-2 (PAF-2), which restores peroxisomes of the complementary group C Zellweger cells, by functional complementation, and identified two pathogenic mutations in the PAF-2 gene in two patients. 2. Seventeen mutations have been identified in 13 mitochondrial acetoacetyl-CoA thiolase-deficient patients. 3. We purified N-acetylgalactosamine-6-sulfate (GalNAc6S) sulfatase and cloned the full-length cDNA of human N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The gene encoding GalNAc6S sulfatase has been localized by fluorescence in situ hybridization to chromosome 16q24, and the entire genomic gene structure has been characterized. About 40 different GALNS gene mutations have been identified in the patients with mucopolysaccharidosis IV A.
Collapse
Affiliation(s)
- T Orii
- Chubu Women's College, Seki, Japan
| |
Collapse
|
175
|
Furuta S, Kobayashi A, Miyazawa S, Hashimoto T. Cloning and expression of cDNA for a newly identified isozyme of bovine liver 3-hydroxyacyl-CoA dehydrogenase and its import into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1350:317-24. [PMID: 9061028 DOI: 10.1016/s0167-4781(96)00171-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
cDNA for a heretofore undescribed mitochondrial 3-hydroxyacyl-CoA dehydrogenase, designated as the type II enzyme with different molecular and catalytic properties, compared to those of the classical mitochondrial beta-oxidation enzyme (type I enzyme), was cloned from a bovine liver cDNA library. Nucleotide sequence of the cDNA encoded 261 amino acids with a subunit molecular weight of 27,140. The deduced primary structure of the type II enzyme showed no significant homology to the reported amino acid sequence of the classical 3-hydroxyacyl-CoA dehydrogenases. On SDS-PAGE, no differences in subunit molecular weights were observed among the in vitro translation products, the recombinant type II enzyme produced in Escherichia coli and the purified enzyme. NH2-terminal and COOH-terminal amino acid sequence analysis of the purified type II enzyme revealed that the mature enzyme had not been proteolytically processed. The in vitro translation products of the type II enzyme were efficiently incorporated into isolated rat liver mitochondria, without changes in size, thereby suggesting that unlike other mitochondrial enzymes of fatty acid beta-oxidation, the type II enzyme had no cleavable signal peptide upon import into mitochondria.
Collapse
Affiliation(s)
- S Furuta
- Department of Biochemistry, Shinshu University School of Medicine, Nagano, Japan.
| | | | | | | |
Collapse
|
176
|
Tyni T, Palotie A, Viinikka L, Valanne L, Salo MK, von Döbeln U, Jackson S, Wanders R, Venizelos N, Pihko H. Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency with the G1528C mutation: clinical presentation of thirteen patients. J Pediatr 1997; 130:67-76. [PMID: 9003853 DOI: 10.1016/s0022-3476(97)70312-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase is one of three enzyme activities of the mitochondrial trifunctional protein. We report the clinical findings of 13 patients with long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. At presentation the patients had had hypoglycemia, cardiomyopathy, muscle hypotonia, and hepatomegaly during the first 2 years of life. Seven patients had recurrent metabolic crises, and six patients had a steadily progressive course. Two patients had cholestatic liver disease, which is uncommon in beta-oxidation defects. One patient had peripheral neuropathy, and six patients had retinopathy with focal pigmentary aggregations or retinal hypopigmentation. All patients were homozygous for the common mutation G1528C. However, the enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase activities of the mitochondrial trifunctional protein were variably decreased in skin fibroblasts. Dicarboxylic aciduria was detected in 9 of 10 patients, and most patients had lactic acidosis, increased serum creatine kinase activities, and low serum carnitine concentration. Neuroradiologically there was bilateral periventricular or focal cortical lesions in three patients, and brain atrophy in one. Only one patient, who has had dietary treatment for 9 years, is alive at the age of 14 years; all others died before they were 2 years of age. Recognition of the clinical features of long-chain 3-hydroxyacyl-CoA deficiency is important for the early institution of dietary management, which may alter the otherwise invariably poor prognosis.
Collapse
Affiliation(s)
- T Tyni
- Department of Child Neurology, Children's Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Affiliation(s)
- T Hashimoto
- Department of Biochemistry, Shinshu University School of Medicine, Nagano, Japan
| |
Collapse
|
178
|
Hiltunen JK, Filppula SA, Koivuranta KT, Siivari K, Qin YM, Häyrinen HM. Peroxisomal beta-oxidation and polyunsaturated fatty acids. Ann N Y Acad Sci 1996; 804:116-28. [PMID: 8993540 DOI: 10.1111/j.1749-6632.1996.tb18612.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Peroxisomes are capable of oxidizing a variety of substrates including (poly)unsaturated enoyl-CoA esters. The beta-oxidation of unsaturated enoyl-CoA esters in peroxisomes, and also in mitochondria, is not just chain-shortening but also involves the metabolizing of pre-existing carbon-to-carbon double bonds. In addition to the enzymes of the beta-oxidation spiral itself, this metabolism requires the participation of auxiliary enzymes: delta 3, delta 2-enoyl-CoA isomerase; 2,4-dienoyl-CoA reductase; 2-enoyl-CoA hydratase 2 or 3-hydroxyacyl-CoA epimerase; and delta 3,5 delta 2,4-dienoyl-CoA isomerase. Many of these enzymes are present as isoforms, and can be found located in multiple subcellular compartments, for example, peroxisomes, mitochondria or the endoplasmic reticulum, while some of the activities are integral parts of multifunctional enzymes of beta-oxidation systems.
Collapse
|
179
|
Kabir Y, Ide T. Activity of hepatic fatty acid oxidation enzymes in rats fed alpha-linolenic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1304:105-19. [PMID: 8954134 DOI: 10.1016/s0005-2760(96)00110-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The activity of hepatic fatty acid oxidation enzymes in rats fed linseed and perilla oils rich in alpha-linolenic acid (alpha-18:3) was compared to that in rats fed safflower oil rich in linoleic acid (18:2) and a saturated fat (palm oil). Palm and safflower oils were essentially devoid of alpha-18:3. The palmitoyl-CoA oxidation rates both in mitochondrial and peroxisomal pathways in liver homogenates were significantly higher in rats fed linseed oil than in those fed palm and safflower oils. Among rats fed diets containing palm oil, safflower oil, fat mixtures composed of safflower and perilla oils (2:1, w/w and 1:2, w/w), and perilla oil, mitochondrial and peroxisomal fatty oxidation rates increased with increasing dietary levels of perilla oil. Compared to palm and safflower oils, dietary alpha-18:3 either in the form of linseed or perilla oils profoundly increased the activity of carnitine palmitoyltransferase, acyl-CoA oxidase, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase. Smaller but significant increases by dietary alpha-18:3 of the activity of acyl-CoA dehydrogenase, enoyl-CoA hydratase, and delta 3, delta 2-enoyl-CoA isomerase were also observed. Unexpectedly, dietary alpha-18:3 greatly reduced the activity of 3-hydroxy-acyl-CoA dehydrogenase. Compared to palm oil, dietary polyunsaturated fats significantly reduced the activity of fatty acid synthetase and glucose-6-phosphate dehydrogenase to the same levels. The activity of pyruvate kinase was significantly higher in rats fed palm oil than in those fed polyunsaturated fats. The extent of reduction was more prominent with polyunsaturated fats containing alpha-18:3 than with safflower oil devoid of alpha-18:3. Thus, compared to linoleic acid and saturated fatty acids, dietary alpha-18:3 caused characteristic changes in the activity of hepatic enzymes in fatty acid and glucose metabolism in rats.
Collapse
Affiliation(s)
- Y Kabir
- Laboratory of Nutrition Biochemistry, National Food Research Institute, Ministry of Agriculture, Forestry and Fisheries, Ibaraki, Japan
| | | |
Collapse
|
180
|
Murphy VJ, Mantamadiotis T, Baldwin GS. Gastrin and gastrin receptor antagonists bind to both N- and C-terminal halves of the 78 kDa gastrin-binding protein. Int J Biochem Cell Biol 1996; 28:1233-40. [PMID: 9022282 DOI: 10.1016/s1357-2725(96)00066-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A 78 kDa gastrin-binding protein (GBP) has previously been identified as the target of the anti-proliferative effects of non-selective gastrin/cholecystokinin receptor antagonists on colorectal carcinoma cell lines. The GBP was related in sequence to a family of fatty acid oxidation enzymes possessing enoyl CoA hydratase and 3-hydroxyacyl CoA dehydrogenase activity. This study aims to define the binding site for gastrin and gastrin antagonists in greater detail. The N- and C-terminal halves of the porcine GBP were expressed independently as glutathione S-transferase fusion proteins in E. coli. Affinities of gastrin and gastrin antagonists for the fusion proteins were measured by competition for 125I-[Nle15]-gastrin binding in a covalent cross-linking assay. The N- and C-terminal fusion proteins bound gastrin with affinities of 9.9 +/- 6.1 and 71 +/- 48 microM, respectively (n = 3). These values were 40-fold and 300-fold lower than the affinity of the full-length GBP for gastrin (0.23 +/- 0.15 microM). In contrast, the affinities of the N- and C-terminal halves for the antagonists proglumide (22 +/- 13 and 10 +/- 4 mM, respectively) and benzotript (350 +/- 90 and 400 +/- 160 micro M, respectively) were similar to each other and to the affinities of proglumide and benzotript for the full-length GBP (5.1 +/- 3.6 mM and 200 +/- 120 microM, respectively). It is concluded that proglumide and benzotript bind independently to both the hydratase and dehydrogenase active sites of the GBP, while a single molecule of gastrin may bind simultaneously to both active sites. A model is proposed which is consistent with these data, and which will assist in the development of more potent and selective GBP antagonists.
Collapse
Affiliation(s)
- V J Murphy
- Ludwig Institute for Cancer Research, Melbourne Tumour Biology Branch, Royal Melbourne Hospital, Victoria, Australia
| | | | | |
Collapse
|
181
|
Tyni T, Majander A, Kalimo H, Rapola J, Pihko H. Pathology of skeletal muscle and impaired respiratory chain function in long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency with the G1528C mutation. Neuromuscul Disord 1996; 6:327-37. [PMID: 8938697 DOI: 10.1016/0960-8966(96)00352-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lactic acidosis and mitochondrial abnormalities have been reported in long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. We studied muscle morphology and the respiratory chain function in ten patients with LCHAD deficiency and the G1528C mutation. In eight cases the light microscopy of muscle specimens showed fatty infiltration and fibre degeneration. The degenerated fibres appeared as ragged red fibres in four cases. Electron microscopy revealed enlarged mitochondria often with swollen appearance in four out of seven patients. The number of mitochondria had also increased. Complex I associated enzyme activities in muscle mitochondria were decreased in five out of seven patients, and in three of them Complex II or II + III associated activities were also affected. We suggest that the reason for respiratory chain dysfunction and structural changes of mitochondria is the accumulation of toxic intermediates of fatty acid beta-oxidation in mitochondria. Because these changes may confound the differential diagnostics between LCHAD deficiency and respiratory chain defects, awareness of their frequency is important.
Collapse
Affiliation(s)
- T Tyni
- Department of Child Neurology, Children's Hospital, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
182
|
Isaacs JD, Sims HF, Powell CK, Bennett MJ, Hale DE, Treem WR, Strauss AW. Maternal acute fatty liver of pregnancy associated with fetal trifunctional protein deficiency: molecular characterization of a novel maternal mutant allele. Pediatr Res 1996; 40:393-8. [PMID: 8865274 DOI: 10.1203/00006450-199609000-00005] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute fatty liver of pregnancy (AFLP) is a devastating late gestational complication with many similarities to the inherited disorders of mitochondrial fatty acid oxidation. We report the molecular defects in a woman with AFLP and her infant who subsequently was diagnosed with trifunctional protein (TFP) deficiency. We used single-stranded conformation variance and DNA sequence analyses of the human TFP alpha-subunit gene, which encodes the long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity, to demonstrate a C to T mutation (C1678T) in exon 16 present on one allele in the mother and the affected infant. This creates a premature termination codon (R524Stop) in the LCHAD domain. Using reverse transcriptase-PCR amplification of the alpha-subunit mRNA from cultured fibroblasts, we demonstrated that transcripts containing this R524Stop mutation are present at very low levels, presumably because of rapid mRNA degradation. The affected infant also had the common E474Q mutation (nucleotide G1528C) on the second allele. Thus, he is a compound heterozygote. The father and two normal siblings are heterozygous for this E474Q mutation. This initial delineation of the R524Stop mutation provides evidence of the heterogeneity of genetic defects responsible for TFP deficiency and AFLP.
Collapse
Affiliation(s)
- J D Isaacs
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
|
184
|
Yao KW, Schulz H. Intermediate channeling on the trifunctional beta-oxidation complex from pig heart mitochondria. J Biol Chem 1996; 271:17816-20. [PMID: 8663442 DOI: 10.1074/jbc.271.30.17816] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The kinetic properties of the purified trifunctional beta-oxidation complex (TOC) from pig heart mitochondria were analyzed with the aim of elucidating the functional consequence of having three sequentially acting enzymes of beta-oxidation associated in one complex. The kinetic parameters of TOC and of the component enzymes of TOC, long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase, and long-chain 3-ketoacyl-CoA thiolase, were determined with substrates having acyl chains with 16 carbon atoms. Quantification by high performance liquid chromatography of intermediates formed during the degradation of 2-trans-hexadecanoyl-CoA to myristoyl-CoA and acetyl-CoA by TOC revealed the accumulation of 3-hydroxyhexadecanoyl-CoA, whereas 3-ketohexadecanoyl-CoA was undetectable. The observed rates of NADH and acetyl-CoA formation were higher than the theoretical rates calculated by use of the kinetic parameters and measured concentrations of intermediates. When the sequence of reactions catalyzed by TOC was inhibited by acetyl-CoA, the steady-state concentration of the 3-hydroxyacyl-CoA intermediate was not affected, whereas a small amount of 3-ketohexadecanoyl-CoA was detected. The differences between observed and predicted reaction rates and between measured and expected concentrations of intermediates are best explained by the operation of a channeling mechanism. As a consequence of intermediate channeling between the active sites on the complex, more coenzyme A is available in the mitochondrial matrix and metabolites like 3-ketoacyl-CoA thioesters, which are strong inhibitors of several beta-oxidation enzymes, do not accumulate.
Collapse
Affiliation(s)
- K W Yao
- Department of Chemistry, City College, City University of New York, New York, New York 10031, USA
| | | |
Collapse
|
185
|
Fukao T, Song XQ, Yamaguchi S, Hashimoto T, Orii T, Kondo N. Immunotitration analysis of cytosolic acetoacetyl-coenzyme A thiolase activity in human fibroblasts. Pediatr Res 1996; 39:1055-8. [PMID: 8725269 DOI: 10.1203/00006450-199606000-00020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There are five known thiolases in human fibroblasts, and all but mitochondrial trifunctional protein (TFP) have thiolase activity toward acetoacetyl-CoA (AACoA). We investigated the contribution of mitochondrial acetoacetyl-CoA thiolase (AACoAT) (T2), cytosolic AACoAT (CT), and mitochondrial 3-ketoacyl-CoA thiolase (T1) to the total AACoAT activity in control human fibroblasts. Immunotitration of AACoAT activity with antibodies against T2, CT, or T1 was carried out in control fibroblasts, with the following results. In the case of AACoAT activity in the absence of potassium ion, 26-38%, 40-47%, and 11-20% of the total activity derived from CT, T1, and T2, respectively. The residual 6-9% total activity was not immunotitrated when three antibodies were used in combination. Hence, the contribution of peroxisomal 3-ketoacyl-CoA thiolase to the total AACoAT activity in the absence of potassium ion was at least less than 6-9%. Because the normal range of total AACoAT activity is relatively wide, it is difficult to evaluate CT defects based on a decrease of total AACoAT activity. Immunotitration with anti-CT antibody in six control fibroblasts revealed that CT activity ranges between 1.3 and 2.4 nmol/min/mg of protein. Immunotitration proved to be an accurate method to evaluate CT activity. The two cell lines from patients with CT deficiency have become extinct.
Collapse
Affiliation(s)
- T Fukao
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
186
|
Baldwin GS, Abbott FS, Nau H. Binding of a valproate metabolite to the trifunctional protein of fatty acid oxidation. FEBS Lett 1996; 384:58-60. [PMID: 8797803 DOI: 10.1016/0014-5793(96)00267-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The anti-convulsant drug valproate causes hepatic failure in a small percentage of patients. We now report that the valproate metabolite 2,4-dien-valproate binds (IC50 = 42 microM) to the alpha-subunit of the trifunctional protein responsible for the second and third steps in the mitochondrial beta-oxidation of fatty acids. Binding of valproate itself, or of the metabolites 2-envalproate, 4-en-valproate or 3-hydroxy-4-en-valproate, is considerably weaker. We conclude that valproate-induced hepatotoxicity may be due in part to the reversible binding of the valproate metabolite 2,4-dien-valproate or its CoA ester to the alpha-subunit of the trifunctional protein with consequent inhibition of fatty acid oxidation.
Collapse
Affiliation(s)
- G S Baldwin
- Department of Surgery, Austin Hospital, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
187
|
Pons R, Roig M, Riudor E, Ribes A, Briones P, Ortigosa L, Baldellou A, Gil-Gibernau J, Olesti M, Navarro C, Wanders RJ. The clinical spectrum of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Neurol 1996; 14:236-43. [PMID: 8736409 DOI: 10.1016/0887-8994(96)00021-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Four patients with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency are presented. Clinical onset in the form of acute encephalopathy occurred between the ages of 9 months and 3 years. The clinical course included recurrent metabolic crises in 4 patients, cardiac involvement and retinopathy in 3, and myopathy in 2. None had signs of peripheral neuropathy. Three patients died and one is currently well. Hypoketotic hypoglycemia with C6-C14 3-hydroxy-dicarboxylic aciduria during metabolic crises associated with decreased plasma carnitine levels was the main biochemical finding. Enzymologic studies disclosed long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency in all patients. Homozygosity for a G to C mutation at position 1528 in the encoding region of the enzyme was found in 2 patients. Histologic and electron microscopic studies of liver biopsy specimens revealed steatosis in 3 patients and mitochondrial abnormalities in 2. Skeletal muscle biopsies disclosed nonspecific degenerative changes in 2 patients and were normal in the remaining 2. Ultrastructural abnormalities in mitochondria were found in 3 patients. A review of the literature combined with the data from our series (total 22 patients) disclosed acute clinical onset in 77% of cases and subacute in 23%. In the combined series, the average age at onset was 11 months, family history was positive in 32% of patients and overall mortality was 50%. We describe the clinical spectrum of this disease and emphasize that, among patients with suspected beta-oxidation defects the finding of pigmentary retinopathy should lead to the suspicion of long-chain 3-hydroxyacyl-coenzyme A-dehydrogenase deficiency.
Collapse
Affiliation(s)
- R Pons
- Child Neurology Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Schulz H. Oxidation of fatty acids. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
189
|
Ijlst L, Ruiter JP, Vreijling J, Wanders RJ. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: a new method to identify the G1528C mutation in genomic DNA showing its high frequency (approximately 90%) and identification of a new mutation (T2198C). J Inherit Metab Dis 1996; 19:165-8. [PMID: 8739956 DOI: 10.1007/bf01799420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- L Ijlst
- Department of Clinical Chemistry, University Hospital Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
190
|
Filppula SA, Sormunen RT, Hartig A, Kunau WH, Hiltunen JK. Changing stereochemistry for a metabolic pathway in vivo. Experiments with the peroxisomal beta-oxidation in yeast. J Biol Chem 1995; 270:27453-7. [PMID: 7499202 DOI: 10.1074/jbc.270.46.27453] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biosphere is inherently built of chiral molecules, and once their metabolism is established, the stereochemical course of the reactions involved is seen to remain highly conserved. However, by replacing the yeast peroxisomal multifunctional enzyme (MFE), which catalyzes the second and third reactions of beta-oxidation of fatty acids via D-3-hydroxyacyl-CoA intermediates, with rat peroxisomal MFE, which catalyzes the same reactions via L-3-hydroxy intermediates, it was possible to change the chiralities of the intermediates in a major metabolic pathway in vivo. Both stereochemical alternatives allowed the yeast cells to grow on oleic acid, implying that when the beta-oxidation pathways evolved, the overall function was the determining factor for the acquisition of MFEs and not the stereospecificities of the reactions themselves.
Collapse
|
191
|
Svensson LT, Alexson SE, Hiltunen JK. Very long chain and long chain acyl-CoA thioesterases in rat liver mitochondria. Identification, purification, characterization, and induction by peroxisome proliferators. J Biol Chem 1995; 270:12177-83. [PMID: 7744868 DOI: 10.1074/jbc.270.20.12177] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously reported that long chain acyl-CoA thioesterase activity was induced about 10-fold in rat liver mitochondria, when treating rats with the peroxisome proliferator di(2-ethylhexyl)phthalate (Wilcke M., and Alexson S. E. H (1994) Eur. J. Biochem. 222, 803-811). Here we have characterized two enzymes which are responsible for the majority of long chain acyl-CoA thioesterase activity in mitochondria from animals treated with peroxisome proliferators. A 40-kDa enzyme was purified and characterized as a very long chain acyl-CoA thioesterase (MTE-I). The second enzyme was partially purified and characterized as a long chain acyl-CoA thioesterase (MTE-II). MTE-I was inhibited by p-chloromercuribenzoic acid, which implicates the importance of a cysteine residue in, or close, to the active site. Antibodies against MTE-I demonstrated the presence of immunologically related acyl-CoA thioesterases in peroxisomes and cytosol. High expression of MTE-I was found in liver from peroxisome proliferator treated rats and in heart and brown fat from control and induced rats. Comparison of physical and catalytical characteristics of the enzymes studied here and previously purified acyl-CoA thioesterases suggest that MTE-I and MTE-II are novel enzymes.
Collapse
Affiliation(s)
- L T Svensson
- Department of Metabolic Research, Wenner-Gren Institute Arrhenius Laboratories F3, Stockholm University, Sweden
| | | | | |
Collapse
|
192
|
Müller-Newen G, Janssen U, Stoffel W. Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamate residue. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:68-73. [PMID: 7883013 DOI: 10.1111/j.1432-1033.1995.tb20230.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondrial 2-enoyl-CoA hydratase (mECH) and 3,2-trans-enoyl-CoA isomerase (mECI), two enzymes which catalyze totally different reactions in fatty acid beta-oxidation, belong to the low-similarity hydratase/isomerase enzyme superfamily. Their substrates and reaction mechanisms are similar [Müller-Newen, G. & Stoffel, W. (1993) Biochemistry 32, 11,405-11,412]. Glu164 of mECH is the only amino acid with a protic side chain that is conserved in these monofunctional and polyfunctional enzymes with 2-enoyl-CoA hydratase and 3,2-trans-enoyl-CoA isomerase activities. We tested our hypothesis that Glu164 of mECH is the putative active-site amino acid responsible for the base-catalyzed alpha-deprotonation in the hydratase/dehydrase and isomerase reaction. We functionally expressed rat liver mECH wild-type and [E164Q] mutant enzymes in Escherichia coli. Characterization of the purified wild-type and mutant enzymes revealed that the replacement of Glu164 by Gln lowers the kcat value more than 100,000-fold, whereas the Km value is only moderately affected. We have demonstrated in a previous study that Glu165 is indispensable for the 3,2-trans-enoyl-CoA isomerase activity. Taking these results together, we conclude that the conserved glutamic acid is the essential basic group in the active sites of 2-enoyl-CoA hydratase (Glu164) and 3,2-trans-enoyl-CoA isomerase (Glu165), and that these enzymes are not only evolutionarily but also functionally and mechanistically related.
Collapse
Affiliation(s)
- G Müller-Newen
- Institute of Biochemistry, Medical Faculty, University of Cologne, Germany
| | | | | |
Collapse
|
193
|
Nada MA, Rhead WJ, Sprecher H, Schulz H, Roe CR. Evidence for intermediate channeling in mitochondrial beta-oxidation. J Biol Chem 1995; 270:530-5. [PMID: 7822275 DOI: 10.1074/jbc.270.2.530] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The accumulation of beta-oxidation intermediates was studied by incubating normal and beta-oxidation enzyme-deficient human fibroblasts with [2H4]linoleate and L-carnitine and analyzing the resultant acylcarnitines by tandem mass spectrometry. Labeled decenoyl-, octanoyl-, hexanoyl-, and butyrylcarnitines were the only intermediates observed with normal cells. Intermediates of longer chain length, corresponding to substrates for the beta-oxidation enzymes associated with the inner mitochondrial membrane, were not observed unless a cell line was deficient in one of these enzymes, such as very-long-chain acyl-CoA dehydrogenase, long-chain 3-hydroxyacyl-CoA dehydrogenase, or electron transfer flavoprotein dehydrogenase. Matrix enzyme deficiencies, such as medium- and short-chain acyl-CoA dehydrogenases, were characterized by elevated concentrations of intermediates corresponding to their respective substrates (octanoyl- and decenoylcarnitines in medium-chain acyl-CoA dehydrogenase deficiency and butyrylcarnitine in short-chain acyl-CoA dehydrogenase deficiency). These observations agree with the notion of intermediate channeling due to the organization of beta-oxidation enzymes in complexes. The only exception is the incomplete channeling from thiolase to acyl-CoA dehydrogenase in the matrix. This situation may be a consequence of only one 3-ketoacyl-CoA thiolase being unable to interact with the several acyl-CoA dehydrogenases in the matrix.
Collapse
Affiliation(s)
- M A Nada
- Department of Pediatrics, Duke University Medical Center, Research Triangle Park, North Carolina 27709
| | | | | | | | | |
Collapse
|
194
|
Fukao T, Yamaguchi S, Orii T, Hashimoto T. Molecular basis of beta-ketothiolase deficiency: mutations and polymorphisms in the human mitochondrial acetoacetyl-coenzyme A thiolase gene. Hum Mutat 1995; 5:113-20. [PMID: 7749408 DOI: 10.1002/humu.1380050203] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
beta-Ketothiolase deficiency is a deficiency in mitochondrial acetoacetyl-CoA thiolase (T2). We present here an update on mutations and polymorphisms in the human T2 gene. No large deletion or insertion has been observed in Southern blot analysis. Seventeen mutations were identified in 13 T2-deficient patients: nine missense, one nonsense, and five splice-site mutations, and two small deletions. Two polymorphic base substitutions were also detected. A common mutation in T2 deficiency has not been detected but 4 mutations (N158D, Q272X, 828 + 1, 1163 + 2) were identified in two independent families. Eleven of 25 mutant alleles identified caused aberrant splicing. In vivo expression analysis of 13 mutant cDNAs using a Lipofectin reagent suggested that T297M, A301P, A380T mutant alleles retain 5-10% normal T2 activity. A correlation between clinical phenotype and genotype in T2 deficiency seems unlikely.
Collapse
Affiliation(s)
- T Fukao
- Department of Pediatrics, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
195
|
Abstract
Organic acid analysis is a powerful technique in the diagnosis of inborn errors of metabolism. Since the development of the technique over twenty-five years ago, it has evolved into a sophisticated and powerful method and is an essential tool in the diagnosis of the organic acidurias. The chemistry and biochemistry of organic acids, as well as sample preparation, instrumentation, and many aspects of the more commonly used methods for the analysis of these compounds, are reviewed. The biochemical and clinical characteristics of each of the primary organic acidurias are described. In addition, the various noninherited causes of secondary organic acidurias that lead to the excretion of abnormal organic acids are also described, and ways of differentiating primary from secondary causes are discussed.
Collapse
Affiliation(s)
- D C Lehotay
- Department of Clinical Biochemistry, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | |
Collapse
|
196
|
Abstract
The oxidation of long-chain fatty acids requires a series of enzymes which are located in or on the mitochondrial membranes. These include carnitine palmitoyltransferases I and II, a carnitine-acylcarnitine translocase and, newly discovered, very long-chain acyl-CoA dehydrogenase and the mitochondrial trifunctional protein. These last two chain-shorten acyl-CoA esters to the point where they can be transferred to the more soluble medium- and short-chain-specific enzymes within the mitochondrial matrix. The disorders of long-chain fatty acid oxidation show a rather similar range of clinical and biochemical features, though with different emphasis in the different conditions. Patients with severe defects usually present early with acute attacks of hypoketotic hypoglycaemia and impaired liver function, or with cardiomyopathy or cardiac arrhythmia. In milder variants, skeletal myopathy with intermittent myoglobinuria develops later in life. 3-Hydroxyacyl-CoA dehydrogenase deficiency is unusual in producing peripheral neuropathy and retinitis pigmentosa. Treatment is based on the avoidance of fasting and replacement of normal dietary fat by medium-chain triglyceride, the medium-chain fatty acids entering the mitochondria in a carnitine-independent manner and bypassing the long-chain part of the spiral. Diagnosis must ultimately be based on direct assay of the enzyme involved, but preliminary indicators may come from determination of carnitine and intermediate metabolites in plasma, urinary organic acid profiling, and radioisotopic screening assays with lymphocytes or cultured fibroblasts.
Collapse
Affiliation(s)
- R J Pollitt
- Neonatal Screening Laboratory, Children's Hospital, Sheffield, UK
| |
Collapse
|
197
|
Ijlst L, Uskikubo S, Kamijo T, Hashimoto T, Ruiter JP, de Klerk JB, Wanders RJ. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: high frequency of the G1528C mutation with no apparent correlation with the clinical phenotype. J Inherit Metab Dis 1995; 18:241-4. [PMID: 7564258 DOI: 10.1007/bf00711778] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- L Ijlst
- Academic Medical Centre, University Hospital Amsterdam, Department of Pediatric, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
198
|
Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 1995; 67:101-54. [PMID: 7494860 DOI: 10.1016/0163-7258(95)00012-6] [Citation(s) in RCA: 445] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Severe and prolonged impairment of mitochondrial beta-oxidation leads to microvesicular steatosis, and, in severe forms, to liver failure, coma and death. Impairment of mitochondrial beta-oxidation may be either genetic or acquired, and different causes may add their effects to inhibit beta-oxidation severely and trigger the syndrome. Drugs and some endogenous compounds can sequester coenzyme A and/or inhibit mitochondrial beta-oxidation enzymes (aspirin, valproic acid, tetracyclines, several 2-arylpropionate anti-inflammatory drugs, amineptine and tianeptine); they may inhibit both mitochondrial beta-oxidation and oxidative phosphorylation (endogenous bile acids, amiodarone, perhexiline and diethylaminoethoxyhexestrol), or they may impair mitochondrial DNA transcription (interferon-alpha), or decrease mitochondrial DNA replication (dideoxynucleoside analogues), while other compounds (ethanol, female sex hormones) act through a combination of different mechanisms. Any investigational molecule should be screened for such effects.
Collapse
Affiliation(s)
- B Fromenty
- Institut National de la Santé et de la Recherche Médicale Unité 24, Hôpital Beaujon, Clichy, France
| | | |
Collapse
|
199
|
IJlst L, Wanders RJ, Ushikubo S, Kamijo T, Hashimoto T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1215:347-50. [PMID: 7811722 DOI: 10.1016/0005-2760(94)90064-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mitochondrial trifunctional protein is a newly identified enzyme involved in mitochondrial fatty acid beta-oxidation harbouring long-chain enoyl-CoA hydratase, long-chain 3-hydroxyacyl-CoA dehydrogenase and long-chain 3-ketothiolase activity. Over the last few years, we identified more than 26 patients with a deficiency in long-chain 3-hydroxyacyl-CoA dehydrogenase. In order to identify the molecular basis for the deficiency found in these patients, we sequenced the cDNAs encoding the alpha- and beta-subunits which revealed one G-->C mutation at nucleotide position 1528 in the 3-hydroxyacyl-CoA dehydrogenase encoding region of the alpha-subunit. The single base change results in the substitution of a glutamate for a glutamine at amino acid position 510. The base substitution creates a PstI restriction site. Using RFLP, we found that in 24 out of 26 unrelated patients only the C1528 was expressed. The other two patients were heterozygous for this mutation. This mutation was not found in 55 different control subjects. This indicates a high frequency for this mutation in long-chain 3-hydroxyacyl-CoA dehydrogenase deficient patients.
Collapse
Affiliation(s)
- L IJlst
- Department of Pediatrics and Clinical Chemistry, University Hospital Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
200
|
Yang SY. The large subunit of the pig heart mitochondrial membrane-bound beta-oxidation complex is a long-chain enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. Comp Biochem Physiol B Biochem Mol Biol 1994; 109:557-66. [PMID: 7881821 DOI: 10.1016/0305-0491(94)90117-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The subunit locations of the component enzymes of the pig heart trifunctional mitochondrial beta-oxidation complex are suggested by analyzing the primary structure of the large subunit of this membrane-bound multienzyme complex [Yang S.-Y. et al. (1994) Biochem. biophys. Res. Commun. 198, 431-437] with those of the subunits of the E. coli fatty acid oxidation complex and the corresponding mitochondrial matrix beta-oxidation enzymes. Long-chain enoyl-CoA hydratase and long-chain 3-hydroxyacyl-CoA dehydrogenase are located in the amino-terminal and the central regions of the 79 kDa polypeptide, respectively, whereas the long-chain 3-ketoacyl-CoA thiolase is associated with the 46 kDa subunit of this complex. The pig heart mitochondrial bifunctional beta-oxidation enzyme is more homologous to the large subunit of the prokaryotic fatty acid oxidation complex than to the peroxisomal trifunctional beta-oxidation enzyme. The evolutionary trees of 3-hydroxyacyl-CoA dehydrogenases and enoyl-CoA hydratases suggest that the mitochondrial inner membrane-bound bifunctional beta-oxidation enzyme and the corresponding matrix monofunctional beta-oxidation enzymes are more remotely related to each other than to their corresponding prokaryotic enzymes, and that the genes of E. coli multifunctional fatty acid oxidation protein and pig heart mitochondrial bifunctional beta-oxidation enzyme diverged after the appearance of eukaryotic cells.
Collapse
Affiliation(s)
- S Y Yang
- Department of Pharmacology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| |
Collapse
|