151
|
Ly D, Tohn R, Rubin B, Blumenfeld H, Besra GS, Veerapen N, Porcelli SA, Delovitch TL. An alpha-galactosylceramide C20:2 N-acyl variant enhances anti-inflammatory and regulatory T cell-independent responses that prevent type 1 diabetes. Clin Exp Immunol 2009; 160:185-98. [PMID: 20015094 DOI: 10.1111/j.1365-2249.2009.04074.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protection from type 1 diabetes (T1D), a T helper type 1 (Th1)-mediated disease, is achievable in non-obese diabetic (NOD) mice by treatment with alpha-galactosylceramide (alpha-GalCer) glycolipids that stimulate CD1d-restricted invariant natural killer T (iNK T) cells. While we have reported previously that the C20:2 N-acyl variant of alpha-GalCer elicits a Th2-biased cytokine response and protects NOD mice from T1D more effectively than a form of alpha-GalCer that induces mixed Th1 and Th2 responses, it remained to determine whether this protection is accompanied by heightened anti-inflammatory responses. We show that treatment of NOD mice with C20:2 diminished the activation of 'inflammatory' interleukin (IL)-12 producing CD11c(high)CD8+ myeloid dendritic cells (mDCs) and augmented the function of 'tolerogenic' DCs more effectively than treatment with the prototypical iNKT cell activator KRN7000 (alpha-GalCer C26:0) that induces Th1- and Th2-type responses. These findings correlate with a reduced capacity of C20:2 to sustain the early transactivation of T, B and NK cells. They may also explain our observation that C20:2 activated iNK T cells depend less than KRN7000 activated iNK T cells upon regulation by regulatory T cells for cytokine secretion and protection from T1D. The enhanced anti-inflammatory properties of C20:2 relative to KRN7000 suggest that C20:2 should be evaluated further as a drug to induce iNK T cell-mediated protection from T1D in humans.
Collapse
Affiliation(s)
- D Ly
- Laboratory of Autoimmune Diabetes, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Affiliation(s)
- Anthony Quinn
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.
| |
Collapse
|
153
|
Lapolla A, Dalfrà MG, Fedele D. Diabetes related autoimmunity in gestational diabetes mellitus: is it important? Nutr Metab Cardiovasc Dis 2009; 19:674-682. [PMID: 19541464 DOI: 10.1016/j.numecd.2009.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 02/06/2009] [Accepted: 04/01/2009] [Indexed: 01/29/2023]
Abstract
Some GDM women show autoantibody positivity during and after pregnancy and pancreatic autoantibodies can appear for the first time in some patients after delivery. Autoantibody positivity is often accompanied by a high frequency of DR3 and DR4 alleles, which are classically related to the development of type 1 diabetes and, although not all studies agree on this point, by an immunological imbalance expressed by the behaviour of the lymphocyte subpopulation, which can be seen as diabetic anomalies overlapping with the immunological changes that occur during pregnancy. It is worth emphasizing that such patients may develop classical type 1 diabetes during and/or after their pregnancy or they may evolve, often some years after their pregnancy, into cases of latent autoimmune diabetes of adulthood (LADA). Autoimmune GDM accounts for a relatively small number of cases (about 10% of all GDM) but the risk of these women developing type 1 diabetes or LADA is very high, so these patients must be identified in order to prevent the severe maternal and fetal complications of type 1 diabetes developing in pregnancy, or its acute onset afterwards. Since women with autoimmune GDM must be considered at high risk of developing type 1 diabetes in any of its clinical forms, these women should be regarded as future candidates for the immunomodulatory strategies used in type 1 diabetes.
Collapse
Affiliation(s)
- A Lapolla
- Department of Clinical and Surgical Sciences-Chair of Metabolic Disease, Padova University, Via Giustiniani n 2, 35100 Padova, Italy.
| | | | | |
Collapse
|
154
|
Xia J, Liu W, Hu B, Tian Z, Yang Y. IL-15 promotes regulatory T cell function and protects against diabetes development in NK-depleted NOD mice. Clin Immunol 2009; 134:130-9. [PMID: 19875339 DOI: 10.1016/j.clim.2009.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/11/2009] [Accepted: 09/26/2009] [Indexed: 01/09/2023]
Abstract
IL-15, an anti-apoptotic cytokine, has been reported to promote the survival and function of NK cells and T cells, including regulatory T cells (Tregs). Here we examined the effect of repeated injections of IL-15 on the development of diabetes in NOD mice. Injection of recombinant murine IL-15, once a day for 2 weeks, neither inhibited nor accelerated diabetes development in untreated NOD mice. However, treatment with IL-15 significantly reduced the incidence and delayed the onset of diabetes in NOD mice that were depleted of NK cells, while NK cell depletion alone had no protection against the disease development. The protective effect in IL-15-treated, NK cell-depleted NOD mice was associated with an increase in immunosuppressive activity of CD4(+)CD25(+) Tregs. IL-15 also enhanced Foxp3 expression in CD4(+)CD25(+) cells in an in vitro culture system, and such an effect of IL-15 was abrogated by IL-15-activated NK cells. Inhibition of IL-15-induced Foxp3 expression by IL-15-activated NK cells likely resulted from their IFN-gamma production, as recombinant IFN-gamma, or the culture supernatant of IL-15-activated wild-type mouse NK cells but not of IL-15-activated IFN-gamma-deficient NK cells, mediated a similar inhibition. IFN-gamma also diminished the stimulatory effect of IL-15 on Treg function in vitro. These results indicate that IL-15 has the potential to promote Treg function and protect against diabetes development in NOD mice, but such an activity can be eliminated by simultaneous activation of NK cells in IL-15-treated mice.
Collapse
Affiliation(s)
- Jinxing Xia
- Institute of Immunology, Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | | | | | | | | |
Collapse
|
155
|
Fallarino F, Volpi C, Zelante T, Vacca C, Calvitti M, Fioretti MC, Puccetti P, Romani L, Grohmann U. IDO Mediates TLR9-Driven Protection from Experimental Autoimmune Diabetes. THE JOURNAL OF IMMUNOLOGY 2009; 183:6303-12. [DOI: 10.4049/jimmunol.0901577] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
156
|
Fallarino F, Luca G, Calvitti M, Mancuso F, Nastruzzi C, Fioretti MC, Grohmann U, Becchetti E, Burgevin A, Kratzer R, van Endert P, Boon L, Puccetti P, Calafiore R. Therapy of experimental type 1 diabetes by isolated Sertoli cell xenografts alone. ACTA ACUST UNITED AC 2009; 206:2511-26. [PMID: 19822646 PMCID: PMC2768846 DOI: 10.1084/jem.20090134] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type I diabetes mellitus is caused by autoimmune destruction of pancreatic β cells, and effective treatment of the disease might require rescuing β cell function in a context of reinstalled immune tolerance. Sertoli cells (SCs) are found in the testes, where their main task is to provide local immunological protection and nourishment to developing germ cells. SCs engraft, self-protect, and coprotect allogeneic and xenogeneic grafts from immune destruction in different experimental settings. SCs have also been successfully implanted into the central nervous system to create a regulatory environment to the surrounding tissue which is trophic and counter-inflammatory. We report that isolated neonatal porcine SC, administered alone in highly biocompatible microcapsules, led to diabetes prevention and reversion in the respective 88 and 81% of overtly diabetic (nonobese diabetic [NOD]) mice, with no need for additional β cell or insulin therapy. The effect was associated with restoration of systemic immune tolerance and detection of functional pancreatic islets that consisted of glucose-responsive and insulin-secreting cells. Curative effects by SC were strictly dependent on efficient tryptophan metabolism in the xenografts, leading to TGF-β–dependent emergence of autoantigen-specific regulatory T cells and recovery of β cell function in the diabetic recipients.
Collapse
Affiliation(s)
- Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Lennon GP, Bettini M, Burton AR, Vincent E, Arnold PY, Santamaria P, Vignali DAA. T cell islet accumulation in type 1 diabetes is a tightly regulated, cell-autonomous event. Immunity 2009; 31:643-53. [PMID: 19818656 DOI: 10.1016/j.immuni.2009.07.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/04/2009] [Accepted: 07/17/2009] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is a T cell-mediated autoimmune disease, characterized by lymphocytic infiltration of the pancreatic islets. It is currently thought that islet antigen specificity is not a requirement for islet entry and that diabetogenic T cells can recruit a heterogeneous bystander T cell population. We tested this assumption directly by generating T cell receptor (TCR) retrogenic mice expressing two different T cell populations. By combining diabetogenic and nondiabetogenic or nonautoantigen-specific T cells, we demonstrate that bystander T cells cannot accumulate in the pancreatic islets. Autoantigen-specific T cells that accumulate in islets, but do not cause diabetes, were also unaffected by the presence of diabetogenic T cells. Additionally, 67% of TCRs cloned from nonobese diabetic (NOD) islet-infiltrating CD4(+) T cells were able to mediate cell-autonomous islet infiltration and/or diabetes when expressed in retrogenic mice. Therefore, islet entry and accumulation appears to be a cell-autonomous and tightly regulated event and is governed by islet antigen specificity.
Collapse
Affiliation(s)
- Greig P Lennon
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Chou FC, Shieh SJ, Sytwu HK. Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. Eur J Immunol 2009; 39:2403-11. [PMID: 19670381 DOI: 10.1002/eji.200839177] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectin-9 (gal-9), widely expressed in many tissues, regulates Th1 cells and induces their apoptosis through its receptor, T-cell Ig mucin 3, which is mainly expressed on terminally differentiated Th1 cells. Type 1 diabetes is a Th1-dominant autoimmune disease that specifically destroys insulin-producing beta cells. To suppress the Th1 immune response in the development of autoimmune diabetes, we overexpressed gal-9 in NOD mice by injection of a plasmid encoding gal-9. Mice treated with gal-9 plasmid were significantly protected from diabetes and showed less severe insulitis compared with controls. Flow cytometric analyses in NOD-T1/2 double transgenic mice showed that Th1-cell population in spleen, pancreatic lymph node and pancreas was markedly decreased in gal-9 plasmid-treated mice, indicating a negative regulatory role of gal-9 in the development of pathogenic Th1 cells. Splenocytes from gal-9 plasmid-treated mice were less responsive to mitogenic stimulation than splenocytes from the control group. However, adoptive transfer of splenocytes from gal-9-treated or control mice caused diabetes in NOD/SCID recipients with similar kinetics, suggesting that gal-9 treatment does not induce active tolerance in NOD mice. We conclude that gal-9 may downregulate Th1 immune response in NOD mice and could be used as a therapeutic target in autoimmune diabetes.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | |
Collapse
|
159
|
Abstract
A major effort has been on-going to develop immunotherapies to prevent and/or treat type 1 diabetes (T1D). This autoimmune disease is characterized by the selective loss of the insulin-producing beta cells via the cumulative effects of autoantigen-specific CD4(+) and CD8(+) T cells, autoantibodies, and activated antigen-presenting cells. To be applicable in a clinical setting, immunotherapies must suppress established beta-cell autoimmunity. Preclinical studies and recent clinical findings suggest that antigen-specific and systemic-based strategies can be effective in this regard. However, either approach alone may not be sufficient to block the diabetogenic response and establish long-term protection in the clinic. In this review, we will discuss the importance of both strategies and how a combinatorial approach to treat T1D is appealing.
Collapse
Affiliation(s)
- Kevin S Goudy
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, 27599, USA
| | | |
Collapse
|
160
|
Hamilton-Williams EE, Martinez X, Clark J, Howlett S, Hunter KM, Rainbow DB, Wen L, Shlomchik MJ, Katz JD, Beilhack GF, Wicker LS, Sherman LA. Expression of diabetes-associated genes by dendritic cells and CD4 T cells drives the loss of tolerance in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:1533-41. [PMID: 19592648 DOI: 10.4049/jimmunol.0900428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In humans and NOD mice, defects in immune tolerance result in the spontaneous development of type-1-diabetes. Recent studies have ascribed a breakdown in tolerance to dysfunction in regulatory T cells that is secondary to reduced IL-2 production by T cells having the NOD diabetes susceptibility region insulin-dependent diabetes 3 (Idd3). In this study, we demonstrate a peripheral tolerance defect in the dendritic cells of NOD mice that is independent of regulatory T cells. NOD CD8 T cells specific for islet Ags fail to undergo deletion in the pancreatic lymph nodes. Deletion was promoted by expression of the protective alleles of both Idd3 (Il2) and Idd5 in dendritic cells. We further identify a second tolerance defect that involves endogenous CD4 T cell expression of the disease-promoting NOD alleles of these genetic regions. Pervasive insulitis can be reduced by expression of the Idd3 and Idd5 protective alleles by either the Ag-presenting cell or lymphocytes.
Collapse
Affiliation(s)
- Emma E Hamilton-Williams
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Alfonso B, Liao E, Busta A, Poretsky L. Vitamin D in diabetes mellitus-a new field of knowledge poised for D-velopment. Diabetes Metab Res Rev 2009; 25:417-9. [PMID: 19565622 DOI: 10.1002/dmrr.927] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This commentary reviews the current state of knowledge regarding the role of vitamin D in the pathogenesis of diabetes mellitus. In type 1 diabetes mellitus or in adult onset latent autoimmune diabetes (LADA), vitamin D exhibits immunomodulatory actions, influencing the activity of lymphocytes and interleukins. In type 2 diabetes mellitus vitamin D appears to act through different mechanisms, affecting insulin secretion and insulin sensitivity through its effects on the beta cells, mediators of inflammation and parathyroid hormone. Much work remains to be done in this new field of knowledge before the role of vitamin D in the pathogenesis of diabetes mellitus is completely understood.
Collapse
Affiliation(s)
- B Alfonso
- Division of Endocrinology and Metabolism, Department of Medicine, Beth Israel Medical Center and Albert Einstein College of Medicine, New York, NY 10003, USA
| | | | | | | |
Collapse
|
162
|
Evans I, Kim MY. Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure. BMB Rep 2009; 42:189-93. [PMID: 19403040 DOI: 10.5483/bmbrep.2009.42.4.189] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) alpha1beta2 has been identified as a critical component to this process. LTalpha1beta2 interacts with the LTbeta-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LTalpha1beta2 in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.
Collapse
Affiliation(s)
- Isabel Evans
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Birmingham Medical School, Birmingham, UK
| | | |
Collapse
|
163
|
Waldron-Lynch F, Herold KC. Advances in Type 1 diabetes therapeutics: immunomodulation and beta-cell salvage. Endocrinol Metab Clin North Am 2009; 38:303-17, viii. [PMID: 19328413 DOI: 10.1016/j.ecl.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Refinements in our understanding of the pathogenic mechanisms of Type 1 diabetes from studies of animal models and clinical observation have led to new clinical trials to prevent disease progression and restore the loss of beta-cells that defines the disease. Antigen-specific agents have shown initial promise and non-antigen-specific agents now have improved safety compared with older agents. In addition, preclinical studies with other agents have shown efficacy. Ultimately, a combination of immunologic and cellular therapies may be needed to restore metabolic control. Agents that augment recovery of dysfunctional beta-cells, and other compounds that may be able to induce beta-cell replication, are logical additions once immune tolerance is achieved.
Collapse
|
164
|
Sarkar SA, Kutlu B, Velmurugan K, Kizaka-Kondoh S, Lee CE, Wong R, Valentine A, Davidson HW, Hutton JC, Pugazhenthi S. Cytokine-mediated induction of anti-apoptotic genes that are linked to nuclear factor kappa-B (NF-kappaB) signalling in human islets and in a mouse beta cell line. Diabetologia 2009; 52:1092-101. [PMID: 19343319 DOI: 10.1007/s00125-009-1331-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 02/13/2009] [Indexed: 12/23/2022]
Abstract
AIMS/HYPOTHESIS The destruction of pancreatic beta cells leading to type 1 diabetes in humans is thought to occur mainly through apoptosis and necrosis induced by activated macrophages and T cells, and in which secreted cytokines play a significant role. The transcription factor nuclear factor kappa-B (NF-kappaB) plays an important role in mediating the apoptotic action of cytokines in beta cells. We therefore sought to determine the changes in expression of genes modulated by NF-kappaB in human islets exposed to a combination of IL1beta, TNF-alpha and IFN-gamma. METHODS Microarray and gene set enrichment analysis were performed to investigate the global response of gene expression and pathways modulated in cultured human islets exposed to cytokines. Validation of a panel of NF-kappaB-regulated genes was performed by quantitative RT-PCR. The mechanism of induction of BIRC3 by cytokines was examined by transient transfection of BIRC3 promoter constructs linked to a luciferase gene in MIN6 cells, a mouse beta cell line. RESULTS Enrichment of several metabolic and signalling pathways was observed in cytokine-treated human islets. In addition to the upregulation of known pro-apoptotic genes, a number of anti-apoptotic genes including BIRC3, BCL2A1, TNFAIP3, CFLAR and TRAF1 were induced by cytokines through NF-kappaB. Significant synergy between the cytokines was observed in NF-kappaB-mediated induction of the promoter of BIRC3 in MIN6 cells. CONCLUSIONS/INTERPRETATION These findings suggest that, via NF-kappaB activation, cytokines induce a concurrent anti-apoptotic pathway that may be critical for preserving islet integrity and viability during the progression of insulitis in type 1 diabetes.
Collapse
Affiliation(s)
- S A Sarkar
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Rasche S, Busick RY, Quinn A. GAD65-Specific Cytotoxic T Lymphocytes Mediate Beta-Cell Death and Loss of Function. Rev Diabet Stud 2009; 6:43-53. [PMID: 19557295 DOI: 10.1900/rds.2009.6.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autoimmunity to islet cell antigens like glutamic acid decarboxylase 65kD (GAD65) is associated with the destruction of insulin-producing beta-cells and progression to type 1 diabetes (T1D) in NOD mice and humans. T cell responses to GAD65 are detectable in the spleen of prediabetic NOD mice and in the peripheral blood of humans prior to the onset of overt hyperglycemia. Previous findings from our lab revealed that GAD65(546-554)-specific cytotoxic T lymphocytes (CTL) are present in naïve NOD mice and are able to induce islet inflammation upon adoptive transfer into NOD.scid recipients. Additionally, we found that professional antigen-presenting cells (APC) generate the p546-554 epitope from a soluble GAD65 fragment, p530-554, and from GAD65 released by injured beta-cells in vivo. Here, we report that the GAD65 fragment p546-554 is a dominant CTL-inducing epitope which is naturally processed and presented by a GAD65-expressing beta-cell line. Further, co-culture of GAD65(546-554)-specific CTL with the beta-cells leads to a reduction in insulin production and the induction of perforin-mediated cell death. Collectively, these findings support a role for the cross-presentation of GAD65 antigen in the priming and enhancement of dominant GAD65-specific CTL responses, which can directly target beta-cells that display GAD65 epitopes.
Collapse
Affiliation(s)
- Sarah Rasche
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft, Toledo, OH 43606, USA
| | | | | |
Collapse
|
166
|
Abstract
Immune system regulation is of paramount importance to host survival. In settings of autoimmunity and alloimmunity, control is lost, resulting in injury to vital organs and tissues. Naturally occurring, thymic-derived T regulatory (Treg) cells that express CD4, CD25, and the forkhead box protein 3 (FoxP3) are potent suppressors of these adverse immune responses. Preclinical studies have shown that either freshly isolated or ex vivo expanded Treg cells can prevent both local and systemic organ and tissue destruction. Although promising, human Treg cell infusion therapy has heretofore been difficult to implement in the clinic, and relatively few clinical trials have been initiated. This review will focus on the preclinical models that provide the rationale for current trials and it will address both the challenges and opportunities in human Treg cell therapy.
Collapse
Affiliation(s)
- James L. Riley
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H. June
- Department of Pathology and Laboratory Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and Department of Pediatrics, Division of Bone Marrow Transplantation, Minneapolis, MN 55455, USA
| |
Collapse
|
167
|
Truong W, Hancock WW, Plester JC, Merani S, Rayner DC, Thangavelu G, Murphy KM, Anderson CC, Shapiro AMJ. BTLA targeting modulates lymphocyte phenotype, function, and numbers and attenuates disease in nonobese diabetic mice. J Leukoc Biol 2009; 86:41-51. [PMID: 19383625 DOI: 10.1189/jlb.1107753] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The novel coinhibitory receptor BTLA may have a regulatory role in maintaining peripheral tolerance; however, its role in autoimmune diabetes is unknown. In this study, we show that anti-BTLA mAb 6F7 selectively depleted pathogenic B and CD4+ T(H) cells; enhanced the proportion of cells with the forkhead box p3+ PD-1+CD4+ regulatory T phenotype; and increased the production of potentially protective (IL-10) and detrimental (IL-2, IFN-gamma) cytokines in NOD mice. As interactions between BTLA and PD-1 coinhibitory pathways have been described in the cardiac allograft model, we also investigated if these pathways may have significant interaction in autoimmune diabetes. Anti-BTLA inhibited anti-PD-1-potentiated total IL-12 (p40+p70) production, suggesting the possibility that anti-BTLA may have a greater effect in the setting of anti-PD-1-triggered diabetes. To test this, NOD mice at 4 and 10 weeks of age were treated with anti-BTLA mAb, anti-PD-1 mAb, both mAb, or isotype control and were monitored for diabetes development. Although anti-BTLA mAb delayed diabetes onset significantly in 10- but not 4-week-old NOD mice, anti-BTLA mAb attenuated anti-PD-1-induced diabetes in both age groups. Hence, strategies targeting BTLA+ lymphocytes or therapies enhancing the BTLA-negative cosignal may prove valuable in treating autoimmune diabetes.
Collapse
Affiliation(s)
- Wayne Truong
- Surgical Medical Research Institute, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis 2009; 14:1435-50. [PMID: 19360474 DOI: 10.1007/s10495-009-0340-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/17/2009] [Indexed: 12/24/2022]
Abstract
Since the early observation that similarities between thyroiditis and insulitis existed, the important role played by inflammation in the development of diabetes has been appreciated. More recently, experiments have shown that inflammation also plays a prominent role in the development of target organ damage arising as complications, with both elements of the innate and the adaptive immune system being involved, and that cytokines contributing to local tissue damage may arise from both infiltrating and resident cells. This review will discuss the experimental evidence that shows that inflammatory cell-mediated apoptosis contributes to target organ damage, from beta cell destruction to both micro- and macro-vascular disease complications, and also how alterations in leukocyte turnover affects immune function.
Collapse
|
169
|
Yuan CL, Xu JF, Tong J, Yang H, He FR, Gong Q, Xiong P, Duan L, Fang M, Tan Z, Xu Y, Chen YF, Zheng F, Gong FL. B7-H4 transfection prolongs beta-cell graft survival. Transpl Immunol 2009; 21:143-9. [PMID: 19361556 DOI: 10.1016/j.trim.2009.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 01/10/2023]
Abstract
B7-H4, a recently discovered member of B7 family, can negatively regulate T cell responses. However, it is not clear whether B7-H4 negatively function in cell transplantation. In this study we investigated the immunosuppressive effect of B7-H4 on beta-cell transplantation. An insulinoma cell line, NIT-1, transfected with B7-H4 (B7-H4-NIT) was established, and transplanted to diabetic C57BL/6 mice by intraperitoneal injection. Proliferation assay of splenocytes in vitro showed that B7-H4-NIT suppressed alloreactive T cell activation. The proportion of IFN-gamma-producing cells in recipient spleen was significantly reduced and the number of Treg cells was upregulated in B7-H4-NIT group compared to the control, EGFP-NIT. The expression of mRNA coding IFN-gamma was lower but that of IL-4 was higher in B7-H4-NIT transplanted recipients than in the control animals. The results of ELISA also revealed the same trends. Diabetic mice reached normalglycemic quickly and gained weight after transplantation of B7-H4-NIT. More importantly, the survival time for recipients transplanted with B7-H4-NIT cells was significantly longer than that with EGFP-NIT cells. These results indicate that B7-H4 transfection prolongs beta-cell graft survival.
Collapse
Affiliation(s)
- Chun-Lei Yuan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Kumar N, Kaur G, Mehra N. Genetic determinants of Type 1 diabetes: immune response genes. Biomark Med 2009; 3:153-73. [DOI: 10.2217/bmm.09.7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease. Susceptibility to T1D is strongly linked to a major genetic locus that is the MHC, and several other minor loci including insulin, cytotoxic T-lymphocyte-associated antigen-4, PTPN22 and others that contribute to diabetes risk in an epistatic way. We have observed that there are three sets of DR3-positive autoimmunity-favoring haplotypes in the north-Indian population, including B50-DR3, B58-DR3 and B8-DR3. The classical Caucasian autoimmunity favoring AH8.1 (HLA-A1-B8-DR3) is rare in the Indian population, and has been replaced by a variant AH8.1v, which differs from the Caucasian AH8.1 at several gene loci. Similarly, there are additional HLA-DR3 haplotypes, A26-B8-DR3 (AH8.2), A24-B8-DR3 (AH8.3), A3-B8-DR3 (AH8.4) and A31-B8-DR3 (AH8.5), of which AH8.2 is the most common. The fact that disease-associated DR3-positive haplotypes show heterogeneity in different populations suggests that these might possess certain shared components that are involved in the development of autoimmunity.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Gurvinder Kaur
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Narinder Mehra
- Department of Transplant Immunology & Immunogenetics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
171
|
Morran MP, Omenn GS, Pietropaolo M. Immunology and genetics of type 1 diabetes. ACTA ACUST UNITED AC 2009; 75:314-27. [PMID: 18729178 DOI: 10.1002/msj.20052] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is one of the most well-characterized autoimmune diseases. Type 1 diabetes compromises an individual's insulin production through the autoimmune destruction of pancreatic beta-cells. Although much is understood about the mechanisms of this disease, multiple potential contributing factors are thought to play distinct parts in triggering type 1 diabetes. The immunological diagnosis of type 1 diabetes relies primarily on the detection of autoantibodies against islet antigens in the serum of type 1 diabetes mellitus patients. Genetic analyses of type 1 diabetes have linked human leukocyte antigen, specifically class II alleles, to susceptibility to disease onset. Environmental catalysts include various possible factors, such as viral infections, although the evidence linking infections with type 1 diabetes remains inconclusive. Imbalances within the immune system's system of checks and balances may promote immune activation, while undermining immune regulation. A lack of proper regulation and overactive pathogenic responses provide a framework for the development of autoimmune abnormalities. Type 1 diabetes is a predictable and potentially treatable disease that still requires much research to fully understand and pinpoint the exact triggering events leading to autoimmune activation. In silico research can aid the comprehension of the etiology of complex disease pathways, including Type I diabetes, in order to and help predict the outcome of therapeutic strategies aimed at preserving beta-cell function.
Collapse
Affiliation(s)
- Michael P Morran
- Department of Internal Medicine, Division of Metabolism, Laboratory of Immunogenetics, Brehm Center for Type 1 Diabetes Research and Analysis, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
172
|
Katsara M, Minigo G, Plebanski M, Apostolopoulos V. The good, the bad and the ugly: how altered peptide ligands modulate immunity. Expert Opin Biol Ther 2009; 8:1873-84. [PMID: 18990075 DOI: 10.1517/14712590802494501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The basis of T cell immune responses is the specific recognition of an immunogenic peptide epitope by a T cell receptor. Peptide alterations of such T cell epitopes with single or few amino acid variations can have drastic effects on the outcome of this recognition. These altered peptide ligands can act as modulators of immune responses as they are capable of downregulating or upregulating responses. OBJECTIVE/METHODS We review how altered peptide ligands can have 'good' 'bad' and 'ugly' outcomes in treating diseases. RESULTS/CONCLUSION Altered peptide ligands have been used as immunotherapeutics in autoimmune (and allergic) diseases, infectious diseases and cancer. In the next five years we anticipate seeing a number of altered peptide ligands in clinical trials, progressing from contradictory classifications of good, bad or ugly, to the exciting outcome of 'useful'.
Collapse
Affiliation(s)
- Maria Katsara
- Immunology and Vaccine Laboratory, The Macfarlane Burnet Institute incorporating The Austin Research Institute, Studley Road, Heidelberg, VIC 3084, Australia
| | | | | | | |
Collapse
|
173
|
Cheatem D, Ganesh BB, Gangi E, Vasu C, Prabhakar BS. Modulation of dendritic cells using granulocyte-macrophage colony-stimulating factor (GM-CSF) delays type 1 diabetes by enhancing CD4+CD25+ regulatory T cell function. Clin Immunol 2009; 131:260-70. [PMID: 19171501 DOI: 10.1016/j.clim.2008.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/12/2008] [Accepted: 12/01/2008] [Indexed: 11/24/2022]
Abstract
Abnormalities in DC function are implicated in defective immune regulation that leads to type-1 diabetes (T1D) in NOD mice and humans. In this study, we used GM-CSF and Flt3-L to modulate DC function in NOD mice and observed the effects on T1D development. Treatment with either ligand at earlier stages of insulitis suppressed the development of T1D. Unlike Flt3-L, GM-CSF was more effective in suppressing T1D, even when administered at later stages of insulitis. In vitro studies and in vivo adoptive transfer experiments revealed that CD4+CD25+ T cells from GM-CSF-treated mice could suppress effector T cell response and T1D. This suppression is likely mediated through enhanced IL-10 and TGF-beta1 production. Adoptive transfer of GM-CSF exposed DCs to naive mice resulted in an expansion of Foxp3+ T cells and a significant delay in T1D onset. Our results indicate that GM-CSF acted primarily on DCs and caused an expansion of Foxp3+ Tregs which delayed the onset of T1D in NOD mice.
Collapse
Affiliation(s)
- Donald Cheatem
- Department of Microbiology and Immunology (MC790), College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
174
|
Sgouroudis E, Albanese A, Piccirillo CA. Impact of protective IL-2 allelic variants on CD4+ Foxp3+ regulatory T cell function in situ and resistance to autoimmune diabetes in NOD mice. THE JOURNAL OF IMMUNOLOGY 2009; 181:6283-92. [PMID: 18941219 DOI: 10.4049/jimmunol.181.9.6283] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type I diabetes (T1D) susceptibility is inherited through multiple insulin-dependent diabetes (Idd) genes. NOD.B6 Idd3 congenic mice, introgressed with an Idd3 allele from T1D-resistant C57BL/6 mice (Idd3(B6)), show a marked resistance to T1D compared with control NOD mice. The protective function of the Idd3 locus is confined to the Il2 gene, whose expression is critical for naturally occurring CD4(+)Foxp3(+) regulatory T (nT(reg)) cell development and function. In this study, we asked whether Idd3(B6) protective alleles in the NOD mouse model confer T1D resistance by promoting the cellular frequency, function, or homeostasis of nT(reg) cells in vivo. We show that resistance to T1D in NOD.B6 Idd3 congenic mice correlates with increased levels of IL-2 mRNA and protein production in Ag-activated diabetogenic CD4(+) T cells. We also observe that protective IL2 allelic variants (Idd3(B6) resistance allele) also favor the expansion and suppressive functions of CD4(+)Foxp3(+) nT(reg) cells in vitro, as well as restrain the proliferation, IL-17 production, and pathogenicity of diabetogenic CD4(+) T cells in vivo more efficiently than control do nT(reg) cells. Lastly, the resistance to T1D in Idd3 congenic mice does not correlate with an augmented systemic frequency of CD4(+)Foxp3(+) nT(reg) cells but more so with the ability of protective IL2 allelic variants to promote the expansion of CD4(+)Foxp3(+) nT(reg) cells directly in the target organ undergoing autoimmune attack. Thus, protective, IL2 allelic variants impinge the development of organ-specific autoimmunity by bolstering the IL-2 producing capacity of self-reactive CD4(+) T cells and, in turn, favor the function and homeostasis of CD4(+)Foxp3(+) nT(reg) cells in vivo.
Collapse
Affiliation(s)
- Evridiki Sgouroudis
- Department of Microbiology and Immunology, and McGill Center for the Study of Host Resistance, McGill University, Montreal, Québec, Canada
| | | | | |
Collapse
|
175
|
Manirarora JN, Kosiewicz MM, Parnell SA, Alard P. APC activation restores functional CD4(+)CD25(+) regulatory T cells in NOD mice that can prevent diabetes development. PLoS One 2008; 3:e3739. [PMID: 19011680 PMCID: PMC2580026 DOI: 10.1371/journal.pone.0003739] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 10/13/2008] [Indexed: 01/07/2023] Open
Abstract
Background Defects in APC and regulatory cells are associated with diabetes development in NOD mice. We have shown previously that NOD APC are not effective at stimulating CD4+CD25+ regulatory cell function in vitro. We hypothesize that failure of NOD APC to properly activate CD4+CD25+ regulatory cells in vivo could compromise their ability to control pathogenic cells, and activation of NOD APC could restore this defect, thereby preventing disease. Methodology/Principal Findings To test these hypotheses, we used the well-documented ability of complete Freund's adjuvant (CFA), an APC activator, to prevent disease in NOD mice. Phenotype and function of CD4+CD25+ regulatory cells from untreated and CFA-treated NOD mice were determined by FACS, and in vitro and in vivo assays. APC from these mice were also evaluated for their ability to activate regulatory cells in vitro. We have found that sick NOD CD4+CD25+ cells expressed Foxp3 at the same percentages, but decreased levels per cell, compared to young NOD or non-NOD controls. Treatment with CFA increased Foxp3 expression in NOD cells, and also increased the percentages of CD4+CD25+Foxp3+ cells infiltrating the pancreas compared to untreated NOD mice. Moreover, CD4+CD25+ cells from pancreatic LN of CFA-treated, but not untreated, NOD mice transferred protection from diabetes. Finally, APC isolated from CFA-treated mice increased Foxp3 and granzyme B expression as well as regulatory function by NOD CD4+CD25+ cells in vitro compared to APC from untreated NOD mice. Conclusions/Significance These data suggest that regulatory T cell function and ability to control pathogenic cells can be enhanced in NOD mice by activating NOD APC.
Collapse
Affiliation(s)
- Jean N. Manirarora
- Department of Microbiology and Immunology, University of Louisville, Health Sciences Center (HSC), Louisville, Kentucky, United States of America
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michele M. Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Health Sciences Center (HSC), Louisville, Kentucky, United States of America
| | - Sarah A. Parnell
- Department of Microbiology and Immunology, University of Louisville, Health Sciences Center (HSC), Louisville, Kentucky, United States of America
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, Health Sciences Center (HSC), Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
176
|
Abstract
OBJECTIVE Beta-cell regeneration is a fundamental but elusive goal for type 1 diabetes research. Our objective is to review newer human and animal studies of beta-cell destruction and regeneration and consider the implications for treatment of type 1 diabetes. RESEARCH DESIGN AND METHODS Recent human and animal studies of beta-cell destruction and regeneration in type 1 diabetes are reviewed. RESULTS The loss of beta-cells that characterizes type 1 diabetes reflects the net effects of destruction and regeneration. These processes have been examined in the nonobese diabetic (NOD) mouse; uncertainty remains about beta-cell dynamics in humans. Islet inflammation stimulates beta-cell replication that produces new insulin-positive cells. The regenerative process may tide the loss of overall beta-cell function, but it also may enhance the autoimmune attack on beta-cells by providing new epitopes. The highest rates of beta-cell replication are at the time of diagnosis of diabetes in NOD mice, and if autoimmunity and islet inflammation are arrested, new beta-cells are formed. However, the majority of beta-cells after treatment with immune modulators such as anti-CD3 monoclonal antibody, and most likely during the "honeymoon" in human disease, are recovered beta-cells that had been degranulated but present at the time of diagnosis of diabetes. CONCLUSIONS Residual beta-cells play a significant role for the design of therapeutic trials: they not only may respond to combination therapies that include stimulants of metabolic function but are also the potential source of new beta-cells.
Collapse
Affiliation(s)
- Eitan Akirav
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
177
|
Zhao W, Wang Y, Wang D, Sun B, Wang G, Wang J, Kong Q, Wang Q, Peng H, Jin L, Li H. TGF-beta expression by allogeneic bone marrow stromal cells ameliorates diabetes in NOD mice through modulating the distribution of CD4+ T cell subsets. Cell Immunol 2008; 253:23-30. [PMID: 18675407 DOI: 10.1016/j.cellimm.2008.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 06/19/2008] [Accepted: 06/21/2008] [Indexed: 01/14/2023]
Abstract
BMSCs could promote the regeneration of islet beta-cell, but the status of BMSCs under diabetes is still unknown. Our study verified the effect of allogeneic BMSCs (ICR) transferred into NOD mice on blood glucose and CD4+ T cells subsets function. In vivo experiment, BMSCs could decrease blood glucose, weaken lymphocytes proliferation. In vitro experiment, the distribution of CD4+ T cell subsets was changed after co-culture with BMSCs, resulting in a greater frequency of Treg cells and reduced representation of Th17 cells. After TGF-beta blockade, CD4+ T cells differentiated along a route favoring development of Th17, but not Treg cells. Thus, NOD can be treated by BMSCs which changes the distribution of CD4+ T cells, increases the number of Treg cells, and inhibits the differentiation of Th17 cells. And the positive effects of allogeneic BMSCs in the treatment of NOD mice depend on the regulation of TGF-beta secreted by BMSCs.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Neurobiology, Harbin Medical University Provincial Key Lad of Neurobiology, 194 XueFu Road, Harbin, Heilongjiang 150081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Leng Q, Nie Y, Zou Y, Chen J. Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol 2008; 9:51. [PMID: 18793419 PMCID: PMC2556327 DOI: 10.1186/1471-2172-9-51] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 09/15/2008] [Indexed: 02/06/2023] Open
Abstract
Background Type I diabetes (TID) is an autoimmune disease resulting from destruction of the insulin-producing β-cells by autoreactive T cells. Studies have shown that polymorphisms of chemokine CXCL12 gene are linked to TID in humans. In non-obese diabetic (NOD) mice, which are predisposed to develop the disease, reduction of CXCL12 level leads to significant delays in the onset of diabetes. Despite these initial observations, however, how CXCL12 affects development of TID has not been fully investigated. Results We found that the level of CXCL12 transcript is significantly elevated in the bone marrow of NOD mice as compared to Balb/c and C57BL/6 mice. Correspondingly, naïve T cells, regulatory T cells and hematopoietic stem cells (HSC) accumulate in the bone marrow of NOD mice. Treatment of NOD mice with AMD3100, an antagonist for CXCL12's receptor CXCR4, mobilizes T cells and HSC from the bone marrow to the periphery, concomitantly inhibits insulitis and delays the onset of diabetes. Conclusion These results suggest that the elevated CXCL12 expression promotes TID in NOD mice by altering T cell and hematopoietic stem cell trafficking. The findings highlight the potential usefulness of AMD3100 to treat or prevent TID in humans.
Collapse
Affiliation(s)
- Qibin Leng
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
179
|
Abstract
OBJECTIVE It is well established that the primary mediators of beta-cell destruction in type 1 diabetes are T-cells. Nevertheless, the molecular basis for recognition of beta-cell-specific epitopes by pathogenic T-cells remains ill defined; we seek to further explore this issue. RESEARCH DESIGN AND METHODS To determine the properties of beta-cell-specific T-cell receptors (TCRs), we characterized the fine specificity, functional and relative binding avidity/affinity, and diabetogenicity of a panel of GAD65-specific CD4(+) T-cell clones established from unimmunized 4- and 14-week-old NOD female mice. RESULTS The majority of GAD65-specific CD4(+) T-cells isolated from 4- and 14-week-old NOD female mice were specific for peptides spanning amino acids 217-236 (p217) and 290-309 (p290). Surprisingly, 31% of the T-cell clones prepared from 14-week-old but not younger NOD mice were stimulated with both p217 and p290. These promiscuous T-cell clones recognized the two epitopes when naturally processed and presented, and this dual specificity was mediated by a single TCR. Furthermore, promiscuous T-cell clones demonstrated increased functional avidity and relative TCR binding affinity, which correlated with enhanced islet infiltration on adoptive transfer compared with that of monospecific T-cell clones. CONCLUSIONS These results indicate that promiscuous recognition contributes to the development of GAD65-specific CD4(+) T-cell clones in NOD mice. Furthermore, these findings suggest that T-cell promiscuity reflects a novel form of T-cell avidity maturation.
Collapse
Affiliation(s)
- Li Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
180
|
Campbell PD, Estella E, Dudek NL, Jhala G, Thomas HE, Kay TWH, Mannering SI. Cytotoxic T-lymphocyte-mediated killing of human pancreatic islet cells in vitro. Hum Immunol 2008; 69:543-51. [PMID: 18639598 DOI: 10.1016/j.humimm.2008.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 06/10/2008] [Accepted: 06/16/2008] [Indexed: 11/30/2022]
Abstract
Cytotoxic T lymphocytes (CTL) are believed to play an essential role in beta-cell destruction leading to development of type 1 diabetes and allogeneic islet graft failure. We aimed to identify the mechanisms used by CTL to kill human beta cells. CTL clones that recognize epitopes from influenza virus and Epstein-Barr virus restricted by human leukocyte antigen (HLA)-A0201 and -B0801, respectively, were used to investigate the susceptibility of human beta cells to CTL. In a short-term (5-hour) assay, CTL killed human islet cells of the appropriate major histocompatibility complex (MHC) class I type that had been pulsed with viral peptides. Killing was increased by pretreating islets with interferon gamma that increases MHC class I on target cells. Killing was abolished by incubation of CTL with the perforin inhibitor concanamycin A. The Fas pathway did not contribute to killing because blocking with neutralizing anti-Fas ligand antibody did not significantly reduce beta-cell killing. In conclusion, we report a novel way of investigating the interaction between CTL and human islets. Human islets were rapidly killed in vitro by MHC class I-restricted CTL predominantly by the granule exocytosis pathway.
Collapse
Affiliation(s)
- Peter D Campbell
- St Vincent's Institute, The University of Melbourne Department of Medicine, St. Vincent's Hospital, Fitzroy, Australia
| | | | | | | | | | | | | |
Collapse
|
181
|
Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 2008; 3:304-15. [PMID: 18474357 PMCID: PMC2453520 DOI: 10.1016/j.chom.2008.03.009] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 02/08/2008] [Accepted: 03/14/2008] [Indexed: 11/28/2022]
Abstract
Humans with primary biliary cirrhosis (PBC), a disease characterized by the destruction of small bile ducts, exhibit signature autoantibodies against mitochondrial Pyruvate Dehydrogenase Complex E2 (PDC-E2) that crossreact onto the homologous enzyme of Novosphingobium aromaticivorans, an ubiquitous alphaproteobacterium. Here, we show that infection of mice with N. aromaticivorans induced signature antibodies against microbial PDC-E2 and its mitochondrial counterpart but also triggered chronic T cell-mediated autoimmunity against small bile ducts. Disease induction required NKT cells, which specifically respond to N. aromaticivorans cell wall α-glycuronosylceramides presented by CD1d molecules. Combined with the natural liver tropism of NKT cells, the accumulation of N. aromaticivorans in the liver likely explains the liver specificity of destructive responses. Once established, liver disease could be adoptively transferred by T cells independently of NKT cells and microbes, illustrating the importance of early microbial activation of NKT cells in the initiation of autonomous, organ-specific autoimmunity.
Collapse
|
182
|
Bitan M, Weiss L, Zeira M, Reich S, Pappo O, Vlodavsky I, Slavin S. Heparanase prevents the development of type 1 diabetes in non-obese diabetic mice by regulating T-cell activation and cytokines production. Diabetes Metab Res Rev 2008; 24:413-21. [PMID: 18561210 DOI: 10.1002/dmrr.868] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Heparanase is an endo-beta-D-glucuronidase that cleaves heparan sulfate saccharide chains. The enzyme promotes cell adhesion, migration and invasion, and was shown to play a significant role in cancer metastasis and angiogenesis. METHODS The present study focuses on the involvement of heparanase in autoimmunity, applying the murine non-obese diabetic (NOD) model, a T-cell-dependent disease often used to investigate the pathophysiology of type 1 diabetes. RESULTS It was found that intra-peritoneal administration of heparanase ameliorated the clinical signs of the disease. In vitro studies revealed that heparanase has an inhibitory effect on the activation of T-cells through modulation of their repertoire of cytokines indicated by a marked increase in the levels of IL-4 and IL-10, and a parallel decrease in IL-12, tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma). CONCLUSIONS We suggest that heparanase induces a shift from a Th1- to Th2-phenotype, resulting in inhibition of diabetes in NOD mice and possibly other autoimmune disorders.
Collapse
Affiliation(s)
- Menachem Bitan
- Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| | | | | | | | | | | | | |
Collapse
|
183
|
Vang T, Miletic AV, Arimura Y, Tautz L, Rickert RC, Mustelin T. Protein tyrosine phosphatases in autoimmunity. Annu Rev Immunol 2008; 26:29-55. [PMID: 18303998 DOI: 10.1146/annurev.immunol.26.021607.090418] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are important regulators of many cellular functions and a growing number of PTPs have been implicated in human disease conditions, such as developmental defects, neoplastic disorders, and immunodeficiency. Here, we review the involvement of PTPs in human autoimmunity. The leading examples include the allelic variant of the lymphoid tyrosine phosphatase (PTPN22), which is associated with multiple autoimmune diseases, and mutations that affect the exon-intron splicing of CD45 (PTPRC). We also find it likely that additional PTPs are involved in susceptibility to autoimmune and inflammatory diseases. Finally, we discuss the possibility that PTPs regulating the immune system may serve as therapeutic targets.
Collapse
Affiliation(s)
- Torkel Vang
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
184
|
CD4+ T cells are sufficient to elicit allograft rejection and major histocompatibility complex class I molecule is required to induce recurrent autoimmune diabetes after pancreas transplantation in mice. Transplantation 2008; 85:1205-11. [PMID: 18431243 DOI: 10.1097/tp.0b013e31816b70bf] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We characterized the role of T cell subsets and major histocompatibility complex molecules in allograft rejection and recurrence of autoimmune diabetes. METHODS Adoptive cell transfer and vascularized segmental pancreas transplantation were performed in mice. RESULTS In an alloimmune response model, transfer of nondiabetic CD4, but not CD8 T cells, elicited pancreas allograft rejection in streptozotocin (STZ)-induced diabetic NOD/scid mice. Pancreas allografts were acutely rejected in STZ-induced diabetic NOD/beta2m mice (confirmed the absence of major histocompatibility complex [MHC] class I and CD8 T cells) and permanently accepted in NOD/CIIT mice (confirmed the absence of MHC class II and CD4 T cells). The results suggest that rejection of pancreas allograft is CD4-dependent and MHC class I-independent. In the autoimmune diabetes model, whole spleen cells obtained from diabetic NOD mice induced autoimmune diabetes in NOD/scid and NOD/CIIT mice, but the onset of diabetes was delayed in NOD/beta2m mice. However, the purified diabetic T cells failed to elicit autoimmune diabetes in NOD/beta2m mice. NOD/scid and NOD/CIIT pancreas grafts were acutely destroyed whereas four of six NOD/beta2m pancreas grafts were permanently accepted in autoimmune diabetic NOD mice. CONCLUSION CD4 T cells are sufficient for the induction of allograft rejection, and MHC class I molecule is required to induce recurrent autoimmune diabetes after pancreas transplantation in mice.
Collapse
|
185
|
Burton AR, Vincent E, Arnold PY, Lennon GP, Smeltzer M, Li CS, Haskins K, Hutton J, Tisch RM, Sercarz EE, Santamaria P, Workman CJ, Vignali DAA. On the pathogenicity of autoantigen-specific T-cell receptors. Diabetes 2008; 57:1321-30. [PMID: 18299317 DOI: 10.2337/db07-1129] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Type 1 diabetes is mediated by T-cell entry into pancreatic islets and destruction of insulin-producing beta-cells. The relative contribution of T-cells specific for different autoantigens is largely unknown because relatively few have been assessed in vivo. RESEARCH DESIGN AND METHODS We generated mice possessing a monoclonal population of T-cells expressing 1 of 17 T-cell receptors (TCR) specific for either known autoantigens (GAD65, insulinoma-associated protein 2 (IA2), IA2beta/phogrin, and insulin), unknown islet antigens, or control antigens on a NOD.scid background using retroviral-mediated stem cell gene transfer and 2A-linked multicistronic retroviral vectors (referred to herein as retrogenic [Rg] mice). The TCR Rg approach provides a mechanism by which T-cells with broad phenotypic differences can be directly compared. RESULTS Neither GAD- nor IA2-specific TCRs mediated T-cell islet infiltration or diabetes even though T-cells developed in these Rg mice and responded to their cognate epitope. IA2beta/phogrin and insulin-specific Rg T-cells produced variable levels of insulitis, with one TCR producing delayed diabetes. Three TCRs specific for unknown islet antigens produced a hierarchy of insulitogenic and diabetogenic potential (BDC-2.5 > NY4.1 > BDC-6.9), while a fourth (BDC-10.1) mediated dramatically accelerated disease, with all mice diabetic by day 33, well before full T-cell reconstitution (days 42-56). Remarkably, as few as 1,000 BDC-10.1 Rg T-cells caused rapid diabetes following adoptive transfer into NOD.scid mice. CONCLUSIONS; Our data show that relatively few autoantigen-specific TCRs can mediate islet infiltration and beta-cell destruction on their own and that autoreactivity does not necessarily imply pathogenicity.
Collapse
Affiliation(s)
- Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Mori A, Sagara F, Shimizu S, Mizutani H, Sako T, Hirose H, Yoshimura I, Uematsu Y, Yamaguchi T, Arai T. Changes in peripheral lymphocyte subsets in the type 1 diabetic dogs treated with insulin injections. J Vet Med Sci 2008; 70:185-7. [PMID: 18319580 DOI: 10.1292/jvms.70.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasma metabolites and peripheral lymphocyte subsets were measured in ten diabetic and ten control dogs to investigate their significances as indicators to evaluate immune states in the diabetic dogs. Diabetic dogs were treated with insulin injections, however their plasma glucose and fructosamine concentrations were significantly higher than those of the controls. There were no significant differences in counts of total white blood cells (WBC) and lymphocyte CD8(+) cells (cytotoxic T cells) between the control and the diabetic dogs. In the diabetic dogs, the counts of CD3(+) (T cells), CD4(+) (Helper T cells) and CD21(+) (B cells) cells and the peripheral lymphocytes CD4/CD8 ratio were significantly lower than those in the control dogs. We confirmed abnormality of lymphocyte subsets in insulin treated diabetic dogs and it may relate to depression of immunocompetence and high susceptibility to common infectious diseases.
Collapse
Affiliation(s)
- Akihiro Mori
- Department of Veterinary Science, School of Veterinary Medicine, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Affiliation(s)
- Michael P Morran
- Laboratory of Immunogenetics, The Brehm Center for Type 1 Diabetes Research and Analysis, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
188
|
Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA. B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 2008; 57:909-17. [PMID: 18184927 DOI: 10.2337/db07-1256] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine the role of B-cells in promoting CD8(+) T-cell-mediated beta cell destruction in chronically inflamed islets. RESEARCH DESIGN AND METHODS-RIP: TNFalpha-NOD mice were crossed to B-cell-deficient NOD mice, and diabetes development was monitored. We used in vitro antigen presentation assays and in vivo administration of bromodeoxyuridine coupled to flow cytometry assays to assess intra-islet T-cell activation in the absence or presence of B-cells. CD4(+)Foxp3(+) activity in the absence or presence of B-cells was tested using in vivo depletion techniques. Cytokine production and apoptosis assays determined the capacity of CD8(+) T-cells transform to cytotoxic T-lymphocytes (CTLs) and survive within inflamed islets in the absence or presence of B-cells. RESULTS B-cell deficiency significantly delayed diabetes development in chronically inflamed islets. Reintroduction of B-cells incapable of secreting immunoglobulin restored diabetes development. Both CD4(+) and CD8(+) T-cell activation was unimpaired by B-cell deficiency, and delayed disease was not due to CD4(+)Foxp3(+) T-cell suppression of T-cell responses. Instead, at the CTL transition stage, B-cell deficiency resulted in apoptosis of intra-islet CTLs. CONCLUSIONS In inflamed islets, B-cells are central for the efficient intra-islet survival of CTLs, thereby promoting type 1 diabetes development.
Collapse
Affiliation(s)
- Gillian M Brodie
- Department of Pathology, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | |
Collapse
|
189
|
Chen G, Han G, Wang J, Wang R, Xu R, Shen B, Qian J, Li Y. Induction of active tolerance and involvement of CD1d-restricted natural killer T cells in anti-CD3 F(ab')2 treatment-reversed new-onset diabetes in nonobese diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:972-9. [PMID: 18349126 DOI: 10.2353/ajpath.2008.070159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The application of anti-CD3 F(ab')(2) monoclonal antibodies has recently been expanded to treat established autoimmune diseases, including type 1 diabetes. However, the mechanism underlying their effect remains largely unclear. We report that short-phase administration of anti-CD3 F(ab')(2) antibodies efficiently allowed 80% of new-onset, nonobese diabetic (NOD) mice to significantly regain both normoglycemia and pancreatic beta cell-specific autoantigen (ie, glutamic acid decarboxylase and insulin) tolerance, with both effects lasting more than 40 weeks. The responsible mechanism appears to involve the induction and maintenance of a population of immunoregulatory CD1d-restricted natural killer T (NKT) cells, which were marked by an enhanced Th2 response and secretion of elevated levels of interleukin-10. In vivo neutralization of interleukin-4 and/or interleukin-10 bioactivity abrogated this anti-CD3-mediated effect. Importantly, when the cotransfer of NKT cells from the livers of anti-CD3-treated mice and splenocytes from untreated, acutely diabetic NOD mice was performed in NOD-severe combined immunodeficient mice, the NKT cells were sufficient to either delay or prevent the onset of diabetes compared with controls where only splenocytes were introduced. These data suggest that CD1d-restricted NKT cells may play a critical role in anti-CD3 antibody-induced diabetes remission and the restoration of immune tolerance.
Collapse
Affiliation(s)
- Guojiang Chen
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Taiping Road No. 27, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Marzo N, Ortega S, Stratmann T, García A, Ríos M, Giménez A, Gomis R, Mora C. Cyclin-dependent kinase 4 hyperactivity promotes autoreactivity in the immune system but protects pancreatic cell mass from autoimmune destruction in the nonobese diabetic mouse model. THE JOURNAL OF IMMUNOLOGY 2008; 180:1189-98. [PMID: 18178859 DOI: 10.4049/jimmunol.180.2.1189] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cyclin-dependent kinase 4 (Cdk4) plays a central role in perinatal pancreatic beta cell replication, thus becoming a potential target for therapeutics in autoimmune diabetes. Its hyperactive form, Cdk4R24C, causes beta cell hyperplasia without promoting hypoglycemia in a nonautoimmune-prone mouse strain. In this study, we explore whether beta cell hyperproliferation induced by the Cdk4R24C mutation balances the autoimmune attack against beta cells inherent to the NOD genetic background. To this end, we backcrossed the Cdk4R24C knockin mice, which have the Cdk4 gene replaced by the Cdk4R24C mutated form, onto the NOD genetic background. In this study, we show that NOD/Cdk4R24C knockin mice exhibit exacerbated diabetes and insulitis, and that this exacerbated diabetic phenotype is solely due to the hyperactivity of the NOD/Cdk4R24C immune repertoire. Thus, NOD/Cdk4R24C splenocytes confer exacerbated diabetes when adoptively transferred into NOD/SCID recipients, compared with NOD/wild-type (WT) donor splenocytes. Accordingly, NOD/Cdk4R24C splenocytes show increased basal proliferation and higher activation markers expression compared with NOD/WT splenocytes. However, to eliminate the effect of the Cdk4R24C mutation specifically in the lymphocyte compartment, we introduced this mutation into NOD/SCID mice. NOD/SCID/Cdk4R24C knockin mice develop beta cell hyperplasia spontaneously. Furthermore, NOD/SCID/Cdk4R24C knockin females that have been adoptively transferred with NOD/WT splenocytes are more resistant to autoimmunity than NOD/SCID WT female. Thus, the Cdk4R24C mutation opens two avenues in the NOD model: when expressed specifically in beta cells, it provides a new potential strategy for beta cell regeneration in autoimmune diabetes, but its expression in the immune repertoire exacerbates autoimmunity.
Collapse
Affiliation(s)
- Nuria Marzo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer and University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Griewank K, Borowski C, Rietdijk S, Wang N, Julien A, Wei DG, Mamchak AA, Terhorst C, Bendelac A. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 2008; 27:751-62. [PMID: 18031695 PMCID: PMC2170879 DOI: 10.1016/j.immuni.2007.08.020] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/09/2007] [Accepted: 08/24/2007] [Indexed: 12/13/2022]
Abstract
Commitment to the T and natural killer T (NKT) cell lineages is determined during alphabeta T cell receptor (TCR)-mediated interactions of common precursors with ligand-expressing cells in the thymus. Whereas mainstream thymocyte precursors recognize major histocompatibility complex (MHC) ligands expressed by stromal cells, NKT cell precursors interact with CD1d ligands expressed by cortical thymocytes. Here, we demonstrated that such homotypic T-T interactions generated "second signals" mediated by the cooperative engagement of the homophilic receptors Slamf1 (SLAM) and Slamf6 (Ly108) and the downstream recruitment of the adaptor SLAM-associated protein (SAP) and the Src kinase Fyn, which are essential for the lineage expansion and differentiation of the NKT cell lineage. These receptor interactions were required during TCR engagement and therefore only occurred when selecting ligands were presented by thymocytes rather than epithelial cells, which do not express Slamf6 or Slamf1. Thus, the topography of NKT cell ligand recognition determines the availability of a cosignaling pathway that is essential for NKT cell lineage development.
Collapse
Affiliation(s)
- Klaus Griewank
- Howard Hughes Medical Institute, Committee on Immunology, Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Tritt M, Sgouroudis E, d'Hennezel E, Albanese A, Piccirillo CA. Functional waning of naturally occurring CD4+ regulatory T-cells contributes to the onset of autoimmune diabetes. Diabetes 2008; 57:113-23. [PMID: 17928397 DOI: 10.2337/db06-1700] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE In this study, we asked whether a possible quantitative or qualitative deficiency in naturally occurring Foxp3(+)CD4(+) regulatory T-cells (nT(reg)), which display potent inhibitory effects on T-cell functions in vitro and in vivo, may predispose to the development of type 1 diabetes. RESEARCH DESIGN AND METHODS We assessed the frequency and function of Foxp3(+) nT(reg) cells in primary and secondary lymphoid tissues in the NOD animal model of type 1 diabetes. RESULTS We show that the cellular frequency of Foxp3(+) nT(reg) cells in primary and secondary lymphoid tissues is stable and does not decline relative to type 1 diabetes-resistant mice. We show that thymic and peripheral CD4(+)CD25(+) T-cells are fully functional in vivo. We also examined the functional impact of CD4(+)Foxp3(+) nT(reg) cells on the development of autoimmune diabetes, and we demonstrate that nT(reg) cells do not affect the initial priming or expansion of antigen-specific diabetogenic T-cells but impact their differentiation in pancreatic lymph nodes. Moreover, CD4(+)Foxp3(+) nT(reg) cells also regulate later events of diabetogenesis by preferentially localizing in the pancreatic environment where they suppress the accumulation and function of effector T-cells. Finally, we show that the nT(reg) cell functional potency and intra-pancreatic proliferative potential declines with age, in turn augmenting diabetogenic responses and disease susceptibility. CONCLUSIONS This study demonstrates that Foxp3-expressing nT(reg) cells in NOD mice regulate diabetogenesis, but temporal alterations in nT(reg) cell function promote immune dysregulation and the onset of spontaneous autoimmunity.
Collapse
Affiliation(s)
- Michael Tritt
- Department of Microbiology and Immunology, McGill Center for the Study of Host Resistance, McGill University, 3775 University St., Room 510, Lyman Duff Medical Building, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
193
|
|
194
|
Xiang M, Zou X, Zhang C, Zhao Z, Xu J. Insulin administration confers diabetes-preventive properties to NOD mice derived dendritic cells. Immunopharmacol Immunotoxicol 2007; 29:451-64. [PMID: 18075857 DOI: 10.1080/08923970701692973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Administration of autoantigen can be of value for prevention of autoimmune diabetes and it has been speculated that the control point of dendritic cells (DC) for the induction of peripheral tolerance may be highly relevant. We examined the properties of DC associated with immune suppression in NOD mice by insulin injection subcutaneously and the ability of which to suppress diabetes transfer by diabetogenic effector cells in secondary NOD-SCID recipients. Our data showed that the surface expressions of MHC II and CD86 on NOD-derived DC were increased after insulin treatment compared with those on PBS controlled mice. The dendritic cells with a mature phenotype and increased MLR stimulation adoptively transferred immune tolerogenic effects in secondary NOD-SCID mice, which were associated with significant greater IL-10, TGF-beta production and CD4(+)CD25(+)T differentiation from splenocytes compared with NOD-SCID control recipients. Moreover, treatment with DC remarkably decreased the incidence of diabetes in secondary recipients. These results suggest that a subtype of DC generated by insulin subcutaneous treated NOD mice confers potential protection from diabetes through polarizing the immune response towards a Th2 regulatory pathway.
Collapse
Affiliation(s)
- Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, HuaZhong Science and Technology University, Wuhan, People's Republic of China.
| | | | | | | | | |
Collapse
|
195
|
Hussain S, Delovitch TL. Intravenous Transfusion of BCR-Activated B Cells Protects NOD Mice from Type 1 Diabetes in an IL-10-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2007; 179:7225-32. [DOI: 10.4049/jimmunol.179.11.7225] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
196
|
Marée AFM, Komba M, Finegood DT, Edelstein-Keshet L. A quantitative comparison of rates of phagocytosis and digestion of apoptotic cells by macrophages from normal (BALB/c) and diabetes-prone (NOD) mice. J Appl Physiol (1985) 2007; 104:157-69. [PMID: 17962581 DOI: 10.1152/japplphysiol.00514.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Macrophages play an important role in clearing apoptotic debris from tissue. Defective or reduced clearance, seen, for instance, in non-obese diabetic (NOD) mice, has been correlated with initiation of autoimmune (Type 1) diabetes (T1D) (O'Brien BA, Huang Y, Geng X, Dutz JP, Finegood DT. Diabetes 51: 2481-2488, 2002). To validate such a link, it is essential to quantify the reduced clearance (for example, by comparison to BALB/c control mice) and to determine which elements of that clearance are impaired. Recently, we fit data for the time course of in vitro macrophage feeding experiments to basic models of macrophage clearance dynamics, thus quantifying kinetics of uptake and digestion of apoptotic cells in both mouse strains (Marée AFM, Komba M, Dyck C, Łabeçki M, Finegood DT, Edelstein-Keshet L. J Theor Biol 233: 533-551, 2005). In the cycle of modeling and experimental investigation, we identified the importance of 1) measuring short-, intermediate-, and long-time data (to increase the accuracy of parameter fits), and 2) designing experiments with distinct observable regimes, including engulfment-only and digestion-only phases. Here, we report on new results from experiments so designed. In comparing macrophages from the two strains, we find that NOD macrophage engulfment of apoptotic cells is 5.5 times slower than BALB/c controls. Significantly, our new data demonstrate that digestion is at least two times slower in NOD, in contrast with previous conclusions. Moreover, new data enable us to detect an acceleration in engulfment (after the first engulfment) in both strains, but much smaller in NOD macrophages.
Collapse
Affiliation(s)
- Athanasius F M Marée
- Theoretical Biology/Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
197
|
Inoue Y, Kaifu T, Sugahara-Tobinai A, Nakamura A, Miyazaki JI, Takai T. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. THE JOURNAL OF IMMUNOLOGY 2007; 179:764-74. [PMID: 17617565 DOI: 10.4049/jimmunol.179.2.764] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes mellitus (T1D) in humans is an organ-specific autoimmune disease in which pancreatic islet beta cells are ruptured by autoreactive T cells. NOD mice, the most commonly used animal model of T1D, show early infiltration of leukocytes in the islets (insulitis), resulting in islet destruction and diabetes later. NOD mice produce various islet beta cell-specific autoantibodies, although it remains a subject of debate regarding whether these autoantibodies contribute to the development of T1D. Fc gammaRs are multipotent molecules that play important roles in Ab-mediated regulatory as well as effector functions in autoimmune diseases. To investigate the possible role of Fc gammaRs in NOD mice, we generated several Fc gammaR-less NOD lines, namely FcR common gamma-chain (Fc Rgamma)-deficient (NOD.gamma(-/-)), Fc gammaRIII-deficient (NOD.III(-/-)), Fc gammaRIIB-deficient (NOD.IIB(-/-)), and both Fc Rgamma and Fc gammaRIIB-deficient NOD (NOD.null) mice. In this study, we show significant protection from diabetes in NOD.gamma(-/-), NOD.III(-/-), and NOD.null, but not in NOD.IIB(-/-) mice even with grossly comparable production of autoantibodies among them. Insulitis in NOD.gamma(-/-) mice was also alleviated. Adoptive transfer of bone marrow-derived dendritic cells or NK cells from NOD mice rendered NOD.gamma(-/-) animals more susceptible to diabetes, suggesting a possible scenario in which activating Fc gammaRs on dendritic cells enhance autoantigen presentation leading to the activation of autoreactive T cells, and Fc gammaRIII on NK cells trigger Ab-dependent effector functions and inflammation. These findings highlight the critical roles of activating Fc gammaRs in the development of T1D, and indicate that Fc gammaRs are novel targets for therapies for T1D.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Department of Experimental Immunology, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
198
|
Li R, Perez N, Karumuthil-Melethil S, Vasu C. Bone marrow is a preferential homing site for autoreactive T-cells in type 1 diabetes. Diabetes 2007; 56:2251-9. [PMID: 17596402 DOI: 10.2337/db07-0502] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The pancreatic microenvironment is considered to be the primary location of autoreactive T-cells in type 1 diabetes. Diabetogenic T-cells have also been detected in the spleens of NOD mice. However, it is not known whether bone marrow also contains T-cells specific for self-antigens in hosts with autoimmunity. In this study, we investigated whether autoreactive diabetogenic T-cells are present in the bone marrow of NOD mice. RESEARCH DESIGN AND METHODS Bone marrow and splenic T-cells of female NOD mice were purified and tested for their cytokine secretion and proliferation in response to stimulation with immunodominant peptides of pancreatic beta-cells. The diabetogenic nature and homing properties of purified bone marrow T-cells were compared with those of splenic T-cells in NOD-Scid and wild-type mice. RESULTS The bone marrow T-cells from both hyperglycemic and young euglycemic mice demonstrated profoundly higher proliferation and cytokine production in response to stimulation with beta-cell antigens than T-cells from spleen. Bone marrow T-cells showed rapid expansion and aggressive infiltration into pancreatic islets in NOD-Scid mice and induced hyperglycemia earlier than splenic T-cells. Adoptive transfer of bone marrow T-cells resulted in their trafficking predominantly to bone marrow and pancreatic lymph nodes. CONCLUSIONS Our study demonstrates that a large number of diabetogenic T-cells are present in the bone marrow of female NOD mice and that these autoreactive T-cells can be detected long before clinical onset of the disease.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
199
|
Savinov AY, Rozanov DV, Strongin AY. Specific inhibition of autoimmune T cell transmigration contributes to beta cell functionality and insulin synthesis in non-obese diabetic (NOD) mice. J Biol Chem 2007; 282:32106-11. [PMID: 17761671 DOI: 10.1074/jbc.m705348200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human diabetes mellitus (IDDM; type I diabetes) is a T cell-mediated disease that is closely modeled in non-obese diabetic (NOD) mice. The pathogenesis of IDDM involves the transmigration of autoimmune T cells into the pancreatic islets and the subsequent destruction of insulin-producing beta cells. Therapeutic interventions leading to beta cell regeneration and the reversal of established IDDM are exceedingly limited. We report here that specific inhibition of T cell intra-islet transmigration by using a small molecule proteinase inhibitor restores beta cell functionality, increases insulin-producing beta cell mass, and alleviates the severity of IDDM in acutely diabetic NOD mice. As a result, acutely diabetic NOD mice do not require insulin injections for survival for a significant time period, thus providing a promising clue to effect IDDM reversal in humans. The extensive morphometric analyses and the measurements of both the C-peptide blood levels and the proinsulin mRNA levels in the islets support our conclusions. Diabetes transfer experiments suggest that the inhibitor specifically represses the T cell transmigration and homing processes as opposed to causing immunosuppression. Overall, our data provide a rationale for the pharmacological control of the T cell transmigration step in human IDDM.
Collapse
Affiliation(s)
- Alexei Y Savinov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | |
Collapse
|
200
|
Penna G, Amuchastegui S, Cossetti C, Aquilano F, Mariani R, Giarratana N, De Carli E, Fibbi B, Adorini L. Spontaneous and Prostatic Steroid Binding Protein Peptide-Induced Autoimmune Prostatitis in the Nonobese Diabetic Mouse. THE JOURNAL OF IMMUNOLOGY 2007; 179:1559-67. [PMID: 17641022 DOI: 10.4049/jimmunol.179.3.1559] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic nonbacterial prostatitis is a poorly defined syndrome of putative autoimmune origin. To further understand its pathogenesis, we have analyzed autoimmune prostatitis in the NOD mouse, a strain genetically prone to develop different organ-specific autoimmune diseases. Spontaneous development of autoimmune prostatitis in the NOD male, defined by lymphomonuclear cell infiltration in the prostate gland, is well-established by approximately 20 wk of age and is stably maintained afterward. Disease development is indistinguishable in NOD and NOR mice, but is markedly delayed in IFN-gamma-deficient NOD mice. A T cell response to the prostate-specific autoantigen prostatic steroid-binding protein (PSBP) can be detected in NOD males before development of prostate infiltration, indicating lack of tolerance to this self Ag. The intraprostatic inflammatory infiltrate is characterized by Th1-type CD4(+) T cells, which are able to transfer autoimmune prostatitis into NOD.SCID recipients. We characterize here experimental autoimmune prostatitis, detected by intraprostatic infiltrate and PSBP-specific T cell responses, induced in 6- to 8-wk-old NOD males by immunization with synthetic peptides corresponding to the C1 subunit of PSBP. Three PSBP peptides induce in NOD mice vigorous T and B cell responses, paralleled by a marked lymphomononuclear cell infiltration in the prostate. Two of these peptides, PSBP(21-40) and PSBP(61-80), correspond to immunodominant self epitopes naturally processed in NOD mice after immunization with PSBP, whereas peptide PSBP(91-111) represents a cryptic epitope. These model systems address pathogenetic mechanisms in autoimmune prostatitis and will facilitate testing and mechanistic analysis of therapeutic approaches in this condition.
Collapse
|