151
|
Lyu J, Yang EJ, Head SA, Ai N, Zhang B, Wu C, Li RJ, Liu Y, Yang C, Dang Y, Kwon HJ, Ge W, Liu JO, Shim JS. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Lett 2017; 409:91-103. [PMID: 28923401 PMCID: PMC5634947 DOI: 10.1016/j.canlet.2017.09.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 01/23/2023]
Abstract
Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents.
Collapse
Affiliation(s)
- Junfang Lyu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Sarah A Head
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nana Ai
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Baoyuan Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Changjie Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ruo-Jing Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Yifan Liu
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Chen Yang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; The SJ Yan and HJ Mao Laboratory of Chemical Biology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
152
|
RNF20 Suppresses Tumorigenesis by Inhibiting the SREBP1c-PTTG1 Axis in Kidney Cancer. Mol Cell Biol 2017; 37:MCB.00265-17. [PMID: 28827316 DOI: 10.1128/mcb.00265-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/29/2017] [Indexed: 12/21/2022] Open
Abstract
Elevated lipid metabolism promotes cancer cell proliferation. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancers, characterized by ectopic lipid accumulation. However, the relationship between aberrant lipid metabolism and tumorigenesis in ccRCC is not thoroughly understood. Here, we demonstrate that ring finger protein 20 (RNF20) acts as a tumor suppressor in ccRCC. RNF20 overexpression repressed lipogenesis and cell proliferation by inhibiting sterol regulatory element-binding protein 1c (SREBP1c), and SREBP1 suppression, either by knockdown or by the pharmacological inhibitor betulin, attenuated proliferation and cell cycle progression in ccRCC cells. Notably, SREBP1c regulates cell cycle progression by inducing the expression of pituitary tumor-transforming gene 1 (PTTG1), a novel target gene of SREBP1c. Furthermore, RNF20 overexpression reduced tumor growth and lipid storage in xenografts. In ccRCC patients, RNF20 downregulation and SREBP1 activation are markers of poor prognosis. Therefore, RNF20 suppresses tumorigenesis in ccRCC by inhibiting the SREBP1c-PTTG1 axis.
Collapse
|
153
|
Xi D, Zhao J, Zhao M, Fu W, Guo Z, Chen H. Identification of Gene Expression Changes in the Aorta of ApoE Null Mice Fed a High-Fat Diet. Genes (Basel) 2017; 8:genes8100289. [PMID: 29064389 PMCID: PMC5664139 DOI: 10.3390/genes8100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/08/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is a chronic multifactorial inflammatory disease with high worldwide prevalence, and has become the leading cause of death. In the present study, we analyzed global gene expression changes in the aorta of Apolipoprotein E (ApoE) null mice fed a high-fat diet by using RNA-seq. We identified a total of 280 differentially expressed genes, of which 163 genes were upregulated and 117 genes were downregulated by high-fat diet compared with normal diet. Functional clustering and gene network analysis revealed that fatty acid metabolic process is crucial for atherosclerosis. By examining of the promoter regions of differentially expressed genes, we identified four causal transcription factors. Additionally, through connectivity map (CMap) analysis, multiple compounds were identified to have anti-atherosclerotic effects due to their ability to reverse gene expression during atherosclerosis. Our study provides a valuable resource for in-depth understanding of the mechanism underlying atherosclerosis.
Collapse
Affiliation(s)
- Dan Xi
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Jinzhen Zhao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Weijun Fu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Zhigang Guo
- Department of Cardiology, Huqiao Medical Center, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| | - Hui Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
154
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
155
|
Loregger A, Raaben M, Tan J, Scheij S, Moeton M, van den Berg M, Gelberg-Etel H, Stickel E, Roitelman J, Brummelkamp T, Zelcer N. Haploid Mammalian Genetic Screen Identifies UBXD8 as a Key Determinant of HMGCR Degradation and Cholesterol Biosynthesis. Arterioscler Thromb Vasc Biol 2017; 37:2064-2074. [PMID: 28882874 PMCID: PMC5671778 DOI: 10.1161/atvbaha.117.310002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 01/23/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— The cellular demand for cholesterol requires control of its biosynthesis by the mevalonate pathway. Regulation of HMGCR (3-hydroxy-3-methylglutaryl coenzyme A reductase), a rate-limiting enzyme in this pathway and the target of statins, is a key control point herein. Accordingly, HMGCR is subject to negative and positive regulation. In particular, the ability of oxysterols and intermediates of the mevalonate pathway to stimulate its proteasomal degradation is an exquisite example of metabolically controlled feedback regulation. To define the genetic determinants that govern this process, we conducted an unbiased haploid mammalian genetic screen. Approach and Results— We generated human haploid cells with mNeon fused to endogenous HMGCR using CRISPR/Cas9 and used these cells to interrogate regulation of HMGCR abundance in live cells. This resulted in identification of known and new regulators of HMGCR, and among the latter, UBXD8 (ubiquitin regulatory X domain-containing protein 8), a gene that has not been previously implicated in this process. We demonstrate that UBXD8 is an essential determinant of metabolically stimulated degradation of HMGCR and of cholesterol biosynthesis in multiple cell types. Accordingly, UBXD8 ablation leads to aberrant cholesterol synthesis due to loss of feedback control. Mechanistically, we show that UBXD8 is necessary for sterol-stimulated dislocation of ubiquitylated HMGCR from the endoplasmic reticulum membrane en route to proteasomal degradation, a function dependent on its UBX domain. Conclusions— We establish UBXD8 as a previously unrecognized determinant that couples flux across the mevalonate pathway to control of cholesterol synthesis and demonstrate the feasibility of applying mammalian haploid genetics to study metabolic traits.
Collapse
Affiliation(s)
- Anke Loregger
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Matthijs Raaben
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Josephine Tan
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Saskia Scheij
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Martina Moeton
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Marlene van den Berg
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Hila Gelberg-Etel
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Elmer Stickel
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Joseph Roitelman
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Thijn Brummelkamp
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, The Netherlands (A.L., J.T., S.S., M.M., M.v.d.B., N.Z.); Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam (M.R., E.S., T.B.); CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna (T.B.); Cancer GenomiCs.nl, Amsterdam, The Netherlands (T.B.); Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel (H.G.-E., J.R.); and Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel (H.G.-E., J.R.).
| |
Collapse
|
156
|
Brown MS, Radhakrishnan A, Goldstein JL. Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annu Rev Biochem 2017; 87:783-807. [PMID: 28841344 DOI: 10.1146/annurev-biochem-062917-011852] [Citation(s) in RCA: 355] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scap is a polytopic membrane protein that functions as a molecular machine to control the cholesterol content of membranes in mammalian cells. In the 21 years since our laboratory discovered Scap, we have learned how it binds sterol regulatory element-binding proteins (SREBPs) and transports them from the endoplasmic reticulum (ER) to the Golgi for proteolytic processing. Proteolysis releases the SREBP transcription factor domains, which enter the nucleus to promote cholesterol synthesis and uptake. When cholesterol in ER membranes exceeds a threshold, the sterol binds to Scap, triggering several conformational changes that prevent the Scap-SREBP complex from leaving the ER. As a result, SREBPs are no longer processed, cholesterol synthesis and uptake are repressed, and cholesterol homeostasis is restored. This review focuses on the four domains of Scap that undergo concerted conformational changes in response to cholesterol binding. The data provide a molecular mechanism for the control of lipids in cell membranes.
Collapse
Affiliation(s)
- Michael S Brown
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Arun Radhakrishnan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| | - Joseph L Goldstein
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ;
| |
Collapse
|
157
|
Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model. J Virol 2017; 91:JVI.00617-17. [PMID: 28659489 PMCID: PMC5571258 DOI: 10.1128/jvi.00617-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022] Open
Abstract
There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8+ T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease.
Collapse
|
158
|
Gu L, Wang Y, Xu Y, Tian Q, Lei G, Zhao C, Gao Z, Pan Q, Zhao W, Nong L, Tan S. Lunasin functionally enhances LDL uptake via inhibiting PCSK9 and enhancing LDLR expression in vitro and in vivo. Oncotarget 2017; 8:80826-80840. [PMID: 29113347 PMCID: PMC5655242 DOI: 10.18632/oncotarget.20590] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease which regulates serum low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of the hepatic low-density lipoprotein receptor (LDLR), and has become an attractive therapeutic target for cholesterol lowering intervention. Lunasin, a 43-amino acid polypeptide initially isolated from soybean, has been previously proven to possess cholesterol lowering activity. Here we identified the down-regulation of PCSK9 expression by lunasin as one new mechanism that increased cell-surface LDLR level and enhanced LDL uptake in vitro and in vivo. Treatment of HepG2 cells with lunasin inhibited the expression of PCSK9 at mRNA and protein levels in a dose-and-time dependent manner via down-regulating hepatocyte nuclear factor-1α (HNF-1α), thereby contributing to increasing LDLR level and functionally enhancing LDL uptake. ApoE-/- mice receiving lunasin administration by intraperitoneal injection at doses of 0.125∼0.5 μmol/kg·day for 4 weeks had significantly lower PCSK9 and higher LDLR levels in hepatic tissue, as well as remarkably reduced total-cholesterol (T-CHO) and LDL-C in blood as compared to mice in vehicle control group. Furthermore, we identified that LDLR expression was up-regulated by lunasin via PI3K/Akt-mediated activation of SREBP-2 in HepG2 cells. Taken together, our findings suggest that lunasin inhibits PCSK9 expression by down-regulating HNF-1α and enhances LDLR expression via PI3K/Akt-mediated activation of SREBP-2 pathway, thereby functionally enhances LDL uptake in HepG2 cells and in ApoE-/- mice.
Collapse
Affiliation(s)
- Lili Gu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaqiong Xu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qinghua Tian
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Gaoxin Lei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Cheng Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhan Gao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qin Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenfeng Zhao
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Nong
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuhua Tan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
159
|
Engelking LJ, Cantoria MJ, Xu Y, Liang G. Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 2017; 81:98-109. [PMID: 28736205 DOI: 10.1016/j.semcdb.2017.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/07/2017] [Indexed: 12/17/2022]
Abstract
Sterol regulatory element-binding proteins (SREBPs), master transcriptional regulators of cholesterol and fatty acid synthesis, have been found to contribute to a diverse array of cellular processes. In this review, we focus on genetically engineered mice in which the activities of six components of the SREBP gene pathway, namely SREBP-1, SREBP-2, Scap, Insig-1, Insig-2, or Site-1 protease have been altered through gene knockout or transgenic approaches. In addition to the expected impacts on lipid metabolism, manipulation of these genes in mice is found to affect a wide array of developmental and physiologic processes ranging from interferon signaling in macrophages to synaptic transmission in the brain. The findings reviewed herein provide a blueprint to guide future studies defining the complex interactions between lipid biology and the physiologic processes of many distinct organ systems.
Collapse
Affiliation(s)
- Luke J Engelking
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mary Jo Cantoria
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yanchao Xu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guosheng Liang
- Departments of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
160
|
Jump DB, Lytle KA, Depner CM, Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. Pharmacol Ther 2017; 181:108-125. [PMID: 28723414 DOI: 10.1016/j.pharmthera.2017.07.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obese and type 2 diabetic (T2DM) patients have a high prevalence of nonalcoholic fatty liver disease (NAFLD). NAFLD is a continuum of chronic liver diseases ranging from benign hepatosteatosis to nonalcoholic steatohepatitis (NASH), cirrhosis and primary hepatocellular cancer (HCC). Because of its strong association with the obesity epidemic, NAFLD is rapidly becoming a major public health concern worldwide. Surprisingly, there are no FDA approved NAFLD therapies; and current therapies focus on the co-morbidities associated with NAFLD, namely, obesity, hyperglycemia, dyslipidemia, and hypertension. The goal of this review is to provide background on the disease process, discuss human studies and preclinical models that have examined treatment options. We also provide an in-depth rationale for the use of dietary ω3 polyunsaturated fatty acid (ω3 PUFA) supplements as a treatment option for NAFLD. This focus is based on recent studies indicating that NASH patients and preclinical mouse models of NASH have low levels of hepatic C20-22 ω3 PUFA. This decline in hepatic PUFA may account for the major phenotypic features associated with NASH, including steatosis, inflammation and fibrosis. Finally, our discussion will address the strengths and limitations of ω3 PUFA supplements use in NAFLD therapy.
Collapse
Affiliation(s)
- Donald B Jump
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States.
| | - Kelli A Lytle
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Christopher M Depner
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Sasmita Tripathy
- Molecular Nutrition and Diabetes Research Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
161
|
Tajima-Shirasaki N, Ishii KA, Takayama H, Shirasaki T, Iwama H, Chikamoto K, Saito Y, Iwasaki Y, Teraguchi A, Lan F, Kikuchi A, Takeshita Y, Murao K, Matsugo S, Kaneko S, Misu H, Takamura T. Eicosapentaenoic acid down-regulates expression of the selenoprotein P gene by inhibiting SREBP-1c protein independently of the AMP-activated protein kinase pathway in H4IIEC3 hepatocytes. J Biol Chem 2017; 292:10791-10800. [PMID: 28465347 PMCID: PMC5491766 DOI: 10.1074/jbc.m116.747006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/27/2017] [Indexed: 02/05/2023] Open
Abstract
Selenoprotein P (encoded by SELENOP in humans, Selenop in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting SELENOP expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses SELENOP expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment with EPA caused concentration- and time-dependent reduction in SELENOP promoter activity. EPA activated AMP-activated protein kinase (AMPK); however, the inhibitory effect of EPA on SELENOP promoter activity was not canceled with an AMPK inhibitor compound C and dominant-negative AMPK transfection. Deletion mutant promoter assays and computational analysis of transcription factor-binding sites conserved among the species resulted in identification of a sterol regulatory element (SRE)-like site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay revealed that EPA decreases binding of SREBP-1c to the SELENOP promoter. Knockdown of Srebf1 resulted in a significant down-regulation of Selenop expression. Conversely, SREBP-1c overexpression inhibited the suppressive effect of EPA. These data provide a novel mechanism of action for EPA involving improvement of systemic insulin sensitivity through the regulation of selenoprotein P production independently of the AMPK pathway and suggest an additional approach to developing anti-diabetic drugs.
Collapse
Affiliation(s)
| | - Kiyo-Aki Ishii
- From the Departments of Endocrinology and Metabolism
- System Biology, and
| | - Hiroaki Takayama
- From the Departments of Endocrinology and Metabolism
- System Biology, and
| | - Takayoshi Shirasaki
- System Biology, and
- Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641
| | - Hisakazu Iwama
- the Life Science Research Center, Kagawa University, Ikenobe 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793
| | - Keita Chikamoto
- From the Departments of Endocrinology and Metabolism
- the Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192
| | - Yoshiro Saito
- the Department of Medical Life Systems, Faculty of Medical and Life Sciences, Systems Life Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394
| | | | | | - Fei Lan
- From the Departments of Endocrinology and Metabolism
| | - Akihiro Kikuchi
- From the Departments of Endocrinology and Metabolism
- System Biology, and
| | | | - Koji Murao
- the Department of Advanced Medicine, Kagawa University, Ikenobe 1750-1, Miki-cho, Kita-gun, Kagawa 761-0793, and
| | - Seiichi Matsugo
- the Division of Natural System, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192
| | | | - Hirofumi Misu
- From the Departments of Endocrinology and Metabolism
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
162
|
Lipid Storage and Autophagy in Melanoma Cancer Cells. Int J Mol Sci 2017; 18:ijms18061271. [PMID: 28617309 PMCID: PMC5486093 DOI: 10.3390/ijms18061271] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023] Open
Abstract
Cancer stem cells (CSC) represent a key cellular subpopulation controlling biological features such as cancer progression in all cancer types. By using melanospheres established from human melanoma patients, we compared less differentiated melanosphere-derived CSC to differentiating melanosphere-derived cells. Increased lipid uptake was found in melanosphere-derived CSC vs. differentiating melanosphere-derived cells, paralleled by strong expression of lipogenic factors Sterol Regulatory Element-Binding Protein-1 (SREBP-1) and Peroxisome Proliferator-Activated Receptor-γ (PPAR-γ). An inverse relation between lipid-storing phenotype and autophagy was also found, since microtubule-associated protein 1A/1B-Light Chain 3 (LC3) lipidation is reduced in melanosphere-derived CSC. To investigate upstream autophagy regulators, Phospho-AMP activated Protein Kinase (P-AMPK) and Phospho-mammalian Target of Rapamycin (P-mTOR) were analyzed; lower P-AMPK and higher P-mTOR expression in melanosphere-derived CSC were found, thus explaining, at least in part, their lower autophagic activity. In addition, co-localization of LC3-stained autophagosome spots and perilipin-stained lipid droplets was demonstrated mainly in differentiating melanosphere-derived cells, further supporting the role of autophagy in lipid droplets clearance. The present manuscript demonstrates an inverse relationship between lipid-storing phenotype and melanoma stem cells differentiation, providing novel indications involving autophagy in melanoma stem cells biology.
Collapse
|
163
|
Skin-specific regulation of SREBP processing and lipid biosynthesis by glycerol kinase 5. Proc Natl Acad Sci U S A 2017; 114:E5197-E5206. [PMID: 28607088 DOI: 10.1073/pnas.1705312114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recessive N-ethyl-N-nitrosourea-induced phenotype toku is characterized by delayed hair growth, progressive hair loss, and excessive accumulation of dermal cholesterol, triglycerides, and ceramides. The toku phenotype was attributed to a null allele of Gk5, encoding glycerol kinase 5 (GK5), a skin-specific kinase expressed predominantly in sebaceous glands. GK5 formed a complex with the sterol regulatory element-binding proteins (SREBPs) through their C-terminal regulatory domains, inhibiting SREBP processing and activation. In Gk5toku/toku mice, transcriptionally active SREBPs accumulated in the skin, but not in the liver; they were localized to the nucleus and led to elevated lipid synthesis and subsequent hair growth defects. Similar defective hair growth was observed in kinase-inactive GK5 mutant mice. Hair growth defects of homozygous toku mice were partially rescued by treatment with the HMG-CoA reductase inhibitor simvastatin. GK5 exists as part of a skin-specific regulatory mechanism for cholesterol biosynthesis, independent of cholesterol regulation elsewhere in the body.
Collapse
|
164
|
Chang SF, Huang KC, Cheng CC, Su YP, Lee KC, Chen CN, Chang HI. Glucose adsorption to chitosan membranes increases proliferation of human chondrocyte via mammalian target of rapamycin complex 1 and sterol regulatory element-binding protein-1 signaling. J Cell Physiol 2017; 232:2741-2749. [DOI: 10.1002/jcp.25869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/17/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Shun-Fu Chang
- Department of Medical Research and Development; Chang Gung Memorial Hospital; Chiayi Branch; Chiayi Taiwan
| | - Kuo-Chin Huang
- Department of Orthopaedics; Chang Gung Memorial Hospital; Chiayi Branch; Chiayi Taiwan
| | - Chin-Chang Cheng
- Department of Orthopaedics; Chang Gung Memorial Hospital; Chiayi Branch; Chiayi Taiwan
| | - Yu-Ping Su
- Department of Orthopaedics and Traumatology; Veterans General Hospital; Taipei Taiwan
- Department of Surgery; School of Medicine; National Yang-Ming University; Taipei Taiwan
- Department of Biomedical Engineering; National Yang-Ming University; Taipei Taiwan
| | - Ko-Chao Lee
- Division of Colorectal Surgery; Department of Surgery; Chang Gung Memorial Hospital-Kaohsiung Medical Center; Kaohsiung Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology; National Chiayi University; Chiayi Taiwan
| |
Collapse
|
165
|
McGee-Lawrence ME, Wenger KH, Misra S, Davis CL, Pollock NK, Elsalanty M, Ding K, Isales CM, Hamrick MW, Wosiski-Kuhn M, Arounleut P, Mattson MP, Cutler RG, Yu JC, Stranahan AM. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice. Endocrinology 2017; 158:1160-1171. [PMID: 28323991 PMCID: PMC5460837 DOI: 10.1210/en.2016-1250] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/02/2017] [Indexed: 01/12/2023]
Abstract
Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.
Collapse
MESH Headings
- Adipocytes/metabolism
- Adipocytes/pathology
- Animals
- Body Weight
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Energy Metabolism/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscular Atrophy/genetics
- Muscular Atrophy/metabolism
- Muscular Atrophy/prevention & control
- Physical Conditioning, Animal/physiology
- Receptors, Leptin/genetics
- Vibration/therapeutic use
Collapse
Affiliation(s)
- Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Karl H. Wenger
- Department of Orthopedic Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Sudipta Misra
- Department of Pediatrics, Gastroenterology Division, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Catherine L. Davis
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- Physiology Department, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Norman K. Pollock
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- Physiology Department, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Mohammed Elsalanty
- Department of Oral Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Kehong Ding
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Carlos M. Isales
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Marlena Wosiski-Kuhn
- Physiology Department, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Phonepasong Arounleut
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Roy G. Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Jack C. Yu
- Department of Surgery, Plastic Surgery Division, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Alexis M. Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
166
|
Sieber MH, Spradling AC. The role of metabolic states in development and disease. Curr Opin Genet Dev 2017; 45:58-68. [PMID: 28347941 PMCID: PMC6894399 DOI: 10.1016/j.gde.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/23/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
During development, cells adopt distinct metabolic strategies to support growth, produce energy, and meet the demands of a mature tissue. Some of these metabolic states maintain a constrained program of nutrient utilization, while others providing metabolic flexibility as a means to couple developmental progression with nutrient availability. Here we discuss our understanding of metabolic programs, and how they support specific aspects of animal development. During phases of rapid proliferation a subset of metabolic programs provide the building blocks to support growth. During differentiation, metabolic programs shift to support the unique demands of each tissue. Finally, we discuss how a model system, such as Drosophila egg development, can provide a versatile platform to discover novel mechanisms controlling programmed shift in metabolism.
Collapse
Affiliation(s)
- Matthew H Sieber
- Department of Embryology, Howard Hughes Medical Institute Labs, Carnegie Institution for Science, Baltimore, MD 21218, United States
| | - Allan C Spradling
- Department of Embryology, Howard Hughes Medical Institute Labs, Carnegie Institution for Science, Baltimore, MD 21218, United States.
| |
Collapse
|
167
|
Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol 2017; 7:635-674. [PMID: 28333384 DOI: 10.1002/cphy.c160022] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adipocytes are the defining cell type of adipose tissue. Once considered a passive participant in energy storage, adipose tissue is now recognized as a dynamic organ that contributes to several important physiological processes, such as lipid metabolism, systemic energy homeostasis, and whole-body insulin sensitivity. Therefore, understanding the mechanisms involved in its development and function is of great importance. Adipocyte differentiation is a highly orchestrated process which can vary between different fat depots as well as between the sexes. While hormones, miRNAs, cytoskeletal proteins, and many other effectors can modulate adipocyte development, the best understood regulators of adipogenesis are the transcription factors that inhibit or promote this process. Ectopic expression and knockdown approaches in cultured cells have been widely used to understand the contribution of transcription factors to adipocyte development, providing a basis for more sophisticated in vivo strategies to examine adipogenesis. To date, over two dozen transcription factors have been shown to play important roles in adipocyte development. These transcription factors belong to several families with many different DNA-binding domains. While peroxisome proliferator-activated receptor gamma (PPARγ) is undoubtedly the most important transcriptional modulator of adipocyte development in all types of adipose tissue, members of the CCAAT/enhancer-binding protein, Krüppel-like transcription factor, signal transducer and activator of transcription, GATA, early B cell factor, and interferon-regulatory factor families also regulate adipogenesis. The importance of PPARγ activity is underscored by several covalent modifications that modulate its activity and its ability to modulate adipocyte development. This review will primarily focus on the transcriptional control of adipogenesis in white fat cells and on the mechanisms involved in this fine-tuned developmental process. © 2017 American Physiological Society. Compr Physiol 7:635-674, 2017.
Collapse
Affiliation(s)
- Paula Mota de Sá
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Allison J Richard
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Hardy Hang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
168
|
van Deijk ALF, Camargo N, Timmerman J, Heistek T, Brouwers JF, Mogavero F, Mansvelder HD, Smit AB, Verheijen MHG. Astrocyte lipid metabolism is critical for synapse development and function in vivo. Glia 2017; 65:670-682. [PMID: 28168742 DOI: 10.1002/glia.23120] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Abstract
The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682.
Collapse
Affiliation(s)
- Anne-Lieke F van Deijk
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Nutabi Camargo
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jaap Timmerman
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Tim Heistek
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Yalelaan 1, 3584 CL Utrecht University, Utrecht, The Netherlands
| | - Floriana Mogavero
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular & Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, De Boelelaan 1085, Amsterdam, 1081 HV, The Netherlands
| |
Collapse
|
169
|
Dhingra S, Cramer RA. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen Aspergillus fumigatus: Opportunities for Therapeutic Development. Front Microbiol 2017; 8:92. [PMID: 28203225 PMCID: PMC5285346 DOI: 10.3389/fmicb.2017.00092] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Sterols are a major component of eukaryotic cell membranes. For human fungal infections caused by the filamentous fungus Aspergillus fumigatus, antifungal drugs that target sterol biosynthesis and/or function remain the standard of care. Yet, an understanding of A. fumigatus sterol biosynthesis regulatory mechanisms remains an under developed therapeutic target. The critical role of sterol biosynthesis regulation and its interactions with clinically relevant azole drugs is highlighted by the basic helix loop helix (bHLH) class of transcription factors known as Sterol Regulatory Element Binding Proteins (SREBPs). SREBPs regulate transcription of key ergosterol biosynthesis genes in fungi including A. fumigatus. In addition, other emerging regulatory pathways and target genes involved in sterol biosynthesis and drug interactions provide additional opportunities including the unfolded protein response, iron responsive transcriptional networks, and chaperone proteins such as Hsp90. Thus, targeting molecular pathways critical for sterol biosynthesis regulation presents an opportunity to improve therapeutic options for the collection of diseases termed aspergillosis. This mini-review summarizes our current understanding of sterol biosynthesis regulation with a focus on mechanisms of transcriptional regulation by the SREBP family of transcription factors.
Collapse
Affiliation(s)
- Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover NH, USA
| |
Collapse
|
170
|
Patel MN, Carroll RG, Galván-Peña S, Mills EL, Olden R, Triantafilou M, Wolf AI, Bryant CE, Triantafilou K, Masters SL. Inflammasome Priming in Sterile Inflammatory Disease. Trends Mol Med 2017; 23:165-180. [PMID: 28109721 DOI: 10.1016/j.molmed.2016.12.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
The inflammasome is a cytoplasmic protein complex that processes interleukins (IL)-1β and IL-18, and drives a form of cell death known as pyroptosis. Oligomerization of this complex is actually the second step of activation, and a priming step must occur first. This involves transcriptional upregulation of pro-IL-1β, inflammasome sensor NLRP3, or the non-canonical inflammasome sensor caspase-11. An additional aspect of priming is the post-translational modification of particular inflammasome constituents. Priming is typically accomplished in vitro using a microbial Toll-like receptor (TLR) ligand. However, it is now clear that inflammasomes are activated during the progression of sterile inflammatory diseases such as atherosclerosis, metabolic disease, and neuroinflammatory disorders. Therefore, it is time to consider the endogenous factors and mechanisms that may prime the inflammasome in these conditions.
Collapse
Affiliation(s)
- Meghana N Patel
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
| | - Richard G Carroll
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Silvia Galván-Peña
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Evanna L Mills
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Robin Olden
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Amaya I Wolf
- Host Defense Discovery Performance Unit, Infectious Diseases Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Clare E Bryant
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB23 8AQ, UK
| | - Kathy Triantafilou
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Seth L Masters
- Immunology Catalyst, GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK; Department of Medical Biology, University of Melbourne, Parkville 3010, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.
| |
Collapse
|
171
|
Miller WL. Disorders in the initial steps of steroid hormone synthesis. J Steroid Biochem Mol Biol 2017; 165:18-37. [PMID: 26960203 DOI: 10.1016/j.jsbmb.2016.03.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 12/29/2022]
Abstract
Steroidogenesis begins with cellular internalization of low-density lipoprotein particles and subsequent intracellular processing of cholesterol. Disorders in these steps include Adrenoleukodystrophy, Wolman Disease and its milder variant Cholesterol Ester Storage Disease, and Niemann-Pick Type C Disease, all of which may present with adrenal insufficiency. The means by which cholesterol is directed to steroidogenic mitochondria remains incompletely understood. Once cholesterol reaches the outer mitochondrial membrane, its delivery to the inner mitochondrial membrane is regulated by the steroidogenic acute regulatory protein (StAR). Severe StAR mutations cause classic congenital lipoid adrenal hyperplasia, characterized by lipid accumulation in the adrenal, adrenal insufficiency, and disordered sexual development in 46,XY individuals. The lipoid CAH phenotype, including spontaneous puberty in 46,XX females, is explained by a two-hit model. StAR mutations that retain partial function cause a milder, non-classic disease characterized by glucocorticoid deficiency, with lesser disorders of mineralocorticoid and sex steroid synthesis. Once inside the mitochondria, cholesterol is converted to pregnenolone by the cholesterol side-chain cleavage enzyme, P450scc, encoded by the CYP11A1 gene. Rare patients with mutations of P450scc are clinically and hormonally indistinguishable from those with lipoid CAH, and may also present as milder non-classic disease. Patients with P450scc defects do not have the massive adrenal hyperplasia that characterizes lipoid CAH, but adrenal imaging may occasionally fail to distinguish these, necessitating DNA sequencing.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143-0556, United States.
| |
Collapse
|
172
|
Sterol Regulatory Element Binding Protein (SREBP)-1 is a novel regulator of the Transforming Growth Factor (TGF)-β receptor I (TβRI) through exosomal secretion. Cell Signal 2017; 29:158-167. [DOI: 10.1016/j.cellsig.2016.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/13/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
|
173
|
Lee S, You YA, Kwon EJ, Jung SC, Jo I, Kim YJ. Maternal Food Restriction during Pregnancy and Lactation Adversely Affect Hepatic Growth and Lipid Metabolism in Three-Week-Old Rat Offspring. Int J Mol Sci 2016; 17:ijms17122115. [PMID: 27983688 PMCID: PMC5187915 DOI: 10.3390/ijms17122115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/02/2016] [Accepted: 12/11/2016] [Indexed: 12/14/2022] Open
Abstract
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation. We performed analyses of covariance (adjusting for the liver weight/body weight ratio) to compare hepatic growth and lipid metabolism among the offspring. Maternal FR during gestation triggered the development of wide spaces between hepatic cells and increased the expression of mammalian target of rapamycin (mTOR) in three-week-old male offspring compared with controls (both p < 0.05). Offspring nursed by FR dams exhibited wider spaces between hepatic cells and a lower liver weight/body weight ratio than control offspring, and increased mTOR expression (p < 0.05). Interestingly, the significant decrease in expression of lipogenic-related genes was dependent on carbohydrate-responsive element-binding protein, despite the increased expression of sterol regulatory element-binding protein 1 (SREBP1) (p < 0.05). This study demonstrated increased expression of key metabolic regulators (mTOR and SREBP1), alterations in lipid metabolism, and deficits in hepatic growth in the offspring of FR-treated dams.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
- Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University Medical School, Seoul 07985, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 07985, Korea.
| |
Collapse
|
174
|
Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 2016; 16:718-731. [PMID: 27562463 DOI: 10.1038/nrc.2016.76] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mevalonate (MVA) pathway is an essential metabolic pathway that uses acetyl-CoA to produce sterols and isoprenoids that are integral to tumour growth and progression. In recent years, many oncogenic signalling pathways have been shown to increase the activity and/or the expression of MVA pathway enzymes. This Review summarizes recent advances and discusses unique opportunities for immediately targeting this metabolic vulnerability in cancer with agents that have been approved for other therapeutic uses, such as the statin family of drugs, to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Peter J Mullen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
| | - Rosemary Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Joseph Longo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - Michael C Archer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3E2
| | - Linda Z Penn
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 1L7
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| |
Collapse
|
175
|
Abstract
Lipid metabolism, in particular the synthesis of fatty acids (FAs), is an essential cellular process that converts nutrients into metabolic intermediates for membrane biosynthesis, energy storage and the generation of signalling molecules. This Review explores how different aspects of FA synthesis promote tumorigenesis and tumour progression. FA synthesis has received substantial attention as a potential target for cancer therapy, but strategies to target this process have not yet translated into clinical practice. Furthermore, efforts to target this pathway must consider the influence of the tumour microenvironment.
Collapse
Affiliation(s)
- Florian Röhrig
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Josef-Schneider-Strasse 6, 97080 Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor Boveri Institute, Biocenter, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, Josef-Schneider-Strasse 6, 97080 Würzburg, Germany
| |
Collapse
|
176
|
Lai CQ, Wojczynski MK, Parnell LD, Hidalgo BA, Irvin MR, Aslibekyan S, Province MA, Absher DM, Arnett DK, Ordovás JM. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res 2016; 57:2200-2207. [PMID: 27777315 PMCID: PMC5321216 DOI: 10.1194/jlr.m069948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/16/2016] [Indexed: 12/18/2022] Open
Abstract
Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4+ T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10−7), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Laurence D Parnell
- USDA Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Bertha A Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Marguerite Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Michael A Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
177
|
SREBP-2/PNPLA8 axis improves non-alcoholic fatty liver disease through activation of autophagy. Sci Rep 2016; 6:35732. [PMID: 27767079 PMCID: PMC5073315 DOI: 10.1038/srep35732] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 10/03/2016] [Indexed: 01/04/2023] Open
Abstract
Dysregulated autophagy is associated with steatosis and non-alcoholic fatty liver disease (NAFLD), however the mechanisms connecting them remain poorly understand. Here, we show that co-administration of lovastatin and ezetimibe (L/E) significantly reverses hepatic triglyceride accumulation concomitant with an increase in SREBP-2 driven autophagy in mice fed a high-fat diet (HFD). We further show that the statin mediated increase in SREBP-2 directly activates expression of patatin-like phospholipase domain-containing enzyme 8 (PNPLA8) gene, and PNPLA8 associates with autophagosomes and is associated with a decrease in cellular triglyceride. Moreover, we show that over-expression of PNPLA8 dramatically decreases hepatic steatosis through increased autophagy in hepatocytes of HFD-fed mice. Live-cell imaging analyses also reveal that PNPLA8 dynamically interacts with LC3 and we suggest that the SREBP-2/PNPLA8 axis represents a novel regulatory mechanism for lipid homeostasis. These data provide a possible mechanism for the reported beneficial effects of statins for decreasing hepatic triglyceride levels in NAFLD patients.
Collapse
|
178
|
DuBois JC, Smulian AG. Sterol Regulatory Element Binding Protein (Srb1) Is Required for Hypoxic Adaptation and Virulence in the Dimorphic Fungus Histoplasma capsulatum. PLoS One 2016; 11:e0163849. [PMID: 27711233 PMCID: PMC5053422 DOI: 10.1371/journal.pone.0163849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 09/08/2016] [Indexed: 01/12/2023] Open
Abstract
The Histoplasma capsulatum sterol regulatory element binding protein (SREBP), Srb1 is a member of the basic helix-loop-helix (bHLH), leucine zipper DNA binding protein family of transcription factors that possess a unique tyrosine (Y) residue instead of an arginine (R) residue in the bHLH region. We have determined that Srb1 message levels increase in a time dependent manner during growth under oxygen deprivation (hypoxia). To further understand the role of Srb1 during infection and hypoxia, we silenced the gene encoding Srb1 using RNA interference (RNAi); characterized the resulting phenotype, determined its response to hypoxia, and its ability to cause disease within an infected host. Silencing of Srb1 resulted in a strain of H. capsulatum that is incapable of surviving in vitro hypoxia. We found that without complete Srb1 expression, H. capsulatum is killed by murine macrophages and avirulent in mice given a lethal dose of yeasts. Additionally, silencing Srb1 inhibited the hypoxic upregulation of other known H. capsulatum hypoxia-responsive genes (HRG), and genes that encode ergosterol biosynthetic enzymes. Consistent with these regulatory functions, Srb1 silenced H. capsulatum cells were hypersensitive to the antifungal azole drug itraconazole. These data support the theory that the H. capsulatum SREBP is critical for hypoxic adaptation and is required for H. capsulatum virulence.
Collapse
Affiliation(s)
- Juwen C. DuBois
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
| | - A. George Smulian
- Cincinnati VA Medical Center, Cincinnati, Ohio, United States of America
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
179
|
Wen G, Pachner LI, Gessner DK, Eder K, Ringseis R. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells. J Dairy Sci 2016; 99:9211-9226. [PMID: 27614840 DOI: 10.3168/jds.2016-11174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022]
Abstract
The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the mutated SRE at -38 of the NIS 5'-flanking region showed that in vitro-translated nSREBP-1c and nSREBP-2 bind only the wild-type but not the mutated SRE at -38 of NIS. Collectively, the present results from cell culture experiments with human mammary epithelial MCF-7 cells and from genetic studies show for the first time that the NIS gene and iodide uptake are regulated by SREBP in cultured human mammary epithelial cells. Future studies are necessary to clarify if the regulation of NIS expression and iodide uptake by SREBP also applies to the lactating bovine mammary epithelium.
Collapse
Affiliation(s)
- G Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - L I Pachner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - D K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - K Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - R Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany.
| |
Collapse
|
180
|
Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2016; 199:87-96. [DOI: 10.1016/j.cbpb.2015.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 01/09/2023]
|
181
|
Peng XE, Chen FL, Liu W, Hu Z, Lin X. Lack of association between SREBF-1c gene polymorphisms and risk of non-alcoholic fatty liver disease in a Chinese Han population. Sci Rep 2016; 6:32110. [PMID: 27572914 PMCID: PMC5004200 DOI: 10.1038/srep32110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The transcription factor sterol regulatory element-binding protein-1c (SREBP-1c) is a key regulator of lipogenesis and insulin sensitivity, and is associated with non-alcoholic fatty liver disease (NAFLD). Here, we assessed the impact of common single nucleotide polymorphisms (SNPs) in SREBF-1c on NAFLD susceptibility and associated metabolic phenotypes in a Han Chinese population. Four common SNPs (rs62064119, rs2297508, rs11868035 and rs13306741) in the SREBP-1c gene were selected and genotyped in 593 patients with NAFLD and 593 healthy controls. Unconditional logistic regression was performed to assess the risk of NAFLD by determining odds ratios and 95% confidence intervals (CIs). No significant differences in genotype and allele frequencies of these four SNPs were found between the NAFLD population and the controls (all P > 0.05). In addition, we did not find any association between the SREBF-1c SNPs and the clinical and biochemical parameters, such as body mass index, total cholesterol, high density lipoprotein-and low density lipoprotein-cholesterol or systolic and diastolic blood pressure, except that the rs2297508 C-allele or rs11868035 G-allele showed significant associations with lower triglyceride levels in control subjects (P < 0.01). Our findings suggested that the four polymorphisms in SREBF-1c gene are not associated with risk of NAFLD in the Chinese Han population.
Collapse
Affiliation(s)
- Xian-E. Peng
- Department of Epidemiology and Health Statistics, the Key Laboratory of Environment and Health, universities and colleges in Fujian, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
| | - Feng-Lin Chen
- Department of Gastroenterology, Union Hospital of Fujian Medical University, 29 Xinquan Road, Fuzhou 35001, China
| | - Wenjuan Liu
- Department of Epidemiology and Health Statistics, the Key Laboratory of Environment and Health, universities and colleges in Fujian, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
| | - ZhiJian Hu
- Department of Epidemiology and Health Statistics, the Key Laboratory of Environment and Health, universities and colleges in Fujian, School of Public Health, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
| | - Xu Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, China
| |
Collapse
|
182
|
Jang H, Lee GY, Selby CP, Lee G, Jeon YG, Lee JH, Cheng KKY, Titchenell P, Birnbaum MJ, Xu A, Sancar A, Kim JB. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun 2016; 7:12180. [PMID: 27412556 PMCID: PMC4947181 DOI: 10.1038/ncomms12180] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 06/08/2016] [Indexed: 12/12/2022] Open
Abstract
SREBP1c is a key lipogenic transcription factor activated by insulin in the postprandial state. Although SREBP1c appears to be involved in suppression of hepatic gluconeogenesis, the molecular mechanism is not thoroughly understood. Here we show that CRY1 is activated by insulin-induced SREBP1c and decreases hepatic gluconeogenesis through FOXO1 degradation, at least, at specific circadian time points. SREBP1c−/− and CRY1−/− mice show higher blood glucose than wild-type (WT) mice in pyruvate tolerance tests, accompanied with enhanced expression of PEPCK and G6Pase genes. CRY1 promotes degradation of nuclear FOXO1 by promoting its binding to the ubiquitin E3 ligase MDM2. Although SREBP1c fails to upregulate CRY1 expression in db/db mice, overexpression of CRY1 attenuates hyperglycaemia through reduction of hepatic FOXO1 protein and gluconeogenic gene expression. These data suggest that insulin-activated SREBP1c downregulates gluconeogenesis through CRY1-mediated FOXO1 degradation and that dysregulation of hepatic SREBP1c-CRY1 signalling may contribute to hyperglycaemia in diabetic animals. The clock protein Cry regulates hepatic glucose metabolism. Here the authors show that SREBP1c, activated by insulin signalling after feeding, directly regulates Cry transcription at specific circadian time points, and that Cry represses hepatic glucose production by promoting proteasomal degradation of Foxo1.
Collapse
Affiliation(s)
- Hagoon Jang
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Gha Young Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Gung Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Yong Geun Jeon
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Jae Ho Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| | - Kenneth King Yip Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Paul Titchenell
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Morris J Birnbaum
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, The University of Hong Kong, Hong Kong, 999077, China
| | - Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB # 7260, Chapel Hill, North Carolina 27599-7260, USA
| | - Jae Bum Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Center for Adipose Tissue Remodeling, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
183
|
Zhang L, Wang HH. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 2016; 48:709-16. [PMID: 27133206 DOI: 10.1016/j.dld.2016.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte.
Collapse
Affiliation(s)
- LiChun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan Province, China.
| |
Collapse
|
184
|
Pleiotropic effects of statins on acute kidney injury: involvement of Krüppel-like factor 4. Clin Exp Nephrol 2016; 21:175-181. [PMID: 27294581 DOI: 10.1007/s10157-016-1286-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/26/2016] [Indexed: 01/19/2023]
Abstract
Statins, the inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, are potent cholesterol-lowering drugs used for primary and secondary prevention of coronary artery disease. They also possess multiple beneficial effects independent of their cholesterol-lowering properties, which are called as their "pleiotropic" effects. The results of recent studies have revealed that statins exert their pleiotropic effects in the kidneys, in that they are protective against acute kidney injury (AKI). Moreover, Krüppel-like factor 4, a zinc-finger transcription factor, in endothelial cells has been identified as a novel mediator of statins. This article summarizes the pleiotropic effects of statins on AKI, and reviews the recent progress in our understanding of the regulatory mechanisms involved in statin-mediated protection against AKI.
Collapse
|
185
|
DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. SCIENCE ADVANCES 2016; 2:e1600200. [PMID: 27386546 PMCID: PMC4928883 DOI: 10.1126/sciadv.1600200] [Citation(s) in RCA: 2023] [Impact Index Per Article: 224.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/29/2016] [Indexed: 04/14/2023]
Abstract
Tumors reprogram pathways of nutrient acquisition and metabolism to meet the bioenergetic, biosynthetic, and redox demands of malignant cells. These reprogrammed activities are now recognized as hallmarks of cancer, and recent work has uncovered remarkable flexibility in the specific pathways activated by tumor cells to support these key functions. In this perspective, we provide a conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis. Understanding these concepts will progressively support the development of new strategies to treat human cancer.
Collapse
Affiliation(s)
- Ralph J. DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Corresponding author. (R.J.D.); (N.S.C.)
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Corresponding author. (R.J.D.); (N.S.C.)
| |
Collapse
|
186
|
Zhang P, Li L, Bao Z, Huang F. Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism. Nutr Metab (Lond) 2016; 13:30. [PMID: 27127533 PMCID: PMC4848843 DOI: 10.1186/s12986-016-0090-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 02/07/2023] Open
Abstract
The switching defective/sucrose non-fermenting (SWI/SNF) complexes play an important role in hepatic lipid metabolism regulating both transcriptional activation and repression. BAF60a is a core subunit of the SWI/SNF chromatin-remodeling complexes that activates the transcription of fatty acid oxidation genes during fasting/glucagon. BAF60c, another subunit of SWI/SNF complexes, is recruited to form the lipoBAF complex that activates lipogenic genes, promoting lipogenesis and increasing the triglyceride level in response to feeding/insulin. Interestingly, hepatocytes located in the periportal and perivenous zones of the liver display a remarkable heterogeneity in the activity of various enzymes, metabolic functions and gene expression. Especially, fatty-acid oxidation was shown to be mostly periportal, whereas lipogenesis was mostly perivenous. Therefore, the present review highlights the role of of SWI/SNF regulating lipid metabolism under nutritional and hormonal control, which may be associated with hepatocyte heterogeneity.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lulu Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhengxi Bao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
187
|
Canfrán-Duque A, Lin CS, Goedeke L, Suárez Y, Fernández-Hernando C. Micro-RNAs and High-Density Lipoprotein Metabolism. Arterioscler Thromb Vasc Biol 2016; 36:1076-84. [PMID: 27079881 DOI: 10.1161/atvbaha.116.307028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
Abstract
Improved prevention and treatment of cardiovascular diseases is one of the challenges in Western societies, where ischemic heart disease and stroke are the leading cause of death. Early epidemiological studies have shown an inverse correlation between circulating high-density lipoprotein-cholesterol (HDL-C) and cardiovascular diseases. The cardioprotective effect of HDL is because of its ability to remove cholesterol from plaques in the artery wall to the liver for excretion by a process known as reverse cholesterol transport. Numerous studies have reported the role that micro-RNAs (miRNA) play in the regulation of the different steps in reverse cholesterol transport, including HDL biogenesis, cholesterol efflux, and cholesterol uptake in the liver and bile acid synthesis and secretion. Because of their ability to control different aspects of HDL metabolism and function, miRNAs have emerged as potential therapeutic targets to combat cardiovascular diseases. In this review, we summarize the recent advances in the miRNA-mediated control of HDL metabolism. We also discuss how HDL particles serve as carriers of miRNAs and the potential use of HDL-containing miRNAs as cardiovascular diseases biomarkers.
Collapse
Affiliation(s)
- Alberto Canfrán-Duque
- From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.)
| | - Chin-Sheng Lin
- From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.)
| | - Leigh Goedeke
- From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.)
| | - Yajaira Suárez
- From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.)
| | - Carlos Fernández-Hernando
- From the Vascular Biology and Therapeutics Program (A.C.-D., L.G., Y.S., C.F.-H.) and Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine and Department of Pathology (A.C.-D., L.G., Y.S., C.F.-H.), Yale University School of Medicine, New Haven, CT; and Division of Cardiology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan (C.-S.L.).
| |
Collapse
|
188
|
Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res 2016; 36:271-9. [DOI: 10.1016/j.nutres.2015.11.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023]
|
189
|
Gondret F, Vincent A, Houée-Bigot M, Siegel A, Lagarrigue S, Louveau I, Causeur D. Molecular alterations induced by a high-fat high-fiber diet in porcine adipose tissues: variations according to the anatomical fat location. BMC Genomics 2016; 17:120. [PMID: 26892011 PMCID: PMC4758018 DOI: 10.1186/s12864-016-2438-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/05/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Changing the energy and nutrient source for growing animals may be an effective way of limiting adipose tissue expansion, a response which may depend on the genetic background of the animals. This study aims to describe the transcriptional modulations present in the adipose tissues of two pig lines divergently selected for residual feed intake which were either fed a high-fat high-fiber (HF) diet or an isocaloric low-fat high-starch diet (LF). RESULTS Transcriptomic analysis using a porcine microarray was performed on 48 pigs (n = 12 per diet and per line) in both perirenal (PRAT) and subcutaneous (SCAT) adipose tissues. There was no interaction between diet and line on either adiposity or transcriptional profiles, so that the diet effect was inferred independently of the line. Irrespective of line, the relative weights of the two fat depots were lower in HF pigs than in LF pigs after 58 days on dietary treatment. In the two adipose tissues, the most apparent effect of the HF diet was the down-regulation of several genes associated with the ubiquitin-proteasome system, which therefore may be associated with dietary-induced modulations in genes acting in apoptotic and cell cycle regulatory pathways. Genes involved in glucose metabolic processes were also down-regulated by the HF diet, with no significant variation or decreased expression of important lipid-related genes such as the low-density lipoprotein receptor and leptin in the two fat pads. The master regulators of glucose and fatty acid homeostasis SREBF1 and MLXIPL, and peroxisome proliferator-activated receptor (PPAR)δ and its heterodimeric partner RXRA were down-regulated by the HF diet. PPARγ which has pleiotropic functions including lipid metabolism and adipocyte differentiation, was however up-regulated by this diet in PRAT and SCAT. Dietary-related modulations in the expression of genes associated with immunity and inflammation were mainly revealed in PRAT. CONCLUSION A high-fat high-fiber diet depressed glucose and lipid anabolic molecular pathways, thus counteracting adipose tissue expansion. Interaction effects between dietary intake of fiber and lipids on gene expression may modulate innate immunity and inflammation, a response which is of interest with regard to chronic inflammation and its adverse effects on health and performance.
Collapse
Affiliation(s)
- Florence Gondret
- INRA, UMR1348 Pegase, F-35590, Saint-Gilles, France. .,Agrocampus-Ouest, UMR1348 Pegase, F-35000, Rennes, France.
| | - Annie Vincent
- INRA, UMR1348 Pegase, F-35590, Saint-Gilles, France. .,Agrocampus-Ouest, UMR1348 Pegase, F-35000, Rennes, France.
| | | | - Anne Siegel
- CNRS-Université de Rennes 1-INRIA, UMR6074 IRISA, Campus de Beaulieu, 35042, Rennes, Cedex, France.
| | - Sandrine Lagarrigue
- INRA, UMR1348 Pegase, F-35590, Saint-Gilles, France. .,Agrocampus-Ouest, UMR1348 Pegase, F-35000, Rennes, France.
| | - Isabelle Louveau
- INRA, UMR1348 Pegase, F-35590, Saint-Gilles, France. .,Agrocampus-Ouest, UMR1348 Pegase, F-35000, Rennes, France.
| | - David Causeur
- Agrocampus-Ouest, UMR6625 IRMAR, F-35000, Rennes, France.
| |
Collapse
|
190
|
Moseti D, Regassa A, Kim WK. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int J Mol Sci 2016; 17:ijms17010124. [PMID: 26797605 PMCID: PMC4730365 DOI: 10.3390/ijms17010124] [Citation(s) in RCA: 529] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules.
Collapse
Affiliation(s)
- Dorothy Moseti
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Alemu Regassa
- Department of Animal Science, University of Manitoba, 201 Animal Science building, Winnipeg, MB R3T 2N2, Canada.
| | - Woo-Kyun Kim
- Department of Poultry Science, University of Georgia, 303 Poultry Science Building, Athens, GA 30602-2772, USA.
| |
Collapse
|
191
|
Xu H, Luo J, Zhao W, Yang Y, Tian H, Shi H, Bionaz M. Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 2016; 99:783-95. [DOI: 10.3168/jds.2015-9736] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
|
192
|
Nelson JK, Cook ECL, Loregger A, Hoeksema MA, Scheij S, Kovacevic I, Hordijk PL, Ovaa H, Zelcer N. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. J Biol Chem 2015; 291:4813-25. [PMID: 26719329 DOI: 10.1074/jbc.m115.698688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/05/2023] Open
Abstract
Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications, ubiquitylation is reversible in a process dependent on activity of deubiquitylating enzymes (DUBs). Yet whether these play a role in cholesterol metabolism is largely unknown. As a first step to test this possibility, we used pharmacological inhibition of cellular DUB activity. Short term (2 h) inhibition of DUBs resulted in accumulation of high molecular weight ubiquitylated proteins. This was accompanied by a dramatic decrease in abundance of the LDLR and attenuated LDL uptake into hepatic cells. Importantly, this occurred in the absence of changes in the mRNA levels of the LDLR or other SREBP2-regulated genes, in line with this phenotype being a post-transcriptional event. Mechanistically, we identify transcriptional induction of the E3 ubiquitin ligase IDOL in human and rodent cells as the underlying cause for ubiquitylation-dependent lysosomal degradation of the LDLR following DUB inhibition. In contrast to the established transcriptional regulation of IDOL by the sterol-responsive liver X receptor (LXR) transcription factors, induction of IDOL by DUB inhibition is LXR-independent and occurs in Lxrαβ(-/-) MEFs. Consistent with the role of DUBs in transcriptional regulation, we identified a 70-bp region in the proximal promoter of IDOL, distinct from that containing the LXR-responsive element, which mediates the response to DUB inhibition. In conclusion, we identify a sterol-independent mechanism to regulate IDOL expression and IDOL-mediated lipoprotein receptor degradation.
Collapse
Affiliation(s)
- Jessica Kristine Nelson
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Emma Clare Laura Cook
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anke Loregger
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marten Anne Hoeksema
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Scheij
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Igor Kovacevic
- the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands, and
| | - Peter Lodewijk Hordijk
- the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands, and
| | - Huib Ovaa
- the Department of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands,
| |
Collapse
|
193
|
Nguyen VTM, Barozzi I, Faronato M, Lombardo Y, Steel JH, Patel N, Darbre P, Castellano L, Győrffy B, Woodley L, Meira A, Patten DK, Vircillo V, Periyasamy M, Ali S, Frige G, Minucci S, Coombes RC, Magnani L. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat Commun 2015; 6:10044. [PMID: 26610607 PMCID: PMC4674692 DOI: 10.1038/ncomms10044] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/28/2015] [Indexed: 12/24/2022] Open
Abstract
Endocrine therapies target the activation of the oestrogen receptor alpha (ERα) via distinct mechanisms, but it is not clear whether breast cancer cells can adapt to treatment using drug-specific mechanisms. Here we demonstrate that resistance emerges via drug-specific epigenetic reprogramming. Resistant cells display a spectrum of phenotypical changes with invasive phenotypes evolving in lines resistant to the aromatase inhibitor (AI). Orthogonal genomics analysis of reprogrammed regulatory regions identifies individual drug-induced epigenetic states involving large topologically associating domains (TADs) and the activation of super-enhancers. AI-resistant cells activate endogenous cholesterol biosynthesis (CB) through stable epigenetic activation in vitro and in vivo. Mechanistically, CB sparks the constitutive activation of oestrogen receptors alpha (ERα) in AI-resistant cells, partly via the biosynthesis of 27-hydroxycholesterol. By targeting CB using statins, ERα binding is reduced and cell invasion is prevented. Epigenomic-led stratification can predict resistance to AI in a subset of ERα-positive patients.
Collapse
Affiliation(s)
- Van T. M. Nguyen
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Iros Barozzi
- IFOM-IEO Campus, European Institute of Oncology, Milan 20139, Italy
| | - Monica Faronato
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ylenia Lombardo
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Jennifer H. Steel
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Naina Patel
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Philippa Darbre
- School of Biological Science, University of Reading, Reading RG6 6LA, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest H-1117, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest H-1117, Hungary
| | | | - Alba Meira
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Darren K. Patten
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Valentina Vircillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS) 87036, Italy
| | | | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Gianmaria Frige
- IFOM-IEO Campus, European Institute of Oncology, Milan 20139, Italy
| | - Saverio Minucci
- IFOM-IEO Campus, European Institute of Oncology, Milan 20139, Italy
| | - R. Charles Coombes
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| |
Collapse
|
194
|
Treatment with PPARα Agonist Clofibrate Inhibits the Transcription and Activation of SREBPs and Reduces Triglyceride and Cholesterol Levels in Liver of Broiler Chickens. PPAR Res 2015; 2015:347245. [PMID: 26693219 PMCID: PMC4674622 DOI: 10.1155/2015/347245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/16/2015] [Accepted: 10/28/2015] [Indexed: 12/04/2022] Open
Abstract
PPARα agonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride- and cholesterol-lowering effect of the PPARα agonist clofibrate in broiler chickens. We observed that PPARα agonist clofibrate decreases the mRNA and protein levels of LXRα and the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASN and GPAM) and SREBP2 (HMGCR and LDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level of INSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPARα agonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens.
Collapse
|
195
|
Tominaga T, Dutta RK, Joladarashi D, Doi T, Reddy JK, Kanwar YS. Transcriptional and Translational Modulation of myo-Inositol Oxygenase (Miox) by Fatty Acids: IMPLICATIONS IN RENAL TUBULAR INJURY INDUCED IN OBESITY AND DIABETES. J Biol Chem 2015; 291:1348-67. [PMID: 26578517 DOI: 10.1074/jbc.m115.698191] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Indexed: 11/06/2022] Open
Abstract
The kidney is one of the target organs for various metabolic diseases, including diabetes, metabolic syndrome, and obesity. Most of the metabolic studies underscore glomerular pathobiology, although the tubulo-interstitial compartment has been underemphasized. This study highlights mechanisms concerning the pathobiology of tubular injury in the context of myo-inositol oxygenase (Miox), a tubular enzyme. The kidneys of mice fed a high fat diet (HFD) had increased Miox expression and activity, and the latter was related to phosphorylation of serine/threonine residues. Also, expression of sterol regulatory element-binding protein1 (Srebp1) and markers of cellular/nuclear damage was increased along with accentuated apoptosis and loss of tubular brush border. Similar results were observed in cells treated with palmitate/BSA. Multiple sterol-response elements and E-box motifs were found in the miox promoter, and its activity was modulated by palmitate/BSA. Electrophoretic mobility and ChIP assays confirmed binding of Srebp to consensus sequences of the miox promoter. Exposure of palmitate/BSA-treated cells to rapamycin normalized Miox expression and prevented Srebp1 nuclear translocation. In addition, rapamycin treatment reduced p53 expression and apoptosis. Like rapamycin, srebp siRNA reduced Miox expression. Increased expression of Miox was associated with the generation of reactive oxygen species (ROS) in kidney tubules of mice fed an HFD and cell exposed to palmitate/BSA. Both miox and srebp1 siRNAs reduced generation of ROS. Collectively, these findings suggest that HFD or fatty acids modulate transcriptional, translational, and post-translational regulation of Miox expression/activity and underscore Miox being a novel target of the transcription factor Srebp1. Conceivably, activation of the mTORC1/Srebp1/Miox pathway leads to the generation of ROS culminating into tubulo-interstitial injury in states of obesity.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Rajesh K Dutta
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Darukeshwara Joladarashi
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Toshio Doi
- the Department of Nephrology, University of Tokushima, Tokushima, Japan
| | - Janardan K Reddy
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Yashpal S Kanwar
- From the Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
196
|
Cheng C, Ru P, Geng F, Liu J, Yoo JY, Wu X, Cheng X, Euthine V, Hu P, Guo JY, Lefai E, Kaur B, Nohturfft A, Ma J, Chakravarti A, Guo D. Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth. Cancer Cell 2015; 28:569-581. [PMID: 26555173 PMCID: PMC4643405 DOI: 10.1016/j.ccell.2015.09.021] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/04/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.
Collapse
Affiliation(s)
- Chunming Cheng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Peng Ru
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Feng Geng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Junfeng Liu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ji Young Yoo
- Department of Neurosurgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaoning Wu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiang Cheng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Vanessa Euthine
- CarMeN Laboratory, INSERM U1060, INRA 1397, Faculté de Médecine Lyon Sud BP 12, Université de Lyon, 69921 Oullins Cedex, France
| | - Peng Hu
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jeffrey Yunhua Guo
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Etienne Lefai
- CarMeN Laboratory, INSERM U1060, INRA 1397, Faculté de Médecine Lyon Sud BP 12, Université de Lyon, 69921 Oullins Cedex, France
| | - Balveen Kaur
- Department of Neurosurgery, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Axel Nohturfft
- Vascular Biology Research Centre, St. George's University of London, London SW17 0RE, UK
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
197
|
A MARCH6 and IDOL E3 Ubiquitin Ligase Circuit Uncouples Cholesterol Synthesis from Lipoprotein Uptake in Hepatocytes. Mol Cell Biol 2015; 36:285-94. [PMID: 26527619 DOI: 10.1128/mcb.00890-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/27/2015] [Indexed: 11/20/2022] Open
Abstract
Cholesterol synthesis and lipoprotein uptake are tightly coordinated to ensure that the cellular level of cholesterol is adequately maintained. Hepatic dysregulation of these processes is associated with pathological conditions, most notably cardiovascular disease. Using a genetic approach, we have recently identified the E3 ubiquitin ligase MARCH6 as a regulator of cholesterol biosynthesis, owing to its ability to promote degradation of the rate-limiting enzymes 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMGCR) and squalene epoxidase (SQLE). Here, we present evidence for MARCH6 playing a multifaceted role in the control of cholesterol homeostasis in hepatocytes. We identify MARCH6 as an endogenous inhibitor of the sterol regulatory element binding protein (SREBP) transcriptional program. Accordingly, loss of MARCH6 increases expression of SREBP-regulated genes involved in cholesterol biosynthesis and lipoprotein uptake. Unexpectedly, this is associated with a decrease in cellular lipoprotein uptake, induced by enhanced lysosomal degradation of the low-density lipoprotein receptor (LDLR). Finally, we provide evidence that induction of the E3 ubiquitin ligase IDOL represents the molecular mechanism underlying this MARCH6-induced phenotype. Our study thus highlights a MARCH6-dependent mechanism to direct cellular cholesterol accretion that relies on uncoupling of cholesterol synthesis from lipoprotein uptake.
Collapse
|
198
|
A novel peroxisome proliferator response element modulates hepatic low-density lipoprotein receptor gene transcription in response to PPARδ activation. Biochem J 2015; 472:275-86. [PMID: 26443862 DOI: 10.1042/bj20150666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/06/2015] [Indexed: 11/17/2022]
Abstract
The hepatic expression of low-density lipoprotein (LDL) receptor (LDLR) gene is regulated primarily at the transcriptional level by a sterol-regulatory element (SRE) in its proximal promoter region which is the site of action of SRE-binding protein 2 (SREBP2). However whether additional cis-regulatory elements contribute to LDLR transcription has not been fully explored. We investigated the function of a putative peroxisome proliferator-activated receptor (PPAR)-response element (PPRE) sequence motif located at -768 to -752 bases upstream of the transcription start site of human LDLR gene in response to PPARδ activation. Promoter luciferase reporter analyses showed that treating HepG2 cells with PPARδ agonist L165041 markedly increased the activity of a full-length LDLR promoter construct (pLDLR-1192) without any effects on the shorter promoter reporter pLDLR-234 that contains only the core regulatory elements SRE-1 and SP1 sites. Importantly, mutation of the PPRE sequence greatly attenuated the induction of the full-length LDLR promoter activity by L165041 without affecting rosuvastatin (RSV)-mediated transactivation. EMSA and ChIP assay further confirmed the binding of PPARδ to the LDLR-PPRE site. Treating HepG2 cells with L165041 elevated the mRNA and protein expressions of LDLR without affecting the LDLR mRNA decay rate. The induction of LDLR expression by PPARδ agonist was further observed in liver tissue of mice and hamsters treated with L165041. Altogether, our studies identify a novel PPRE-mediated regulatory mechanism for LDLR transcription and suggest that combined treatment of statin with PPARδ agonists may have advantageous effects on LDLR expression.
Collapse
|
199
|
Goedeke L, Rotllan N, Canfrán-Duque A, Aranda JF, Ramírez CM, Araldi E, Lin CS, Anderson NN, Wagschal A, de Cabo R, Horton JD, Lasunción MA, Näär AM, Suárez Y, Fernández-Hernando C. MicroRNA-148a regulates LDL receptor and ABCA1 expression to control circulating lipoprotein levels. Nat Med 2015; 21:1280-9. [PMID: 26437365 PMCID: PMC4711995 DOI: 10.1038/nm.3949] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The hepatic low-density lipoprotein receptor (LDLR) pathway is essential for clearing circulating LDL-cholesterol (LDL-C). While the transcriptional regulation of LDLR is well-characterized, the post-transcriptional mechanisms which govern LDLR expression are just beginning to emerge. Here, we developed a high-throughput genome-wide screening assay to systematically identify microRNAs (miRNAs) that regulate LDLR activity in human hepatic cells. From this screen, we characterize miR-148a as a negative regulator of LDLR expression and activity, and define a novel SREBP1-mediated pathway by which miR-148a regulates LDL-C uptake. Importantly, inhibition of miR-148a increases hepatic LDLR expression and decreases plasma LDL-C in vivo. We also provide evidence that miR-148a regulates hepatic ABCA1 expression and circulating HDL-C levels. Collectively, these studies uncover miR-148a as an important regulator of hepatic LDL-C clearance through direct regulation of LDLR expression, and demonstrate the therapeutic potential of inhibiting miR-148a to ameliorate the elevated LDL-C/HDL-C ratio, a prominent risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Juan F Aranda
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elisa Araldi
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Chin-Sheng Lin
- Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Norma N Anderson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandre Wagschal
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Madrid, Spain
| | - Anders M Näär
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts, USA.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut, USA.,Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA.,Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
200
|
Ochiai A, Miyata S, Shimizu M, Inoue J, Sato R. Piperine Induces Hepatic Low-Density Lipoprotein Receptor Expression through Proteolytic Activation of Sterol Regulatory Element-Binding Proteins. PLoS One 2015; 10:e0139799. [PMID: 26431033 PMCID: PMC4592265 DOI: 10.1371/journal.pone.0139799] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.
Collapse
Affiliation(s)
- Ayasa Ochiai
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Miyata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (JI); (RS)
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (JI); (RS)
| |
Collapse
|