151
|
Nimura T, Sueyoshi N, Ishida A, Yoshimura Y, Ito M, Tokumitsu H, Shigeri Y, Nozaki N, Kameshita I. Knockdown of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase causes developmental abnormalities in zebrafish. Arch Biochem Biophys 2007; 457:205-16. [PMID: 17169323 DOI: 10.1016/j.abb.2006.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
Nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N) is an enzyme that dephosphorylates and concomitantly downregulates multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) in vitro. However, the functional roles of this enzyme in vivo are not well understood. To investigate the biological significance of CaMKP-N during zebrafish embryogenesis, we cloned and characterized zebrafish CaMKP-N (zCaMKP-N). Based on the nucleotide sequences in the zebrafish whole genome shotgun database, we isolated a cDNA clone for zCaMKP-N, which encoded a protein of 633 amino acid residues. Transiently expressed full-length zCaMKP-N in mouse neuroblastoma, Neuro2a cells, was found to be localized in the nucleus. In contrast, the C-terminal truncated mutant lacking RKKRRLDVLPLRR (residues 575-587) had cytoplasmic staining, suggesting that the nuclear localization signal of zCaMKP-N exists in the C-terminal region. Ionomycin treatment of CaMKIV-transfected Neuro2a cells resulted in a marked increase in the phosphorylated form of CaMKIV. However, cotransfection with zCaMKP-N significantly decreased phospho-CaMKIV in ionomycin-stimulated cells. Whole mount in situ hybridization analysis of zebrafish embryos showed that zCaMKP-N is exclusively expressed in the head and neural tube regions. Gene knockdown of zCaMKP-N using morpholino-based antisense oligonucleotides induced significant morphological abnormalities in zebrafish embryos. A number of apoptotic cells were observed in brain and spinal cord of the abnormal embryos. These results suggest that zCaMKP-N plays a crucial role in the early development of zebrafish.
Collapse
Affiliation(s)
- Takaki Nimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
The calcium/calmodulin-dependent protein kinase cascades. CALCIUM - A MATTER OF LIFE OR DEATH 2007. [DOI: 10.1016/s0167-7306(06)41013-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
153
|
Baumgärtel K, Fernández C, Johansson T, Mansuy IM. Conditional transgenesis and recombination to study the molecular mechanisms of brain plasticity and memory. Handb Exp Pharmacol 2007:315-45. [PMID: 17203661 DOI: 10.1007/978-3-540-35109-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the postgenomic era, a primary focus of mouse genetics is to elucidate the role of individual genes in vivo. However, in the nervous system, studying the contribution of specific genes to brain functions is difficult because the brain is a highly complex organ with multiple neuroanatomical structures, orchestrating virtually every function in the body. Further, higher-order brain functions such as learning and memory simultaneously recruit several signaling cascades in different subcellular compartments and have highly fine-tuned spatial and temporal components. Conditional transgenic and gene targeting methodologies, however, now offer valuable tools with improved spatial and temporal resolution for appropriate studies of these functions. This chapter provides an overview of these tools and describes how they have helped gain better understanding of the role of candidate genes such as the NMDA receptor, the protein kinase CaMKIIIalpha, the protein phosphatases calcineurin and PP1, or the transcription factor CREB, in the processes of learning and memory. This review illustrates the broad and innovative applicability of these methodologies to the study of brain plasticity and cognitive functions.
Collapse
Affiliation(s)
- K Baumgärtel
- Department of Biology, Swiss Federal Institute of Technology, Medical Faculty, University Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
154
|
Ahmed S, Yamamoto S, Tsukahara S, Kunugita N, Arashidani K, Fujimaki H. Increased hippocampal mRNA expression of neuronal synaptic plasticity related genes in mice chronically exposed to toluene at a low-level human occupational-exposure. Neurotoxicology 2007; 28:168-74. [PMID: 16737738 DOI: 10.1016/j.neuro.2006.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/14/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
Although neurological symptoms in individuals exposed to toluene both inside and outside the homes have been reported well, the chronic effects of low-level toluene-exposure on the hippocampal expression of neuronal synaptic plasticity related genes have not been studied in vivo. In the present study, to understand the possible adult hippocampal neurobiological responses of mice chronic exposure to toluene at a low-level human occupational-exposure, we exposed 10-week-old C3H/HeN female mice to 50 ppm toluene or filtered air for 6 h a day, on 5-consecutive days of a week for 6 and 12 weeks, in a whole-body exposure chamber. Then, by a quantitative real-time PCR method, we investigated the hippocampal mRNA-expression of several genes, functions of which are necessary to maintain the homeostasis of neuronal synaptic plasticity. We observed that chronic exposure of mice to 50 ppm toluene for a longer period (12 weeks) caused a significant up-regulation of NMDA receptor subunit 2B (NMDA NR2B) expression associated with a simultaneous induction of CaMKIV, CREB-1, and FosB/DeltaFosB in the same hippocampal tissues. Our data indicate that the in vivo transcriptional up-regulation of these genes in the adult hippocampus of our experimental mouse model following the chronic exposure to toluene may be an NMDA-receptor related neuroprotective mechanism of gene expression.
Collapse
Affiliation(s)
- Sohel Ahmed
- Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan.
| | | | | | | | | | | |
Collapse
|
155
|
Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab 2006; 26:1507-18. [PMID: 16570077 DOI: 10.1038/sj.jcbfm.9600301] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A prominent cognitive impairment after traumatic brain injury (TBI) is hippocampal-dependent memory loss. Although the histopathologic changes in the brain are well documented after TBI, the underlying biochemical mechanisms that contribute to memory loss have yet to be thoroughly delineated. Thus, we determined if calcium/calmodulin-dependent protein kinases (CaMKs), known to be necessary for the formation of hippocampal-dependent memories, are regulated after TBI. Sprague-Dawley rats underwent moderate parasagittal fluid-percussion brain injury on the right side of the parietal cortex. The ipsilateral hippocampus and parietal cortex were Western blotted for phosphorylated, activated alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII), CaMKIV, and CaMKI. alpha-Calcium/calmodulin-dependent protein kinase II was activated in membrane subcellular fractions from the hippocampus and parietal cortex 30 mins after TBI. CaMKI and CaMKIV were activated in a more delayed manner, increasing in phosphorylation 1 h after TBI. The increase in activated alpha-CaMKII in membrane fractions was accompanied by a decrease in cytosolic total alpha-CaMKII, suggesting redistribution to the membrane. Using confocal microscopy, we observed that alpha-CaMKII was activated within hippocampal neurons of the dentate gyrus, CA3, and CA1 regions. Two downstream substrates of alpha-CaMKII, the AMPA-type glutamate receptor GluR1, and cytoplasmic polyadenylation element-binding protein, concomitantly increased in phosphorylation in the hippocampus and cortex 1 h after TBI. These results demonstrate that several of the biochemical cascades that subserve memory formation are activated unselectively in neurons after TBI. As memory formation requires activation of CaMKII signaling pathways at specific neuronal synapses, unselective activation of CaMKII signaling in all synapses may disrupt the machinery for memory formation, resulting in memory loss after TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
156
|
Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T, Kodama T, Chatila TA, Bito H, Takayanagi H. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 2006; 12:1410-6. [PMID: 17128269 DOI: 10.1038/nm1515] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 10/31/2006] [Indexed: 01/11/2023]
Abstract
Calcium (Ca(2+)) signaling is essential for a variety of cellular responses and higher biological functions. Ca(2+)/calmodulin-dependent kinases (CaMKs) and the phosphatase calcineurin activate distinct downstream pathways that are mediated by the transcription factors cAMP response element (CRE)-binding protein (CREB) and nuclear factor of activated T cells (NFAT), respectively. The importance of the calcineurin-NFAT pathway in bone metabolism has been demonstrated in osteoclasts, osteoblasts and chondrocytes. However, the contribution of the CaMK-CREB pathway is poorly understood, partly because of the difficulty of dissecting the functions of homologous family members. Here we show that the CaMKIV-CREB pathway is crucial for osteoclast differentiation and function. Pharmacological inhibition of CaMKs as well as the genetic ablation of Camk4 reduced CREB phosphorylation and downregulated the expression of c-Fos, which is required for the induction of NFATc1 (the master transcription factor for osteoclastogenesis) that is activated by receptor activator of NF-kappaB ligand (RANKL). Furthermore, CREB together with NFATc1 induced the expression of specific genes expressed by differentiated osteoclasts. Thus, the CaMK-CREB pathway biphasically functions to regulate the transcriptional program of osteoclastic bone resorption, by not only enhancing induction of NFATc1 but also facilitating NFATc1-dependent gene regulation once its expression is induced. This provides a molecular basis for a new therapeutic strategy for bone diseases.
Collapse
Affiliation(s)
- Kojiro Sato
- Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL. Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006; 51:823-34. [PMID: 16982426 DOI: 10.1016/j.neuron.2006.08.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 01/03/2006] [Accepted: 08/22/2006] [Indexed: 11/23/2022]
Abstract
The number and diversity of plasticity mechanisms in the brain raises a central question: does a neural circuit store all memories by stereotyped application of the available plasticity mechanisms, or can subsets of these mechanisms be selectively engaged for specific memories? The uniform architecture of the cerebellum has inspired the idea that plasticity mechanisms like cerebellar long-term depression (LTD) contribute universally to memory storage. To test this idea, we investigated a set of closely related, cerebellum-dependent motor memories. In mutant mice lacking Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV), the maintenance of cerebellar LTD is abolished. Although memory for an increase in the gain of the vestibulo-ocular reflex (VOR) induced with high-frequency stimuli was impaired in these mice, memories for decreases in VOR gain and increases in gain induced with low-frequency stimuli were intact. Thus, a particular plasticity mechanism need not support all cerebellum-dependent memories, but can be engaged selectively according to the parameters of training.
Collapse
Affiliation(s)
- Edward S Boyden
- Department of Neurobiology, Stanford University, California 94305, USA
| | | | | | | | | | | |
Collapse
|
158
|
Zhou JL, Zhao Q, Holmes GL. Effect of levetiracetam on visual-spatial memory following status epilepticus. Epilepsy Res 2006; 73:65-74. [PMID: 17029741 DOI: 10.1016/j.eplepsyres.2006.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 08/05/2006] [Accepted: 08/22/2006] [Indexed: 11/29/2022]
Abstract
Status epilepticus (SE) is often followed by severe cognitive impairment, including memory impairment. Previous studies have shown that SE is associated with impairment of single cells in the hippocampus that fire action potentials when the animal is in a specific location in space, the so-called place cells, and that place cell function correlates well with performance in tasks of visual-spatial memory. Place cell patterns therefore appear to be an excellent measure of spatial memory and may serve as a tool to assess seizure-induced impairment in memory. In this study we determined the relationship between visual-spatial memory and place cell function following SE. In addition, we determined if levetiracetam (LEV), an antiepileptic drug with a novel mechanism of action, can improve cognitive function and place cell firing patterns when administered following SE. SE was induced in adult male rats which were then randomized to post-SE treatment with LEV or normal saline (NS) treatment for 14 days. Non-SE control rats also were randomized to LEV or NS. Following discontinuation of LEV rats were tested for visual-spatial memory in the Morris water-maze and then underwent unit recording in the CA1 region of the hippocampus. Brains were then evaluated for cell loss and mossy fiber sprouting. SE was associated with severely impaired performance in the water-maze with SE rats demonstrating no learning over four days of testing. Paralleling this memory deficit was a marked disturbance in firing patterns of pyramidal neurons in CA1. Non-SE rats learned quickly over four days of water-maze testing and had normal pyramidal cell firing patterns. LEV had no major effects on water-maze performance or place cell function. Histopathological examination of the brains showed severe cell loss in CA1 in all of the SE rats with lesser degrees of injury in CA3 and the hilus. LEV treatment resulted in less histological damage in the hippocampus but had no effect on visual-spatial function or place cell physiology in either control or SE rats.
Collapse
Affiliation(s)
- Jun-Li Zhou
- Neuroscience Center at Dartmouth, Section of Neurology, Dartmouth Medical School, Lebanon, NH, USA
| | | | | |
Collapse
|
159
|
Mizuno K, Ris L, Sánchez-Capelo A, Godaux E, Giese KP. Ca2+/calmodulin kinase kinase alpha is dispensable for brain development but is required for distinct memories in male, though not in female, mice. Mol Cell Biol 2006; 26:9094-104. [PMID: 17015468 PMCID: PMC1636825 DOI: 10.1128/mcb.01221-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In neurons, the Ca(2+)/calmodulin (CaM) kinase cascade transduces Ca(2+) signaling into gene transcription. The CaM kinase cascade is known to be important for brain development as well as memory formation in adult brain, although the functions of some cascade members remain unknown. Here we have generated null and hypomorphic mutants to study the physiological role of CaM kinase kinase alpha (CaMKKalpha), which phosphorylates and activates both CaM kinase I (CaMKI) and CaMKIV, the output kinases of the cascade. We show that CaMKKalpha is dispensable for brain development and long-term potentiation in adult hippocampal CA1 synapses. We find that CaMKKalpha is required for hippocampus-dependent contextual fear memory, but not spatial memory, formation. Surprisingly, CaMKKalpha is important for contextual fear memory formation in males but not in females. We show that in male mice, contextual fear conditioning induces up-regulation of hippocampal mRNA expression of brain-derived neurotrophic factor (BDNF) in a way that requires CaMKKalpha, while in female mice, contextual fear conditioning induces down-regulation of hippocampal BDNF mRNA expression that does not require CaMKKalpha. Additionally, we demonstrate sex-independent up-regulation in hippocampal nerve growth factor-inducible gene B mRNA expression that does not require CaMKKalpha. Thus, we show that CaMKKalpha has a specific complex role in memory formation in males.
Collapse
Affiliation(s)
- Keiko Mizuno
- Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom
| | | | | | | | | |
Collapse
|
160
|
Alzoubi KH, Alkadhi KA. A critical role of CREB in the impairment of late-phase LTP by adult onset hypothyroidism. Exp Neurol 2006; 203:63-71. [PMID: 16952356 DOI: 10.1016/j.expneurol.2006.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2006] [Revised: 07/12/2006] [Accepted: 07/24/2006] [Indexed: 11/15/2022]
Abstract
We have shown previously that adult onset hypothyroidism impairs late-phase long-term potentiation (L-LTP) and reduces the protein levels of mitogen-activated protein kinases (MAPKp44/42 (ERK1/2)) in area CA1 of the hippocampus. In the present study, basal and stimulated levels of signaling molecules essential for the expression of L-LTP were determined in area CA1 of the hippocampus. L-LTP was evoked by multiple train high-frequency stimulation (MHFS) in area CA1 of the hippocampus of thyroidectomized and sham control anesthetized adult rats. Immunoblot analysis showed reduction in the basal protein levels of adenylyl cyclase I (ACI), calcium calmodulin-dependent protein kinase IV (CaMKIV), and cyclic-AMP response element-binding protein (CREB; phosphorylated (P-) and total) in hypothyroid rats. A significant increase in the levels of P-CREB, P-MAPKp44 and P-MAPKp42 was seen 4 h after MHFS in sham-operated control animals, but not in hypothyroid animals. The levels of total CREB, total MAPKp44, total MAPKp42 and CaMKIV were elevated in both groups 4 h after MHFS. Our results suggest that in adult hypothyroid rats, the reduced basal level of CaMKIV, MAPKp44/42 and CREB along with the failure of MHFS to induce MAPKp44/42 and CREB phosphorylation may be responsible for L-LTP impairment in the CA1 area during hypothyroidism.
Collapse
Affiliation(s)
- K H Alzoubi
- Department Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204-5515, USA.
| | | |
Collapse
|
161
|
Ko SW, Jia Y, Xu H, Yim SJ, Jang DH, Lee YS, Zhao MG, Toyoda H, Wu LJ, Chatila T, Kaang BK, Zhuo M. Evidence for a role of CaMKIV in the development of opioid analgesic tolerance. Eur J Neurosci 2006; 23:2158-68. [PMID: 16630062 DOI: 10.1111/j.1460-9568.2006.04748.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cAMP response-element binding protein (CREB), a transcription factor involved in learning, memory and drug addiction, is phosphorylated by calcium-calmodulin-dependent protein kinase IV (CaMKIV). Here, we show that CaMKIV-knockout (KO) mice developed less analgesic tolerance after chronic morphine administration with no alteration in physical dependence or acute morphine-induced analgesia. The increase in phosphorylated CREB expression observed in wild-type mice after chronic morphine was absent in CaMKIV-KO mice, while there was no difference in the expression or phosphorylation of the micro-opioid receptor between groups. Morphine-treated CaMKIV-KO mice showed less G-protein uncoupling from the micro-opioid receptor than did wild-type mice, while uncoupling was similar in control wild-type and KO mice. In addition, morphine reduced inhibitory transmission to a greater degree in CaMKIV-KO mice than in controls after chronic morphine exposure. Our results provide novel evidence for the role of CaMKIV in the development of opioid analgesic tolerance but not physical dependence.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Animals
- Animals, Newborn
- Behavior, Animal
- Blotting, Western/methods
- Calcium-Calmodulin-Dependent Protein Kinase Type 4
- Calcium-Calmodulin-Dependent Protein Kinases/deficiency
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Tolerance
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Exploratory Behavior/physiology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics
- Immunohistochemistry/methods
- Immunoprecipitation/methods
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Membrane Potentials/radiation effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Pain Measurement/methods
- Patch-Clamp Techniques/methods
- Radioligand Assay/methods
- Spinal Cord/cytology
- Sulfur Isotopes/pharmacokinetics
- Time Factors
Collapse
Affiliation(s)
- Shanelle W Ko
- Department of Physiology, Faculty of Medicine, University of Toronto, University of Toronto Centre for the Study of Pain, 1 King's College Circle, Medical Sciences Building Rm3342, Toronto, Canada, M5S 1A8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T, Kida S, Tanji M, Furuyashiki T, Arakawa Y, Narumiya S, Okuno H, Bito H. Molecular identification and characterization of a family of kinases with homology to Ca2+/calmodulin-dependent protein kinases I/IV. J Biol Chem 2006; 281:20427-39. [PMID: 16684769 DOI: 10.1074/jbc.m513212200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the critical importance of Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) II signaling in neuroplasticity, only a limited amount of work has so far been available regarding the presence and significance of another predominant CaMK subfamily, the CaMKI/CaMKIV family, in the central nervous system. We here searched for kinases with a core catalytic structure similar to CaMKI and CaMKIV. We isolated full-length cDNAs encoding three mouse CaMKI/CaMKIV-related kinases, CLICK-I (CL1)/doublecortin and CaM kinase-Like (DCAMKL)1, CLICK-II (CL2)/DCAMKL2, and CLICK-I,II-related (CLr)/DCAMKL3, the kinase domains of which had an intermediate homology not only to CaMKI/CaMKIV but also to CaMKII. Furthermore, CL1, CL2, and CLr were highly expressed in the central nervous system, in a neuron-specific fashion. CL1alpha and CL1beta were shorter isoforms of DCAMKL1, which lacked the doublecortin-like domain (Dx). In contrast, CL2alpha and CL2beta contained a full N-terminal Dx, whereas CLr only possessed a partial and dysfunctional Dx. Interestingly, despite a large similarity in the kinase domain, CL1/CL2/CLr had an impact on CRE-dependent gene expression distinct from that of the related CaMKI/CaMKIV and CaMKII. Although these were previously shown to activate Ca(2+)/cAMP-response element-binding protein (CREB)-dependent transcription, we here show that CL1 and CL2 were unable to significantly phosphorylate CREB Ser-133 and rather inhibited CRE-dependent gene expression by a dominant mechanism that bypassed CREB and was mediated by phosphorylated TORC2.
Collapse
Affiliation(s)
- Shogo Ohmae
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Huang YY, Kandel ER. Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn Mem 2006; 13:298-306. [PMID: 16741282 PMCID: PMC1475810 DOI: 10.1101/lm.166906] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 02/21/2006] [Indexed: 11/25/2022]
Abstract
Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by a brief 1-Hz paired-pulse stimulation (PP-1 Hz, 1 min). In contrast to L-LTP induced by HFS, the late phase of PP-1 Hz LTP does not exist in young adult animals. Rather, it emerges and becomes enhanced in an age-related way. Thus, in 1.5- to 2-mo-old mice, a brief PP-1 Hz stimulation induces only a short lasting LTP, decaying to baseline in about 90 min. By contrast, PP-1 Hz stimulation induces an enduring and protein synthesis dependent LTP in 12- to 18-mo-old mice. The PP-1 Hz-induced L-LTP is dependent on NMDA receptor activation, requires voltage-dependent calcium channels, and is modulated by dopamine D1/D5 receptors. Because memory ability declines with aging, the age-related enhancement of L-LTP induced by PP-1 Hz stimulation indicates that this form of L-LTP appears to be inversely correlated with memory ability.
Collapse
Affiliation(s)
- Yan-You Huang
- Kavli Institute for Brain Science, New York, New York, USA
| | | |
Collapse
|
164
|
Smolen P, Baxter DA, Byrne JH. A model of the roles of essential kinases in the induction and expression of late long-term potentiation. Biophys J 2006; 90:2760-75. [PMID: 16415049 PMCID: PMC1414565 DOI: 10.1529/biophysj.105.072470] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, USA
| | | | | |
Collapse
|
165
|
Kempermann G, Chesler EJ, Lu L, Williams RW, Gage FH. Natural variation and genetic covariance in adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 2006; 103:780-5. [PMID: 16407118 PMCID: PMC1325968 DOI: 10.1073/pnas.0510291103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult hippocampal neurogenesis is highly variable and heritable among laboratory strains of mice. Adult neurogenesis is also remarkably plastic and can be modulated by environment and activity. Here, we provide a systematic quantitative analysis of adult hippocampal neurogenesis in two large genetic reference panels of recombinant inbred strains (BXD and AXB/BXA, n = 52 strains). We combined data on variation in neurogenesis with a new transcriptome database to extract a set of 190 genes with expression patterns that are also highly variable and that covary with rates of (i) cell proliferation, (ii) cell survival, or the numbers of surviving (iii) new neurons, and (iv) astrocytes. Expression of a subset of these neurogenesis-associated transcripts was controlled in cis across the BXD set. These self-modulating genes are particularly interesting candidates to control neurogenesis. Among these were musashi (Msi1h) and prominin1/CD133 (Prom1), both of which are linked to stem-cell maintenance and division. Twelve neurogenesis-associated transcripts had significant cis-acting quantitative trait loci, and, of these, six had plausible biological association with adult neurogenesis (Prom1, Ssbp2, Kcnq2, Ndufs2, Camk4, and Kcnj9). Only one cis-acting candidate was linked to both neurogenesis and gliogenesis, Rapgef6, a downstream target of ras signaling. The use of genetic reference panels coupled with phenotyping and global transcriptome profiling thus allowed insight into the complexity of the genetic control of adult neurogenesis.
Collapse
Affiliation(s)
- Gerd Kempermann
- Max Delbröck Center for Molecular Medicine, Berlin-Buch, 13125 Berlin, Germany.
| | | | | | | | | |
Collapse
|
166
|
Duman CH, Duman RS. Neurobiology and treatment of anxiety: signal transduction and neural plasticity. Handb Exp Pharmacol 2005:305-34. [PMID: 16594263 DOI: 10.1007/3-540-28082-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The stress-dependence and chronic nature of anxiety disorders along with the anxiolytic effectiveness of antidepressant drugs suggests that neuronal plasticity may play a role in the pathophysiology of anxiety. Intracellular signaling pathways are known in many systems to be critical links in the cascades from surface signals to the molecular alterations that result in functional plasticity. Chronic antidepressant treatments can regulate intracellular signaling pathways and can induce molecular, cellular, and structural changes over time. These changes may be important to the anxiolytic effectiveness of these drugs. In addition, the signaling proteins implicated in the actions of chronic antidepressant action, such as cAMP response element binding protein (CREB), have also been implicated in conditioned fear and in anxiety. The cellular mechanisms underlying conditioned fear indicate roles for additional signaling pathways; however, less is known about such mechanisms in anxiety. The challenge to identify intracellular signaling pathways and related molecular and structural changes that are critical to the etiology and treatment of anxiety will further establish the importance of mechanisms of neuronal plasticity in functional outcome and improve treatment strategies.
Collapse
Affiliation(s)
- C H Duman
- Laboratory of Molecular Psychiatry, Departments of Psychiatry and Pharmacology, Yale University School of Medicine, 34 Park Street, New Haven CT, 06508, USA
| | | |
Collapse
|
167
|
Schmitt JM, Guire ES, Saneyoshi T, Soderling TR. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J Neurosci 2005; 25:1281-90. [PMID: 15689566 PMCID: PMC6725957 DOI: 10.1523/jneurosci.4086-04.2005] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intracellular Ca2+ and protein phosphorylation play pivotal roles in long-term potentiation (LTP), a cellular model of learning and memory. Ca2+ regulates multiple intracellular pathways, including the calmodulin-dependent kinases (CaMKs) and the ERKs (extracellular signal-regulated kinases), both of which are required for LTP. However, the mechanism by which Ca2+ activates ERK during LTP remains unknown. Here, we describe a requirement for the CaMK-kinase (CaMKK) pathway upstream of ERK in LTP induction. Both the pharmacological inhibitor of CaMKK, STO-609, and dominant-negative CaMKI (dnCaMKI), a downstream target of CaMKK, blocked neuronal NMDA receptor-dependent ERK activation. In contrast, an inhibitor of CaMKII and nuclear-localized dnCaMKIV had no effect on ERK activation. NMDA receptor-dependent LTP induction robustly activated CaMKI, the Ca2+-stimulated Ras activator Ras-GRF1 (Ras-guanyl-nucleotide releasing factor), and ERK. STO-609 blocked the activation of all three enzymes during LTP without affecting basal synaptic transmission, activation of CaMKII, or cAMP-dependent activation of ERK. LTP induction itself was suppressed 50% by STO-609 in a manner identical to the ERK inhibitor U0126: either inhibitor occluded the effect of the other, suggesting they are part of the same signaling pathway in LTP induction. STO-609 also suppressed regulatory phosphorylation of two downstream ERK targets during LTP, the general translation factors eIF4E (eukaryotic initiation factor 4) and its binding protein 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). These data indicate an essential role for CaMKK and CaMKI to link NMDA receptor-mediated Ca2+ elevation with ERK-dependent LTP.
Collapse
Affiliation(s)
- John M Schmitt
- Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
168
|
Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 2005; 41:35-43. [PMID: 14715133 DOI: 10.1016/s0896-6273(03)00814-6] [Citation(s) in RCA: 447] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sleep is present in all species where it has been studied, but its functions remain unknown. To investigate what benefits sleep may bring at the cellular level, we profiled gene expression in awake and sleeping rats by using high-density microarrays. We find that approximately 10% of the transcripts in the cerebral cortex change their expression between day and night and demonstrate that half of them are modulated by sleep and wakefulness independent of time of day. We also show that molecular correlates of sleep are found in the cerebellum, a structure not known for generating sleep rhythms. Finally, we show that different functional categories of genes are selectively associated with sleep and wakefulness. The approximately 100 known genes whose expression increases during sleep provide molecular support for the proposed involvement of sleep in protein synthesis and neural plasticity and point to a novel role for sleep in membrane trafficking and maintenance.
Collapse
Affiliation(s)
- Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, 53719, USA.
| | | | | |
Collapse
|
169
|
Abstract
New mRNA must be transcribed in order to consolidate changes in synaptic strength. But how are events at the synapse communicated to the nucleus? Some research has shown that proteins can move from activated synapses to the nucleus. However, other work has shown that action potentials can directly inform the nucleus about cellular activation. Here we contend that action potential-induced signalling to the nucleus best meets the requirements of the consolidation of synapse-specific plasticity, which include both timing and stoichiometric constraints.
Collapse
Affiliation(s)
- J Paige Adams
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
170
|
Limbäck-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M. Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 2005; 24:10858-67. [PMID: 15574736 PMCID: PMC6730218 DOI: 10.1523/jneurosci.1022-04.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal response to a Ca2+ stimulus is a complex process involving direct Ca2+/calmodulin (CaM) actions as well as secondary activation of multiple signaling pathways such as cAMP and ERK (extracellular signal-regulated kinase). These signals can act in both the cytoplasm and the nucleus to control gene expression. To dissect the role of nuclear from cytoplasmic Ca2+/CaM signaling in memory formation, we generated transgenic mice that express a dominant inhibitor of Ca2+/CaM selectively in the nuclei of forebrain neurons and only after the animals reach adulthood. These mice showed diminished neuronal activity-induced phosphorylation of cAMP response element-binding protein, reduced expression of activity-induced genes, altered maximum levels of hippocampal long-term potentiation, and severely impaired formation of long-term, but not short-term, memory. Our results demonstrate that nuclear Ca2+/CaM signaling plays a critical role in memory consolidation in the mouse.
Collapse
Affiliation(s)
- Klara Limbäck-Stokin
- Institute for Childhood and Neglected Diseases and Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
171
|
Bando T, Sekine K, Kobayashi S, Watabe AM, Rump A, Tanaka M, Suda Y, Kato S, Morikawa Y, Manabe T, Miyajima A. Neuronal leucine-rich repeat protein 4 functions in hippocampus-dependent long-lasting memory. Mol Cell Biol 2005; 25:4166-75. [PMID: 15870286 PMCID: PMC1087730 DOI: 10.1128/mcb.25.10.4166-4175.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal leucine-rich repeat proteins (NLRRs) are type I transmembrane proteins and expressed in neuronal tissues, but their function remains unknown. Here, we describe the identification and characterization of a new member of the NLRR family, NLRR4, and its potential role in long-lasting memory. We generated NLRR4-deficient (NLRR4(-/-)) mice and found that they showed impaired memory retention. In hippocampus-dependent learning tasks, NLRR4(-/-) mice were able to learn and maintain the memories for one day but unable to retain the memories for four days after learning. In contrast, in a hippocampus-independent task, NLRR4(-/-) mice were able to retain the memory normally for at least seven days. These results suggest that NLRR4 plays a key role in hippocampus-dependent long-lasting memory.
Collapse
Affiliation(s)
- Takayoshi Bando
- Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Marie H, Morishita W, Yu X, Calakos N, Malenka RC. Generation of Silent Synapses by Acute In Vivo Expression of CaMKIV and CREB. Neuron 2005; 45:741-52. [PMID: 15748849 DOI: 10.1016/j.neuron.2005.01.039] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 11/23/2004] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
The transcription factor CREB is critical for several forms of experience-dependent plasticity in a range of species and is commonly activated in neurons by calcium/calmodulin-dependent protein kinase IV (CaMKIV). Surprisingly, little is known about the neural circuit adaptations caused by activation of CaMKIV and CREB. Here, we use viral-mediated gene transfer in vivo to examine the consequences of acute expression of constitutively active forms of CaMKIV and CREB on synaptic function in the rodent hippocampus. Acute expression of active CaMKIV or CREB caused an enhancement of both NMDA receptor-mediated synaptic responses and long-term potentiation (LTP). This was accompanied by electrophysiological and morphological changes consistent with the generation of "silent synapses," which provide an ideal substrate for further experience-dependent modifications of neural circuitry and which may also be important for the consolidation of long-term synaptic plasticity and memories.
Collapse
Affiliation(s)
- Hélène Marie
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
173
|
Alzoubi KH, Bedawi AS, Aleisa AM, Alkadhi KA. Hypothyroidism impairs long-term potentiation in sympathetic ganglia: electrophysiologic and molecular studies. J Neurosci Res 2005; 78:393-402. [PMID: 15389831 DOI: 10.1002/jnr.20268] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrophysiologic and molecular techniques were used to study the effect of adult-onset hypothyroidism on synaptic plasticity in the superior cervical sympathetic ganglion. Ganglia excised from adult thyroidectomized and sham-operated rats were subjected to a brief high-frequency stimulation of the preganglionic nerve to express long-term potentiation (gLTP). Western blotting was carried out to determine the protein levels of key signaling molecules that may be involved in the expression of gLTP. Input/output relationship in ganglia from hypothyroid rats indicated a normal basal synaptic transmission, whereas activity-dependent types of synaptic plasticity, posttetanic potentiation (PTP) and gLTP, were impaired. Immunoblot analysis showed that both calcium/calmodulin kinase II (CaMKII) and phosphorylated CaMKII (P-CaMKII) levels were reduced markedly in hypothyroid rat ganglia compared to those from euthyroid controls. Additionally, protein levels of nitric oxide synthase-1, heme oxygenase-2, calmodulin, protein kinase C (PKC), and calcineurin were also reduced in hypothyroid rat ganglia. The results indicate that abnormally low basal levels of signaling molecules may be responsible for hypothyroidism-induced impairment of gLTP in superior cervical ganglia. In addition, the results indicate that synaptic plasticity in sympathetic ganglia may involve a molecular sequence of events similar to that proposed for LTP in the hippocampus.
Collapse
Affiliation(s)
- K H Alzoubi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5515, USA
| | | | | | | |
Collapse
|
174
|
Mizuno K, Giese KP. Hippocampus-Dependent Memory Formation: Do Memory Type-Specific Mechanisms Exist? J Pharmacol Sci 2005; 98:191-7. [PMID: 15968141 DOI: 10.1254/jphs.crj05005x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long-term memory (LTM) formation requires gene transcription and de novo protein synthesis. The transcription factor CREB is required for hippocampus-dependent LTM formation, and it is activated by several signaling pathways, including protein kinase A (PKA), the mitogen activated protein/extracellular signal-regulated kinases (MAPK or ERKs), and Ca(2+)/calmodulin kinases (CaMKs). However, it is unknown whether all types of hippocampus-dependent LTM use the same signaling to activate transcription, and whether the transcriptional output is the same. Here we present molecular genetic and behavioral studies to demonstrate that two types of hippocampus-dependent LTM formation, spatial and contextual, require different signaling molecules. This can be illustrated by the CaMK kinases, CaMKKalpha, and CaMKKbeta, which have converse roles. CaMKKalpha is required for contextual and CaMKKbeta is required for spatial LTM formation. This leads to the surprising conclusion that there are distinct types of hippocampus-dependent LTM, which differ in their underlying molecular mechanisms.
Collapse
Affiliation(s)
- Keiko Mizuno
- Wolfson Institute for Biomedical Research, University College London, UK
| | | |
Collapse
|
175
|
Mosevitsky MI. Nerve Ending “Signal” Proteins GAP‐43, MARCKS, and BASP1. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 245:245-325. [PMID: 16125549 DOI: 10.1016/s0074-7696(05)45007-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mechanisms of growth cone pathfinding in the course of neuronal net formation as well as mechanisms of learning and memory have been under intense investigation for the past 20 years, but many aspects of these phenomena remain unresolved and even mysterious. "Signal" proteins accumulated mainly in the axon endings (growth cones and the presynaptic area of synapses) participate in the main brain processes. These proteins are similar in several essential structural and functional properties. The most prominent similarities are N-terminal fatty acylation and the presence of an "effector domain" (ED) that dynamically binds to the plasma membrane, to calmodulin, and to actin fibrils. Reversible phosphorylation of ED by protein kinase C modulates these interactions. However, together with similarities, there are significant differences among the proteins, such as different conditions (Ca2+ contents) for calmodulin binding and different modes of interaction with the actin cytoskeleton. In light of these facts, we consider GAP-43, MARCKS, and BASP1 both separately and in conjunction. Special attention is devoted to a discussion of apparent inconsistencies in results and opinions of different authors concerning specific questions about the structure of proteins and their interactions.
Collapse
Affiliation(s)
- Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188300 Gatchina Leningrad District, Russian Federation
| |
Collapse
|
176
|
Kelleher RJ, Govindarajan A, Tonegawa S. Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 2004; 44:59-73. [PMID: 15450160 DOI: 10.1016/j.neuron.2004.09.013] [Citation(s) in RCA: 454] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Memory and synaptic plasticity exhibit distinct temporal phases, with long-lasting forms distinguished by their dependence on macromolecular synthesis. Prevailing models for the molecular mechanisms underlying long-lasting synaptic plasticity have largely focused on transcriptional regulation. However, a growing body of evidence now supports a crucial role for neuronal activity-dependent mRNA translation, which may occur in dendrites for a subset of neuronal mRNAs. Recent work has begun to define the signaling mechanisms coupling synaptic activation to the protein synthesis machinery. The ERK and mTOR signaling pathways have been shown to regulate the activity of the general translational machinery, while the translation of particular classes of mRNAs is additionally controlled by gene-specific mechanisms. Rapid enhancement of the synthesis of a diverse array of neuronal proteins through such mechanisms provides the components necessary for persistent forms of LTP and LTD. These findings have important implications for the synapse specificity and associativity of protein synthesis-dependent changes in synaptic strength.
Collapse
Affiliation(s)
- Raymond J Kelleher
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
177
|
Tajiri S, Oyadomari S, Yano S, Morioka M, Gotoh T, Hamada JI, Ushio Y, Mori M. Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 2004; 11:403-15. [PMID: 14752508 DOI: 10.1038/sj.cdd.4401365] [Citation(s) in RCA: 340] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Brain ischemia induces apoptosis in neuronal cells, but the mechanism is not well understood. When wild-type mice were subjected to bilateral common carotid arteries occlusion (BCCAO) for 15 min, apoptosis-associated morphological changes and appearance of TUNEL-positive cells were observed in the striatum and in the hippocampus at 48 h after occlusion. RT-PCR analysis revealed that mRNAs for ER stress-associated proapoptotic factor CHOP and an ER chaperone BiP are markedly induced at 12 h after BCCAO. Immunohistochemical analysis showed that CHOP protein is induced in nuclei of damaged neurons at 24 h after occlusion. In contrast, ischemia-associated apoptotic loss of neurons was decreased in CHOP(-/-) mice. Primary hippocampal neurons from CHOP(-/-) mice were more resistant to hypoxia-reoxygenation-induced apoptosis than those from wild-type animals. These results indicate that ischemia-induced neuronal cell death is mediated by the ER stress pathway involving CHOP induction.
Collapse
Affiliation(s)
- S Tajiri
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Tokumitsu H, Hatano N, Inuzuka H, Yokokura S, Nozaki N, Kobayashi R. Mechanism of the Generation of Autonomous Activity of Ca2+/Calmodulin-dependent Protein Kinase IV. J Biol Chem 2004; 279:40296-302. [PMID: 15262966 DOI: 10.1074/jbc.m406534200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase IV (CaM-KIV) is phosphorylated at Thr196 by Ca2+/calmodulin-dependent protein kinase kinase (CaM-KK), resulting in induction of both autonomous activity and a high level of Ca2+/CaM-dependent activity. We have shown that the kinetics of Thr196 phosphorylation of CaM-KIV by CaM-KK is well correlated with the generation of its autonomous activity, although Thr177 phosphorylation of CaM-KI does not induce its autonomous activity. The activities of CaM-KI chimera mutants fused with C-terminal regions (residues 296-469 and 296-350) of CaM-KIV are completely dependent on Ca2+/CaM, which is also the case for CaM-KI. Unlike wild-type CaM-KI, however, phosphorylation of Thr177 in the chimera mutants by CaM-KK resulted in generation of significant autonomous activities, indicating that the phosphorylation of Thr in the activation loop is sufficient to partially release the autoinhibitory region of CaM-KIV from the catalytic core. Indeed, the CaM-KIV peptide (residues 304-325) containing minimum autoinhibitory sequences (residues 314-321) suppressed the activity of non-phosphorylated CaM-KIV with an IC50 of approximately 50 microm, and this suppression was competitive with respect to the peptide substrate; however, the CaM-KIV peptide was not capable of inhibiting Thr196-phosphorylated CaM-KIV. Taken together, these results indicated that the Thr196 phosphorylation of CaM-KIV by CaM-KK reduced the interaction of the catalytic core with the autoinhibitory region, resulting in generation of the autonomous activity.
Collapse
Affiliation(s)
- Hiroshi Tokumitsu
- Department of Signal Transduction Sciences, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | |
Collapse
|
179
|
Wayman GA, Kaech S, Grant WF, Davare M, Impey S, Tokumitsu H, Nozaki N, Banker G, Soderling TR. Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 2004; 24:3786-94. [PMID: 15084659 PMCID: PMC6729350 DOI: 10.1523/jneurosci.3294-03.2004] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcium and calmodulin (CaM) are important signaling molecules that regulate axonal or dendritic extension and branching. The Ca2+-dependent stimulation of neurite elongation has generally been assumed to be mediated by CaM-kinase II (CaMKII), although other members of the CaMK family are highly expressed in developing neurons. We have examined this assumption using a combination of dominant-negative CaMKs (dnCaMKs) and other specific CaMK inhibitors. Here we report that inhibition of cytosolic CaMKI, but not CaMKII or nuclear CaMKIV, dramatically decreases axonal outgrowth and branching in cultured neonatal hippocampal and postnatal cerebellar granule neurons. CaMKI is found throughout the cell cytosol, including the growth cone. Growth cones of neurons expressing dnCaMI or dnCaMKK, the upstream activator of CaMKI, exhibit collapsed morphology with a prominent reduction in lamellipodia. Live-cell imaging confirms that these morphological changes are associated with a dramatic decrease in growth cone motility. Treatment of neurons with 1,8-naphthoylene benzimidazole-3-carboxylic acid (STO-609), an inhibitor of CaMKK, causes a similar change in morphology and reduction in growth cone motility, and this inhibition can be rescued by transfection with an STO-609-insensitive mutant of CaMKK or by transfection with constitutively active CaMKI. These results identify CaMKI as a positive transducer of growth cone motility and axon outgrowth and provide a new physiological role for the CaMKK-CaMKI pathway.
Collapse
Affiliation(s)
- Gary A Wayman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Rodrigues SM, Farb CR, Bauer EP, LeDoux JE, Schafe GE. Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. J Neurosci 2004; 24:3281-8. [PMID: 15056707 PMCID: PMC6730013 DOI: 10.1523/jneurosci.5303-03.2004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that alphaCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of alphaCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62 in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.
Collapse
Affiliation(s)
- Sarina M Rodrigues
- W. M. Keck Foundation Laboratory of Neurobiology, Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
181
|
Murchison CF, Zhang XY, Zhang WP, Ouyang M, Lee A, Thomas SA. A distinct role for norepinephrine in memory retrieval. Cell 2004; 117:131-43. [PMID: 15066288 DOI: 10.1016/s0092-8674(04)00259-4] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 02/09/2004] [Accepted: 02/11/2004] [Indexed: 11/18/2022]
Abstract
A role for norepinephrine in learning and memory has been elusive and controversial. A longstanding hypothesis states that the adrenergic nervous system mediates enhanced memory consolidation of emotional events. We tested this hypothesis in several learning tasks using mutant mice conditionally lacking norepinephrine and epinephrine, as well as control mice and rats treated with adrenergic receptor agonists and antagonists. We find that adrenergic signaling is critical for the retrieval of intermediate-term contextual and spatial memories, but is not necessary for the retrieval or consolidation of emotional memories in general. The role of norepinephrine in retrieval requires signaling through the beta(1)-adrenergic receptor in the hippocampus. The results demonstrate that mechanisms of memory retrieval can vary over time and can be different from those required for acquisition or consolidation. These findings may be relevant to symptoms in several neuropsychiatric disorders as well as the treatment of cardiac failure with beta blockers.
Collapse
MESH Headings
- Adrenergic Agonists/pharmacology
- Adrenergic beta-Antagonists/adverse effects
- Animals
- Conditioning, Classical
- Dose-Response Relationship, Drug
- Emotions/physiology
- Epinephrine/deficiency
- Epinephrine/genetics
- Epinephrine/physiology
- Female
- Hippocampus/drug effects
- Hippocampus/metabolism
- In Vitro Techniques
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory/drug effects
- Memory/physiology
- Memory Disorders/genetics
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Norepinephrine/deficiency
- Norepinephrine/genetics
- Norepinephrine/physiology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Inbred F344
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Space Perception/drug effects
- Space Perception/physiology
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Charles F Murchison
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
182
|
Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S. NMDA receptors, place cells and hippocampal spatial memory. Nat Rev Neurosci 2004; 5:361-72. [PMID: 15100719 DOI: 10.1038/nrn1385] [Citation(s) in RCA: 448] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazu Nakazawa
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Center for Cancer Research, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
183
|
Ishida A, Shigeri Y, Taniguchi T, Kameshita I. Protein phosphatases that regulate multifunctional Ca2+/calmodulin-dependent protein kinases: from biochemistry to pharmacology. Pharmacol Ther 2004; 100:291-305. [PMID: 14652114 DOI: 10.1016/j.pharmthera.2003.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in Ca(2+) signaling pathways, such as the regulation of the neuronal functions of learning, memory, and neuronal cell death. The activities of the kinases are strictly regulated by protein phosphorylation/dephosphorylation. Although the activation mechanisms for multifunctional CaMKs through phosphorylation, which correspond to "switch on," have been extensively studied, the negative regulatory mechanisms through dephosphorylation, which correspond to "switch off," have not. In this review, we focused on the regulation of multifunctional CaMKs by the protein phosphatases responsible. We first summarized the current understanding of negative regulation of CaMKs by known protein phosphatases and their physiological significance. We then discussed newly developed methods for detection of protein phosphatases involved in the regulation of CaMKs. We also summarized the biochemical properties of a novel protein phosphatase, which we isolated with the new methods and designated as CaMK phosphatase (CaMKP), and its homologue. Pharmacological implications for neuronal functions including memory and neuronal cell death are discussed from the viewpoint that regulation of protein kinase activity can be elucidated by focusing on protein phosphatases involved in its "switch off" mechanism.
Collapse
Affiliation(s)
- Atsuhiko Ishida
- Department of Biochemistry, Asahikawa Medical College, Asahikawa, 078-8510, Japan.
| | | | | | | |
Collapse
|
184
|
Kelleher RJ, Govindarajan A, Jung HY, Kang H, Tonegawa S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 2004; 116:467-79. [PMID: 15016380 DOI: 10.1016/s0092-8674(04)00115-1] [Citation(s) in RCA: 657] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 12/16/2003] [Accepted: 12/19/2003] [Indexed: 02/04/2023]
Abstract
Enduring forms of synaptic plasticity and memory require new protein synthesis, but little is known about the underlying regulatory mechanisms. Here, we investigate the role of MAPK signaling in these processes. Conditional expression of a dominant-negative form of MEK1 in the postnatal murine forebrain inhibited ERK activation and caused selective deficits in hippocampal memory retention and the translation-dependent, transcription-independent phase of hippocampal L-LTP. In hippocampal neurons, ERK inhibition blocked neuronal activity-induced translation as well as phosphorylation of the translation factors eIF4E, 4EBP1, and ribosomal protein S6. Correspondingly, protein synthesis and translation factor phosphorylation induced in control hippocampal slices by L-LTP-generating tetanization were significantly reduced in mutant slices. Translation factor phosphorylation induced in the control hippocampus by memory formation was similarly diminished in the mutant hippocampus. These results suggest a crucial role for translational control by MAPK signaling in long-lasting forms of synaptic plasticity and memory.
Collapse
Affiliation(s)
- Raymond J Kelleher
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Center for Cancer Research, Departments of Biology and Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
185
|
Abstract
One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
Collapse
Affiliation(s)
- M A Lynch
- Trinity College Institute of Neuroscience, Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
186
|
Lalonde J, Lachance PED, Chaudhuri A. Monocular enucleation induces nuclear localization of calcium/calmodulin-dependent protein kinase IV in cortical interneurons of adult monkey area V1. J Neurosci 2004; 24:554-64. [PMID: 14724256 PMCID: PMC6729977 DOI: 10.1523/jneurosci.1668-03.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Elevation of intracellular Ca2+ levels activates calcium/calmodulin-dependent protein kinase (CaMK) IV, which in turn plays an important role in neuroprotection and neuroplasticity. The possibility that CaMKIV is similarly involved in neocortical tissue has not been examined previously, especially with regard to the plastic nature of ocular dominance features in the primary visual cortex (area V1). We addressed this question by way of monocular enucleation (ME) to disrupt sensory input and examine CaMKIV expression changes in monkey area V1. Immunohistochemical staining of area V1 in normal infants showed a nuclear presence of CaMKIV, which did not changed after ME. However, a striking set of layer- and time-dependent changes in nuclear CaMKIV expression was observed in adult area V1 after ME. A strong increase in nuclear CaMKIV levels was evident in cortical layers II/III and VI after 1 d of ME and in layer IVC after 5 d of ME. These specific laminar changes persisted after 30 d of ME and, most notably, showed a columnar profile in which CaMKIV expression was linked to open-eye columns. Real-time quantitative reverse transcription-PCR and Western blot analysis showed that total amounts of CaMKIV mRNA and protein remained unchanged after ME, suggesting that a nuclear translocation may occur from the cytoplasm. Finally, double-label immunohistochemical staining with a pyramidal cell marker (SMI-32) showed that CaMKIV was absent in this subtype, whereas coincidental expression with GABA, parvalbumin, and calretinin, but not calbindin, showed its clear presence in a subset of interneurons. We propose that CaMKIV activity within diverse groups of cortical interneurons may play an important role in adaptive plastic reorganization of adult neocortical tissue.
Collapse
Affiliation(s)
- Jasmin Lalonde
- Department of Psychology, McGill University, Montréal, Québec, Canada H3A 1B1.
| | | | | |
Collapse
|
187
|
Davies MF, Tsui J, Flannery JA, Li X, DeLorey TM, Hoffman BB. Activation of alpha2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala. Neuropsychopharmacology 2004; 29:229-39. [PMID: 14583739 DOI: 10.1038/sj.npp.1300324] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
alpha(2) adrenergic agonists such as dexmedetomidine generally suppress noradrenergic transmission and have sedative, analgesic, and antihypertensive properties. Considering the importance of the neurotransmitter norepinephrine in forming memories for fearful events, we have investigated the acute and chronic effects of dexmedetomidine on discrete cue and contextual fear conditioning in mice. When administered before training, dexmedetomidine (10-20 microg/kg, i.p.) selectively suppressed discrete cue fear conditioning without affecting contextual memory. This behavioral change was associated with a decrease in memory retrieval-induced expression of c-Fos and P-CREB in the lateral, basolateral, and central nuclei of the amygdala. Dexmedetomidine's action on discrete cue memory did not occur in alpha(2A) adrenoceptor knockout (KO) mice. When dexmedetomidine was administered after training, it suppressed contextual memory, an effect that did not occur in alpha(2A) adrenoceptor KO mice. We conclude that dexmedetomidine, acting at alpha(2A) adrenoceptors, must be present during the encoding process to decrease discrete cue fear memory; however, its ability to suppress contextual memory is likely the result of blocking the consolidation process. The ability of alpha(2) agonists to suppress fear memory may be a valuable property clinically in order to suppress the formation of memories during stressful situations.
Collapse
MESH Headings
- Adrenergic alpha-2 Receptor Antagonists
- Amygdala/drug effects
- Amygdala/metabolism
- Analysis of Variance
- Animals
- Avoidance Learning/drug effects
- Behavior, Animal
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cues
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dexmedetomidine/pharmacology
- Dose-Response Relationship, Drug
- Fear/physiology
- Immunohistochemistry/methods
- Inhibition, Psychological
- Male
- Memory/drug effects
- Memory/physiology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Phosphorylation
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, Adrenergic, alpha-2/genetics
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/physiology
- Species Specificity
Collapse
Affiliation(s)
- M Frances Davies
- Department of Anesthesia, Stanford University of Anesthesiology, Veterans Affairs, Palo Alto Health Care System, Palo Alto, CA, USA.
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
Status epilepticus (SE) is a frequent neurological emergency associated with a significant risk of morbidity in survivors. Impairment of hippocampal-specific memory is a common and serious deficit occurring in many of the survivors. However, the pathophysiological basis of cognitive deficits after SE is not clear. To directly address the cellular concomitants of spatial memory impairment, we recorded the activity of place cells from CA1 in freely moving rats subjected to SE during early development and compared this activity to that in control rats. Place cells discharge rapidly only when the rat's head is in a cell-specific part of the environment called the "firing field." This firing field remains stable over time. Normal place cell function seems to be essential for stable spatial memory for the environment. We, therefore, compared place cell firing patterns with visual-spatial memory in the water maze in SE and control rats. Compared with controls, place cells from the SE rats were less precise and less stable. Concordantly, the water maze performance was also impaired. There was a close relationship between precision and stability of place cells and water maze performance. In contrast, a single, acute, chemically induced seizure produced cessation of place cell activity and spatial memory impairment in water maze performance that reversed within 24 hr. These results strongly bolster the idea that there is a relationship between abnormal place cells and spatial memory. Our findings also suggest that the defects in place cell and spatial memory after SE and acute chemically induced seizures result from different processes.
Collapse
|
189
|
Nguyen PV, Woo NH. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Prog Neurobiol 2003; 71:401-37. [PMID: 15013227 DOI: 10.1016/j.pneurobio.2003.12.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Accepted: 12/02/2003] [Indexed: 11/17/2022]
Abstract
Protein kinases critically regulate synaptic plasticity in the mammalian hippocampus. Cyclic-AMP dependent protein kinase (PKA) is a serine-threonine kinase that has been strongly implicated in the expression of specific forms of long-term potentiation (LTP), long-term depression (LTD), and hippocampal long-term memory. We review the roles of PKA in activity-dependent forms of hippocampal synaptic plasticity by highlighting particular themes that have emerged in ongoing research. These include the participation of distinct isoforms of PKA in specific types of synaptic plasticity, modification of the PKA-dependence of LTP by multiple factors such as distinct patterns of imposed activity, environmental enrichment, and genetic manipulation of signalling molecules, and presynaptic versus postsynaptic mechanisms for PKA-dependent LTP. We also discuss many of the substrates that have been implicated as targets for PKA's actions in hippocampal synaptic plasticity, including CREB, protein phosphatases, and glutamatergic receptors. Future prospects for shedding light on the roles of PKA are also described from the perspective of specific aspects of synaptic physiology and brain function that are ripe for investigation using incisive genetic, cell biological, and electrophysiological approaches.
Collapse
Affiliation(s)
- P V Nguyen
- Departments of Physiology and Psychiatry, Centre for Neuroscience, University of Alberta School of Medicine, Edmonton, Alta., Canada T6G 2H7.
| | | |
Collapse
|
190
|
Loss of Ca2+/calmodulin kinase kinase beta affects the formation of some, but not all, types of hippocampus-dependent long-term memory. J Neurosci 2003. [PMID: 14586002 DOI: 10.1523/jneurosci.23-30-09752.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term memory (LTM) requires activation of the transcription factor cAMP-responsive element binding protein (CREB). Signaling by the Ca2+/calmodulin (CaM) kinase cascade has been implicated in CREB activation and memory consolidation processes in the hippocampus. The CaM kinase kinase beta isoforms belong to the CaM kinase cascade, and we have generated null mutant mice to investigate the role of these kinases in several forms of learning and memory. The null mutants were impaired in spatial training-induced CREB activation and spatial memory formation. Furthermore, the mutants lacked late, but not early, long-term potentiation at the hippocampal CA1 synapse, and they were impaired in LTM, but not short-term memory, for the social transmission of food preferences. We suggest that the CaM kinase kinasebeta isoforms are required for the formation of hippocampal LTM. Surprisingly, however, these kinases were not needed for contextual, trace fear, and passive avoidance LTM. Our results demonstrate that different signaling processes underlie the formation of these types of hippocampal LTM.
Collapse
|
191
|
Morinobu S, Fujimaki K, Kawano KI, Tanaka K, Takahashi J, Ohkawa M, Yamawaki S, Kato N. Influence of immobilization stress on the expression and phosphatase activity of protein phosphatase 2A in the rat brain. Biol Psychiatry 2003; 54:1060-6. [PMID: 14625148 DOI: 10.1016/s0006-3223(03)00417-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Protein phosphatase 2A (PP2A) is a major kinase phosphatase that plays an important role in regulating the activities of protein kinase cascades. It has been revealed that stress changes neuronal gene expression by activating these cascades. We examined the expression of the catalytic subunit C and serine and threonine phosphatase activity of PP2A in the rat frontal cortex and hippocampus following various immobilization stress paradigms. METHODS Immunoblot and immunohistochemical analyses were performed to examine the expression of PP2A. The level of phosphatase activity of PP2A was determined as the amount of free phosphate generated from a synthetic phosphopeptide. RESULTS Immunoblot analysis revealed no significant change in the level of PP2A immunoreactivity in response to either a single or repeated stress. Immunohistochemical analysis revealed that neither a single nor repeated stress changed PP2A immunoreactivity in the hippocampus; however, the levels of serine and threonine phosphatase activity in the frontal cortex and hippocampus were significantly upregulated in response to a single or repeated stress. CONCLUSIONS These results demonstrated that both a single and repeated immobilization stress upregulated the activity of PP2A in the rat brain, suggesting that PP2A may be involved, at least in part, in the downregulation of protein kinase activation induced by stress.
Collapse
Affiliation(s)
- Shigeru Morinobu
- Department of Psychiatry and Neurosciences, Hiroshima University School of Medicine, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Fujino T, Lee WCA, Nedivi E. Regulation of cpg15 by signaling pathways that mediate synaptic plasticity. Mol Cell Neurosci 2003; 24:538-54. [PMID: 14664806 PMCID: PMC3065975 DOI: 10.1016/s1044-7431(03)00230-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Transcriptional activation is a key link between neuronal activity and long-term synaptic plasticity. Little is known about genes responding to this activation whose products directly effect functional and structural changes at the synapse. cpg15 is an activity-regulated gene encoding a membrane-bound ligand that regulates dendritic and axonal arbor growth and synaptic maturation. We report that cpg15 is an immediate-early gene induced by Ca(2+) influx through NMDA receptors and L-type voltage-sensitive calcium channels. Activity-dependent cpg15 expression requires convergent activation of the CaM kinase and MAP kinase pathways. Although activation of PKA is not required for activity-dependent expression, cpg15 is induced by cAMP in active neurons. CREB binds the cpg15 promoter in vivo and partially regulates its activity-dependent expression. cpg15 is an effector gene that is a target for signal transduction pathways that mediate synaptic plasticity and thus may take part in an activity-regulated transcriptional program that directs long-term changes in synaptic connections.
Collapse
Affiliation(s)
- Tadahiro Fujino
- The Picower Center for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
193
|
Yang Y, Ma Y, Ni L, Zhao S, Li L, Zhang J, Fan M, Liang C, Cao J, Xu L. Lead exposure through gestation-only caused long-term learning/memory deficits in young adult offspring. Exp Neurol 2003; 184:489-95. [PMID: 14637118 DOI: 10.1016/s0014-4886(03)00272-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous observations in clinical and preclinical studies indicate that the developing brain is particular sensitive to lead (Pb)'s pernicious effects. However, the effect of gestation-only Pb exposure on cognitive functions at maturation has not been studied. We investigated the potential effects of three levels of Pb exposure (low, middle, and high Pb: 0.03%, 0.09%, and 0.27% of lead acetate-containing diets) at the gestational period on the spatial memory of young adult offspring by Morris water maze spatial learning and fixed location/visible platform tasks. Our results revealed that three levels of Pb exposure significantly impaired memory retrieval in male offspring, but only female offspring at low levels of Pb exposure showed impairment of memory retrieval. These impairments were not due to the gross disturbances in motor performance and in vision because these animals performed the fixed location/visible platform task as well as controls, indicating that the specific aspects of spatial learning/memory were impaired. These results suggest that exposure to Pb during the gestational period is sufficient to cause long-term learning/memory deficits in young adult offspring.
Collapse
Affiliation(s)
- Yuexiong Yang
- Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650223, Yunnan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Bito H, Takemoto-Kimura S. Ca(2+)/CREB/CBP-dependent gene regulation: a shared mechanism critical in long-term synaptic plasticity and neuronal survival. Cell Calcium 2003; 34:425-30. [PMID: 12909086 DOI: 10.1016/s0143-4160(03)00140-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CREB is a transcription factor critical for long-term synaptic plasticity. Intriguingly, recent work has elucidated a role for CREB, as well as upstream CREB kinases, in the control of activity-dependent neuronal survival. Additionally, analysis of the molecular pathology of polyglutamine-repeat diseases suggest that alteration of pCREB-CBP function may underlie, at least in part, the neurodegenerative process. Taken together, these new findings support the idea that Ca(2+)/CREB/CBP-dependent gene regulation might be a shared mechanism critical in both long-term synaptic plasticity and neuronal survival.
Collapse
Affiliation(s)
- Haruhiko Bito
- Department of Neurochemistry, University of Tokyo Graduate School of Medicine, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | | |
Collapse
|
195
|
Matynia A, Kushner SA, Silva AJ. Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu Rev Genet 2003; 36:687-720. [PMID: 12429705 DOI: 10.1146/annurev.genet.36.062802.091007] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-term potentiation (LTP) is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory. This review is focused on the contributions of genetics to the understanding of the role of LTP in learning and memory. These studies have used a combination of genetics, molecular biology, neurophysiology, and psychology to demonstrate that molecular mechanisms of synaptic plasticity are critical for learning and memory. Because of the large scope of this literature, we focus primarily on genetic studies of hippocampal-dependent learning. Altogether, these findings not only demonstrate a role for plasticity in learning, they also lay down the foundations for the new field of molecular and cellular cognition.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Neurobiology, Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
196
|
Kinney JW, Starosta G, Crawley JN. Central galanin administration blocks consolidation of spatial learning. Neurobiol Learn Mem 2003; 80:42-54. [PMID: 12737933 DOI: 10.1016/s1074-7427(03)00023-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Galanin is a neuropeptide that inhibits the evoked release of several neurotransmitters, inhibits the activation of intracellular second messengers, and produces deficits in a variety of rodent learning and memory tasks. To evaluate the actions of galanin on encoding, consolidation, and storage/retrieval, galanin was acutely administered to Sprague-Dawley rats at time points before and after training trials in the Morris water maze. Intraventricular administration of galanin up to 3h after subjects had completed daily training trials in the Morris water task impaired performance on the probe trial, indicating that galanin-blocked consolidation. Pretreatment with an adenylate cyclase activator, forskolin, prevented the deficits in distal cue learning produced by galanin. Di-deoxyforskolin, an inactive analog of forskolin, had no effect. These results provide the first evidence that galanin interferes with long-term memory consolidation processes. A potential mechanism by which galanin produces this impairment may involve the inhibition of adenylate cyclase activity, leading to inhibition of downstream molecular events that are necessary for consolidation of long-term memory.
Collapse
Affiliation(s)
- Jefferson W Kinney
- Section on Behavioral Genomics, National Institute of Mental Health, Galanin Inhibits Consolidation, Building 10 Room 4011, Bethesda, MD 20892-1375, USA.
| | | | | |
Collapse
|
197
|
Melvin NR, Dyck RH. Developmental distribution of calretinin in mouse barrel cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:111-4. [PMID: 12763586 DOI: 10.1016/s0165-3806(03)00102-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the postnatal development of calretinin expression in the mouse barrel cortex by immunohistochemistry. A densely staining neuropil and numerous cell bodies appeared throughout layer V, but only within barrel septa of layer IV, at postnatal day 4. This staining pattern became most robust at postnatal day 8. Thereafter, calretinin expression became reduced until the third postnatal week when it attained its mature levels, and the barrel-specific staining was no longer apparent.
Collapse
Affiliation(s)
- Neal R Melvin
- Neuroscience Research Group, Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
198
|
Deisseroth K, Mermelstein PG, Xia H, Tsien RW. Signaling from synapse to nucleus: the logic behind the mechanisms. Curr Opin Neurobiol 2003; 13:354-65. [PMID: 12850221 DOI: 10.1016/s0959-4388(03)00076-x] [Citation(s) in RCA: 263] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling from synapse to nucleus is vital for activity-dependent control of neuronal gene expression and represents a sophisticated form of neural computation. The nature of specific signal initiators, nuclear translocators and effectors has become increasingly clear, and supports the idea that the nucleus is able to make sense of a surprising amount of fast synaptic information through intricate biochemical mechanisms. Information transfer to the nucleus can be conveyed by physical translocation of messengers at various stages within the multiple signal transduction cascades that are set in motion by a Ca(2+) rise near the surface membrane. The key role of synapse-to-nucleus signaling in circadian rhythms, long-term memory, and neuronal survival sheds light on the logical underpinning of these signaling mechanisms.
Collapse
Affiliation(s)
- Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford CA 94305, USA.
| | | | | | | |
Collapse
|
199
|
Interactions with PDZ proteins are required for L-type calcium channels to activate cAMP response element-binding protein-dependent gene expression. J Neurosci 2003. [PMID: 12716953 DOI: 10.1523/jneurosci.23-08-03446.2003] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After brief periods of heightened stimulation, calcium entry through L-type calcium channels leads to activation of the transcription factor cAMP response element-binding protein (CREB) and CRE-dependent transcription. Many of the details surrounding the mechanism by which L-type calcium channels are privileged in signaling to CREB, to the exclusion of other calcium entry pathways, has remained unclear. We hypothesized that the PDZ interaction sequence contained within the last four amino acids of the calcium channel alpha1C (Ca(V)1.2) subunit [Val-Ser-Asn-Leu (VSNL)] is critical for L-type calcium channels (LTCs) to interact with the signaling machinery that triggers activity-dependent gene expression. To disrupt this interaction, hippocampal CA3-CA1 pyramidal neurons were transfected with DNA encoding for enhanced green fluorescent protein tethered to VSNL (EGFP-VSNL). EGFP-VSNL significantly attenuated L-type calcium channel-induced CREB phosphorylation and CRE-dependent transcription, although somatic calcium concentrations after stimulation remained unchanged. The effect of EGFP-VSNL was specific to the actions of L-type calcium channels, because CREB signaling after NMDA receptor stimulation remained intact. The importance of the PDZ interaction sequence was verified using dihydropyridine (DHP)-insensitive alpha1C subunits. Neurons transfected with alpha1C lacking the terminal five amino acids (DHP-LTCnoPDZ) exhibited attenuated CREB responses in comparison with cells expressing the full-length subunit (DHP-LTC). Collectively, these data suggest that localized calcium responses, regulated by interactions with PDZ domain proteins, are necessary for L-type calcium channels to effectively activate CREB and CRE-mediated gene expression.
Collapse
|
200
|
Takemoto-Kimura S, Terai H, Takamoto M, Ohmae S, Kikumura S, Segi E, Arakawa Y, Furuyashiki T, Narumiya S, Bito H. Molecular cloning and characterization of CLICK-III/CaMKIgamma, a novel membrane-anchored neuronal Ca2+/calmodulin-dependent protein kinase (CaMK). J Biol Chem 2003; 278:18597-605. [PMID: 12637513 DOI: 10.1074/jbc.m300578200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During a screen for novel putative Ca(2+)/calmodulin-dependent protein kinase (CaMK)-like CREB kinases (CLICKs), we have cloned a full-length cDNA for CLICK-III/CaMKIgamma, an isoform of the CaMKI family with an extended C-terminal domain ending with CAAX motif (where AA is aliphatic acid). As expected from the similarity of its kinase domain with the other CaMKI isoforms, full activation of CLICK-III/CaMKIgamma required both Ca(2+)/CaM and phosphorylation by CaMKK. We also found that Ca(2+)/cAMP-response element-binding protein (CREB) was a good substrate for CLICK-III/CaMKIgamma, at least in vitro. Interestingly enough, CLICK-III/CaMKIgamma transcripts were most abundant in neurons, with the highest levels in limited nuclei such as the central nucleus of the amygdala (CeA) and the ventromedial hypothalamus. Consistent with the presence of the CAAX motif, CLICK-III/CaMKIgamma was found to be anchored to various membrane compartments, especially to Golgi and plasma membranes. Both point mutation in the CAAX motif and treatment with compactin, a 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor, disrupted such membrane localization, suggesting that membrane localization of CLICK-III/CaMKIgamma occurred in a prenylation-dependent way. These findings provide a novel mechanism by which neuronal CaMK activity could be targeted to specific membrane compartments.
Collapse
Affiliation(s)
- Sayaka Takemoto-Kimura
- Department of Pharmacology, Kyoto University Faculty of Medicine, PRESTO-Japan Science and Technology Corporation, Sakyo-ku, Kyoto 606-8315, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|