151
|
Baarends WM, Grootegoed JA. Chromatin dynamics in the male meiotic prophase. Cytogenet Genome Res 2004; 103:225-34. [PMID: 15051943 DOI: 10.1159/000076808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 11/24/2003] [Indexed: 11/19/2022] Open
Abstract
During the male meiotic prophase in mouse and man, pairing and recombination of homologous chromosomes is accompanied by changes in chromatin structure. In this review, the dynamics of assembly and disassembly of the chromatin-associated complexes that mediate sister chromatid cohesion (cohesin) and maintain chromosome pairing (the synaptonemal complex) are described. Special features of the meiotic S phase are discussed, and also the dynamics of several key players that act together after the S phase at sites of meiotic double-strand break DNA repair. Current knowledge on histone modifications that occur during the male meiotic prophase is discussed, with special attention for the inactive chromatin of the X and Y chromosomes that constitutes the sex body. Finally, it is discussed that in the future, it will be possible to view the true chromatin dynamics during male meiosis in time, in living cells, through analysis of fluorescent-tagged proteins expressed in transgenic mice, using advanced fluorescent microscopy techniques.
Collapse
Affiliation(s)
- W M Baarends
- Department of Reproduction and Development, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands.
| | | |
Collapse
|
152
|
Scherthan H. Knockout mice provide novel insights into meiotic chromosome and telomere dynamics. Cytogenet Genome Res 2004; 103:235-44. [PMID: 15051944 DOI: 10.1159/000076809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 12/15/2003] [Indexed: 11/19/2022] Open
Abstract
Meiosis is a succession of two specialized cell divisions that leads to the formation of gametes and thereby compensates for genome doubling at fertilization. During the extended prophase of the first meiotic division chromosomes assemble protein cores (axial elements) that attach their ends to the nuclear envelope. These ends transiently gather at a limited sector of the nuclear periphery (bouquet stage) at a time when meiotic recombination is initiated and when chromosomes initiate stable pairing (synapsis). This review discusses novel insights into the relation between recombinational DNA repair and meiotic telomere dynamics that have arrived from recent studies of transchromosomal mice and knockout mice. Analysis of mice deficient for A-type lamins, histone H2AX, Suv39h HMTases, and the AE protein SYCP3 suggests that entry into prophase I requires heterochromatin integrity and lamin A expression. Initiation of meiotic telomere clustering represents an early recombination-independent event in first meiotic prophase, while exit from the bouquet stage depends on signals that emanate from the progress of recombinational DNA repair as sensed by ATM kinase and relayed through histone H2AX.
Collapse
Affiliation(s)
- H Scherthan
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany.
| |
Collapse
|
153
|
Wolgemuth DJ. Insights into regulation of the mammalian cell cycle from studies on spermatogenesis using genetic approaches in animal models. Cytogenet Genome Res 2004; 103:256-66. [PMID: 15051946 DOI: 10.1159/000076811] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2003] [Accepted: 10/07/2003] [Indexed: 11/19/2022] Open
Abstract
The genetic hierarchy controlling mitosis and especially meiosis during gamete formation is not well understood, even in less complicated systems such as the yeasts. Meiotic divisions are obviously restricted to germ line cells and as such likely require mechanisms of cell cycle control that do not function and may not exist in somatic cells. While male and female germ cells have stages of cell cycle regulation in common, the timing of these events and the stage of development at which these events occur differ in the two sexes. Understanding the genetic program controlling the mitotic and meiotic divisions of the germ line represents a unique opportunity for providing insight into cell cycle control in vivo. Elucidating the key control points and proteins may also enhance our understanding of the etiology of infertility and provide new directions for contraception.
Collapse
Affiliation(s)
- D J Wolgemuth
- Department of Genetics and Development, The Center for Reproductive Sciences, The Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
154
|
Crowe E, Candido EPM. Characterization of C. elegans RING finger protein 1, a binding partner of ubiquitin-conjugating enzyme 1. Dev Biol 2004; 265:446-59. [PMID: 14732404 DOI: 10.1016/j.ydbio.2003.09.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a yeast two-hybrid screen, RING finger protein 1 (RFP-1) and UBR1 were identified as potential binding partners of C. elegans UBC-1, a ubiquitin-conjugating enzyme with a high degree of identity to S. cerevisiae UBC2/RAD6. The interaction of RFP-1 and UBC-1 was confirmed by co-immunoprecipitation experiments. Yeast interaction trap experiments mapped the region of interaction to the basic N-terminal 313 residues of RFP-1. The acidic carboxy-terminal extension of UBC-1 was not required for the interaction with RFP-1. Western blot analysis and indirect immunohistochemical staining show that RFP-1 is present in embryos, larvae, and adults, where it is found in intestinal, nerve ring, pharyngeal, gonadal, and oocyte cell nuclei. Double-stranded RNA interference experiments against rfp-1 indicate that this gene is required for L1 development, vulval development, and for egg laying. By contrast, RNA interference against ubc-1 gave no obvious phenotype, suggesting that ubc-1 is nonessential or is functionally redundant.
Collapse
Affiliation(s)
- Emily Crowe
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
| | | |
Collapse
|
155
|
Yamamoto T, Mori Y, Ishibashi T, Uchiyama Y, Sakaguchi N, Furukawa T, Hashimoto J, Kimura S, Sakaguchi K. Characterization of Rad6 from a higher plant, rice (Oryza sativa L.) and its interaction with Sgt1, a subunit of the SCF ubiquitin ligase complex. Biochem Biophys Res Commun 2004; 314:434-9. [PMID: 14733924 DOI: 10.1016/j.bbrc.2003.12.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report here the existence of interactions between a ubiquitin-conjugating enzyme, Rad6, from rice, Oryza sativa L. cv. Nipponbare (OsRad6), and Sgt1 (OsSgt1), a novel subunit of the SCF ubiquitin ligase complex. Rad6 is not only related to post-replicational repair but also to the proteasome system, while Sgt1 has a function in kinetochore assembly. The relationship between the two is unexpected, but of great interest. The open reading frames of OsRad6 and OsSgt1 encode predicted products of 152 and 367 amino acid residues, respectively, with molecular weights of 17.3 and 40.9kDa. Two-hybrid and pull-down analyses indicated that OsRad6 binds to OsSgt1, and transcripts of both OsRad6 and OsSgt1 were found to be strongly expressed only in the proliferating tissues such as the shoot apical meristem, suggesting that their expression is cell cycle-dependent. The amount of the Rad6 mRNA in cultured cells increased rapidly after division was halted, and mRNA levels of Rad6 and Sgt1 were induced by UV- and DNA-damaging agents such as MMS or H(2)O(2). The Rad6 pathway for repair or the proteasome system may thus require Sgt1 as ubiquitin-conjugating enzyme.
Collapse
Affiliation(s)
- Taichi Yamamoto
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, 278-8510 Chiba-ken, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Vialard F, Cocquet J, Christin-Maitre S, Veitia R, Fellous M. The X chromosome and ovarian function. Cytogenet Genome Res 2004; 99:218-23. [PMID: 12900567 DOI: 10.1159/000071596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 02/26/2003] [Indexed: 11/19/2022] Open
Affiliation(s)
- F Vialard
- Hôpital Poissy Saint Germain, Poissy, France
| | | | | | | | | |
Collapse
|
157
|
Pastushok L, Xiao W. DNA Postreplication Repair Modulated by Ubiquitination and Sumoylation. ADVANCES IN PROTEIN CHEMISTRY 2004; 69:279-306. [PMID: 15588847 DOI: 10.1016/s0065-3233(04)69010-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Landon Pastushok
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
158
|
Kwon YT, Xia Z, An JY, Tasaki T, Davydov IV, Seo JW, Sheng J, Xie Y, Varshavsky A. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 2003; 23:8255-71. [PMID: 14585983 PMCID: PMC262401 DOI: 10.1128/mcb.23.22.8255-8271.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Substrates of the ubiquitin-dependent N-end rule pathway include proteins with destabilizing N-terminal residues. UBR1(-/-) mice, which lacked the pathway's ubiquitin ligase E3alpha, were viable and retained the N-end rule pathway. The present work describes the identification and analysis of mouse UBR2, a homolog of UBR1. We demonstrate that the substrate-binding properties of UBR2 are highly similar to those of UBR1, identifying UBR2 as the second E3 of the mammalian N-end rule pathway. UBR2(-/-) mouse strains were constructed, and their viability was found to be dependent on both gender and genetic background. In the strain 129 (inbred) background, the UBR2(-/-) genotype was lethal to most embryos of either gender. In the 129/B6 (mixed) background, most UBR2(-/-) females died as embryos, whereas UBR2(-/-) males were viable but infertile, owing to the postnatal degeneration of the testes. The gross architecture of UBR2(-/-) testes was normal and spermatogonia were intact as well, but UBR2(-/-) spermatocytes were arrested between leptotene/zygotene and pachytene and died through apoptosis. A conspicuous defect of UBR2(-/-) spermatocytes was the absence of intact synaptonemal complexes. We conclude that the UBR2 ubiquitin ligase and, hence, the N-end rule pathway are required for male meiosis and spermatogenesis and for an essential aspect of female embryonic development.
Collapse
Affiliation(s)
- Yong Tae Kwon
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
Spermatogonia in the mouse testis arise from early postnatal gonocytes that are derived from primordial germ cells (PGCs) during embryonic development. The proliferation, self-renewal, and differentiation of spermatogonial stem cells provide the basis for the continuing integrity of spermatogenesis. We previously reported that Pin1-deficient embryos had a profoundly reduced number of PGCs and that Pin1 was critical to ensure appropriate proliferation of PGCs. The current investigation aimed to elucidate the function of Pin1 in postnatal germ cell development by analyzing spermatogenesis in adult Pin1-/- mice. Although Pin1 was ubiquitously expressed in the adult testis, we found it to be most highly expressed in spermatogonia and Sertoli cells. Correspondingly, we show here that Pin1 plays an essential role in maintaining spermatogonia in the adult testis. Germ cells in postnatal Pin1-/- testis were able to initiate and complete spermatogenesis, culminated by production of mature spermatozoa. However, there was a progressive and age-dependent degeneration of the spermatogenic cells in Pin1-/- testis that led to complete germ cell loss by 14 mo of age. This depletion of germ cells was not due to increased cell apoptosis. Rather, detailed analysis of the seminiferous tubules using a germ cell-specific marker revealed that depletion of spermatogonia was the first step in the degenerative process and led to disruption of spermatogenesis, which resulted in eventual tubule degeneration. These results reveal that the presence of Pin1 is required to regulate proliferation and/or cell fate of undifferentiated spermatogonia in the adult mouse testis.
Collapse
Affiliation(s)
- Fawn W Atchison
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
160
|
Okawa Y, Takada K, Minami J, Aoki K, Shibayama H, Ohkawa K. Purification of N-terminally truncated histone H2A-monoubiquitin conjugates from leukemic cell nuclei: probable proteolytic products of ubiquitinated H2A. Int J Biochem Cell Biol 2003; 35:1588-600. [PMID: 12824067 DOI: 10.1016/s1357-2725(03)00140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To gain insight into the significance of nuclear ubiquitinated proteins, two serial extracts prepared from various leukemic cells were analysed by western blotting with anti-ubiquitin antibody. Two previously unidentified ubiquitinated proteins with molecular masses of 10 and 17 kDa were found in 8 M urea-soluble extracts, obtained from Tris-buffer-insoluble materials, of acute myeloid leukemia OCI/AML 1a cells and the cells from the leukemia patients. Both proteins were successfully purified from the OCI/AML 1a cells and identified as monoubiquitin-truncated H2A conjugates, the 10 kDa ubiquitinated H2A(115-129) and the 17 kDa ubiquitinated H2A(54-129), suggesting that both proteins were produced by limited proteolysis of an intact form (23 kDa) of ubiquitinated H2A(1-129). The 17 kDa protein as well as the 23 kDa ubiquitinated histone H2A were localised in chromatin fractions of the OCI/AML cells and released by high concentrations of salt in a micrococcal nuclease-sensitive manner, suggesting their association with chromatin. In contrast, the 10 kDa protein remained insoluble even when the nuclei were treated with nuclease under high salt concentrations, presumably due to binding to the nuclear matrix. An antibody recognising H2A(70-81) also detected the 17 kDa protein in anti-ubiquitin immunoprecipitates obtained from the OCI/AML cell nuclei. In addition, the 17 kDa protein levels in THP-1 cells were transiently increased, concomitant with a decrease in the 23 kDa ubiquitinated H2A, by treatment with phorbol 12-myristate 13-acetate or all-trans-retinoic acid, both of which induce differentiation. This is the first report of probable proteolytic products of ubiquitinated H2A, which might have a role in nuclear functions.
Collapse
Affiliation(s)
- Yutaka Okawa
- Department of Biochemistry I, Jikei University School of Medicine, 3-25-8, Nishishinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | |
Collapse
|
161
|
Kitajima K, Matsumoto K, Tahara M, Takahashi H, Nakamura T, Nakamura T. A newly identified AMSH-family protein is specifically expressed in haploid stages of testicular germ cells. Biochem Biophys Res Commun 2003; 309:135-42. [PMID: 12943674 DOI: 10.1016/s0006-291x(03)01550-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Associated Molecule with SH3 domain of STAM (AMSH) plays a critical role in the cytokine-mediated intracellular signal transduction downstream of the Jak2/Jak3-STAM complex. We newly identified a family molecule of AMSH, AMSH-FP (AMSH-Family Protein) in the mouse brain. AMSH-FP encodes the intracellular protein and has a highly conserved JAB1 Subdomain Homologous (JSH) region, suggesting that AMSH-FP may act as adaptor of gene transcription and/or regulation system. AMSH-FP has two splicing forms, one is expressed in various tissues, whereas the other one is restricted to expression in testis. We named the abundant type AMSH-FPalpha and the testis type AMSH-FPbeta. AMSH-FPbeta is a variant lacking N-terminal 166 amino acid residues of AMSH-FPalpha. Analysis of the 5(')-untranslated regions in AMSH-FPalpha and AMSH-FPbeta mRNAs and exon-intron structure of AMSH-FP gene suggests that testis-specific transcripts are generated due to alternative promoter usage and/or alternative splicing. Importantly, AMSH-FPbeta mRNA was not detected in juvenile and infertile mouse testis but was restrictively expressed in the haploid stage of testicular germ cells in the normal mature testis. We suggested that AMSH-FPbeta had a functional role in the spermiogenesis.
Collapse
Affiliation(s)
- Keiko Kitajima
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
162
|
Escalier D. New insights into the assembly of the periaxonemal structures in mammalian spermatozoa. Biol Reprod 2003; 69:373-8. [PMID: 12672659 DOI: 10.1095/biolreprod.103.015719] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Disruption of Ube2b in the mouse has revealed that the regular and symmetric organization of the fibrous sheath of the sperm flagella is dependent on expression of the ubiquitin-conjugating enzyme UBE2B. These data could cast light on how a component of the ubiquitin-proteasome pathway participates in the assembly of flagellar periaxonemal structures. Data in the literature support the notion of involvement of ubiquitin-proteasome pathways in the assembly of cytoskeletal components in somatic cells. This review attempts to integrate recent knowledge regarding flagellar components that could be related to proteasome components and, therefore, could be targets of UBE2B in the spermatid. An attempt is made to characterize the human flagellar anomalies of infertile patients, which are the closest to those of Ube2b-deficient mice. These new insights regarding the assembly of mammalian sperm flagella provide a basis for studying the ontogenesis of flagellar accessory structures and suggest leads for medical and genetic investigations.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5, 75270 Paris, France.
| |
Collapse
|
163
|
Escalier D, Bai XY, Silvius D, Xu PX, Xu X. Spermatid nuclear and sperm periaxonemal anomalies in the mouse Ube2b null mutant. Mol Reprod Dev 2003; 65:298-308. [PMID: 12784252 DOI: 10.1002/mrd.10290] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ube2b (yeast Ubc2b/Rad6 homolog) null mice were described previously. Ube2b encodes the murine ubiquitin conjugating enzyme mHR6B. Ube2b(-/-) mice were shown to present male infertility and their sperm head shape anomalies suggested that Ube2b may be involved in the replacement of nuclear proteins during spermatid chromatin condensation. Apoptosis of spermatocytes suggested additional targets of Ube2b during spermatogenesis. Consistently, we found Ube2b transcription in both meiotic and postmeiotic stages by in situ hybridization. Immuno-electron microscopy revealed that transition proteins 1 and 2, protamines 1 and 2, and actin appear normally distributed during morphogenesis of Ube2b(-/-) spermatid heads. Surprisingly, electron microscopy revealed a particular sperm flagellum phenotype characterized by an abnormal distribution of periaxonemal structures. Flagellar anomalies of Ube2b null mice were previously described in infertile men indicating a possible genetic pathway for flagellar periaxonemal assembly in human.
Collapse
Affiliation(s)
- Denise Escalier
- Histologie Fonctionnelle et Moléculaire, Université Paris 5 and INSERM U.407, France.
| | | | | | | | | |
Collapse
|
164
|
Lewis JD, Abbott DW, Ausió J. A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol 2003; 81:131-40. [PMID: 12897846 DOI: 10.1139/o03-045] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The process of meiosis reduces a diploid cell to four haploid gametes and is accompanied by extensive recombination. Thus, the dynamics of chromatin during meiosis are significantly different than in mitotic cells. As spermatogenesis progresses, there is a widespread reorganization of the haploid genome followed by extensive DNA compaction. It has become increasingly clear that the dynamic composition of chromatin plays a critical role in the activities of enzymes and processes that act upon it. Therefore, an analysis of the role of histone variants and modifications in these processes may shed light upon the mechanisms involved and the control of chromatin structure in general. Histone variants such as histone H3.3, H2AX, and macroH2A appear to play key roles in the various stages of spermiogenesis, in addition to the specifically modulated acetylation of histone H4 (acH4), ubiquitination of histones H2A and H2B (uH2A, uH2B), and phosphorylation of histone H3 (H3p). This review will examine recent discoveries concerning the role of histone modifications and variants during meiosis and spermatogenesis.
Collapse
Affiliation(s)
- John D Lewis
- Department of Biochemistry and Microbiology, Unversity of Victoria, BC, Canada
| | | | | |
Collapse
|
165
|
Abstract
PURPOSE OF REVIEW Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.
Collapse
Affiliation(s)
- Stewart H Lecker
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| |
Collapse
|
166
|
Naresh A, Saini S, Singh J. Identification of Uhp1, a ubiquitinated histone-like protein, as a target/mediator of Rhp6 in mating-type silencing in fission yeast. J Biol Chem 2003; 278:9185-94. [PMID: 12511578 DOI: 10.1074/jbc.m212732200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mating-type silencing in Schizosaccharomyces pombe is brought about by cooperative interactions between cis-acting DNA sequences flanking mat2P and mat3M and the trans-acting factors, namely Swi6, Clr1-Clr4, Clr6, and Rik1. In addition, DNA repair gene rhp6, which plays a role in post-replication DNA repair and ubiquitination of proteins including histones, is also involved in silencing, albeit in a unique way; its effect on silencing and chromatin structure of the donor loci is dependent on their switching competence. Earlier, we hypothesized the existence of a mediator of Rhp6 that plays a role in reestablishment of the chromatin structure coincidentally with DNA replication associated with mating-type switching. Here we report the identification of a 22-kDa protein as an in vivo target and mediator of Rhp6 in mating-type silencing. The level of this protein is greatly elevated in sng1-1/rhp6(-) mutant and rhp6Delta as compared with wild type strain. Both the deletion and overexpression of the gene encoding this protein elicit switching-dependent loss of silencing. Furthermore, the 22-kDa protein undergoes Rhp6-dependent multiubiquitination and associates with mat2 locus during S phase in wild type cells. Interestingly, it contains a histone-fold motif similar to that of histone H2A, and like histone H2A, it interacts strongly with histone H2B in vitro. These results indicate that the 22-kDa protein, renamed as the ubiquitinated histone-like protein Uhp1, is an in vivo target/mediator of Rhp6 in silencing. Thus, regulation of association of Uhp1 with chromatin and ubiquitination followed by degradation may play a role in reestablishment of inactive chromatin structure at the silent mating-type loci.
Collapse
Affiliation(s)
- Alpana Naresh
- Institute of Microbial Technology, Sector 39A, Chandigarh-160 036, India
| | | | | |
Collapse
|
167
|
Walter CA, Walter RB, McCarrey JR. Germline genomes--a biological fountain of youth? SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE4. [PMID: 12844546 DOI: 10.1126/sageke.2003.8.pe4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The fusion of male- and female-derived gametes initiates the phenomenal process of producing a highly complex mammalian organism. Successful reproduction is so important that mammals invoke a battery of protective mechanisms for the germ cell lineages that function to maximize genetic integrity while still allowing genetic diversity and adaptation. Protective mechanisms likely include, but are not limited to, robust DNA repair to safeguard genetic integrity and apoptosis to remove cells with intolerable levels of DNA damage. Analyses of spontaneous mutant frequencies are generally consistent with germline DNA being stringently maintained relative to somatic tissues. Despite the rigorous protection afforded germ cells, genetic integrity is observed to decline with increased maternal and paternal age. It is not yet clear whether cells in the germ line truly age or whether other processes decline or become dysfunctional with age. For example, in a younger animal, the differentiation and/or utilization of germ cells with lower genetic integrity might be disallowed, whereas in an older animal, such cells might slip past these quality-control mechanisms.
Collapse
Affiliation(s)
- Christi A Walter
- The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
168
|
Baarends WM, Wassenaar E, Hoogerbrugge JW, van Cappellen G, Roest HP, Vreeburg J, Ooms M, Hoeijmakers JHJ, Grootegoed JA. Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 2003; 23:1151-62. [PMID: 12556476 PMCID: PMC141135 DOI: 10.1128/mcb.23.4.1151-1162.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2002] [Revised: 08/09/2002] [Accepted: 11/19/2002] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-conjugating enzymes HR6A and HR6B are the two mammalian homologs of Saccharomyces cerevisiae RAD6. In yeast, RAD6 plays an important role in postreplication DNA repair and in sporulation. HR6B knockout mice are viable, but spermatogenesis is markedly affected during postmeiotic steps, leading to male infertility. In the present study, increased apoptosis of HR6B knockout primary spermatocytes was detected during the first wave of spermatogenesis, indicating that HR6B performs a primary role during the meiotic prophase. Detailed analysis of HR6B knockout pachytene nuclei showed major changes in the synaptonemal complexes. These complexes were found to be longer. In addition, we often found depletion of synaptonemal complex proteins from near telomeric regions in the HR6B knockout pachytene nuclei. Finally, we detected an increased number of foci containing the mismatch DNA repair protein MLH1 in these nuclei, reflecting a remarkable and consistent increase (20 to 25%) in crossing-over frequency. The present findings reveal a specific requirement for the ubiquitin-conjugating activity of HR6B in relation to dynamic aspects of the synaptonemal complex and meiotic recombination in spermatocytes.
Collapse
Affiliation(s)
- Willy M Baarends
- Department of Reproduction and Development, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Fang S, Lorick KL, Jensen JP, Weissman AM. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin Cancer Biol 2003; 13:5-14. [PMID: 12507552 DOI: 10.1016/s1044-579x(02)00095-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Covalent modification of proteins with ubiquitin regulates almost all aspects of eukaryotic cellular function. Ubiquitin protein ligases (E3s) play central regulatory roles in that they provide substrate specificity to this process and therefore, represent attractive molecular targets for disease therapy. We summarize recent advances in our understanding of RING finger and RING finger-related E3s with emphasis on BRCA1 and the tumor autocrine motility factor receptor (gp78), as well as discuss the potential for components of the ubiquitin pathway for proteasomal degradation as molecular targets.
Collapse
Affiliation(s)
- Shengyun Fang
- Regulation of Protein Function Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Building 560, Room 22-95, 1050 Boyles Street, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
170
|
Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PPW, de Rooij DG. DNA double-strand breaks and gamma-H2AX signaling in the testis. Biol Reprod 2003; 68:628-34. [PMID: 12533428 DOI: 10.1095/biolreprod.102.008672] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks.
Collapse
Affiliation(s)
- Geert Hamer
- Department of Endocrinology, Faculty of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
171
|
Suzumori N, Burns KH, Yan W, Matzuk MM. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci U S A 2003; 100:550-5. [PMID: 12525704 PMCID: PMC141033 DOI: 10.1073/pnas.0234474100] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oocyte meiosis and early mitotic divisions in developing embryos rely on the timely production of cell cycle regulators and their clearance via proteasomal degradation. Ret Finger Protein-Like 4 (Rfpl4), encoding a RING finger-like protein with a B30.2 domain, was discovered during an in silico search for germ cell-specific genes. To study the expression and functions of RFPL4 protein, we performed immunolocalizations and used yeast two-hybrid and other protein-protein interaction assays. Immunohistochemistry and immunofluorescence showed that RFPL4 accumulates in all growing oocytes and quickly disappears during early embryonic cleavage. We used a yeast two-hybrid model to demonstrate that RFPL4 interacts with the E2 ubiquitin-conjugating enzyme HR6A, proteasome subunit beta type 1, ubiquitin B, as well as a degradation target protein, cyclin B1. Coimmunoprecipitation analyses of in vitro translated proteins and extracts of transiently cotransfected Chinese hamster ovary (CHO)-K1 cells confirmed these findings. We conclude that, like many RING-finger containing proteins, RFPL4 is an E3 ubiquitin ligase. The specificity of its expression and these interactions suggest that RFPL4 targets cyclin B1 for proteasomal degradation, a key aspect of oocyte cell cycle control during meiosis and the crucial oocyte-to-embryo transition to mitosis.
Collapse
Affiliation(s)
- Nobuhiro Suzumori
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
172
|
Tateishi S, Niwa H, Miyazaki JI, Fujimoto S, Inoue H, Yamaizumi M. Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol 2003; 23:474-81. [PMID: 12509447 PMCID: PMC151530 DOI: 10.1128/mcb.23.2.474-481.2003] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In lower eukaryotes, Rad18 plays a crucial role in postreplication repair. Previously, we isolated a human homologue of RAD18 (hRAD18) and showed that human cells overexpressing hRad18 protein with a mutation in the RING finger motif are defective in postreplication repair. Here, we report the construction of RAD18-knockout mouse embryonic stem cells by gene targeting. These cells had almost the same growth rate as wild-type cells and manifested phenotypes similar to those of human cells expressing mutant Rad18 protein: hypersensitivity to multiple DNA damaging agents and a defect in postreplication repair. Mutation was not induced in the knockout cells with any higher frequencies than in wild-type cells, as shown by ouabain resistance. In the knockout cells, spontaneous sister chromatid exchange (SCE) occurred with twice the frequency observed in normal cells. After mild DNA damage, SCE was threefold higher in the knockout cells, while no increase was observed in normal cells. Stable transformation efficiencies were approximately 20-fold higher in knockout cells, and gene targeting occurred with approximately 40-fold-higher frequency than in wild-type cells at the Oct3/4 locus. These results indicate that dysfunction of Rad18 greatly increases both the frequency of homologous as well as illegitimate recombination, and that RAD18 contributes to maintenance of genomic stability through postreplication repair.
Collapse
Affiliation(s)
- Satoshi Tateishi
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, USA
| | | | | | | | | | | |
Collapse
|
173
|
Kwon J, Kikuchi T, Setsuie R, Ishii Y, Kyuwa S, Yoshikawa Y. Characterization of the testis in congenitally ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) defective (gad) mice. Exp Anim 2003; 52:1-9. [PMID: 12638230 DOI: 10.1538/expanim.52.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The gracile axonal dystrophy (gad) mice are known to have a deletion within the gene encoding ubiquitin carboxy-terminal hydrolase-1 (Uch-L1) and show hereditary sensory deterioration and motor paresis. Expression of Uch-L1 is reported to be almost limited to the nervous system and testis. To understand whether Uch-L1, one of the major ubiquitin carboxy-terminal hydrolase (UCH) isozymes in the testis, affects spermatogenesis and other UCH isozymes (Uch-L3, L4 and L5) expression in the testis, we compared the testis between gad, hetero and wild type mice by histological, immunohistochemical analyses and RT-PCR. Histological analysis in 25-week-old gad mice showed shrinking of seminiferous tubules, decreasing total number of cells and enlargement of remaining cells in seminiferous tubules. By immunohistochemistry, a significant decrease (p < 0.05) in the number of proliferating cell nuclear antigen (PCNA) positive cells was observed. Expression of other UCH isozyme mRNAs was not apparently affected by Uch-L1 deficiency in 25-week-old gad mice. This study is the first report on the testis of gad mutant mouse.
Collapse
Affiliation(s)
- Jungkee Kwon
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
174
|
Ma J, Katz E, Belote JM. Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2002; 11:627-639. [PMID: 12421421 DOI: 10.1046/j.1365-2583.2002.00374.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we sought to identify and characterize all the proteasome genes of Drosophila melanogaster. Earlier work led to the identification of two genes encoding alpha4-type 20S proteasome subunit isoforms that are expressed exclusively in the male germline. Here we extend these results and show that six of the 20S proteasome subunits, and four of the 19S regulatory cap subunits, have gene duplications encoding male-specific isoforms. More detailed analyses of two of these male-specific subunits (Prosalpha3T and Prosalpha6T), using GFP-tagged reporter transgenes, revealed that they are predominantly localized to the nucleus at later stages of spermatogenesis and are present there in mature, motile sperm. These results suggest a possible role of a 'spermatogenesis-specific' proteasome in sperm differentiation and/or function.
Collapse
Affiliation(s)
- J Ma
- Department of Biology, Syracuse University, Syracuse, New York, USA.
| | | | | |
Collapse
|
175
|
Yamashita YM, Okada T, Matsusaka T, Sonoda E, Zhao GY, Araki K, Tateishi S, Yamaizumi M, Takeda S. RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. EMBO J 2002; 21:5558-66. [PMID: 12374756 PMCID: PMC129066 DOI: 10.1093/emboj/cdf534] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major pathways that account for survival after post-replicational DNA damage. TLS functions by filling gaps on a daughter strand that remain after DNA replication caused by damage on the mother strand, while HR can repair gaps and breaks using the intact sister chromatid as a template. The RAD18 gene, which is conserved from lower eukaryotes to vertebrates, is essential for TLS in Saccharomyces cerevisiae. To investigate the role of RAD18, we disrupted RAD18 by gene targeting in the chicken B-lymphocyte line DT40. RAD18(-/-) cells are sensitive to various DNA-damaging agents including ultraviolet light and the cross-linking agent cisplatin, consistent with its role in TLS. Interestingly, elevated sister chromatid exchange, which reflects HR- mediated post-replicational repair, was observed in RAD18(-/-) cells during the cell cycle. Strikingly, double mutants of RAD18 and RAD54, a gene involved in HR, are synthetic lethal, although the single mutant in either gene can proliferate with nearly normal kinetics. These data suggest that RAD18 plays an essential role in maintaining chromosomal DNA in cooperation with the RAD54-dependent DNA repair pathway.
Collapse
Affiliation(s)
- Yukiko M. Yamashita
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takashi Okada
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takahiro Matsusaka
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Eiichiro Sonoda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Guang Yu Zhao
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Kasumi Araki
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Satoshi Tateishi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Masaru Yamaizumi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| |
Collapse
|
176
|
|
177
|
Abstract
Spermatogenesis is a complex process that involves stem-cell renewal, genome reorganization and genome repackaging, and that culminates in the production of motile gametes. Problems at all stages of spermatogenesis contribute to human infertility, but few of them can be modelled in vitro or in cell culture. Targeted mutagenesis in the mouse provides a powerful method to analyse these steps and has provided new insights into the origins of male infertility.
Collapse
Affiliation(s)
- Howard J Cooke
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
178
|
Oughtred R, Bedard N, Adegoke OAJ, Morales CR, Trasler J, Rajapurohitam V, Wing SS. Characterization of rat100, a 300-kilodalton ubiquitin-protein ligase induced in germ cells of the rat testis and similar to the Drosophila hyperplastic discs gene. Endocrinology 2002; 143:3740-7. [PMID: 12239083 DOI: 10.1210/en.2002-220262] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Conjugation of ubiquitin to proteins is activated during spermatogenesis. Ubiquitination is mediated by ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (UBCs or E2s), and ubiquitin protein ligases (E3s). Since we previously showed that the activated ubiquitination is UBC4 dependent, we characterized Rat100, a UBC4-dependent E3 expressed in the testis. Analysis of expressed sequence tag sequences and immunoblotting showed that Rat100 is actually a 300-kDa protein expressed mainly in the brain and testis and is similar to the human E3 identified by differential display (EDD) protein and the Drosophila hyperplastic discs gene, mutants of which cause a defect in spermatogenesis. Rat100 is induced during postnatal development of the rat testis, peaking at d 25. It is localized only in germ cells and is highly expressed in spermatocytes, moderately in round and slightly in elongating spermatids. In contrast to UBC4 whose removal from a testis extract abrogates much of the conjugation activity, immmunodepletion of Rat100 from the extracts had little effect. Rat100 therefore has a limited subset of substrates, some of which appear associated with the E3 as the immunoprecipitate containing Rat100 supported incorporation of (125)I-ubiquitin into high molecular weight proteins. Thus, Rat100 is the homolog of human EDD and likely of Drosophila hyperplastic discs. This homology, together with our results, suggests that induction of this E3 results in ubiquitination of specific substrates, some of which are important in male germ cell development.
Collapse
Affiliation(s)
- Rose Oughtred
- Department of Medicine, McGill University, Montréal, Québec, Canada H3A 2B2
| | | | | | | | | | | | | |
Collapse
|
179
|
Mochida K, Matsubara T, Kudo H, Andoh T, Ueda H, Adachi S, Yamauchi K. Molecular cloning and immunohistochemical localization of ubiquitin C-Terminal hydrolase expressed in testis of a teleost, the Nile Tilapia, Oreochromis niloticus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 293:368-83. [PMID: 12210120 DOI: 10.1002/jez.10136] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously produced four monoclonal antibodies to testicular proteins of a teleost, the Nile tilapia. One of the monoclonal antibodies, TAT(Testicular Antigen of Tilapia)-10, recognizes a Mr=27,000 protein (27 kD protein), which is present in A and early B type spermatogonia, spermatids, and spermatozoa in testis. In order to clarify the function of this protein, molecular cloning was conducted. The cDNA for the 27 kD protein contains a complete open reading frame encoding 220 amino acid residues. The predicted amino acid sequence of the 27 kD protein was homologous to those of the ubiquitin carboxy-terminal hydrolases (UCH) reported in mammals. The measurement of the ubiquitin-releasing activity of the recombinant 27 kD protein revealed that the protein is the active form of UCH. Northern blot analysis showed that the UCH mRNA was expressed in ovary and brain in addition to the testis. Immunohistochemical study showed that, in brain, UCH was localized especially on the olfactory organ including the olfactory bulb and olfactory epithelium in olfactory rosetta, suggesting the involvement of the protein in chemoreceptive function. In the Tilapia ovary, UCH localized especially in pre-vitellogenic oocytes, suggesting that the enzyme activity could be important in oocyte growth. This is the first report for the cDNA cloning and cellular localization of UCH in fish. J. Exp. Zool. 293:368-383, 2002.
Collapse
Affiliation(s)
- Kazuhiko Mochida
- Hokkaido National Fisheries Research Institute, Kushiro, Hokkaido 085-0802, Japan
| | | | | | | | | | | | | |
Collapse
|
180
|
Kierszenbaum AL, Gil M, Rivkin E, Tres LL. Ran, a GTP-binding protein involved in nucleocytoplasmic transport and microtubule nucleation, relocates from the manchette to the centrosome region during rat spermiogenesis. Mol Reprod Dev 2002; 63:131-40. [PMID: 12211070 DOI: 10.1002/mrd.10164] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ran, a Ras-related GTPase, is required for transporting proteins in and out of the nucleus during interphase and for regulating the assembly of microtubules. cDNA cloning shows that rat testis, like mouse testis, expresses both somatic and testis-specific forms of Ran-GTPase. The presence of a homologous testis-specific form of Ran-GTPase in rodents implies that the Ran-GTPase pathway plays a significant role during sperm development. This suggestions is supported by distinct Ran-GTPase immunolocalization sites identified in developing spermatids. Confocal microscopy demonstrates that Ran-GTPase localizes in the nucleus of round spermatids and along the microtubules of the manchette in elongating spermatids. When the manchette disassembles, Ran-GTPase immunoreactivity is visualized in the centrosome region of maturing spermatids. The circumstantial observation that fractionated manchettes, containing copurified centrin-immunoreactive centrosomes, can organize a three-dimensional lattice in the presence of taxol and GTP, points to the role of Ran-GTPase and associated factors in microtubule nucleation as well as the potential nucleating function of spermatid centrosomes undergoing a reduction process. Electron microscopy demonstrates the presence in manchette preparations of spermatid centrosomes, recognized as such by their association with remnants of the implantation fossa, a dense plate observed only at the basal surface of developing spermatid and sperm nuclei. In addition, we have found importin beta1 immunoreactivity in the nucleus of elongating spermatids, a finding that, together with the presence of Ran-GTPase in the nucleus of round spermatids and the manchette, suggest a potential role of Ran-GTPase machinery in nucleocytoplasmic transport. Our expression and localization analysis, correlated with functional observations in other cell systems, suggest that Ran-GTPase may be involved in both nucleocytoplasmic transport and microtubules assembly, two critical events during the development of functional sperm. In addition, the manchette-to-centrosome Ran-GTPase relocation, together with the similar redistribution of various proteins associated to the manchette, suggest the existence of an intramanchette molecular transport mechanism, which may share molecular analogies with intraflagellar transport.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomical Sciences, CUNY Medical School, New York, New York 10031, USA.
| | | | | | | |
Collapse
|
181
|
Back JW, Notenboom V, de Koning LJ, Muijsers AO, Sixma TK, de Koster CG, de Jong L. Identification of cross-linked peptides for protein interaction studies using mass spectrometry and 18O labeling. Anal Chem 2002; 74:4417-22. [PMID: 12236350 DOI: 10.1021/ac0257492] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method is presented to screen proteolytic mass maps of cross-linked protein complexes for the presence of cross-linked peptides and for the verification of proposed structures. On the basis of the incorporation of 18O from isotopically enriched water into the C-termini of proteolytic peptides, cross-linked peptides are readily distinguished in mass spectra by a characteristic 8 amu shift. This is due to the incorporation of two 18O atoms in each C-terminus, so that normal and surface-labeled peptides shift 4 amu and cross-linked peptides containing two C-termini will shift 8 amu compared with their unlabeled counterparts. The method is fast, sensitive, and reliable and can be combined with any available cross-linking reagent and a wide range of proteolytic agents. As proof of principle, we successfully applied the method to a complex of two DNA repair proteins (Rad18-Rad6) and identified the interaction domain.
Collapse
|
182
|
Adegoke OAJ, Bédard N, Roest HP, Wing SS. Ubiquitin-conjugating enzyme E214k/HR6B is dispensable for increased protein catabolism in muscle of fasted mice. Am J Physiol Endocrinol Metab 2002; 283:E482-9. [PMID: 12169441 DOI: 10.1152/ajpendo.00097.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activated skeletal muscle proteolysis in catabolic states has been linked to an upregulation of the ATP-ubiquitin-dependent proteolytic system. Previous studies suggested that the N-end rule pathway is primarily responsible for the bulk of skeletal muscle proteolysis. The activity of this pathway is dependent on the 14-kDa ubiquitin-conjugating enzyme E2(14k) (HR6B) and the ubiquitin protein ligase Ubr1. To address the requirement of E2(14k) in muscle proteolysis, we examined muscle protein metabolism in wild-type (WT) mice and mice lacking the E2(14k) gene (KO) in fed and fasted (48 h) states. Baseline body weight, muscle mass, and protein content were similar, and these parameters decreased similarly upon fasting in the two genotypes. There were also no effects of genotype on the rate of proteolysis in soleus muscle. The fasting-induced increase in the amount of ubiquitinated proteins was the same in WT and KO mice. The absence of any significant effect of loss of E2(14k) function was not due to a compensatory induction of the closely related isoform HR6A. Total intracellular concentration of E2(14k) and HR6A in the WT mice was 290 +/- 40 nM, but the level in the KO mice (reflecting the level of HR6A) was 110 +/- 9 nM. This value is about threefold the apparent Michaelis-Menten constant (K(m)) of E2(14k) (approximately 40 nM) for stimulating conjugation in muscle extracts. Because the HR6A isoform has a K(m) of 16 nM for stimulating conjugation, the HR6A levels in the muscles of KO mice appear sufficient for supporting conjugation mediated by this pathway during fasting.
Collapse
Affiliation(s)
- Olasunkanmi A J Adegoke
- Polypeptide Laboratory, Department of Medicine, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | |
Collapse
|
183
|
Nielsen IS, Nielsen O, Murray JM, Thon G. The fission yeast ubiquitin-conjugating enzymes UbcP3, Ubc15, and Rhp6 affect transcriptional silencing of the mating-type region. EUKARYOTIC CELL 2002; 1:613-25. [PMID: 12456009 PMCID: PMC118003 DOI: 10.1128/ec.1.4.613-625.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Accepted: 06/04/2002] [Indexed: 11/20/2022]
Abstract
Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified in a screen for high-copy-number disruptors of silencing. Expression of cDNAs encoding the putative E2 ubiquitin-conjugating enzymes UbcP3, Ubc15 (ubiquitin-conjugating enzyme), or Rhp6 (Rad homolog pombe) from the strong nmt1 promoter derepressed the silent mating-type loci mat2 and mat3 and reporter genes inserted nearby. Deletion of rhp6 slightly derepressed an ade6 reporter gene placed in the mating-type region, whereas disruption of ubcP3 or ubc15 had no obvious effect on silencing. Rhp18 is the S. pombe homolog of Saccharomyces cerevisiae Rad18p, a DNA-binding protein that physically interacts with Rad6p. Rhp18 was not required for the derepression observed when UbcP3, Ubc15, or Rhp6 was overproduced. Overexpressing Rhp6 active-site mutants showed that the ubiquitin-conjugating activity of Rhp6 is essential for disruption of silencing. However, high dosage of UbcP3, Ubc15, or Rhp6 was not suppressed by a mutation in the 26S proteasome, suggesting that loss of silencing is not due to an increased degradation of silencing factors but rather to the posttranslational modification of proteins by ubiquitination. We discuss the implications of these results for the possible modes of action of UbcP3, Ubc15, and Rhp6.
Collapse
Affiliation(s)
- Inga Sig Nielsen
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, DK-1353 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
184
|
Inaba K, Padma P, Satouh Y, Shin-I T, Kohara Y, Satoh N, Satou Y. EST analysis of gene expression in testis of the ascidian Ciona intestinalis. Mol Reprod Dev 2002; 62:431-45. [PMID: 12112576 DOI: 10.1002/mrd.10131] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To explore the gene expression underlying spermatogenesis, a large-scale analysis has been done on the cDNAs from testis of the ascidian, Ciona intestinalis. A set of 5,461 expressed sequence tags was analyzed and grouped into 2,806 independent clusters. Approximately 30% of the clusters showed significant sequence matches to the proteins reported in DDBJ/GenBank/EMBL database including a set of proteins closely related to the gene regulation during spermatogenesis, functional and morphological changes of spermatogenic cells during spermiogenesis, and physiological functions of sperm, as well as those with housekeeping functions commonly expressed in other cells. Some clones show similarities to the proteins present in vertebrate lymphocytes, suggesting a primitive immune system in ascidians. We have also found some genes that are known to participate in hormonal regulation of spermatogenesis in vertebrates. The large majority of the genes expressed in Ciona testis show no significant matches to known proteins and the further analysis of these genes may shed new light on the molecular mechanism of spermatogenesis and sperm functions.
Collapse
Affiliation(s)
- Kazuo Inaba
- Asamushi Marine Biological Station, Graduate School of Science, Tohoku University, Asamushi, Aomori, Japan.
| | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Most of our knowledge of transcriptional regulation comes from studies in somatic cells. However, increasing evidence reveals that gene regulation mechanisms are different in haploid germ cells. A number of highly specialized strategies operate during spermatogenesis. These include a unique chromatin reorganization program and the use of distinct promoter elements and specific transcription factors. Deciphering the rules governing transcriptional control during spermatogenesis will provide valuable insights of biomedical importance.
Collapse
Affiliation(s)
- Paolo Sassone-Corsi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, B. P. 10142, 67404 Illkirch, Strasbourg, France.
| |
Collapse
|
186
|
Abstract
The piwi family genes are crucial for stem cell self-renewal, RNA silencing, and translational regulation in diverse organisms. However, their function in mammals remains unexplored. Here we report the cloning of a murine piwi gene (miwi) essential for spermatogenesis. miwi encodes a cytoplasmic protein specifically expressed in spermatocytes and spermatids. miwi(null) mice display spermatogenic arrest at the beginning of the round spermatid stage, resembling the phenotype of CREM, a master regulator of spermiogenesis. Furthermore, mRNAs of ACT (activator of CREM in testis) and CREM target genes are downregulated in miwi(null) testes. Whereas MIWI and CREM do not regulate each other's expression, MIWI complexes with mRNAs of ACT and CREM target genes. Hence, MIWI may control spermiogenesis by regulating the stability of these mRNAs.
Collapse
Affiliation(s)
- Wei Deng
- Department of Cell Biology, Duke University Medical Center, P.O. Box 3709, DUMC, Durham, NC 27710, USA
| | | |
Collapse
|
187
|
Sarcevic B, Mawson A, Baker RT, Sutherland RL. Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J 2002; 21:2009-18. [PMID: 11953320 PMCID: PMC125963 DOI: 10.1093/emboj/21.8.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Revised: 01/07/2002] [Accepted: 02/20/2002] [Indexed: 11/12/2022] Open
Abstract
Cell cycle progression in eukaryotes is mediated by phosphorylation of protein substrates by the cyclin-dependent kinases (CDKs). We screened a cDNA library by solid-phase phosphorylation and isolated hHR6A as a CDK2 substrate. hHR6A is the human homologue of the product of the Saccharomyces cerevisiae RAD6/UBC2 gene, a member of the family of ubiquitin-conjugating enzymes. hHR6A is phosphorylated in vitro by CDK-1 and -2 on Ser120, a residue conserved in all hHR6A homologues, resulting in a 4-fold increase in its ubiquitin-conjugating activity. In vivo, hHR6A phosphorylation peaks during the G2/M phase of cell cycle transition, with a concomitant increase in histone H2B ubiquitylation. Mutation of Ser120 to threonine or alanine abolished hHR6A activity, while mutation to aspartate to mimic phosphorylated serine increased hHR6A activity 3-fold. Genetic complementation studies in S.cerevisiae demonstrated that hHR6A Ser120 is critical for cellular proliferation. This is the first study to demonstrate regulation of UBC function by phosphorylation on a conserved residue and suggests that CDK-mediated phosphorylation of hHR6A is an important regulatory event in the control of cell cycle progression.
Collapse
Affiliation(s)
- Boris Sarcevic
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Darlinghurst, NSW, 2010 and
Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia Corresponding author e-mail:
| | | | - Rohan T. Baker
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent’s Hospital, Darlinghurst, NSW, 2010 and
Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, 2601, Australia Corresponding author e-mail:
| | | |
Collapse
|
188
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3118] [Impact Index Per Article: 135.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
189
|
Abstract
The conjugation of ubiquitin to other cellular proteins regulates a broad range of eukaryotic cell functions. The high efficiency and exquisite selectivity of ubiquitination reactions reflect the properties of enzymes known as ubiquitin-protein ligases or E3s. An E3 recognizes its substrates based on the presence of a specific ubiquitination signal, and catalyzes the formation of an isopeptide bond between a substrate (or ubiquitin) lysine residue and the C terminus of ubiquitin. Although a great deal is known about the molecular basis of E3 specificity, much less is known about molecular mechanisms of catalysis by E3s. Recent findings reveal that all known E3s utilize one of just two catalytic domains--a HECT domain or a RING finger--and crystal structures have provided the first detailed views of an active site of each type. The new findings shed light on many aspects of E3 structure, function, and mechanism, but also emphasize that key features of E3 catalysis remain to be elucidated.
Collapse
Affiliation(s)
- C M Pickart
- School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| |
Collapse
|
190
|
Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett 2002; 514:111-4. [PMID: 11943135 DOI: 10.1016/s0014-5793(02)02380-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An important chromatin remodeling process is taking place during spermiogenesis in mammals and DNA strand breaks must be produced to allow the accompanying change in DNA topology. Endogenous DNA strand breaks are indeed detected at mid-spermiogenesis steps but are no longer present in mature sperm. Both in vitro and in vivo evidence suggests that the DNA-binding and condensing activities of a set of basic nuclear "transition proteins" may be crucial to the integrity of the chromatin remodeling process. We propose that these proteins are necessary for the repair of the strand breaks so that DNA fragmentation is minimized in the mature sperm.
Collapse
Affiliation(s)
- Guylain Boissonneault
- Département de Biochimie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4.
| |
Collapse
|
191
|
Ulrich HD. Degradation or maintenance: actions of the ubiquitin system on eukaryotic chromatin. EUKARYOTIC CELL 2002; 1:1-10. [PMID: 12455966 PMCID: PMC118055 DOI: 10.1128/ec.1.1.1-10.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Helle D Ulrich
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany.
| |
Collapse
|
192
|
Jason LJM, Moore SC, Lewis JD, Lindsey G, Ausió J. Histone ubiquitination: a tagging tail unfolds? Bioessays 2002; 24:166-74. [PMID: 11835281 DOI: 10.1002/bies.10038] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the fact that histone H2A ubiquitination affects about 10-15% of this histone in most eukaryotic cells, histone ubiquitination is among one of the less-well-characterized post-translational histone modifications. Nevertheless, some important observations have been made in recent years. Whilst several enzymes had been known to ubiquitinate histones in vitro, recent studies in yeast have led to the unequivocal identification of the enzyme responsible for this post-translational modification in this organism. A strong functional co-relation to meiosis and spermiogenesis has also now been well documented, although its participation in other functional aspects of chromatin metabolism, such as transcription or DNA repair, still remains rather speculative and controversial. Because of its nature, histone ubiquitination represents the most bulky structural change to histones and as such it would be expected to exert an important effect on chromatin structure. Past and recent structural studies, however, indicate a surprising lack of effect of (H2A/H2B) ubiquitination on nucleosome architecture and of uH2A on chromatin folding. These results suggest that this modification may serve as a signal for recognition by functionally relevant trans-acting factors and/or operate synergistically in conjunction with other post-translational modifications such as for instance acetylation.
Collapse
Affiliation(s)
- Laure J M Jason
- Department of Biochemistry, University of Cape Town, South Africa
| | | | | | | | | |
Collapse
|
193
|
Kwon YT, Xia Z, Davydov IV, Lecker SH, Varshavsky A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3alpha) of the N-end rule pathway. Mol Cell Biol 2001; 21:8007-21. [PMID: 11689692 PMCID: PMC99968 DOI: 10.1128/mcb.21.23.8007-8021.2001] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In the yeast Saccharomyces cerevisiae, the UBR1-encoded ubiquitin ligase (E3) of the N-end rule pathway mediates the targeting of substrate proteins in part through binding to their destabilizing N-terminal residues. The functions of the yeast N-end rule pathway include fidelity of chromosome segregation and the regulation of peptide import. Our previous work described the cloning of cDNA and a gene encoding the 200-kDa mouse UBR1 (E3alpha). Here we show that mouse UBR1, in the presence of a cognate mouse ubiquitin-conjugating (E2) enzyme, can rescue the N-end rule pathway in ubr1Delta S. cerevisiae. We also constructed UBR1(-/-) mouse strains that lacked the UBR1 protein. UBR1(-/-) mice were viable and fertile but weighed significantly less than congenic +/+ mice. The decreased mass of UBR1(-/-) mice stemmed at least in part from smaller amounts of the skeletal muscle and adipose tissues. The skeletal muscle of UBR1(-/-) mice apparently lacked the N-end rule pathway and exhibited abnormal regulation of fatty acid synthase upon starvation. By contrast, and despite the absence of the UBR1 protein, UBR1(-/-) fibroblasts contained the N-end rule pathway. Thus, UBR1(-/-) mice are mosaics in regard to the activity of this pathway, owing to differential expression of proteins that can substitute for the ubiquitin ligase UBR1 (E3alpha). We consider these UBR1-like proteins and discuss the functions of the mammalian N-end rule pathway.
Collapse
Affiliation(s)
- Y T Kwon
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
194
|
Abstract
The next generation of contraceptives will be based on the identification of novel molecules essential for reproductive processes and will rely on the refinement of older as well as newer technologies. Functional analysis of naturally occurring reproductive genetic disorders and creation of mice null for specific genes would greatly assist in the choice of genetic targets for contraceptive development. Structure-based design of drugs as exemplified by the preparation of an orally active non-peptide gonadotropin releasing hormone (GnRH) would revolutionize drug formulation and delivery for a peptide analogue. This review examines some of the molecular targets that may change contraceptive choices in the future.
Collapse
Affiliation(s)
- U Natraj
- Institute for Research in Reproduction, JM Street, Parel, Mumbai 400 012, India.
| |
Collapse
|
195
|
Abstract
DNA postreplication repair (PRR) is defined as an activity to convert DNA damage-induced single-stranded gaps into large molecular weight DNA without actually removing the replication-blocking lesions. In bacteria such as Escherichia coli, this activity requires RecA and the RecA-mediated SOS response and is accomplished by recombination and mutagenic translesion DNA synthesis. Eukaryotic cells appear to share similar DNA damage tolerance pathways; however, some enzymes required for PRR in eukaryotes are rather different from those of prokaryotes. In the yeast Saccharomyces cerevisiae, PRR is centrally controlled by RAD6 and RAD18, whose products form a stable complex with single-stranded DNA-binding, ATPase and ubiquitin-conjugating activities. PRR can be further divided into translesion DNA synthesis and error-free modes, the exact molecular events of which are largely unknown. This error-free PRR is analogous to DNA damage-avoidance as defined in mammalian cells, which relies on recombination processes. Two possible mechanisms by which recombination participate in PRR to resolve the stalled replication folk are discussed. Recombination and PRR are also genetically regulated by a DNA helicase and are coupled to the cell-cycle. The PRR processes appear to be highly conserved within eukaryotes, from yeast to human.
Collapse
Affiliation(s)
- S Broomfield
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, SK, S7N 5E5, Saskatoon, Canada
| | | | | |
Collapse
|
196
|
Franko J, Ashley C, Xiao W. Molecular cloning and functional characterization of two murine cDNAs which encode Ubc variants involved in DNA repair and mutagenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1519:70-7. [PMID: 11406273 DOI: 10.1016/s0167-4781(01)00223-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitin-conjugating enzyme (Ubc) variants share structural similarity with Ubcs but lack the essential cysteine residue required to form a thioester bond with ubiquitin. Yeast Mms2 is a Ubc variant and plays an important role in error-free DNA postreplication repair to protect cells from killing by DNA damaging agents and mutagenesis. Ironically, one of two known Mms2 homologs, CROC1, has been linked to cell immortalization and tumorigenesis. To further investigate cellular roles played by mammalian Mms2 homologs, we report here the molecular cloning, tissue distribution and functional characterization of two mouse cDNAs encoding mMMS2 and mCROC1. Unlike human CROC1, the mCROC1 gene does not encode two alternative transcripts in most tissues. Instead, nonoverlapping sequences were found in two distinct cDNA clones that together would constitute a full-length open reading frame homologous to CROC1B. Both mMMS2 and the C-terminal mCROC1 core domain are able to complement the yeast mms2 mutant functionally and are able to interact with Ubc13 in a yeast two-hybrid assay, indicating that they are true yeast Mms2 homologs and may play a similar role in DNA postreplication repair. We propose several hypotheses to reconcile the seemingly contradictory observations regarding roles of the two mammalian Mms2 homologs in tumorigenesis and carcinogenesis.
Collapse
Affiliation(s)
- J Franko
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | |
Collapse
|
197
|
Abstract
Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.
Collapse
Affiliation(s)
- R T Jagoe
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
198
|
|
199
|
Abstract
Multi-ubiquitin chains at least four subunits long are required for efficient recognition and degradation of ubiquitylated proteins by the proteasome, but other functions of ubiquitin have been discovered that do not involve the proteasome. Some proteins are modified by a single ubiquitin or short ubiquitin chains. Instead of sending proteins to their death through the proteasome, monoubiquitylation regulates processes that range from membrane transport to transcriptional regulation.
Collapse
Affiliation(s)
- L Hicke
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Evanston, Illinois 60208, USA.
| |
Collapse
|
200
|
Hoeijmakers JH. From xeroderma pigmentosum to the biological clock contributions of Dirk Bootsma to human genetics. Mutat Res 2001; 485:43-59. [PMID: 11341993 DOI: 10.1016/s0921-8777(00)00079-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper commemorates the multiple contributions of Dirk Bootsma to human genetics. During a scientific 'Bootsma' cruise on his sailing-boat 'de Losbol', we visit a variety of scenery locations along the lakes and canals in Friesland, passing the highlights of Dirk Bootsma's scientific oeuvre. Departing from 'de Fluessen', his homeport, with his PhD work on the effect of X-rays and UV on cell cycle progression, we head for the pioneering endeavours of his team on mapping genes on human chromosomes by cell hybridization. Next we explore the use of cell hybrids by the Bootsma team culminating in the molecular cloning of one of the first chromosomal breakpoints involved in oncogenesis: the bcr-abl fusion gene responsible for chronic myelocytic leukemia. This seminal achievement enabled later development of new methods for early detection and very promising therapeutic intervention. A series of highlights at the horizon constitute the contributions of his team to the field of DNA repair, beginning with the discovery of genetic heterogeneity in the repair syndrome xeroderma pigmentosum (XP) followed later by the cloning of a large number of human repair genes. This led to the discovery that DNA repair is strongly conserved in evolution rendering knowledge from yeast relevant for mammals and vice versa. In addition, it resolved the molecular basis of several repair syndromes and permitted functional analysis of the encoded proteins. Another milestone is the discovery of the surprising connection between DNA repair and transcription initiation via the dual functional TFIIH complex in collaboration with Jean-Marc Egly et al. in Strasbourg. This provided an explanation for many puzzling clinical features and triggered a novel concept in human genetics: the existence of repair/transcription syndromes. The generation of many mouse mutants carrying defects in repair pathways yielded valuable models for assessing the clinical relevance of DNA repair including carcinogenesis and the identification of a link between DNA damage and premature aging. His team also opened a fascinating area of cell biology with the analysis of repair and transcription in living cells. A final surprising evolutionary twist was the discovery that photolyases designed for the light-dependent repair of UV-induced DNA lesions appeared to be adopted for driving the mammalian biological clock. The latter indicates that it is time to return to 'de Fluessen', where we will consider briefly the merits of Dirk Bootsma for Dutch science in general.
Collapse
Affiliation(s)
- J H Hoeijmakers
- MGC, Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
| |
Collapse
|