151
|
Denisenko-Nehrbass N, Faivre-Sarrailh C, Goutebroze L, Girault JA. A molecular view on paranodal junctions of myelinated fibers. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:99-103. [PMID: 11755788 DOI: 10.1016/s0928-4257(01)00085-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.
Collapse
|
152
|
Mathis C, Denisenko-Nehrbass N, Girault JA, Borrelli E. Essential role of oligodendrocytes in the formation and maintenance of central nervous system nodal regions. Development 2001; 128:4881-90. [PMID: 11731467 DOI: 10.1242/dev.128.23.4881] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane of myelinated axons is divided into functionally distinct domains characterized by the enrichment of specific proteins. The mechanisms responsible for this organization have not been fully identified. To further address the role of oligodendrocytes in the functional segmentation of the axolemma in vivo, the distribution of nodal (Na+ channels, ankyrin G), paranodal (paranodin/contactin-associated-protein) and juxtaparanodal (Kv1.1 K+ channels) axonal markers, was studied in the brain of MBP-TK and jimpy mice. In MBP-TK transgenic mice, oligodendrocyte ablation was selectively induced by FIAU treatment before and during the onset of myelination. In jimpy mice, oligodendrocytes degenerate spontaneously within the first postnatal weeks after the onset of myelination. Interestingly, in MBP-TK mice treated for 1-20 days with FIAU, despite the ablation of more than 95% of oligodendrocytes, the protein levels of all tested nodal markers was unaltered. Nevertheless, these proteins failed to cluster in the nodal regions. By contrast, in jimpy mice, despite a diffused localization of paranodin, the formation of nodal clusters of Na+ channels and ankyrin G was observed. Furthermore, K+ channels clusters were transiently visible, but were in direct contact with nodal markers. These results demonstrate that the organization of functional domains in myelinated axons is oligodendrocyte dependent. They also show that the presence of these cells is a requirement for the maintenance of nodal and paranodal regions.
Collapse
Affiliation(s)
- C Mathis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM/CNRS/ULP, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | |
Collapse
|
153
|
Abstract
The node of Ranvier is a complex macromolecular assembly of ion channels and other proteins that is specialized for the rapid propagation of the action potential. A full understanding of the processes responsible for the assembly and maintenance of the node requires first the identification and characterization of the proteins found there. Here we show that NG2, a structurally unique chondroitin sulfate proteoglycan, is a molecular component of the node of Ranvier in the peripheral nervous system. In adult sciatic nerve, NG2 is (1) associated with thin, elongated fibroblast-like cells, (2) on some but not all basal laminae, and (3) at nodes of Ranvier. At the nodes, NG2 is restricted to the nodal gap and is absent from the paranodal or juxtaparanodal region. In dissociated cell cultures of adult sciatic nerve, perineurial fibroblasts but not Schwann cells express NG2 on their surfaces. Approximately 45% of the total NG2 in peripheral nerves is in a soluble, rather than particulate, subcellular compartment. NG2 is also present in membrane fractions that also contain high levels of voltage-dependent sodium channels, caspr, and neuron-glia related cell adhesion molecule. These medium-density membranes likely correspond to the nodal and paranodal region of the axon-Schwann cell unit. These results suggest a model in which perineurial fibroblasts secrete or shed NG2, which subsequently associates with nodes of Ranvier. The growth-inhibitory and anti-adhesive properties of NG2 may limit the lateral extension of myelinating Schwann cells as nodes mature. NG2 may also participate in the barrier functions of the perineurial linings of the nerve.
Collapse
|
154
|
Abstract
Contactin (also known as F3, F11) is a surface glycoprotein that has significant homology with the beta2 subunit of voltage-gated Na(+) channels. Contactin and Na(+) channels can be reciprocally coimmunoprecipitated from brain homogenates, indicating association within a complex. Cells cotransfected with Na(+) channel Na(v)1.2alpha and beta1 subunits and contactin have threefold to fourfold higher peak Na(+) currents than cells with Na(v)1.2alpha alone, Na(v)1.2/beta1, Na(v)1.2/contactin, or Na(v)1.2/beta1/beta2. These cells also have a correspondingly higher saxitoxin binding, suggesting an increased Na(+) channel surface membrane density. Coimmunoprecipitation of different subunits from cell lines shows that contactin interacts specifically with the beta1 subunit. In the PNS, immunocytochemical studies show a transient colocalization of contactin and Na(+) channels at new nodes of Ranvier forming during remyelination. In the CNS, there is a particularly high level of colocalization of Na(+) channels and contactin at nodes both during development and in the adult. Contactin may thus significantly influence the functional expression and distribution of Na(+) channels in neurons.
Collapse
|
155
|
Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J Neurosci 2001. [PMID: 11567047 DOI: 10.1523/jneurosci.21-19-07568.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell recognition proteins of the contactin-associated protein (Caspr) family demarcate distinct domains along myelinated axons. Caspr is present at the paranodal junction formed between the axon and myelinating glial cells, whereas Caspr2 is localized and associates with K(+) channels at the adjacent juxtaparanodal region. Here we investigated the distribution of Caspr2 during development of peripheral nerves of normal and galactolipids-deficient [ceramide galactosyl transferase (CGT)-/-] mice. This mutant exhibits paranodal abnormalities, lacking all putative adhesion components of this junction, including Caspr, contactin, and neurofascin 155. In sciatic nerves of this mutant, Caspr2 was not found at the juxtaparanodal region but was concentrated instead at the paranodes with Kv1.2. Similar distribution of Caspr2 was found in the PNS of contactin knock-out mice, which also lack Caspr in their paranodes. During development of wild-type peripheral nerves, Caspr2 and Kv1.2 were initially detected at the paranodes before relocating to the adjacent juxtaparanodal region. This transition was not observed in CGT mice, where Caspr2 and Kv1.2 remained paranodal. Double labeling for Caspr and Caspr2 demonstrated that these two related proteins occupied mutually excluding domains along the axon and revealed the presence of both paranodal and internodal barrier-like structures that are delineated by Caspr. Finally, we found that the disruption of axon-glia contact in CGT-/- nerves also affects the localization of the cytoskeleton-associated protein 4.1B along the axon. Altogether, our results reveal a sequential appearance of members of the Caspr family at different domains along myelinated axons and suggest that the localization of Caspr2 may be controlled by the generation of Caspr-containing barriers along the axon.
Collapse
|
156
|
Abstract
alpha-Latrotoxin, a potent neurotoxin from black widow spider venom, triggers synaptic vesicle exocytosis from presynaptic nerve terminals. alpha-Latrotoxin is a large protein toxin (120 kDa) that contains 22 ankyrin repeats. In stimulating exocytosis, alpha-latrotoxin binds to two distinct families of neuronal cell-surface receptors, neurexins and CLs (Cirl/latrophilins), which probably have a physiological function in synaptic cell adhesion. Binding of alpha-latrotoxin to these receptors does not in itself trigger exocytosis but serves to recruit the toxin to the synapse. Receptor-bound alpha-latrotoxin then inserts into the presynaptic plasma membrane to stimulate exocytosis by two distinct transmitter-specific mechanisms. Exocytosis of classical neurotransmitters (glutamate, GABA, acetylcholine) is induced in a calcium-independent manner by a direct intracellular action of alpha-latrotoxin, while exocytosis of catecholamines requires extracellular calcium. Elucidation of precisely how alpha-latrotoxin works is likely to provide major insight into how synaptic vesicle exocytosis is regulated, and how the release machineries of classical and catecholaminergic neurotransmitters differ.
Collapse
Affiliation(s)
- T C Südhof
- Howard Hughes Medical Institute, Center for Basic Neuroscience, and the Department of Molecular Genetics, The University of Texas Southwestern Medical Center at Dallas, Texas 75390-9111, USA.
| |
Collapse
|
157
|
Venken K, Meuleman J, Irobi J, Ceuterick C, Martini R, De Jonghe P, Timmerman V. Caspr1/Paranodin/Neurexin IV is most likely not a common disease-causing gene for inherited peripheral neuropathies. Neuroreport 2001; 12:2609-14. [PMID: 11496158 DOI: 10.1097/00001756-200108080-00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Contactin associated protein 1 (Caspr1/Paranodin/Neurexin IV) is an axonal transmembrane molecule mainly localised at the paranodal junction. Since molecular alterations in septate-like junctions at the paranodes might have important consequences for the function of the nerve fiber, we considered that Caspr1 could be involved in the pathogenesis of inherited peripheral neuropathies. In this study, we physically mapped the Caspr1 gene on chromosome 17q21.1 and determined its genomic structure. We performed a mutation analysis of the Caspr1 gene in a cohort of 64 unrelated patients afflicted with distinct inherited peripheral neuropathies. Since no disease causing mutations were found, we suggest that Caspr1 is probably not a common cause of inherited peripheral neuropathies.
Collapse
Affiliation(s)
- K Venken
- Peripheral Neuropathy Group, Molecular Genetics Department, Flanders Interuniversity Institute for Biotechnology (VIB), B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
Voltage-gated Na(+) and K(+) channels are localized to distinct subcellular domains in mammalian myelinated nerve fibers. Specifically, Na(+) channels are clustered in high densities at nodes of Ranvier, while K(+) channels are found in juxtaparanodal zones just beyond regions of axoglial contact where sequential layers of the myelin sheath terminate. Specific targeting, clustering, and maintenance of these channels in their respective domains are essential to achieve high conduction velocities of action potential propagation. The cellular, molecular, and developmental mechanisms that exist to achieve this neuronal specialization are discussed and reviewed. Current evidence points to a prominent role in channel clustering played by myelinating glial cells, and sites of axoglial contact in particular.
Collapse
Affiliation(s)
- M N Rasband
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-5215, USA
| | | |
Collapse
|
159
|
Abstract
Axoglial junctions flank the nodes of Ranvier in myelinated nerves. These large cell adhesion complexes have an essential role in sequestering potassium channels located under the myelin sheath from nodal sodium channels. Recent studies have shed new light on the composition and function of axoglial junctions.
Collapse
Affiliation(s)
- P J Brophy
- Department of Preclinical Veterinary Sciences, University of Edinburgh, EH9 1QH, Edinburgh, UK.
| |
Collapse
|
160
|
Brown AA, Xu T, Arroyo EJ, Levinson SR, Brophy PJ, Peles E, Scherer SS. Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats. J Neurosci Res 2001; 65:139-49. [PMID: 11438983 DOI: 10.1002/jnr.1137] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We examined the organization of the molecular components of the nodal region in spontaneously diabetic BB-Wistar rats. Frozen sections and teased fibers from the sciatic nerves were immunostained for nodal (voltage-gated Na(+) channels, ankyrin(G), and ezrin), paranodal (contactin, Caspr, and neurofascin 155 kDa), and juxtaparanodal (Caspr2, the Shaker-type K(+) channels Kv1.1 and Kv1.2, and their associated subunit Kvbeta2) proteins. All of these proteins were properly localized in myelinated fibers from rats that had been diabetic for 15-44 days, compared to age-matched, nondiabetic animals. These results demonstrate that the axonal membrane is not reorganized, so nodal reorganization is not likely to be the cause of nerve conduction slowing in this animal model of acute diabetes.
Collapse
Affiliation(s)
- A A Brown
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia 19104, USA
| | | | | | | | | | | | | |
Collapse
|
161
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
162
|
Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 2001; 30:385-97. [PMID: 11395001 DOI: 10.1016/s0896-6273(01)00296-3] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.
Collapse
MESH Headings
- Aging
- Animals
- Axons/physiology
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Contactins
- Crosses, Genetic
- Gene Expression Regulation, Developmental
- Kv1.1 Potassium Channel
- Kv1.2 Potassium Channel
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Models, Neurological
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Myelinated/ultrastructure
- Neuroglia/physiology
- Potassium Channels/physiology
- Potassium Channels, Voltage-Gated
- Ranvier's Nodes/physiology
- Ranvier's Nodes/ultrastructure
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Schwann Cells/physiology
- Sciatic Nerve/physiology
Collapse
Affiliation(s)
- M E Boyle
- Neurobiology Program, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
163
|
Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 2001; 30:369-83. [PMID: 11395000 DOI: 10.1016/s0896-6273(01)00294-x] [Citation(s) in RCA: 427] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction.
Collapse
Affiliation(s)
- M A Bhat
- Cardiovascular Research Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Baumann N, Pham-Dinh D. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 2001; 81:871-927. [PMID: 11274346 DOI: 10.1152/physrev.2001.81.2.871] [Citation(s) in RCA: 1243] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), and astrocytes constitute macroglia. This review deals with the recent progress related to the origin and differentiation of the oligodendrocytes, their relationships to other neural cells, and functional neuroglial interactions under physiological conditions and in demyelinating diseases. One of the problems in studies of the CNS is to find components, i.e., markers, for the identification of the different cells, in intact tissues or cultures. In recent years, specific biochemical, immunological, and molecular markers have been identified. Many components specific to differentiating oligodendrocytes and to myelin are now available to aid their study. Transgenic mice and spontaneous mutants have led to a better understanding of the targets of specific dys- or demyelinating diseases. The best examples are the studies concerning the effects of the mutations affecting the most abundant protein in the central nervous myelin, the proteolipid protein, which lead to dysmyelinating diseases in animals and human (jimpy mutation and Pelizaeus-Merzbacher disease or spastic paraplegia, respectively). Oligodendrocytes, as astrocytes, are able to respond to changes in the cellular and extracellular environment, possibly in relation to a glial network. There is also a remarkable plasticity of the oligodendrocyte lineage, even in the adult with a certain potentiality for myelin repair after experimental demyelination or human diseases.
Collapse
Affiliation(s)
- N Baumann
- Institut National de la Santé et de la Recherche Médicale U. 495, Biology of Neuron-Glia Interactions, Salpêtrière Hospital, Paris, France.
| | | |
Collapse
|
165
|
Boiko T, Rasband MN, Levinson SR, Caldwell JH, Mandel G, Trimmer JS, Matthews G. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 2001; 30:91-104. [PMID: 11343647 DOI: 10.1016/s0896-6273(01)00265-3] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Voltage-dependent sodium channels are uniformly distributed along unmyelinated axons, but are highly concentrated at nodes of Ranvier in myelinated axons. Here, we show that this pattern is associated with differential localization of distinct sodium channel alpha subunits to the unmyelinated and myelinated zones of the same retinal ganglion cell axons. In adult axons, Na(v)1.2 is localized to the unmyelinated zone, whereas Na(v)1.6 is specifically targeted to nodes. During development, Na(v)1.2 is expressed first and becomes clustered at immature nodes of Ranvier, but as myelination proceeds, Na(v)1.6 replaces Na(v)1.2 at nodes. In Shiverer mice, which lack compact myelin, Na(v)1.2 is found throughout adult axons, whereas little Na(v)1.6 is detected. Together, these data show that sodium channel isoforms are differentially targeted to distinct domains of the same axon in a process associated with formation of compact myelin.
Collapse
Affiliation(s)
- T Boiko
- Department of Neurobiology and Behavior, The State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
Myelinating Schwann cells control the number of neurofilaments and elevate the phosphorylation state of neurofilaments in the axon, eventually leading to the typical large axon caliber. Conversely, absence of myelin leads to lower amounts of neurofilaments, reduced phosphorylation levels, and smaller axon diameters. In addition, myelinating Schwann cells mediate the spacing of Na(+) channel clusters during development of the node of Ranvier. When axons are associated with mutant Schwann cells in inherited neuropathies, their calibers are reduced and their neurofilaments are less phosphorylated and more closely spaced. Also, axonal transport is reduced and axons degenerate at the distal ends of long nerves. Myelin-associated glycoprotein may mediate some aspects of Schwann cell-axon communication, but much remains to be learned about the molecular bases of Schwann cell-axon communication.
Collapse
Affiliation(s)
- R Martini
- Department of Neurology, Section of Developmental Neurobiology, University of Würzburg, Josef-Schneider-Strasse 11, D-97080 Würzburg, Germany.
| |
Collapse
|
167
|
Contactin-associated protein (Caspr) and contactin form a complex that is targeted to the paranodal junctions during myelination. J Neurosci 2001. [PMID: 11069942 DOI: 10.1523/jneurosci.20-22-08354.2000] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Specialized paranodal junctions form between the axon and the closely apposed paranodal loops of myelinating glia. They are interposed between sodium channels at the nodes of Ranvier and potassium channels in the juxtaparanodal regions; their precise function and molecular composition have been elusive. We previously reported that Caspr (contactin-associated protein) is a major axonal constituent of these junctions (Einheber et al., 1997). We now report that contactin colocalizes and forms a cis complex with Caspr in the paranodes and juxtamesaxon. These proteins coextract and coprecipitate from neurons, myelinating cultures, and myelin preparations enriched in junctional markers; they fractionate on sucrose gradients as a high-molecular-weight complex, suggesting that other proteins may also be associated with this complex. Neurons express two contactin isoforms that differ in their extent of glycosylation: a lower-molecular-weight phosphatidylinositol phospholipase C (PI-PLC)-resistant form is associated specifically with Caspr in the paranodes, whereas a higher-molecular-weight form of contactin, not associated with Caspr, is present in central nodes of Ranvier. These results suggest that the targeting of contactin to different axonal domains may be determined, in part, via its association with Caspr. Treatment of myelinating cocultures of Schwann cells and neurons with RPTPbeta-Fc, a soluble construct containing the carbonic anhydrase domain of the receptor protein tyrosine phosphatase beta (RPTPbeta), a potential glial receptor for contactin, blocks the localization of the Caspr/contactin complex to the paranodes. These results strongly suggest that a preformed complex of Caspr and contactin is targeted to the paranodal junctions via extracellular interactions with myelinating glia.
Collapse
|
168
|
Melendez-Vasquez CV, Rios JC, Zanazzi G, Lambert S, Bretscher A, Salzer JL. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc Natl Acad Sci U S A 2001; 98:1235-40. [PMID: 11158623 PMCID: PMC14738 DOI: 10.1073/pnas.98.3.1235] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the adult peripheral nerve, microvillous processes of myelinating Schwann cells project to the nodes of Ranvier; their composition and physiologic function have not been established. As the ezrin-radixin-moesin (ERM) proteins are expressed in the microvilli of many epithelial cells, we have examined the expression and distribution of these proteins in Schwann cells and neurons in vitro and in vivo. Cultured Schwann cells express high levels of all three proteins and the ezrin-binding protein 50, whereas neurons express much lower, although detectable, levels of radixin and moesin. Ezrin is specific for Schwann cells. All three ERM proteins are expressed predominantly at the membrane of cultured Schwann cells, notably in their microvilli. In vivo, the ERM proteins are concentrated strikingly in the nodal processes of myelinating Schwann cells. Because these processes are devoid of myelin proteins, they represent a unique compartment of the myelinating Schwann cell. During development, the ERM proteins become concentrated at the ends of Schwann cells before myelin basic protein expression, demonstrating that Schwann cells are polarized longitudinally at the onset of myelination. ERM-positive Schwann cell processes overlie and are associated closely with nascent nodes of Ranvier, identified by clusters of ankyrin G. Ankyrin accumulation at the node precedes that of Caspr at the paranodes and therefore does not depend on the presence of mature paranodal junctions. These results demonstrate that nodes of Ranvier in the peripheral nervous system form in contact with specialized processes of myelinating Schwann cells that are highly enriched in ERM proteins.
Collapse
Affiliation(s)
- C V Melendez-Vasquez
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
169
|
Ohara R, Yamakawa H, Nakayama M, Ohara O. Type II brain 4.1 (4.1B/KIAA0987), a member of the protein 4.1 family, is localized to neuronal paranodes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:41-52. [PMID: 11146105 DOI: 10.1016/s0169-328x(00)00233-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Histochemical analyses of type II brain 4.1/4.1B/KIAA0987, a member of the protein 4.1 family, were carried out in rat brain. In situ hybridization (ISH) showed that type II brain 4.1 mRNA is expressed in a variety of neuronal cells. In particular, type II brain 4.1 mRNA was actively transcribed in the cells of the mesencephalon and the brainstem, which have large myelinated nerve fibers. Expression of type II brain 4.1 mRNA was not observed at least in glial cells distributed in nerve fiber tracts. In immunohistochemical studies using anti-type II brain 4.1-specific antibody, the major immunosignals appeared as brilliant pairs of dots along nerve fibers. Such immunosignals were detected throughout the brain, but were highly concentrated in nerve fiber tracts. These data suggested that type II brain 4.1 is predominantly localized to neuronal paranodes. Detailed analysis concentrating on the nodal region indicated that type II brain 4.1 is present at the paranodal membrane but not in the axoplasm. Weaker type II brain 4.1-specific immunosignals were observed along the internodal membrane of myelinated axons and in the cytoplasm of some neuronal cells. Finally, comparative immunohistochemical studies using antibodies against the other three protein 4.1 family members, type I brain 4.1/4.1N/KIAA0338, erythroid type 4.1 (4.1R) and 4.1G, demonstrated that each of these proteins is distributed in a unique pattern in the cerebellum. Our results are the first to show that type II brain 4.1 is the only member of the protein 4.1 family localized to neuronal paranodes.
Collapse
Affiliation(s)
- R Ohara
- Department of Human Gene Research, Kazusa DNA Research Institute, Yana 1532-3, Kisarazu 292-0812, Japan.
| | | | | | | |
Collapse
|
170
|
Abstract
In this article we will review the clinical signs and symptoms of diabetic somatic polyneuropathy (DPN), its prevalence and clinical management. Staging and classification of DPN will be exemplified by various staging paradigms of varied sophistication. The results of therapeutic clinical trials will be summarized. The pathogenesis of diabetic neuropathy reviews an extremely complex issue that is still not fully understood. Various recent advances in the understanding of the disease will be discussed, particularly with respect to the differences between neuropathy in the two major types of diabetes. The neuropathology and natural history of diabetic neuropathy will be discussed pointing out the heterogeneities of the disease. Finally, the various prospective therapeutic avenues will be dealt with and discussed.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, MI 48201, USA
| | | | | |
Collapse
|
171
|
Abstract
Myelinated axons are organized into specific domains as the result of interactions with glial cells. Recently, distinct protein complexes of cell adhesion molecules, Na(+) channels and ankyrin G at the nodes, Caspr and contactin in the paranodes, and K(+) channels and Caspr2 in the juxtaparanodal region have been identified, and new insights into the role of the paranodal junctions in the organization of these domains have emerged.
Collapse
Affiliation(s)
- E Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, 76100, Rehovot, Israel.
| | | |
Collapse
|
172
|
Harroch S, Palmeri M, Rosenbluth J, Custer A, Okigaki M, Shrager P, Blum M, Buxbaum JD, Schlessinger J. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta. Mol Cell Biol 2000; 20:7706-15. [PMID: 11003666 PMCID: PMC86347 DOI: 10.1128/mcb.20.20.7706-7715.2000] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPbeta (RPTPbeta; also known as PTPzeta) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPbeta play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPbeta. RPTPbeta-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPbeta is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPbeta-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPbeta-deficient mice. The normal development of neurons and glia in RPTPbeta-deficient mice demonstrates that RPTPbeta function is not necessary for these processes in vivo or that loss of RPTPbeta can be compensated for by other PTPs expressed in the nervous system.
Collapse
Affiliation(s)
- S Harroch
- Department of Pharmacology and the Skirball Institute, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Sugimoto K, Murakawa Y, Zhang W, Xu G, Sima AA. Insulin receptor in rat peripheral nerve: its localization and alternatively spliced isoforms. Diabetes Metab Res Rev 2000; 16:354-63. [PMID: 11025559 DOI: 10.1002/1520-7560(200009/10)16:5<354::aid-dmrr149>3.0.co;2-h] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic neuropathy accompanies both Type 1 and Type 2 diabetes, although it shows in both humans and animal models distinct differences between the two types of diabetes. Progressive paranodal degenerations occurring in Type 1, but not in Type 2, diabetes is believed to account for the more severe functional deficits in Type 1 diabetic rats. This suggests that factors other than hyperglycemia, such as insulin deficiency, may play a pathogenetic role. In this study, we investigated the immunolocalization of the insulin receptor (IR) and the expression of its two alternatively spliced isoforms in adult rat peripheral nerve. METHODS Adult male Wistar rats 6-8 months of age were examined. Both light and ultrastructural immunohistochemistry was employed for localization of IR. The antibody was a mouse monoclonal antibody raised against the beta-subunit of human IR. Reverse transcription polymerase chain reaction (RT-PCR) was used to identify the two IR isoforms in peripheral nerve and seven other organs. Localization of the mRNA message was assessed by in situ hybridization. RESULTS IR was localized to paranodal terminal Schwann cell loops and microvilli and to the paranodal axolemma. Furthermore, IR immunoreactivity was also present in Schmidt-Lantermann incisures. Endoneurial vessels showed IR localization on plasma membranes and in endocytotic vesicles of endothelial cells and pericytes. A high intensity of immunostained IR was found in close proximity to interendothelial tight junctions. Peripheral nerve showed, like the brain, predominantly the high affinity IR lacking exon 11. The mRNA message was localized to Schwann cells, endothelial cells and pericytes. CONCLUSION Peripheral nerve expresses predominantly the high affinity IR, which is localized to strategic structures associated with the blood-nerve barrier and the paranodal ion-channel barrier.
Collapse
Affiliation(s)
- K Sugimoto
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
174
|
Porter BE, Tennekoon G. Myelin and disorders that affect the formation and maintenance of this sheath. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2000; 6:47-58. [PMID: 10899797 DOI: 10.1002/(sici)1098-2779(2000)6:1<47::aid-mrdd7>3.0.co;2-m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- B E Porter
- Departments of Neurology and Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
175
|
Tait S, Gunn-Moore F, Collinson JM, Huang J, Lubetzki C, Pedraza L, Sherman DL, Colman DR, Brophy PJ. An oligodendrocyte cell adhesion molecule at the site of assembly of the paranodal axo-glial junction. J Cell Biol 2000; 150:657-66. [PMID: 10931875 PMCID: PMC2175192 DOI: 10.1083/jcb.150.3.657] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 06/15/2000] [Indexed: 11/22/2022] Open
Abstract
Two major isoforms of the cell adhesion molecule neurofascin NF186 and NF155 are expressed in the central nervous system (CNS). We have investigated their roles in the assembly of the node of Ranvier and show that they are targeted to distinct domains at the node. At the onset of myelination, NF186 is restricted to neurons, whereas NF155 localizes to oligodendrocytes, the myelin-forming glia of the CNS. Coincident with axon ensheathment, NF155 clusters at the paranodal regions of the myelin sheath where it localizes in apposition to the axonal adhesion molecule paranodin/contactin-associated protein (Caspr1), which is a constituent of the septate junction-like axo-glial adhesion zone. Immunoelectron microscopy confirmed that neurofascin is a glial component of the paranodal axo-glial junction. Concentration of NF155 with Caspr1 at the paranodal junctions of peripheral nerves is also a feature of Schwann cells. In Shiverer mutant mice, which assemble neither compact CNS myelin nor normal paranodes, NF155 (though largely retained at the cell body) is also distributed at ectopic sites along axons, where it colocalizes with Caspr1. Hence, NF155 is the first glial cell adhesion molecule to be identified in the paranodal axo-glial junction, where it likely interacts with axonal proteins in close association with Caspr1.
Collapse
Affiliation(s)
- Steven Tait
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Frank Gunn-Moore
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - J. Martin Collinson
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - Jeffery Huang
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Catherine Lubetzki
- INSERM U-495, Biologie des Interactions Neurones/Glie, Hôpital de la Salpetrière, 75651 Paris Cedex 13, France
| | - Liliana Pedraza
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Diane L. Sherman
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| | - David R. Colman
- Department of Biochemistry and Molecular Biology, Program in Cell Adhesion, Mount Sinai School of Medicine, New York, New York 10029
| | - Peter J. Brophy
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Edinburgh EH9 1QH, United Kingdom
| |
Collapse
|
176
|
Trapp BD, Kidd GJ. Axo-glial septate junctions. The maestro of nodal formation and myelination? J Cell Biol 2000; 150:F97-F100. [PMID: 10931879 PMCID: PMC2175180 DOI: 10.1083/jcb.150.3.f97] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2000] [Accepted: 07/18/2000] [Indexed: 11/22/2022] Open
Affiliation(s)
- B D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
177
|
Rasband MN, Shrager P. Ion channel sequestration in central nervous system axons. J Physiol 2000; 525 Pt 1:63-73. [PMID: 10811725 PMCID: PMC2269925 DOI: 10.1111/j.1469-7793.2000.00063.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Accepted: 03/28/2000] [Indexed: 11/29/2022] Open
Abstract
Na+ and K+ channel localization and clustering are essential for proper electrical signal generation and transmission in CNS myelinated nerve fibres. In particular, Na+ channels are clustered at high density at nodes of Ranvier, and Shaker-type K+ channels are sequestered in juxtaparanodal zones, just beyond the paranodal axoglial junctions. The mechanisms of channel localization at nodes of Ranvier in the CNS during development in both normal and hypomyelinating mutant animals are discussed and reviewed. As myelination proceeds, Na+ channels are initially found in broad zones within gaps between neighbouring oligodendroglial processes, and then are condensed into focal clusters. This process appears to depend on the formation of axoglial junctions. K+ channels are first detected in juxtaparanodal zones, and in mutant mice lacking normal axoglial junctions, these channels fail to cluster. In these mice, despite the presence of numerous oligodendrocytes, Na+ channel clusters are rare, and when present, are highly irregular. A number of molecules have recently been described that are candidates for a role in the neuron-glial interactions driving ion channel clustering. This paper reviews the cellular and molecular events responsible for formation of the mature node of Ranvier in the CNS.
Collapse
Affiliation(s)
- M N Rasband
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
178
|
Faivre-Sarrailh C, Gauthier F, Denisenko-Nehrbass N, Le Bivic A, Rougon G, Girault JA. The glycosylphosphatidyl inositol-anchored adhesion molecule F3/contactin is required for surface transport of paranodin/contactin-associated protein (caspr). J Cell Biol 2000; 149:491-502. [PMID: 10769038 PMCID: PMC2175151 DOI: 10.1083/jcb.149.2.491] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Paranodin/contactin-associated protein (caspr) is a transmembrane glycoprotein of the neurexin superfamily that is highly enriched in the paranodal regions of myelinated axons. We have investigated the role of its association with F3/contactin, a glycosylphosphatidyl inositol (GPI)-anchored neuronal adhesion molecule of the Ig superfamily. Paranodin was not expressed at the cell surface when transfected alone in CHO or neuroblastoma cells. Cotransfection with F3 resulted in plasma membrane delivery of paranodin, as analyzed by confocal microscopy and cell surface biotinylation. The region that mediates association with paranodin was mapped to the Ig domains of F3 by coimmunoprecipitation experiments. The association of paranodin with F3 allowed its recruitment to Triton X-100-insoluble microdomains. The GPI anchor of F3 was necessary, but not sufficient for surface expression of paranodin. F3-Ig, a form of F3 deleted of the fibronectin type III (FNIII) repeats, although GPI-linked and expressed at the cell surface, was not recovered in the microdomain fraction and was unable to promote cell surface targeting of paranodin. Thus, a cooperative effect between the GPI anchor, the FNIII repeats, and the Ig regions of F3 is required for recruitment of paranodin into lipid rafts and its sorting to the plasma membrane.
Collapse
Affiliation(s)
- C Faivre-Sarrailh
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS, IBDM, 13288 Marseille, France.
| | | | | | | | | | | |
Collapse
|
179
|
Hoover KB, Bryant PJ. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr Opin Cell Biol 2000; 12:229-34. [PMID: 10712924 DOI: 10.1016/s0955-0674(99)00080-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein 4.1 (also called band 4.1 or simply 4.1) was originally identified as an abundant protein of the human erythrocyte, in which it stabilizes the spectrin/actin cytoskeleton. The protein and its relatives have since been found in many cell types of metazoan organisms and they are often concentrated in the nucleus, as well as in cell-cell junctions. They form multimolecular complexes with transmembrane and membrane-associated proteins, and these complexes may be important for both structural stability and signal transduction at sites of cell contact.
Collapse
Affiliation(s)
- K B Hoover
- Developmental Biology Center, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
180
|
Baba H, Akita H, Ishibashi T, Inoue Y, Nakahira K, Ikenaka K. Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K+ channel clustering. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(19991215)58:6<752::aid-jnr3>3.0.co;2-d] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
181
|
Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 1999; 147:1145-52. [PMID: 10601330 PMCID: PMC2168103 DOI: 10.1083/jcb.147.6.1145] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1999] [Accepted: 11/03/1999] [Indexed: 11/22/2022] Open
Abstract
Mice incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted paranodal axo-glial interactions in the central and peripheral nervous systems. Using these mutants, we have analyzed the role that axo-glial interactions play in the establishment of axonal protein distribution in the region of the node of Ranvier. Whereas the clustering of the nodal proteins, sodium channels, ankyrin(G), and neurofascin was only slightly affected, the distribution of potassium channels and paranodin, proteins that are normally concentrated in the regions juxtaposed to the node, was dramatically altered. The potassium channels, which are normally concentrated in the paranode/juxtaparanode, were not restricted to this region but were detected throughout the internode in the galactolipid-defi- cient mice. Paranodin/contactin-associated protein (Caspr), a paranodal protein that is a potential neuronal mediator of axon-myelin binding, was not concentrated in the paranodal regions but was diffusely distributed along the internodal regions. Collectively, these findings suggest that the myelin galactolipids are essential for the proper formation of axo-glial interactions and demonstrate that a disruption in these interactions results in profound abnormalities in the molecular organization of the paranodal axolemma.
Collapse
Affiliation(s)
- Jeffrey L. Dupree
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jean-Antoine Girault
- Institut National de la Santé et la Recherche Médicale, Unit 114, Collège de France, Paris 75231, France
| | - Brian Popko
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
182
|
Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P, Peles E. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron 1999; 24:1037-47. [PMID: 10624965 DOI: 10.1016/s0896-6273(00)81049-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rapid conduction in myelinated axons depends on the generation of specialized subcellular domains to which different sets of ion channels are localized. Here, we describe the identification of Caspr2, a mammalian homolog of Drosophila Neurexin IV (Nrx-IV), and show that this neurexin-like protein and the closely related molecule Caspr/Paranodin demarcate distinct subdomains in myelinated axons. While contactin-associated protein (Caspr) is present at the paranodal junctions, Caspr2 is precisely colocalized with Shaker-like K+ channels in the juxtaparanodal region. We further show that Caspr2 specifically associates with Kv1.1, Kv1.2, and their Kvbeta2 subunit. This association involves the C-terminal sequence of Caspr2, which contains a putative PDZ binding site. These results suggest a role for Caspr family members in the local differentiation of the axon into distinct functional subdomains.
Collapse
Affiliation(s)
- S Poliak
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Krämer EM, Klein C, Koch T, Boytinck M, Trotter J. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. J Biol Chem 1999; 274:29042-9. [PMID: 10506155 DOI: 10.1074/jbc.274.41.29042] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In many cell types, glycosylphosphatidylinositol (GPI)-anchored proteins are sequestered in detergent-resistant membrane rafts. These are plasma membrane microdomains enriched in glycosphingolipids and cholesterol and are suggested to be platforms for cell signaling. Concomitant with the synthesis of myelin glycosphingolipids, maturing oligodendrocytes progressively associate GPI-anchored proteins, including the adhesion molecules NCAM 120 and F3, in rafts. Here we show that these microdomains include Fyn and Lyn kinases. Both kinases are maximally active in myelin prepared from young animals, correlating with early stages of myelination. In the rafts, Fyn kinase is tightly associated with NCAM 120 and F3. In contrast, in oligodendrocyte progenitor cells lacking rafts or in raft-free membrane domains of more mature cells, F3 does not associate with Fyn. The addition of anti-F3 antibodies to oligodendrocytes results in stimulation of Fyn kinase specifically in rafts. Compartmentation of oligodendrocyte GPI-anchored proteins in rafts is thus a prerequisite for association with Fyn, permitting kinase activation. Interaction of oligodendrocyte F3 with axonal ligands such as L1 and ensuing kinase activation may play a crucial role in initiating myelination.
Collapse
Affiliation(s)
- E M Krämer
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
184
|
Abstract
Na(+) channel clustering at nodes of Ranvier in the developing rat optic nerve was analyzed to determine mechanisms of localization, including the possible requirement for glial contact in vivo. Immunofluorescence labeling for myelin-associated glycoprotein and for the protein Caspr, a component of axoglial junctions, indicated that oligodendrocytes were present, and paranodal structures formed, as early as postnatal day 7 (P7). However, the first Na(+) channel clusters were not seen until P9. Most of these were broad, and all were excluded from paranodal regions of axoglial contact. The number of detected Na(+) channel clusters increased rapidly from P12 to P22. During this same period, conduction velocity increased sharply, and Na(+) channel clusters became much more focal. To test further whether oligodendrocyte contact directly influences Na(+) channel distributions, nodes of Ranvier in the hypomyelinating mouse Shiverer were examined. This mutant has oligodendrocyte-ensheathed axons but lacks compact myelin and normal axoglial junctions. During development Na(+) channel clusters in Shiverer mice were reduced in numbers and were in aberrant locations. The subcellular location of Caspr was disrupted, and nerve conduction properties remained immature. These results indicate that in vivo, Na(+) channel clustering at nodes depends not only on the presence of oligodendrocytes but also on specific axoglial contact at paranodal junctions. In rats, ankyrin-3/G, a cytoskeletal protein implicated in Na(+) channel clustering, was detected before Na(+) channel immunoreactivity but extended into paranodes in non-nodal distributions. In Shiverer, ankyrin-3/G labeling was abnormal, suggesting that its localization also depends on axoglial contact.
Collapse
|
185
|
Jessen KR, Mirsky R. Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 1999; 22:402-10. [PMID: 10441301 DOI: 10.1016/s0166-2236(98)01391-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is becoming ever clearer that Schwann cells and Schwann-cell precursors are an important source of developmental signals in embryonic and neonatal nerves. This article reviews experiments showing that these signals regulate the survival and differentiation of other cells in early nerves. The evidence indicates that glial-derived signals are necessary for neuronal survival at crucial periods of development, that they regulate the molecular and functional specialization of axons and that they control the maturation of the perineurial sheath that protects nerves from inflammation and unwanted macro-molecules produced in the surrounding tissues. Furthermore, an autocrine survival circuit enables Schwann cells in postnatal nerves to survive in the absence of axons, a vital requirement for successful nerve regeneration following injury. The molecular identity of these signals and their receptors is currently being determined.
Collapse
Affiliation(s)
- K R Jessen
- Dept of Anatomy and Developmental Biology, University College London, Gower Street, London, UK WC1E 6BT
| | | |
Collapse
|
186
|
Abstract
In the nervous system, glial cells greatly outnumber neurons but the full extent of their role in determining neural activity remains unknown. Here the axotactin (axo) gene of Drosophila was shown to encode a member of the neurexin protein superfamily secreted by glia and subsequently localized to axonal tracts. Null mutations of axo caused temperature-sensitive paralysis and a corresponding blockade of axonal conduction. Thus, the AXO protein appears to be a component of a glial-neuronal signaling mechanism that helps to determine the membrane electrical properties of target axons.
Collapse
Affiliation(s)
- L L Yuan
- Neuroscience Training Program and Laboratory of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
187
|
Girault JA, Labesse G, Mornon JP, Callebaut I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci 1999; 24:54-7. [PMID: 10098398 DOI: 10.1016/s0968-0004(98)01331-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J A Girault
- INSERM U114, Collège de France, Paris, France.
| | | | | | | |
Collapse
|
188
|
Girault JA, Labesse G, Mornon JP, Callebaut I. Janus Kinases and Focal Adhesion Kinases Play in the 4.1 Band: A Superfamily of Band 4.1 Domains Important for Cell Structure and Signal Transduction. Mol Med 1998. [DOI: 10.1007/bf03401769] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
189
|
Bellen HJ, Lu Y, Beckstead R, Bhat MA. Neurexin IV, caspr and paranodin--novel members of the neurexin family: encounters of axons and glia. Trends Neurosci 1998; 21:444-9. [PMID: 9786343 DOI: 10.1016/s0166-2236(98)01267-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Axonal insulation is of key importance for the proper propagation of action potentials. In Drosophila and other invertebrates, it has recently been demonstrated that septate junctions play an essential role in axonal insulation or blood-brain-barrier formation. Neurexin IV, a molecular component of Drosophila septate junctions, has been shown to be essential for axonal insulation in the PNS in embryos and larvae. Interestingly, a vertebrate homolog of Neurexin IV, caspr--also named paranodin--has been shown to localize to septate-like junctional structures. These vertebrate junctions are localized to the paranodal region of the nodes of Ranvier, between axons and Schwann cells. Caspr/paranodin might play an important role in barrier formation, and link neuronal membrane components with the axonal cytoskeletal network.
Collapse
Affiliation(s)
- H J Bellen
- Dept of Human and Molecular Genetics, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|