151
|
Mic FA, Haselbeck RJ, Cuenca AE, Duester G. Novel retinoic acid generating activities in the neural tube and heart identified by conditional rescue of Raldh2 null mutant mice. Development 2002; 129:2271-82. [PMID: 11959834 PMCID: PMC2833017 DOI: 10.1242/dev.129.9.2271] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinoid control of vertebrate development depends upon tissue-specific metabolism of retinol to retinoic acid (RA). The RA biosynthetic enzyme RALDH2 catalyzes much, but not all, RA production in mouse embryos, as revealed here with Raldh2 null mutants carrying an RA-responsive transgene. Targeted disruption of Raldh2 arrests development at midgestation and eliminates all RA synthesis except that associated with Raldh3 expression in the surface ectoderm of the eye field. Conditional rescue of Raldh2–/– embryos by limited maternal RA administration allows development to proceed and results in the establishment of additional sites of RA synthesis linked to Raldh1 expression in the dorsal retina and to Raldh3 expression in the ventral retina, olfactory pit and urinary tract. Unexpectedly, conditionally rescued Raldh2–/– embryos also possess novel sites of RA synthesis in the neural tube and heart that do not correspond to expression of Raldh1-3. RA synthesis in the mutant neural tube was localized in the spinal cord, posterior hindbrain and portions of the midbrain and forebrain, whereas activity in the mutant heart was localized in the conotruncus and sinus venosa. In the posterior hindbrain, this novel RA-generating activity was expressed during establishment of rhombomeric boundaries. In the spinal cord, the novel activity was localized in the floorplate plus in the intermediate region where retinoid-dependent interneurons develop. These novel RA-generating activities in the neural tube and heart fill gaps in our knowledge of how RA is generated spatiotemporally and may, along with Raldh1 and Raldh3, contribute to rescue of Raldh2–/– embryos by producing RA locally.
Collapse
|
152
|
Merrill RA, Plum LA, Kaiser ME, Clagett-Dame M. A mammalian homolog of unc-53 is regulated by all-trans retinoic acid in neuroblastoma cells and embryos. Proc Natl Acad Sci U S A 2002; 99:3422-7. [PMID: 11904404 PMCID: PMC122539 DOI: 10.1073/pnas.052017399] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Accepted: 01/10/2002] [Indexed: 11/18/2022] Open
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA), plays an important role in neuronal development, including neurite outgrowth. However, the genes that lie downstream of atRA and its receptors in neuronal cells are largely unknown. By using the human neuroblastoma cell line, SH-SY5Y, we have identified an atRA-responsive gene (RAINB1: retinoic acid inducible in neuroblastoma cells) that is induced within 4 h after exposure of SH-SY5Y cells to atRA. RAINB1 mRNA is highly expressed in the nervous system (10.5- to 11-kb transcript) in both developing embryos and adults. Its expression is perturbed in developing rat embryos exposed to excess or insufficient atRA. RAINB1 is present on chromosome 11 and is spread over 38 exons, resulting in a putative ORF of 2,429 amino acids. The RAINB1 protein shows high similarity to a gene in Caenorhabditis elegans, unc-53, that is required for axonal elongation of mechanosensory neurons, suggesting that these proteins are orthologs. Thus, RAINB1 may represent a critical downstream gene in atRA-mediated neurite outgrowth.
Collapse
Affiliation(s)
- R A Merrill
- Department of Biochemistry and Pharmaceutical Sciences Division, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
153
|
Maden M. Role and distribution of retinoic acid during CNS development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:1-77. [PMID: 11580199 DOI: 10.1016/s0074-7696(01)09010-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Retinoic acid (RA), the biologically active derivative of vitamin A, induces a variety of embryonal carcinoma and neuroblastoma cell lines to differentiate into neurons. The molecular events underlying this process are reviewed with a view to determining whether these data can lead to a better understanding of the normal process of neuronal differentiation during development. Several transcription factors, intracellular signaling molecules, cytoplasmic proteins, and extracellular molecules are shown to be necessary and sufficient for RA-induced differentiation. The evidence that RA is an endogenous component of the developing central nervous system (CNS) is then reviewed, data which include high-pressure liquid chromotography (HPLC) measurements, reporter systems and the distribution of the enzymes that synthesize RA. The latter is particularly relevant to whether RA signals in a paracrine fashion on adjacent tissues or whether it acts in an autocrine manner on cells that synthesize it. It seems that a paracrine system may operate to begin early patterning events within the developing CNS from adjacent somites and later within the CNS itself to induce subsets of neurons. The distribution of retinoid-binding proteins, retinoid receptors, and RA-synthesizing enzymes is described as well as the effects of knockouts of these genes. Finally, the effects of a deficiency and an excess of RA on the developing CNS are described from the point of view of patterning the CNS, where it seems that the hindbrain is the most susceptible part of the CNS to altered levels of RA or RA receptors and also from the point of view of neuronal differentiation where, as in the case of embryonal carcinoma (EC) cells, RA promotes neuronal differentiation. The crucial roles played by certain genes, particularly the Hox genes in RA-induced patterning processes, are also emphasized.
Collapse
Affiliation(s)
- M Maden
- MRC Centre for Developmental Neurobiology, King's College London, United Kingdom
| |
Collapse
|
154
|
Allan D, Houle M, Bouchard N, Meyer BI, Gruss P, Lohnes D. RARgamma and Cdx1 interactions in vertebral patterning. Dev Biol 2001; 240:46-60. [PMID: 11784046 DOI: 10.1006/dbio.2001.0455] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous retinoic acid (RA) can evoke vertebral homeosis when administered during late gastrulation. These vertebral transformations correlate with alterations of the rostral limit of Hox gene expression in the prevertebrae, suggesting that retinoid signaling regulates the combinatorial expression of Hox genes dictating vertebral identity. Conversely, loss of certain RA receptors (RARs) results in anterior homeotic transformations principally affecting the cervical region. Despite these observations, the relationship between retinoid signaling, somitic Hox expression, and vertebral patterning is poorly understood. The members of the murine Cdx family (Cdx1, Cdx2, and Cdx4) are the homologues of Drosophila caudal and encode homeobox-containing transcription factors. Cdx1 homozygous null mutants exhibit anterior homeotic transformations, some of which are reminiscent of those in RARgamma null offspring. In Cdx1 mutants, these transformations occur concomitant with posteriorized prevertebral expression of certain Hox genes. Cdx1 has recently been demonstrated to be a direct RA target, suggesting an indirect means by which retinoid signaling may impact vertebral patterning. To further investigate this relationship, a complete allelic series of Cdx1-RARgamma mutants was generated and the skeletal phenotype assessed either following normal gestation or after administration of RA. Synergistic interactions between these null alleles were observed in compound mutants, and the full effects of exogenous RA on vertebral morphogenesis required Cdx1. These findings are consistent with a role for RA upstream of Cdx1 as regards axial patterning. However, exogenous RA attenuated several defects inherent to Cdx1 null mutants. This finding, together with the increased phenotypic severity of RARgamma-Cdx1 double null mutants relative to single nulls, suggests that these pathways also function in parallel, likely by converging on common targets.
Collapse
Affiliation(s)
- D Allan
- Division of Experimental Medicine, Department of Molecular Biology, Institut de Recherches Cliniques de Montréal, 110 ave des Pins, ouest, Montréal, Québec, H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
155
|
Begemann G, Meyer A. Hindbrain patterning revisited: timing and effects of retinoic acid signalling. Bioessays 2001; 23:981-6. [PMID: 11746213 DOI: 10.1002/bies.1142] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinoids play a critical role in patterning, segmentation, and neurogenesis of the posterior hindbrain and it has been proposed that they act as a posteriorising signal during hindbrain development. Until now, direct evidence that endogenous retinoid signalling acts through a gradient to specify cell fates along the anteroposterior axis has been missing. Two recent studies tested the requirement for retinoid signalling in the developing hindbrain through systematic application of a pan-retinoic acid receptor antagonist. They demonstrate a stage-dependent requirement for increasing retinoid signalling activity along the hindbrain that proceeds from anterior to posterior. Together these findings challenge the concept of a stable gradient of retinoic acid across the hindbrain and warrant a re-interpretation of the phenotypes obtained by genetic and nutritional disruption of retinoid signalling in the amniote embryo.
Collapse
Affiliation(s)
- G Begemann
- Department of Biology, University of Konstanz, Germany.
| | | |
Collapse
|
156
|
Schilling TF, Knight RD. Origins of anteroposterior patterning and Hox gene regulation during chordate evolution. Philos Trans R Soc Lond B Biol Sci 2001; 356:1599-613. [PMID: 11604126 PMCID: PMC1088539 DOI: 10.1098/rstb.2001.0918] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.
Collapse
Affiliation(s)
- T F Schilling
- Department of Developmental and Cell Biology, 5210 Bio Sci II, University of California, Irvine, CA 92697-2300, USA.
| | | |
Collapse
|
157
|
Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW. The zebrafishnecklessmutation reveals a requirement forraldh2in mesodermal signals that pattern the hindbrain. Development 2001; 128:3081-94. [PMID: 11688558 DOI: 10.1242/dev.128.16.3081] [Citation(s) in RCA: 266] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe a new zebrafish mutation, neckless, and present evidence that it inactivates retinaldehyde dehydrogenase type 2, an enzyme involved in retinoic acid biosynthesis. neckless embryos are characterised by a truncation of the anteroposterior axis anterior to the somites, defects in midline mesendodermal tissues and absence of pectoral fins. At a similar anteroposterior level within the nervous system, expression of the retinoic acid receptor α and hoxb4 genes is delayed and significantly reduced. Consistent with a primary defect in retinoic acid signalling, some of these defects in neckless mutants can be rescued by application of exogenous retinoic acid. We use mosaic analysis to show that the reduction in hoxb4 expression in the nervous system is a non-cell autonomous effect, reflecting a requirement for retinoic acid signalling from adjacent paraxial mesoderm. Together, our results demonstrate a conserved role for retinaldehyde dehydrogenase type 2 in patterning the posterior cranial mesoderm of the vertebrate embryo and provide definitive evidence for an involvement of endogenous retinoic acid in signalling between the paraxial mesoderm and neural tube.
Collapse
Affiliation(s)
- G Begemann
- MRC Intercellular Signalling Group, Centre for Developmental Genetics, University of Sheffield School of Medicine and Biomedical Science, Western Bank, UK
| | | | | | | | | |
Collapse
|
158
|
Phillips BT, Bolding K, Riley BB. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 2001; 235:351-65. [PMID: 11437442 DOI: 10.1006/dbio.2001.0297] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the fibroblast growth factor (FGF) family of peptide ligands have been implicated in otic placode induction in several vertebrate species. Here, we have functionally analyzed the roles of fgf3 and fgf8 in zebrafish otic development. The role of fgf8 was assessed by analyzing acerebellar (ace) mutants. fgf3 function was disrupted by injecting embryos with antisense morpholino oligomers (MO) specifically designed to block translation of fgf3 transcripts. Disruption of either fgf3 or fgf8 causes moderate reduction in the size of the otic vesicle. Injection of fgf3-MO into ace/ace mutants causes much more severe reduction or complete loss of otic tissue. Moreover, preplacode cells fail to express pax8 and pax2.1, indicating disruption of early stages of otic induction in fgf3-depleted ace/ace mutants. Both fgf3 and fgf8 are normally expressed in the germring by 50% epiboly and are induced in the primordium of rhombomere 4 by 80% epibloy. In addition, fgf3 is expressed during the latter half of gastrulation in the prechordal plate and paraxial cephalic mesendoderm, tissues that either pass beneath or persist near the prospective otic ectoderm. Conditions that alter the pattern of expression of fgf3 and/or fgf8 cause corresponding changes in otic induction. Loss of maternal and zygotic one-eyed pinhead (oep) does not alter expression of fgf3 or fgf8 in the hindbrain, but ablates mesendodermal sources of fgf signaling and delays otic induction by several hours. Conversely, treatment of wild-type embryos with retinoic acid greatly expands the periotic domains of expression of fgf3, fgf8, and pax8 and leads to formation of supernumerary and ectopic otic vesicles. These data support the hypothesis that fgf3 and fgf8 cooperate during the latter half of gastrulation to induce differentiation of otic placodes.
Collapse
Affiliation(s)
- B T Phillips
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
159
|
Abstract
Several recent studies have shown that retinoic acid signalling is required for correct patterning of the hindbrain. However, the data from these studies are disparate and the precise role of retinoic acid signalling in patterning the anteroposterior axis of the neural tube remains uncertain. To help clarify this issue, we have cultured a staged series of chick embryos in the presence of an antagonist to the all three retinoic acid receptors. Our data indicate that retinoic acid is the transforming signal involved in the expansion of posterior hindbrain structures. We find that the hindbrain region of the neural tube down to the level of the sixth somite acquires the identity of rhombomere 4 when retinoic acid signalling is blocked. Specification of future rhombomere boundaries has a retinoic acid dependency between stage 5 and stage 10(+) that is lost progressively in an anterior-to-posterior sequence. Furthermore, the application of various concentrations of antagonist shows that successively more posterior rhombomere boundaries require progressively higher concentration of endogenous retinoic acid for their correct positioning, a result that strengthens the hypothesis that a complex retinoid gradient acts to pattern the posterior hindbrain. Our dissection of early retinoic acid functions allows us to re-interpret the wide disparity of hindbrain phenotypes previously observed in various models of retinoic acid deficiency.
Collapse
Affiliation(s)
- V Dupé
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | |
Collapse
|
160
|
Schmidt C, Christ B, Maden M, Brand-Saberi B, Patel K. Regulation of Epha4 expression in paraxial and lateral plate mesoderm by ectoderm-derived signals. Dev Dyn 2001; 220:377-86. [PMID: 11307170 DOI: 10.1002/dvdy.1117] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Somitogenesis in all vertebrates involves a mesenchymal to epithelial transition of segmental plate cells. Such a transition involves cells altering their morphology and their adhesive properties. The Eph family of receptor tyrosine kinases has been postulated to regulate cytoskeletal organization. In this study, we show that a receptor belonging to this family, EphA4, is expressed in the segmental plate in a region where cells are undergoing changes in cell shape as a prelude to epithelialization. We have identified the ectoderm covering the somites and the midline ectoderm as sources of signals capable of inducing EphA4. Loss of EphA4 results in cells of irregular morphology and somites fail to form. We also show that when somites fail to develop, expression of EphA4 in the lateral plate is also lost. We suggest that signaling occurs between the somites and the lateral plate mesoderm and provide evidence that retinoic acid is involved in this communication.
Collapse
Affiliation(s)
- C Schmidt
- Institut of Anatomy, University of Freiburg, D-79001 Freiburg, Germany
| | | | | | | | | |
Collapse
|
161
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|
162
|
Altmann CR, Brivanlou AH. Neural patterning in the vertebrate embryo. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:447-82. [PMID: 11131523 DOI: 10.1016/s0074-7696(01)03013-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The embryonic central nervous system (CNS) is patterned along its antero-posterior, dorsal-ventral, and left-right axes. Along the dorsal-ventral axis, cell fate determination occurs during and following neural tube closure and involves the action of two opposing signaling pathways: SHH ventrally from the notochord and BMP/GDF dorsally from the boundary of neural and nonneural ectoderm and later from the roof plate. In addition, Wnt and retinoic acid signaling have been shown to act in dorsal-ventral patterning; however, their roles are understood in less detail. Along the antero-posterior axis, signals divide the neural tube into four major divisions: forebrain, midbrain, hindbrain, and spinal cord, and these differences can be detected soon after the formation of the neural plate. The FGF, Wnt, and retinoic acid signaling pathways have been implicated in the caudalization of neural tissue. Boundaries of Hox gene expression are observed along the anteroposterior axis and have been suggested to be involved in establishing different identities in the hindbrain and spinal cord. Complex gene expression patterns in the brain suggest the development of neuromeres dividing the brain into different regions that are elaborated further during development. Patterning along the left-right axis occurs concurrently with antero-posterior and dorsal-ventral patterning during gastrulation. A leading candidate for initiating asymmetry is activin, which acts through Nodal and Lefty before any morphological differences are observed. The big challenge will be understanding how these diverse signaling pathways interact both temporally and spatially to generate the complex adult nervous system.
Collapse
Affiliation(s)
- C R Altmann
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
163
|
Alvarado-Mallart RM. The chick/quail transplantation model to study central nervous system development. PROGRESS IN BRAIN RESEARCH 2001; 127:67-98. [PMID: 11142048 DOI: 10.1016/s0079-6123(00)27006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R M Alvarado-Mallart
- INSERM U-106 Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| |
Collapse
|
164
|
Chen Y, Pollet N, Niehrs C, Pieler T. Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 2001; 101:91-103. [PMID: 11231062 DOI: 10.1016/s0925-4773(00)00558-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinoic acid (RA) metabolizing enzymes play important roles in RA signaling during vertebrate embryogenesis. We have previously reported on a RA degrading enzyme, XCYP26, which appears to be critical for the anteroposterior patterning of the central nervous system (EMBO J. 17 (1998) 7361). Here, we report on the sequence, expression and function of its counterpart, XRALDH2, a RA generating enzyme in Xenopus. During gastrulation and neurulation, XRALDH2 and XCYP26 show non-overlapping, complementary expression domains. Upon misexpression, XRALDH2 is found to reduce the forebrain territory and to posteriorize the molecular identity of midbrain and individual hindbrain rhombomeres in Xenopus embryos. Furthermore, ectopic XRALDH2, in combination with its substrate, all-trans-retinal (ATR), can mimic the RA phenotype to result in microcephalic embryos. Taken together, our data support the notion that XRALDH2 plays an important role in RA homeostasis by the creation of a critical RA concentration gradient along the anteroposterior axis of early embryos, which is essential for proper patterning of the central nervous system in Xenopus.
Collapse
Affiliation(s)
- Y Chen
- Georg-August-Universität Göttingen, Institut für Biochemie und Molekulare Zellbiologie, Humboldtallee 23, D-37073, Göttingen, Germany
| | | | | | | |
Collapse
|
165
|
Abstract
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.
Collapse
Affiliation(s)
- G Duester
- Gene Regulation Program, Burnham Institute, 10901 North Torrey Pines Road, 92037, La Jolla, CA, USA.
| |
Collapse
|
166
|
Abu-Abed S, Dollé P, Metzger D, Beckett B, Chambon P, Petkovich M. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 2001; 15:226-40. [PMID: 11157778 PMCID: PMC312609 DOI: 10.1101/gad.855001] [Citation(s) in RCA: 431] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The active derivative of vitamin A, retinoic acid (RA), is essential for normal embryonic development. The spatio-temporal distribution of embryonic RA results from regulated expression of RA-synthesizing retinaldehyde dehydrogenases and RA-metabolizing cytochrome P450s (CYP26). Excess RA administration or RA deficiency results in a complex spectrum of embryonic abnormalities. As a first step in understanding the developmental function of RA-metabolizing enzymes, we have disrupted the murine Cyp26A1 gene. We report that Cyp26A1-null mutants die during mid-late gestation and show a number of major morphogenetic defects. Spina bifida and truncation of the tail and lumbosacral region (including abnormalities of the kidneys, urogenital tract, and hindgut) are the most conspicuous defects, leading in extreme cases to a sirenomelia ("mermaid tail") phenotype. Cyp26A1 mutants also show posterior transformations of cervical vertebrae and abnormal patterning of the rostral hindbrain, which appears to be partially posteriorly transformed. These defects correlate with two major sites of Cyp26A1 expression in the rostral neural plate and embryonic tail bud. Because all of the Cyp26A1(-/-) abnormalities closely resemble RA teratogenic effects, we postulate that the key function of CYP26A1 is to maintain specific embryonic areas in a RA-depleted state, to protect them against the deleterious effect of ectopic RA signaling.
Collapse
Affiliation(s)
- S Abu-Abed
- Cancer Research Labs, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
167
|
Abstract
The presence of a muscularised pharynx with skeletal support is a fundamental vertebrate characteristic. Developmentally, the pharynx arises from the pharyngeal arches on either side of the head of vertebrate embryos. The development of the pharyngeal arches is complex involving a number of disparate embryonic populations, ectoderm, endoderm, neural crest and mesoderm, which must be co-ordinated to generate the components and overall identity of each of the arches. Previous studies suggested that it is the neural crest that plays a pivotal role in patterning the pharyngeal arches. It is now also becoming clear, however, that there are crest-independent patterning mechanisms. Therefore, pharyngeal arch patterning is more complex than was previously believed and there must be an integration of crest-dependent and -independent patterning mechanisms. BioEssays 23:54-61, 2001.
Collapse
Affiliation(s)
- A Graham
- Molecular Neurobiology Group, MRC Centre for Developmental Neurobiology, Kings College, London, UK.
| | | |
Collapse
|
168
|
Perz-Edwards A, Hardison NL, Linney E. Retinoic acid-mediated gene expression in transgenic reporter zebrafish. Dev Biol 2001; 229:89-101. [PMID: 11133156 DOI: 10.1006/dbio.2000.9979] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid-mediated gene activation is important for normal vertebrate development. The size and nature of retinoic acid make it difficult to identify the precise cellular location of this signaling molecule throughout an embryo. Additionally, retinoic acid (RA) signaling is regulated by a complex combination of receptors, coactivators, and antagonizing proteins. Thus, in order to integrate these signals and identify regions within a whole developing embryo where cells can respond transcriptionally to retinoic acid, we have used a reporter transgenic approach. We have generated several stable lines of transgenic zebrafish which use retinoic acid response elements to drive fluorescent protein expression. In these zebrafish lines, transgene expression is localized to regions of the neural tube, retina, notochord, somites, heart, pronephric ducts, branchial arches, and jaw muscles in embryos and larvae. Transgene expression can be induced in additional regions of the neural tube and retina as well as the immature notochord, hatching gland, enveloping cell layer, and fin by exposing embryos to retinoic acid. Treatment with retinoic acid synthase inhibitors, citral and diethylaminobenzaldehyde (DEAB), during neurulation, greatly reduces transgene expression. DEAB treatment of embryos at gastrulation phenocopies the embryonic effects of vitamin A deprivation or targeted disruption of the RA synthase retinaldehyde dehydrogenase-2 in other vertebrates. Together these data suggest that the reporter expression we see in zebrafish is dependent upon conserved vertebrate pathways of RA synthesis.
Collapse
Affiliation(s)
- A Perz-Edwards
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
169
|
Grün F, Hirose Y, Kawauchi S, Ogura T, Umesono K. Aldehyde dehydrogenase 6, a cytosolic retinaldehyde dehydrogenase prominently expressed in sensory neuroepithelia during development. J Biol Chem 2000; 275:41210-8. [PMID: 11013254 DOI: 10.1074/jbc.m007376200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated the chick and mouse homologs of human aldehyde dehydrogenase 6 (ALDH6) that encode a third cytosolic retinaldehyde-specific aldehyde dehydrogenase. In both chick and mouse embryos, strong expression is observed in the sensory neuroepithelia of the head. In situ hybridization analysis in chick shows compartmentalized expression primarily in the ventral retina, olfactory epithelium, and otic vesicle; additional sites of expression include the isthmus, Rathke's pouch, posterior spinal cord interneurons, and developing limbs. Recombinant chick ALDH6 has a K(0.5) = 0.26 microm, V(max) = 48.4 nmol/min/mg and exhibits strong positive cooperativity (H = 1.9) toward all-trans-retinaldehyde; mouse ALDH6 has similar kinetic parameters. Expression constructs can confer 1000-fold increased sensitivity to retinoic acid receptor-dependent signaling from retinol in transient transfections experiments. The localization of ALDH6 to the developing sensory neuroepithelia of the eye, nose, and ear and discreet sites within the CNS suggests a role for RA signaling during primary neurogenesis at these sites.
Collapse
Affiliation(s)
- F Grün
- Institute for Virus Research, Kyoto University, 53 Kawaramachi Shogoin, Kyoto, Japan
| | | | | | | | | |
Collapse
|
170
|
White JC, Highland M, Clagett-Dame M. Abnormal development of the sinuatrial venous valve and posterior hindbrain may contribute to late fetal resorption of vitamin A-deficient rat embryos. TERATOLOGY 2000; 62:374-84. [PMID: 11091359 DOI: 10.1002/1096-9926(200012)62:6<374::aid-tera4>3.0.co;2-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Normal embryonic development and survival in utero is dependent on an adequate supply of vitamin A. Embryos from vitamin A-deficient (VAD) pregnant rats fed an inadequate amount of all-trans retinoic acid (atRA; 12 microg per g of diet or approximately 230 microg per rat per day) exhibit severe developmental abnormalities of the anterior cardinal vein and hindbrain by embryonic day (E) 12.5 and die shortly thereafter. METHODS In the present study, we sought to determine whether supplementation of VAD-RA supported (12 microg per g of diet) pregnant rats with retinol (ROL) at the late-gastrula (presomite or rat E9.5) or early somite stages (E10.5), or provision of higher levels of atRA throughout this period could prevent abnormalities in the developing cardiovascular and nervous systems. RESULTS A newly described defect in the sinuatrial venus valve along with enlarged anterior cardinal veins and nervous system abnormalities and the later death of embryos are prevented by supplementing pregnant animals with ROL on the morning of E9.5. If ROL supplementation is delayed by 1 day (E10.5), most embryos are abnormal and die by E18.5. Supplementation of VAD rats with atRA (250 microg per g of diet) between E8.5 and E10.5 also prevents the cardiovascular and nervous system abnormalities and a significant number of these embryos survive to parturition. Thus, high levels of atRA can obviate the need for ROL between E9.5 and E10.5. CONCLUSIONS These results support an essential role for retinoid signaling between the late gastrula and early somite stages in the rat embryo for normal morphogenesis of the primitive heart tube and the posterior hindbrain. Further, these results suggest that embryonic death occurring at midgestation in the VAD rat may be linked to the abnormal development of one or both of these embryonic structures.
Collapse
Affiliation(s)
- J C White
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706-1508, USA
| | | | | |
Collapse
|
171
|
Abstract
This review discusses formation of the vertebrate anteroposterior (AP) axis, focusing on the dorsal ectoderm, which gives rise to the nervous system, using the frog Xenopus as a model. After summarizing classical models of AP neural patterning, we describe recent molecular studies that are encouraging re-examination of these models. Such studies have shown that AP ectodermal patterning occurs by the onset of gastrulation, much earlier than previously thought. The identity of tissues that determine AP pattern is discussed, and the definition of the Organizer is reconsidered. The activity of factors secreted by inducing tissues in early patterning decisions is assessed and formulated into a revised model for Xenopus AP neural patterning. Finally, AP ectodermal patterning in Xenopus dorsal ectoderm is compared to that of other germ layers, and to other vertebrates.
Collapse
Affiliation(s)
- J Gamse
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
172
|
Grummer MA, Zachman RD. Interaction of ethanol with retinol and retinoic acid in RAR beta and GAP-43 expression. Neurotoxicol Teratol 2000; 22:829-36. [PMID: 11120388 DOI: 10.1016/s0892-0362(00)00100-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Fetal ethanol exposure has many detrimental effects on neural development, which possibly occurs through ethanol-induced disruption of the function of vitamin A. In LAN-5 neuroblastoma cells, retinol (10(-6) M) and retinoic acid (RA; 10(-5)-10(-6) M) increased RAR beta mRNA expression. Ethanol downregulated RAR beta levels, even in the presence of retinol. RAR beta mRNA expression was decreased by ethanol in the presence of 10(-6) M RA, but not 10(-5) M RA. With cycloheximide (CX), RA still stimulated RAR beta mRNA, but the effect of ethanol was abolished. The mRNA expression of GAP-43, an important factor in neural development, increased with 10(-6) M retinol and 10(-5)-10(-9) M RA. Ethanol decreased GAP-43 mRNA expression in the presence or absence of retinol. Ethanol was without effect on GAP-43 mRNA at 10(-5) M RA, but did lower the levels at 10(-6) and 10(-7) M RA. CX prevented the effects of both RA and ethanol on GAP-43 mRNA. These studies provide support for the hypothesis that retinoid function is altered by ethanol.
Collapse
Affiliation(s)
- M A Grummer
- Department of Pediatrics, University of Wisconsin, Meriter Perinatal Center, 202 South Park Street, Madison, WI 53715, USA
| | | |
Collapse
|
173
|
Limpach A, Dalton M, Miles R, Gadson P. Homocysteine inhibits retinoic acid synthesis: a mechanism for homocysteine-induced congenital defects. Exp Cell Res 2000; 260:166-74. [PMID: 11010821 DOI: 10.1006/excr.2000.5000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia is frequently associated with congenital defects of the heart and neural tube and is a suspected pathogenic factor in atherosclerosis and neoplasia. Results in the present report show homocysteine treatment disrupts normal development of avian embryos; and this effect is prevented by retinoic acid. Based on this, we hypothesize that homocysteine may exert its teratogenic effects by disrupting retinoic acid signaling during development. A reporter cell line transfected with a retinoic acid response element (RARE) linked to a lacZ reporter gene was used to identify the site of retinoid inhibition. Using this reporter cell line, we show that homocysteine inhibits the oxidation of retinal to retinoic acid with concentrations of homocysteine that are in the pathophysiological range (.05 to 0.5 mM). In contrast, homocysteine concentrations as high as 5 mM are unable to inhibit the induction of lacZ by retinoic acid. We show that cellular uptake of homocysteine is sensitive to the specific L-system transport inhibitor, bicycloheptane, and bicycloheptane blocks the inhibition of retinoic acid synthesis by homocysteine, demonstrating that this inhibition occurs intracellularly. These results suggest that homocysteine-induced congenital defects are due to the specific ability of homocysteine to inhibit conversion of retinal to retinoic acid.
Collapse
Affiliation(s)
- A Limpach
- Department of Cell Biology and Anatomy, University of Nebraska Medical Center, 986395 Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | |
Collapse
|
174
|
Trainor PA, Manzanares M, Krumlauf R. Genetic interactions during hindbrain segmentation in the mouse embryo. Results Probl Cell Differ 2000; 30:51-89. [PMID: 10857185 DOI: 10.1007/978-3-540-48002-0_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- P A Trainor
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|
175
|
Houle M, Prinos P, Iulianella A, Bouchard N, Lohnes D. Retinoic acid regulation of Cdx1: an indirect mechanism for retinoids and vertebral specification. Mol Cell Biol 2000; 20:6579-86. [PMID: 10938132 PMCID: PMC86138 DOI: 10.1128/mcb.20.17.6579-6586.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid (RA) is required for diverse developmental programs, including vertebral specification. Both RA receptor disruption and excess RA result in homeotic transformations of the axial skeleton. These effects are believed to occur through altered expression of Hox genes, several of which have been demonstrated to be direct RA targets. Members of the cdx (caudal) homeobox gene family are also implicated in regulating Hox expression. Disruption of cdx1 results in vertebral homeotic transformations and alteration of Hox expression boundaries; similar homeosis is also observed in cdx2 heterozygotes. In Xenopus, gain or loss of Cdx function affects vertebral morphogenesis through a mechanism that also correlates with altered Hox expression. Taken together with the finding of putative Cdx binding motifs in several Hox promoters, these data strongly support a role for Cdx members in direct regulation of expression of at least some Hox genes. Most retinoid-responsive Hox genes have not been demonstrated to be direct RA targets, suggesting that intermediaries are involved. Based on these findings, we hypothesized that one or more cdx members may transduce the effects of RA on Hox transcription. Consistent with this, we present evidence that cdx1 is a direct RA target gene, suggesting an additional pathway for retinoid-dependent vertebral specification.
Collapse
Affiliation(s)
- M Houle
- Department of Molecular Biology, Université de Montréal, Montréal, Québec, Canada H2W 1R7
| | | | | | | | | |
Collapse
|
176
|
Abstract
Retinoid signalling has been implicated in regulating a wide variety of processes in vertebrate development. Recent advances from analyses on the synthesis, degradation and distribution of retinoids in combination with functional analysis of signalling components have provided important insights into the regulation of patterning the nervous system and the hindbrain in particular.
Collapse
Affiliation(s)
- A Gavalas
- Division of Developmental Neurobiology, National Institute for Medical research, Mill Hill, UK.
| | | |
Collapse
|
177
|
Corcoran J, Shroot B, Pizzey J, Maden M. The role of retinoic acid receptors in neurite outgrowth from different populations of embryonic mouse dorsal root ganglia. J Cell Sci 2000; 113 ( Pt 14):2567-74. [PMID: 10862714 DOI: 10.1242/jcs.113.14.2567] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dorsal root ganglion (DRG) neurons can be categorised into at least three types, based upon their neurotrophin requirement for survival. We have analysed the expression of the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs) in NGF, NT-3 and BDNF dependent neurons isolated from embryonic day (E)13.5 mouse DRG. We show that each population of neurons expressed each of the three RXRs, (alpha), (beta) and (gamma); however, whilst the NGF and NT-3 dependent neurons expressed each of the RARs (alpha), (beta) and (gamma), the BDNF dependent neurons only expressed RAR(alpha) and (beta). When retinoic acid was added to each of the neuronal classes only the NGF and NT-3 dependent neurons responded by extending neurites, and this response involved the upregulation of RAR(beta)(2). This specificity was confirmed by the use of receptor-selective agonists as only a RAR(beta)-selective compound stimulated neurite outgrowth. These results suggest a role for RA acting via RAR(beta)(2) in the outgrowth of neurites.
Collapse
Affiliation(s)
- J Corcoran
- Developmental Biology Research Centre, The Randall Institute, King's College London, London, WC2B 5RL, UK.
| | | | | | | |
Collapse
|
178
|
Abstract
The key role of vitamin A in embryonal development is reviewed. Special emphasis is given to the physiological action of retinoids, as evident from the retinoid ligand knockout models. Retinoid metabolism in embryonic tissues and teratogenic consequences of retinoid administration at high doses are presented. Physiological and pharmacological actions of retinoids are outlined and explained on the basis of their interactions as ligands of the nuclear retinoid receptors. Immediate target genes and the retinoid response elements of their promoters are summarized. The fundamental role of homeobox genes in embryonal development and the actions of retinoids on their expression are discussed. The similarity of the effects of retinoid ligand knockouts to effects of compound retinoid receptor knockouts on embryogenesis is presented. Although much remains to be clarified, the emerging landscape offers exciting views for future research.
Collapse
Affiliation(s)
- S A Ross
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Nutritional Products, Labeling, and Dietary Supplements, Washington, DC, USA
| | | | | | | |
Collapse
|
179
|
Abstract
Abstract
To examine the role of retinoids in hematopoietic cell growth in vivo, we studied female SENCAR mice made vitamin A deficient by dietary restriction. Deficient mice exhibited a dramatic increase in myeloid cells in bone marrow, spleen, and peripheral blood. The abnormal expansion of myeloid cells was detected from an early stage of vitamin A deficiency and contrasted with essentially normal profiles of T and B lymphocytes. This abnormality was reversed on addition of retinoic acid to the vitamin A–deficient diet, indicating that the myeloid cell expansion is a direct result of retinoic acid deficiency. TUNEL analysis indicated that spontaneous apoptosis, a normal process in the life cycle of myeloid cells, was impaired in vitamin A–deficient mice, which may play a role in the increased myeloid cell population. Quantitative reverse transcriptase-polymerase chain reaction analysis of purified granulocytes showed that expression of not only RAR, but RXRs, 2 nuclear receptors that mediate biologic activities of retinoids, was significantly reduced in cells of deficient mice. This work shows that retinoids critically control the homeostasis of myeloid cell population in vivo and suggests that deficiency in this signaling pathway may contribute to various myeloproliferative disorders.
Collapse
|
180
|
Abstract
To examine the role of retinoids in hematopoietic cell growth in vivo, we studied female SENCAR mice made vitamin A deficient by dietary restriction. Deficient mice exhibited a dramatic increase in myeloid cells in bone marrow, spleen, and peripheral blood. The abnormal expansion of myeloid cells was detected from an early stage of vitamin A deficiency and contrasted with essentially normal profiles of T and B lymphocytes. This abnormality was reversed on addition of retinoic acid to the vitamin A–deficient diet, indicating that the myeloid cell expansion is a direct result of retinoic acid deficiency. TUNEL analysis indicated that spontaneous apoptosis, a normal process in the life cycle of myeloid cells, was impaired in vitamin A–deficient mice, which may play a role in the increased myeloid cell population. Quantitative reverse transcriptase-polymerase chain reaction analysis of purified granulocytes showed that expression of not only RAR, but RXRs, 2 nuclear receptors that mediate biologic activities of retinoids, was significantly reduced in cells of deficient mice. This work shows that retinoids critically control the homeostasis of myeloid cell population in vivo and suggests that deficiency in this signaling pathway may contribute to various myeloproliferative disorders.
Collapse
|
181
|
Vendrell V, Carnicero E, Giraldez F, Alonso MT, Schimmang T. Induction of inner ear fate by FGF3. Development 2000; 127:2011-9. [PMID: 10769226 DOI: 10.1242/dev.127.10.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss-of-function experiments in avians and mammals have provided conflicting results on the capacity of fibroblast growth factor 3 (FGF3) to act as a secreted growth factor responsible for induction and morphogenesis of the vertebrate inner ear. Using a novel technique for gene transfer into chicken embryos, we have readdressed the role of FGF3 during inner ear development in avians. We find that ectopic expression of FGF3 results in the formation of ectopic placodes which express otic marker genes. The ectopically induced placodes form vesicles which show the characteristic gene expression pattern of a developing inner ear. Ectopic expression of FGF3 also influences the formation of the normal orthotopic inner ear, whereas another member of the FGF family, FGF2, shows no effects on inner ear induction. These results demonstrate that a single gene can induce inner ear fate and reveal an unexpectedly widespread competence of the surface ectoderm to form sensory placodes in higher vertebrates.
Collapse
Affiliation(s)
- V Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Cientificas, Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, E-47005 Valladolid, Spain
| | | | | | | | | |
Collapse
|
182
|
White JC, Highland M, Kaiser M, Clagett-Dame M. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo. Dev Biol 2000; 220:263-84. [PMID: 10753515 DOI: 10.1006/dbio.2000.9635] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developing nervous system is particularly vulnerable to vitamin A deficiency. Retinoid has been proposed to be a posteriorizing factor during hindbrain development, although direct evidence in the mammalian embryo is lacking. In the present study, pregnant vitamin A-deficient (VAD) rats were fed purified diets containing varying levels of all-trans-retinoic acid (atRA; 0, 0.5, 1.5, 6, 12, 25, 50, 125, or 250 microg/g diet) or were supplemented with retinol. Hindbrain development was studied from embryonic day 10 to 12.5 ( approximately 6 to 40 somites). Normal morphogenesis was observed in all embryos from groups fed 250 microg atRA/g diet or retinol. The most caudal region of the hindbrain was the most sensitive to retinoid insufficiency, as evidenced by a loss of the hypoglossal nerve (cranial nerve XII) in embryos from the 125 microg atRA/g diet group. Further reduction of atRA to 50 microg/g diet led to the loss of cranial nerves IX, X, XI, and XII and associated sensory ganglia IX and X in all embryos as well as the loss of hindbrain segmentation caudal to the rhombomere (r) 3/4 border in a subset of embryos. Dysmorphic orthotopic otic vesicles or immature otic-like vesicles in both orthotopic and caudally ectopic locations were also observed. As the level of atRA was reduced, a loss of caudal hindbrain segmentation was observed in all embryos and the incidence of otic vesicle abnormalities increased. Perturbations in hindbrain segmentation, cranial nerve formation, and otic vesicle development were associated with abnormal patterning of the posterior hindbrain. Embryos from VAD dams fed between 0.5 and 50 microg atRA/g diet exhibited Hoxb-1 protein expression along the entire neural tube caudal to the r3/r4 border at a time when it should be restricted to r4. Krox-20 protein expression was expanded in r3 but absent or reduced in presumptive r5. Hoxd-4 mRNA expression was absent in the posterior hindbrain, and the rostral limit of Hoxb-5 protein expression in the neural tube was anteriorized, suggesting that the most posterior hindbrain region (r7/r8) had been deleted and/or improperly patterned. Thus, when limiting amounts of atRA are provided to VAD dams, the caudal portion of the hindbrain is shortened and possesses r4/r5-like characteristics, with this region finally exhibiting r4-like gene expression when retinoid is restricted even more severely. Thus, regions of the anterior hindbrain (i.e., r3 and r4) appear to be greatly expanded, whereas the posterior hindbrain (r5-r8) is reduced or absent. This work shows that retinoid plays a critical role in patterning, segmentation, and neurogenesis of the caudal hindbrain and serves as an essential posteriorizing signal for this region of the central nervous system in the mammal.
Collapse
Affiliation(s)
- J C White
- School of Pharmacy, University of Wisconsin at Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | |
Collapse
|
183
|
Wendling O, Dennefeld C, Chambon P, Mark M. Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 2000; 127:1553-62. [PMID: 10725232 DOI: 10.1242/dev.127.8.1553] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The requirement of retinoic acid (RA) in the initial formation of the pharyngeal arches was investigated by treating headfold-stage mouse embryos with a pan-RAR antagonist in vitro and in vivo. This results in a complete absence of mesenchyme, arteries, nerves and epibranchial placodes of the 3rd and 4th pharyngeal arches, complete agenesis of the 3rd and 4th pouches and consistent lack of the 6th arch artery. Mesodermally derived endothelial cells are absent from the 3rd and 4th pharyngeal arch region and the distribution domain of EphA2 transcripts in mesodermal cells is shifted caudally. In situ hybridization with CRABPI, kreisler and EphA4 probes and the pattern of expression of a Wnt1-lacZ transgene show that neural crest cells (NCC) normally destined to the 3rd and 4th arches migrate ectopically. Most interestingly, the appearance of the 3rd and 4th arches is prevented by the antagonist only during a very narrow window of time, which does not correspond to the period of post-otic NCC migration. Both the timing of appearance and the nature of the defects in RAR antagonist-treated embryos indicate that migrating NCC and mesodermal cells destined to the caudal pharyngeal arches do not represent primary targets of RA action. Alterations in the endodermal expression pattern of Hoxa1, Hoxb1, Pax1, Pax9, Fgf3 and Fgf8 in response to the antagonist-induced block in RA signal transduction demonstrate for the first time that RA signaling is indispensable for the specification of the pharyngeal endoderm and suggest that this signaling is necessary to provide a permissive environment locally for the migration of NCC and mesodermal cells. Our study also indicates that the formation of the 2nd pharyngeal arch and that of the 3rd and 4th pharyngeal arches probably involve distinct RA-dependent developmental processes.
Collapse
Affiliation(s)
- O Wendling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/Collège de France, BP 163, CU de Strasbourg, France
| | | | | | | |
Collapse
|
184
|
Sharpe C, Goldstone K. The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm. Mech Dev 2000; 91:69-80. [PMID: 10704832 DOI: 10.1016/s0925-4773(99)00273-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Xenopus, the primary neurons form in three domains either side of the midline in the posterior neurectoderm. At the late neurula stage there are approximately 120 primary sensory neurons on each side of the embryo. Co-injecting synthetic mRNA encoding retinoic acid receptor alpha (NR1B1) and retinoid X receptor beta (NR2B2) results in an increase in the number of primary neurons and this is further enhanced by the addition of retinoic acid indicating that elevated retinoid signalling promotes an increase in the number of cells undergoing primary neurogenesis. However, primary neurogenesis remains confined to the three domains that normally give rise to primary neurons indicating that not all regions of the neurectoderm respond equivalently to elevated retinoid signalling. The inhibition of retinoid signalling with a dominant negative retinoid receptor or treatment with citral, an inhibitor of retinoid metabolism, inhibits the formation of primary neurons. However, the lateral extent of the neurectoderm does not differ following these experimental manipulations suggesting that changes in primary neuron cell number, in response to changes in retinoid signalling, cannot be accounted for by significant gains or losses of neurectoderm. In addition, two lines of evidence are presented to suggest that retinoid signalling affects primary neurogenesis by acting directly on the neurectoderm. First, animal caps neuralized by noggin undergo primary neurogenesis in response to retinoid signalling and second primary neurogenesis is elevated in neural conjugates in which the ectodermal, but not the mesodermal, component has been co-injected with RAR/RXR mRNA.
Collapse
Affiliation(s)
- C Sharpe
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK.
| | | |
Collapse
|
185
|
Abstract
Retinoic acid (RA) is the bioactive metabolite of vitamin A (retinol) which acts on cells to establish or change the pattern of gene activity. Retinol is converted to RA by the action of two types of enzyme, retinol dehydrogenases and retinal dehydrogenases. In the nucleus RA acts as a ligand to activate two families of transcription factors, the RA receptors (RAR) and the retinoid X receptors (RXR) which heterodimerize and bind to the upstream sequences of RA-responsive genes. Thus, in addition to the well-established experimental paradigm of depriving animals of vitamin A to determine the role of RA in embryonic and post-embryonic development, molecular biology has provided us with two additional methodologies: knockout the enzymes or the RAR and RXR in the mouse embryo. The distribution of the enzymes and receptors, and recent experiments to determine the endogenous distribution of RA in the embryo are described here, as well as the effects on the embryo of knocking out the enzymes and receptors. In addition, recent studies using the classical vitamin A-deprivation technique are described, as they have provided novel insights into the regions of the embryo which crucially require RA, and the gene pathways involved in their development. Finally, the post-embryonic or regenerating systems in which RA plays a part are described, i.e. the regenerating limb, lung regeneration, hair cell regeneration in the ear and spinal cord regeneration in the adult.
Collapse
Affiliation(s)
- M Maden
- The Randall Institute, King's College London, 26-29 Drury Lane, London WC2B 5RL, UK.
| |
Collapse
|
186
|
Hoover F, Kielland A, Glover JC. RXR? gene is expressed by discrete cell columns within the alar plate of the brainstem of the chicken embryo. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000124)416:4<417::aid-cne1>3.0.co;2-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
187
|
Niederreither K, Vermot J, Schuhbaur B, Chambon P, Dollé P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000; 127:75-85. [PMID: 10654602 DOI: 10.1242/dev.127.1.75] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Targeted disruption of the murine retinaldehyde dehydrogenase 2 (Raldh2) gene precludes embryonic retinoic acid (RA) synthesis, leading to midgestational lethality (Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Nature Genet. 21, 444–448). We describe here the effects of this RA deficiency on the development of the hindbrain and associated neural crest. Morphological segmentation is impaired throughout the hindbrain of Raldh2−/− embryos, but its caudal portion becomes preferentially reduced in size during development. Specification of the midbrain region and of the rostralmost rhombomeres is apparently normal in the absence of RA synthesis. In contrast, marked alterations are seen throughout the caudal hindbrain of mutant embryos. Instead of being expressed in two alternate rhombomeres (r3 and r5), Krox20 is expressed in a single broad domain, correlating with an abnormal expansion of the r2-r3 marker Meis2. Instead of forming a defined r4, Hoxb1- and Wnt8A-expressing cells are scattered throughout the caudal hindbrain, whereas r5/r8 markers such as kreisler or group 3/4 Hox genes are undetectable or markedly downregulated. Lack of alternate Eph receptor gene expression could explain the failure to establish rhombomere boundaries. Increased apoptosis and altered migratory pathways of the posterior rhombencephalic neural crest cells are associated with impaired branchial arch morphogenesis in mutant embryos. We conclude that RA produced by the embryo is required to generate posterior cell fates in the developing mouse hindbrain, its absence leading to an abnormal r3 (and, to a lesser extent, r4) identity of the caudal hindbrain cells.
Collapse
Affiliation(s)
- K Niederreither
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, CU de Strasbourg
| | | | | | | | | |
Collapse
|
188
|
Abstract
We report here the development and rescue of the truncated hindbrain of retinoid-deprived quail embryos. The embryo is completely rescued by an injection of retinol into the egg; this confirms retinol, or a related retinoid, as a required molecule in hindbrain development. Staging the retinoid replacement enabled us to determine that the 3-4 somite stage is the period when retinoids are required for normal development. Analysis of the development of the retinoid-deprived hindbrain phenotype through somitogenesis has revealed a pathway of retinoid action in early hindbrain regionalization. The hindbrain of the retinoid-deprived embryo is normal in size, during early somitogenesis, but has a respecified pattern of Krox-20 expression. From the earliest expression of Krox-20, at the 5 somite stage, the rhombomere 3 stripe fills the caudal third of the developing hindbrain to the level of the first somite. Morphologically only 2, instead of the normal 5, rhombomere bulges form. These 2 bulges express genes and, later, develop morphology characteristic of rhombomeres 1 and 2 and rhombomere 3. Posterior hindbrain specific genes, Hoxb-1, Fgf3, MafB, and the rhombomere 5 stripe of Krox-20 are never expressed in the head neuroepithelium of these embryos. From the initial formation of the neural plate, there is no evidence of rhombomere 4-7 specific characteristics. These results indicate the specification of the posterior hindbrain is lost and its cells participate in the formation of an enlarged anterior hindbrain. In our previous study, we reported the absence of the posterior hindbrain in retinoid-deprived quails (Maden, M., Gale, E., Kostetskii, I., Zile, M., 1996. Vitamin A-deficient quail embryos have half a hindbrain and other neural defects. Curr. Biol. 6, 417-426). Here, we show this phenotype to be the result of respecification of the hindbrain cells. This provides evidence for a region specific response to a single stimulus, retinol, which suggests a pre-rhombomeric regionalization of the hindbrain.
Collapse
Affiliation(s)
- E Gale
- New Hunt's House, King's College London, Guy's Campus, London Bridge, London, UK.
| | | | | |
Collapse
|
189
|
Abstract
Retinoids long have been implicated in limb development and their endogenous contributions to this process are finally being elucidated. Here we use an established model of retinoid depletion during specific gestational windows to investigate the role of endogenous retinoic acid (RA) in supporting limb outgrowth. Rat embryos were deprived of RA starting at days-postcoitum (dpc) 3.0, 5.5, or 7.0 and harvested at the 35-somite stage (dpc 12-12.5). Although embryos from all these windows possessed many characteristics of gestational retinoid deficiency (frontonasal hypoplasia, straight tail, reduced CRBPI and RAR beta), their limb buds emerged with only modest size reductions. Molecular analysis of RA-deficient limb buds revealed enhanced gli-3 and reduced hoxd-12, hoxd-13, shh, and fgf-4, while fgf-8, en-1, and wnt-7a expression remained unaltered. Occasional posterior truncations were observed at low incidence in the longest deficiency window; otherwise, the deficiency window length had no discernable impact on the severity of these changes. At the 45-somite stage, RA-deficient limbs had additional losses of hoxd-13 and fgf-8, accompanied by a flattened AER, suggestive of an ultimate failure in limb bud outgrowth. Results could not confirm a function for endogenous retinoids in limb initiation, but show they are required to maintain the signaling loops between the developing mesenchyme and AER that govern limb outgrowth after the initial emergence of limb bud.
Collapse
Affiliation(s)
- S C Power
- Department of Nutritional Sciences, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
190
|
Swindell EC, Thaller C, Sockanathan S, Petkovich M, Jessell TM, Eichele G. Complementary domains of retinoic acid production and degradation in the early chick embryo. Dev Biol 1999; 216:282-96. [PMID: 10588879 DOI: 10.1006/dbio.1999.9487] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excess retinoids as well as retinoid deprivation cause abnormal development, suggesting that retinoid homeostasis is critical for proper morphogenesis. RALDH-2 and CYP26, two key enzymes that carry out retinoic acid (RA) synthesis and degradation, respectively, were cloned from the chick and show significant homology with their orthologs in other vertebrates. Expression patterns of RALDH-2 and CYP26 genes were determined in the early chick embryo by in situ hybridization. During gastrulation and neurulation RALDH-2 and CYP26 were expressed in nonoverlapping regions, with RALDH-2 transcripts localized to the presumptive presomitic and lateral plate mesoderm and CYP26 mRNA to the presumptive mid- and forebrain. The two domains of expression were separated by an approximately 300-micrometer-wide gap, encompassing the presumptive hindbrain. In the limb region, a similar spatial segregation of RALDH-2 and CYP26 expression was found at stages 14 and 15. Limb region mesoderm expressed RALDH-2, whereas the overlying limb ectoderm expressed CYP26. RA-synthesizing and -degrading enzymatic activities were measured biochemically in regions expressing RALDH-2 or CYP26. Regions expressing RALDH-2 generated RA efficiently from precursor retinal but degraded RA only inefficiently. Conversely, tissue expressing CYP26 efficiently degraded but did not synthesize RA. Localized regions of RA synthesis and degradation mediated by these two enzymes may therefore provide a mechanism to regulate RA homeostasis spatially in vertebrate embryos.
Collapse
Affiliation(s)
- E C Swindell
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | | | | | | | | | |
Collapse
|
191
|
Dupé V, Ghyselinck NB, Wendling O, Chambon P, Mark M. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 1999; 126:5051-9. [PMID: 10529422 DOI: 10.1242/dev.126.22.5051] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse fetuses carrying targeted inactivations of both the RAR(α) and the RARbeta genes display a variety of malformations in structures known to be partially derived from the mesenchymal neural crest originating from post-otic rhombomeres (e.g. thymus and great cephalic arteries) (Ghyselinck, N., Dupe, V., Dierich, A., Messaddeq, N., Garnier, J.M., Rochette-Egly, C., Chambon, P. and Mark M. (1997). Int. J. Dev. Biol. 41, 425–447). In a search for neural crest defects, we have analysed the rhombomeres, cranial nerves and pharyngeal arches of these double null mutants at early embryonic stages. The mutant post-otic cranial nerves are disorganized, indicating that RARs are involved in the patterning of structures derived from neurogenic neural crest, even though the lack of RARalpha and RARbeta has no detectable effect on the number and migration path of neural crest cells. Interestingly, the double null mutation impairs early developmental processes known to be independent of the neural crest e.g., the initial formation of the 3rd and 4th branchial pouches and of the 3rd, 4th and 6th arch arteries. The double mutation also results in an enlargement of rhombomere 5, which is likely to be responsible for the induction of supernumerary otic vesicles, in a disappearance of the rhombomere 5/6 boundary, and in profound alterations of rhombomere identities. In the mutant hindbrain, the expression domain of kreisler is twice its normal size and the caudal stripe of Krox-20 extends into the presumptive rhombomeres 6 and 7 region. In this region, Hoxb-1 is ectopically expressed, Hoxb-3 is ectopically up-regulated and Hoxd-4 expression is abolished. These data, which indicate that retinoic acid signaling through RARalpha and/or RARbeta is essential for the specification of rhombomere identities and for the control of caudal hindbrain segmentation by restricting the expression domains of kreisler and of Krox-20, also strongly suggest that this signaling plays a crucial role in the posteriorization of the hindbrain neurectoderm.
Collapse
Affiliation(s)
- V Dupé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/ULP/ Collège de France, B.P. 163, CU de STRASBOURG, France.
| | | | | | | | | |
Collapse
|
192
|
Abstract
A recent study (Niederreither et al. Nat Genet 1999;21:444-448 [Ref. 1]) describes the phenotype of a gene knockout for an enzyme, retinaldehyde dehydrogenase 2 (RALDH-2), that synthesizes retinoic acid (RA) in the early embryo. The effects generated by this single enzyme mutation are remarkably similar to those previously described in vitamin A-deprivation studies and compound retinoic acid receptor knockouts, which involve multiple systems of the embryo. With other data on the distribution of RA, its role in axial specification of the early embryo is considerably clarified. Surprisingly, it seems that head development is unaffected in these RALDH-2 knockout embryos; thus, the anterior of the embryo does not require RA, despite the observations that the hindbrain seems exquisitely sensitive to RA perturbation. Head development may be realised by a cytochrome P450 enzyme (CYP26), which has been described recently. Between these two opposing forces, the hindbrain develops.
Collapse
Affiliation(s)
- M Maden
- The Randall Institute, King's College London, 26-29 Drury Lane, London WC2B 5RL, UK
| |
Collapse
|
193
|
Sonneveld E, van den Brink CE, Tertoolen LG, van der Burg B, van der Saag PT. Retinoic acid hydroxylase (CYP26) is a key enzyme in neuronal differentiation of embryonal carcinoma cells. Dev Biol 1999; 213:390-404. [PMID: 10479456 DOI: 10.1006/dbio.1999.9381] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Besides nuclear retinoid receptors and cellular retinoid binding proteins also retinoic acid (RA)-synthesizing enzymes (using all-trans-retinal as substrate) and RA-catabolizing enzymes (producing hydroxylated products) may explain the specific effects of retinoids. In the past we have established an active role for 4-hydroxy-RA and 4-oxo-RA, which originally were considered to be inactive retinoids, but in fact are highly active modulators of positional specification in Xenopus development. Here we present evidence for a specific role of hydroxylated RA metabolites in the onset of neuronal differentiation. 4-Hydroxy- and 18-hydroxy-RA are products of the hydroxylation of RA by a novel cytochrome P450 (CYP)-type of enzyme, CYP26, expression of which is rapidly induced by RA. P19 embryonal carcinoma (EC) cell lines stably expressing hCYP26 undergo extensive and rapid neuronal differentiation in monolayer at already low concentrations of RA, while normally P19 cells under these conditions differentiate only in endoderm-like cells. Our results indicate that the effects on growth inhibition and RARbeta transactivation of P19 EC cells are mediated directly by RA, while the onset of neuronal differentiation and the subsequent expression of neuronal markers is mediated by hCYP26 via the conversion of RA to its hydroxylated products.
Collapse
Affiliation(s)
- E Sonneveld
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | | | | | | | | |
Collapse
|
194
|
|
195
|
Ang HL, Duester G. Retinoic acid biosynthetic enzyme ALDH1 localizes in a subset of retinoid-dependent tissues during xenopus development. Dev Dyn 1999; 215:264-72. [PMID: 10398536 DOI: 10.1002/(sici)1097-0177(199907)215:3<264::aid-aja8>3.0.co;2-i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Control of retinoic acid synthesis in vertebrate organisms is undoubtedly important for regulating the numerous retinoid signaling events which occur during development. The mechanisms which accomplish this task involve enzymes such as class I aldehyde dehydrogenase (ALDH1), which has recently been found to be conserved from amphibians to mammals and which functions as a retinoic acid biosynthetic enzyme in vivo. Here we have found that Xenopus ALDH1 mRNA and protein is expressed in a subset of retinoid-dependent tissues which develop shortly after neurulation during the tail bud stages. ALDH1 mRNA was first clearly detectable by in situ hybridization in stage 28 tail bud embryos localized in the olfactory placode and pronephros, and at stage 35 mRNA was also detected in the pronephric duct. Antibodies were generated against Xenopus ALDH1, and immunohistochemistry was used to demonstrate that ALDH1 protein accumulates in the olfactory placode, pronephros, and dorsal retina at stage 28, and additionally in the lens placode and pronephric duct at stage 35. Neither ALDH1 mRNA nor protein was detected in the posterior region of Xenopus embryos during the tail bud stages. In contrast to neurula stage embryos in which retinoic acid is distributed in an anteroposterior gradient with the high end posteriorly, we found that tail bud stage embryos have retinoic acid present in significant levels in both the head and trunk regions, but with no detection in the posterior region. These findings are consistent with ALDH1 contributing to retinoic acid synthesis needed for development of certain head structures (olfactory placodes, dorsal retina, lens placode) and certain trunk structures (pronephros and pronephric duct). Dev Dyn 1999;215:264-272.
Collapse
Affiliation(s)
- H L Ang
- Gene Regulation Program, Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
196
|
Rowan AM, Stern CD, Storey KG. Axial mesendoderm refines rostrocaudal pattern in the chick nervous system. Development 1999; 126:2921-34. [PMID: 10357936 DOI: 10.1242/dev.126.13.2921] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There has long been controversy concerning the role of the axial mesoderm in the induction and rostrocaudal patterning of the vertebrate nervous system. Here we investigate the neural inducing and regionalising properties of defined rostrocaudal regions of head process/prospective notochord in the chick embryo by juxtaposing these tissues with extraembryonic epiblast or neural plate explants. We localise neural inducing signals to the emerging head process and using a large panel of region-specific neural markers, show that different rostrocaudal levels of the head process derived from headfold stage embryos can induce discrete regions of the central nervous system. However, we also find that rostral and caudal head process do not induce expression of any of these molecular markers in explants of the neural plate. During normal development the head process emerges beneath previously induced neural plate, which we show has already acquired some rostrocaudal character. Our findings therefore indicate that discrete regions of axial mesendoderm at headfold stages are not normally responsible for the establishment of rostrocaudal pattern in the neural plate. Strikingly however, we do find that caudal head process inhibits expression of rostral genes in neural plate explants. These findings indicate that despite the ability to induce specific rostrocaudal regions of the CNS de novo, signals provided by the discrete regions of axial mesendoderm do not appear to establish regional differences, but rather refine the rostrocaudal character of overlying neuroepithelium.
Collapse
Affiliation(s)
- A M Rowan
- Human Anatomy and Genetics, University of Oxford, South Parks Rd, Oxford OX1 3QX, UK.
| | | | | |
Collapse
|
197
|
Berggren K, McCaffery P, Dräger U, Forehand CJ. Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol 1999; 210:288-304. [PMID: 10357892 DOI: 10.1006/dbio.1999.9286] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid generating enzyme in the early embryo. Here we report the immunolocalization of this enzyme (RALDH-2-IR) in stage 6-29 chicken embryos; we also show that tissues that exhibit strong RALDH-2-IR in the embryo contain RALDH-2 and synthesize retinoic acid. RALDH-2-IR indicates dynamic and discrete patterns of retinoic acid synthesis in the embryo, particularly within the somitic mesoderm, lateral mesoderm, kidney, heart, and spinal motor neurons. Prior to somitogenesis, RALDH-2-IR is present in the paraxial mesoderm with a rostral boundary at the level of the presumptive first somite; as the somites form, they exhibit strong RALDH-2-IR. Cervical presomitic mesoderm exhibits RALDH-2-IR but thoracic presomitic mesoderm does not. Neural crest cells do not express detectable levels of RALDH-2, but migrating crest cells are associated with RALDH-2 expressing mesoderm. The developing limb mesoderm expresses little RALDH-2-IR; however, RALDH-2-IR is strongly expressed in tissues adjacent to the limb. The most lateral, earliest-projecting motor neurons at all levels of the spinal cord exhibit RALDH-2-IR. Subsequently, many additional motor neurons in the brachial and lumbar cord regions express RALDH-2-IR. Motor neuronal expression of RALDH-2-IR is present in the growing axons as they extend to the periphery, indicating a potential role of retinoic acid in nerve influences on peripheral differentiation. With the exception of a transient expression in the facial/vestibulocochlear nucleus, cranial motor neurons do not express detectable levels of RALDH-2-IR.
Collapse
Affiliation(s)
- K Berggren
- Department of Anatomy and Neurobiology, University of Vermont, Burlington, Vermont, 05405, USA
| | | | | | | |
Collapse
|
198
|
Duester G. Function of alcohol dehydrogenase and aldehyde dehydrogenase gene families in retinoid signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:311-9. [PMID: 10352700 DOI: 10.1007/978-1-4615-4735-8_38] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- G Duester
- Gene Regulation Program, Burnham Institute, La Jolla, California 92037, USA
| |
Collapse
|
199
|
Abstract
All vertebrate embryos require retinoic acid (RA) for fulfilment of the developmental program encoded in the genome. In mammals, maternal homeostatic mechanisms minimize variation of retinoid levels reaching the embryo. Retinol is transported as a complex with retinol-binding protein (RBP): transplacental transfer of retinol and its uptake by the embryonic tissues involves binding to an RBP receptor at the cell surface. Embryonic tissues in which this receptor is present also contain the retinol-binding protein CRBP I and the enzymes involved in RA synthesis; the same tissues are particularly vulnerable to vitamin A deficiency. In the nucleus, the RA signal is transduced by binding to a heterodimeric pair of retinoid receptors (RAR/RXR). In general, the receptors show functional plasticity, disruption of one RAR or RXR gene having minor or no effects on embryogenesis. However, genetic studies indicate that RXR alpha is essential for normal development of the heart and eye. Excess RA causes abnormalities of many systems; altered susceptibility to RA excess in mice lacking RAR gamma or RXR alpha suggests that the teratogenic signal is transduced through different receptors compared with physiological RA function in the same tissue.
Collapse
Affiliation(s)
- G M Morriss-Kay
- Department of Human Anatomy and Genetics, University of Oxford, United Kingdom
| | | |
Collapse
|
200
|
Gustafson AL, Eriksson U, Dencker L. CRBP I and CRABP I localisation during olfactory nerve development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 114:121-6. [PMID: 10209249 DOI: 10.1016/s0165-3806(99)00014-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retinoic acid appears to play a role during the formation of the olfactory system. Immunohistochemistry was used to localise the cellular retinoid binding-proteins for retinol (CRBP I) and retinoic acid (CRABP I) in the embryonic and adult olfactory system. Our results indicate that RA produced by the CRBP I-expressing 'glia-like' cells may act as a neurotrophic factor for the CRABP I-expressing immature olfactory axons.
Collapse
Affiliation(s)
- A L Gustafson
- Department of Pharmaceutical Bioscience, Division of Toxicology, Uppsala Biomedical Centre, Uppsala University, Box 594, 751 24, Uppsala, Sweden.
| | | | | |
Collapse
|