151
|
Li YZ, Peng X, Ma YH, Li FJ, Liao YH. Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition. Chin Med J (Engl) 2019; 132:664-670. [PMID: 30855347 PMCID: PMC6416022 DOI: 10.1097/cm9.0000000000000127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown. Methods: We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p. Results: We found that 10 μg/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F = 50.993, P < 0.01), and decreased the expression of alpha-smooth muscle actin (F = 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR-29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P. Conclusions: Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129-5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.
Collapse
Affiliation(s)
- Yi-Zheng Li
- Scientific Research Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xi Peng
- Guangxi Medical College, Nanning, Guangxi 530021, China
| | - Yun-Hua Ma
- Department of Nephrology, The First People's Hospital of Nanning, Nanning, Guangxi 530021, China
| | - Fu-Ji Li
- Renal Division, Department of Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yun-Hua Liao
- Renal Division, Department of Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
152
|
West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front Immunol 2019; 10:1093. [PMID: 31156640 PMCID: PMC6529849 DOI: 10.3389/fimmu.2019.01093] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Stromal cells are a subject of rapidly growing immunological interest based on their ability to influence virtually all aspects of innate and adaptive immunity. Present in every bodily tissue, stromal cells complement the functions of classical immune cells by sensing pathogens and tissue damage, coordinating leukocyte recruitment and function, and promoting immune response resolution and tissue repair. These diverse roles come with a price: like classical immune cells, inappropriate stromal cell behavior can lead to various forms of pathology, including inflammatory disease, tissue fibrosis, and cancer. An important immunological function of stromal cells is to act as information relays, responding to leukocyte-derived signals and instructing leukocyte behavior in kind. In this regard, several members of the interleukin-6 (IL-6) cytokine family, including IL-6, IL-11, oncostatin M (OSM), and leukemia inhibitory factor (LIF), have gained recognition as factors that mediate crosstalk between stromal and immune cells, with diverse roles in numerous inflammatory and homeostatic processes. This review summarizes our current understanding of how IL-6 family cytokines control stromal-immune crosstalk in health and disease, and how these interactions can be leveraged for clinical benefit.
Collapse
Affiliation(s)
- Nathaniel R West
- Department of Cancer Immunology, Genentech, South San Francisco, CA, United States
| |
Collapse
|
153
|
Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 Receptor in Rheumatoid Arthritis: What's the Difference? BioDrugs 2019; 32:531-546. [PMID: 30488231 DOI: 10.1007/s40259-018-0320-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) signaling is a critical target in inflammatory pathways. Today, tocilizumab (TCZ) and sarilumab (SAR), two IL-6 receptor-inhibiting monoclonal antibodies, are widely used in the treatment of rheumatoid arthritis (RA), with a favorable efficacy/safety profile. Successful introduction of such agents in the treatment of RA has encouraged the development of other agents targeting different points of the pathway. Sirukumab (SRK), a human anti-IL-6 monoclonal antibody, has been evaluated in clinical trials and showed largely similar clinical efficacy compared with TCZ and other IL-6 pathway-targeting agents. Furthermore, the drug safety profile seemed to reflect the profile of adverse effects and laboratory abnormalities seen in other inhibitors of the IL-6 pathway. However, increased death rates under SRK treatment compared with placebo raised safety concerns, which led to the decision by the FDA to decline the approval of SRK in August 2017. However, during the 18-week true placebo-controlled period, mortality rates were identical in the placebo- and SRK-treated patients. Comparisons after week 18 may be confounded by some factors, and also the 'crossover' design resulted in various treatment groups with varying drug exposure periods. The limited placebo exposure relative to SRK exposure makes interpretation of mortality rates difficult. We do not know whether the imbalance in mortality rates seen for SRK is a true safety signal or a result of bias due to the study design. Therefore, further long-term clinical data as well as basic research is needed to allow deeper insight into IL-6 signaling.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/mortality
- Clinical Trials as Topic
- Drug Approval
- Humans
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/immunology
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- Ali Berkant Avci
- Department of Internal Medicine, Rheumatology, Life Hospital, Antalya, Turkey
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany.
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
154
|
Tait Wojno ED, Hunter CA, Stumhofer JS. The Immunobiology of the Interleukin-12 Family: Room for Discovery. Immunity 2019; 50:851-870. [PMID: 30995503 PMCID: PMC6472917 DOI: 10.1016/j.immuni.2019.03.011] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
The discovery of interleukin (IL)-6 and its receptor subunits provided a foundation to understand the biology of a group of related cytokines: IL-12, IL-23, and IL-27. These family members utilize shared receptors and cytokine subunits and influence the outcome of cancer, infection, and inflammatory diseases. Consequently, many facets of their biology are being therapeutically targeted. Here, we review the landmark discoveries in this field, the combinatorial biology inherent to this family, and how patient datasets have underscored the critical role of these pathways in human disease. We present significant knowledge gaps, including how similar signals from these cytokines can mediate distinct outcomes, and discuss how a better understanding of the biology of the IL-12 family provides new therapeutic opportunities.
Collapse
Affiliation(s)
- Elia D Tait Wojno
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, 235 Hungerford Hill Rd., Ithaca, NY 14853, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Ave., Philadelphia, PA 19104-4539, USA.
| | - Jason S Stumhofer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| |
Collapse
|
155
|
Lepanto MS, Rosa L, Paesano R, Valenti P, Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules 2019; 24:molecules24071323. [PMID: 30987256 PMCID: PMC6480387 DOI: 10.3390/molecules24071323] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
Lactoferrin (Lf), a cationic glycoprotein able to chelate two ferric irons per molecule, is synthesized by exocrine glands and neutrophils. Since the first anti-microbial function attributed to Lf, several activities have been discovered, including the relevant anti-inflammatory one, especially associated to the down-regulation of pro-inflammatory cytokines, as IL-6. As high levels of IL-6 are involved in iron homeostasis disorders, Lf is emerging as a potent regulator of iron and inflammatory homeostasis. Here, the role of Lf against aseptic and septic inflammation has been reviewed. In particular, in the context of aseptic inflammation, as anemia of inflammation, preterm delivery, Alzheimer’s disease and type 2 diabetes, Lf administration reduces local and/or systemic inflammation. Moreover, Lf oral administration, by decreasing serum IL-6, reverts iron homeostasis disorders. Regarding septic inflammation occurring in Chlamydia trachomatis infection, cystic fibrosis and inflammatory bowel disease, Lf, besides the anti-inflammatory activity, exerts a significant activity against bacterial adhesion, invasion and colonization. Lastly, a critical analysis of literature in vitro data reporting contradictory results on the Lf role in inflammatory processes, ranging from pro- to anti-inflammatory activity, highlighted that they depend on cell models, cell metabolic status, stimulatory or infecting agents as well as on Lf iron saturation degree, integrity and purity.
Collapse
Affiliation(s)
- Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
| | - Antimo Cutone
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy.
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
| |
Collapse
|
156
|
Lei L, Liu Z, Yuan P, Jin R, Wang X, Jiang T, Chen X. Injectable colloidal hydrogel with mesoporous silica nanoparticles for sustained co-release of microRNA-222 and aspirin to achieve innervated bone regeneration in rat mandibular defects. J Mater Chem B 2019; 7:2722-2735. [PMID: 32255005 DOI: 10.1039/c9tb00025a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nerve fibers and vessels play important roles in bone formation, and inadequate innervation in the bone defect area can delay the regeneration process. However, there are few studies aiming to promote innervation to engineer bone formation. Here, we report the development of an injectable thermoresponsive mesoporous silica nanoparticle (MSN)-embedded core-shell structured poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)-b-poly(N-isopropylacrylamide) (PEG-PLGA-PNIPAM) hydrogel for localized and long-term co-delivery of microRNA-222 and aspirin (ASP) (miR222/MSN/ASP hydrogel). ASP was found to stimulate bone formation as previously reported, and miR222 induced human bone mesenchymal stem cell differentiation into neural-like cells through Wnt/β-catenin/Nemo-like kinase signaling. In a rat mandibular bone defect, injection of the co-delivered MSN hydrogel resulted in neurogenesis and enhanced bone formation, indicating that the present injectable miR222- and ASP-co-delivering colloidal hydrogel is a promising material for innervated bone tissue engineering.
Collapse
Affiliation(s)
- Lei Lei
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China.
| | | | | | | | | | | | | |
Collapse
|
157
|
Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:303-325. [PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. AIM OF THE STUDY This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects. MATERIALS AND METHODS An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases:PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies. RESULTS The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls. CONCLUSIONS Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.
Collapse
Affiliation(s)
- Lui Jin Yao
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chiew Chia Hui
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Aimi Zakaria
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
158
|
Jones SA, Takeuchi T, Aletaha D, Smolen J, Choy EH, McInnes I. Interleukin 6: The biology behind the therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.1136/conmed-2018-000005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytokine interleukin (IL)−6 performs a diverse portfolio of functions in normal physiology and disease. These functions extend beyond the typical role for an inflammatory cytokine, and IL-6 often displays hormone-like properties that affect metabolic processes associated with lipid metabolism, insulin resistance, and the neuroendocrine system. Consequently, the biology of IL-6 is complex. Recent advances in the field have led to novel interpretations of how IL-6 delivers immune homeostasis in health and yet drives disease pathology during infection, autoimmunity, and cancer. Various biological drugs that target IL-6 are in clinical practice or emerging in clinical trials and pre-clinical development programmes. The challenge is knowing how and when to apply these therapies. In this review, we will explore the biology behind IL-6 directed therapies and identify some key hurdles for future investigation.
Collapse
|
159
|
Arakawa S, Suzukawa M, Watanabe K, Kobayashi K, Matsui H, Nagai H, Nagase T, Ohta K. Secretory immunoglobulin A induces human lung fibroblasts to produce inflammatory cytokines and undergo activation. Clin Exp Immunol 2019; 195:287-301. [PMID: 30570135 DOI: 10.1111/cei.13253] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Immunoglobulin (Ig)A is the most abundant immunoglobulin in humans, and in the airway mucosa secretory IgA (sIgA) plays a pivotal role in first-line defense against invading pathogens and antigens. IgA has been reported to also have pathogenic effects, including possible worsening of the prognosis of idiopathic pulmonary fibrosis (IPF). However, the precise effects of IgA on lung fibroblasts remain unclear, and we aimed to elucidate how IgA activates human lung fibroblasts. We found that sIgA, but not monomeric IgA (mIgA), induced interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1 and granulocyte-macrophage colony-stimulating factor (GM-CSF) production by normal human lung fibroblasts (NHLFs) at both the protein and mRNA levels. sIgA also promoted proliferation of NHLFs and collagen gel contraction comparable to with transforming growth factor (TGF)-β, which is involved in fibrogenesis in IPF. Also, Western blot analysis and real-time quantitative polymerase chain reaction (PCR) revealed that sIgA enhanced production of α-smooth muscle actin (α-SMA) and collagen type I (Col I) by NHLFs. Flow cytometry showed that NHLFs bound sIgA, and among the known IgA receptors, NHLFs significantly expressed CD71 (transferrin receptor). Transfection of siRNA targeting CD71 partially but significantly suppressed cytokine production by NHLFs co-cultured with sIgA. Our findings suggest that sIgA may promote human lung inflammation and fibrosis by enhancing production of inflammatory or fibrogenic cytokines as well as extracellular matrix, inducing fibroblast differentiation into myofibroblasts and promoting human lung fibroblast proliferation. sIgA's enhancement of cytokine production may be due partially to its binding to CD71 or the secretory component.
Collapse
Affiliation(s)
- S Arakawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - M Suzukawa
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - K Watanabe
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - K Kobayashi
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan.,Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - H Matsui
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - H Nagai
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - T Nagase
- Department of Respiratory Medicine, University of Tokyo, Tokyo, Japan
| | - K Ohta
- National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
160
|
Baker CE, Moore-Lotridge SN, Hysong AA, Posey SL, Robinette JP, Blum DM, Benvenuti MA, Cole HA, Egawa S, Okawa A, Saito M, McCarthy JR, Nyman JS, Yuasa M, Schoenecker JG. Bone Fracture Acute Phase Response-A Unifying Theory of Fracture Repair: Clinical and Scientific Implications. Clin Rev Bone Miner Metab 2018; 16:142-158. [PMID: 30930699 PMCID: PMC6404386 DOI: 10.1007/s12018-018-9256-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone fractures create five problems that must be resolved: bleeding, risk of infection, hypoxia, disproportionate strain, and inability to bear weight. There have been enormous advancements in our understanding of the molecular mechanisms that resolve these problems after fractures, and in best clinical practices of repairing fractures. We put forth a modern, comprehensive model of fracture repair that synthesizes the literature on the biology and biomechanics of fracture repair to address the primary problems of fractures. This updated model is a framework for both fracture management and future studies aimed at understanding and treating this complex process. This model is based upon the fracture acute phase response (APR), which encompasses the molecular mechanisms that respond to injury. The APR is divided into sequential stages of "survival" and "repair." Early in convalescence, during "survival," bleeding and infection are resolved by collaborative efforts of the hemostatic and inflammatory pathways. Later, in "repair," avascular and biomechanically insufficient bone is replaced by a variable combination of intramembranous and endochondral ossification. Progression to repair cannot occur until survival has been ensured. A disproportionate APR-either insufficient or exuberant-leads to complications of survival (hemorrhage, thrombosis, systemic inflammatory response syndrome, infection, death) and/or repair (delayed- or non-union). The type of ossification utilized for fracture repair is dependent on the relative amounts of strain and vascularity in the fracture microenvironment, but any failure along this process can disrupt or delay fracture healing and result in a similar non-union. Therefore, incomplete understanding of the principles herein can result in mismanagement of fracture care or application of hardware that interferes with fracture repair. This unifying model of fracture repair not only informs clinicians how their interventions fit within the framework of normal biological healing but also instructs investigators about the critical variables and outputs to assess during a study of fracture repair.
Collapse
Affiliation(s)
- Courtney E Baker
- 1Department of Orthopaedics, Mayo Clinic, 200 1st Ave SW, Rochester, MN 55903 USA
| | - Stephanie N Moore-Lotridge
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN 37232 USA
| | - Alexander A Hysong
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Samuel L Posey
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - J Patton Robinette
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Deke M Blum
- 4Vanderbilt University School of Medicine, 1161 21st Ave S, #D3300, Nashville, TN 37232 USA
| | - Michael A Benvenuti
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA
| | - Heather A Cole
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA
| | - Satoru Egawa
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Atsushi Okawa
- 5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Masanori Saito
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Jason R McCarthy
- Masonic Research Institute, 2150 Bleecker St, Utica, NY 13501 USA
| | - Jeffry S Nyman
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,7Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235 USA.,Department of Veterans Affairs, Tennessee Valley Health Care System, F-519 VA Acre Building, 1210 24th Ave. South, Nashville, TN 37232 USA
| | - Masato Yuasa
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,5Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Yushima Bunkyo Ward, Tokyo, 113-8519 Japan
| | - Jonathan G Schoenecker
- 2Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN 37232 USA.,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN 37232 USA.,9Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN 37232 USA.,10Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN 37232 USA
| |
Collapse
|
161
|
Smith JK. IL-6 and the dysregulation of immune, bone, muscle, and metabolic homeostasis during spaceflight. NPJ Microgravity 2018; 4:24. [PMID: 30534586 PMCID: PMC6279793 DOI: 10.1038/s41526-018-0057-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that exercise-related secretion of IL-6 by peripheral blood mononuclear cells is proportionate to body weight, suggesting that IL-6 is gravisensitive and that suboptimal production of this key cytokine may contribute to homeostatic dysregulations that occur during spaceflight. This review details what is known about the role of this key cytokine in innate and adaptive immunity, hematopoiesis, and in bone, muscle and metabolic homeostasis on Earth and in the microgravity of space and suggests an experimental approach to confirm or disavow the role of IL-6 in space-related dysregulations.
Collapse
Affiliation(s)
- John Kelly Smith
- Departments of Academic Affairs and Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN USA
| |
Collapse
|
162
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
163
|
Maestro endothelium conducts the neutrophils. Blood 2018; 132:1734-1735. [PMID: 30361462 DOI: 10.1182/blood-2018-09-872085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
164
|
Barroeta-Espar I, Weinstock LD, Perez-Nievas BG, Meltzer AC, Siao Tick Chong M, Amaral AC, Murray ME, Moulder KL, Morris JC, Cairns NJ, Parisi JE, Lowe VJ, Petersen RC, Kofler J, Ikonomovic MD, López O, Klunk WE, Mayeux RP, Frosch MP, Wood LB, Gomez-Isla T. Distinct cytokine profiles in human brains resilient to Alzheimer's pathology. Neurobiol Dis 2018; 121:327-337. [PMID: 30336198 DOI: 10.1016/j.nbd.2018.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022] Open
Abstract
Our group has previously studied the brains of some unique individuals who are able to tolerate robust amounts of Alzheimer's pathological lesions (amyloid plaques and neurofibrillary tangles) without experiencing dementia while alive. These rare resilient cases do not demonstrate the patterns of neuronal/synaptic loss that are normally found in the brains of typical demented Alzheimer's patients. Moreover, they exhibit decreased astrocyte and microglial activation markers GFAP and CD68, suggesting that a suppressed neuroinflammatory response may be implicated in human brain resilience to Alzheimer's pathology. In the present work, we used a multiplexed immunoassay to profile a panel of 27 cytokines in the brains of controls, typical demented Alzheimer's cases, and two groups of resilient cases, which possessed pathology consistent with either high probability (HP, Braak stage V-VI and CERAD 2-3) or intermediate probability (IP, Braak state III-IV and CERAD 1-3) of Alzheimer's disease in the absence of dementia. We used a multivariate partial least squares regression approach to study differences in cytokine expression between resilient cases and both Alzheimer's and control cases. Our analysis identified distinct profiles of cytokines in the entorhinal cortex (one of the earliest and most severely affected brain regions in Alzheimer's disease) that are up-regulated in both HP and IP resilient cases relative to Alzheimer's and control cases. These cytokines, including IL-1β, IL-6, IL-13, and IL-4 in HP resilient cases and IL-6, IL-10, and IP-10 in IP resilient cases, delineate differential inflammatory activity in brains resilient to Alzheimer's pathology compared to Alzheimer's cases. Of note, these cytokines all have been associated with pathogen clearance and/or the resolution of inflammation. Moreover, our analysis in the superior temporal sulcus (a multimodal association cortex that consistently accumulates Alzheimer's pathology at later stages of the disease along with overt symptoms of dementia) revealed increased expression of neurotrophic factors, such as PDGF-bb and basic FGF in resilient compared to AD cases. The same region also had reduced expression of chemokines associated with microglial recruitment, including MCP-1 in HP resilient cases and MIP-1α in IP resilient cases compared to AD. Altogether, our data suggest that different patterns of cytokine expression exist in the brains of resilient and Alzheimer's cases, link these differences to reduced glial activation, increased neuronal survival and preserved cognition in resilient cases, and reveal specific cytokine targets that may prove relevant to the identification of novel mechanisms of brain resiliency to Alzheimer's pathology.
Collapse
Affiliation(s)
- Isabel Barroeta-Espar
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Laura D Weinstock
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States.
| | - Beatriz G Perez-Nievas
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Avery C Meltzer
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Michael Siao Tick Chong
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States
| | - Ana C Amaral
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, United States.
| | - Krista L Moulder
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - John C Morris
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - Nigel J Cairns
- Department of Neurology, Knight Alzheimer Disease Research Center, Washington University, 1 Brookings Dr, St. Louis, MO 63130, United States.
| | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, United States.
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States.
| | - Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States; Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 DeSoto Street, Pittsburgh, PA 15260, United States.
| | - Oscar López
- Department of Neurology, University of Pittsburgh School of Medicine, 4200 Fifth Ave, Pittsburgh, PA 15260, United States.
| | - William E Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 DeSoto Street, Pittsburgh, PA 15260, United States
| | - Richard P Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and The Gertrude H. Sergievsky Center, Columbia University, 116th St & Broadway, New York, NY 10027, United States.
| | - Matthew P Frosch
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| | - Levi B Wood
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, United States; Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332, United States; Beth Israel Deaconess Cancer Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Teresa Gomez-Isla
- Massachusetts General Hospital ADRC, Harvard University, 15 Parkman St #835, Boston, MA 02114, United States.
| |
Collapse
|
165
|
Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res 2018; 19:180. [PMID: 30236095 PMCID: PMC6149181 DOI: 10.1186/s12931-018-0883-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a common, multifactorial lung disease which results in significant impairment of patients' health and a large impact on society and health care burden. It is believed to be the result of prolonged, destructive neutrophilic inflammation which results in progressive damage to lung structures. During this process, large quantities of neutrophil serine proteinases (NSPs) are released which initiate the damage and contribute towards driving a persistent inflammatory state.Neutrophil elastase has long been considered the key NSP involved in the pathophysiology of COPD. However, in recent years, a significant role for Proteinase 3 (PR3) in disease development has emerged, both in COPD and other chronic inflammatory conditions. Therefore, there is a need to investigate the importance of PR3 in disease development and hence its potential as a therapeutic target. Research into PR3 has largely been confined to its role as an autoantigen, but PR3 is involved in triggering inflammatory pathways, disrupting cellular signalling, degrading key structural proteins, and pathogen response.This review summarises what is presently known about PR3, explores its involvement particularly in the development of COPD, and indicates areas requiring further investigation.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK.
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Centre for Translational Inflammation Research, University of Birmingham Research Laboratories, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2WB, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2GW, UK
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, B15 2GW, UK
| |
Collapse
|
166
|
Overexpression of Tear Inflammatory Cytokines as Additional Finding in Keratoconus Patients and Their First Degree Family Members. Mediators Inflamm 2018; 2018:4285268. [PMID: 30245588 PMCID: PMC6139184 DOI: 10.1155/2018/4285268] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/28/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
Keratoconus is a progressive corneal ectasia that may lead to severe visual impairment due to the irregular astigmatism caused by corneal thinning. In addition to its association with atopy, eye rubbing, or genetic component, late reports suggest the involvement of inflammation in the pathogenesis of the disease. Our aim was to determine the concentration of IL-4, IL-6, IL-10, RANTES, IFN gamma, and TNF alpha in the tear film of patients with keratoconus and their first degree family members. We analyzed forty-eight participants in an observational cross-sectional study. The diagnosis of keratoconus had to be confirmed in addition to a minimum of 47 D corneal refractive power by corneal topography readings provided by a Placido-based topography system and analysis of the pattern: irregular astigmatism with an asymmetric “bow-tie.” As for the other groups, the most important diagnosis criteria were a normal topographic pattern with a regular astigmatism. 17 keratoconus patients, 16 relatives, and 15 controls were recruited after clinical assessment as part of the research. The cytokine's mean values were similar in the keratoconus group and the relatives' samples but significantly higher compared to the controls. Important differences were found in IL-4 levels between keratoconus patients and relatives and between relatives and controls (mean difference of 302.42, p < 0.0016 and 219.16, p < 0.033, Tukey's HSD procedure). In the keratoconus group, using the CORR procedure, we found statistically strong correlations of IL-6 lacrimal concentrations with the disease stage (r = 0.56, p < 0.01), keratometry (r = 0.55, p < 0.02), pachymetry (r = −0.64, p < 0.048), and corneal hysteresis (r = −0.53, p < 0.02). Cytokine overexpression may be relevant for the inflammatory etiology of keratoconus. In conclusion, in the case of some first degree family members, the elevated tear biomarkers may represent a supplementary risk factor.
Collapse
|
167
|
Glennon-Alty L, Hackett AP, Chapman EA, Wright HL. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic Biol Med 2018; 125:25-35. [PMID: 29605448 DOI: 10.1016/j.freeradbiomed.2018.03.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
Abstract
Polymorphonuclear leukocytes, or neutrophils, are specialist phagocytic cells of the innate immune system. Their primary role is host defence against micro-organisms, which they kill via phagocytosis, followed by release of reactive oxygen species (ROS) and proteolytic enzymes within the phagosome. ROS are generated via the action of the NADPH oxidase (also known as NOX2), in a process termed the 'Respiratory Burst'. This process consumes large amounts of oxygen, which is converted into the highly-reactive superoxide radical O2- and H2O2. Subsequent activation of myeloperoxidase (MPO) generates secondary oxidants and chloroamines that are highly microbiocidal in nature, which together with proteases such as elastase and gelatinase provide a toxic intra-phagosomal environment able to kill a broad range of micro-organisms. However, under certain circumstances such as during an auto-immune response, neutrophils can be triggered to release ROS and proteases extracellularly causing damage to host tissues, modification of host proteins, lipids and DNA and dysregulation of oxidative homeostasis. This review describes the range of ROS species produced by human neutrophils with a focus on the implications of neutrophil redox products in autoimmune inflammation.
Collapse
Affiliation(s)
- Laurence Glennon-Alty
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK; Liverpool Health Partners, University of Liverpool, Liverpool, UK
| | - Angela P Hackett
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Elinor A Chapman
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK
| | - Helen L Wright
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, L7 8TX Liverpool, UK.
| |
Collapse
|
168
|
Xu Y, Zhang Y, Ye J. IL-6: A Potential Role in Cardiac Metabolic Homeostasis. Int J Mol Sci 2018; 19:ijms19092474. [PMID: 30134607 PMCID: PMC6164544 DOI: 10.3390/ijms19092474] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-6 (IL-6) is implicated in multiple biological functions including immunity, neural development, and haematopoiesis. Recently, mounting evidence indicates that IL-6 plays a key role in metabolism, especially lipid metabolic homeostasis. A working heart requires a high and constant energy input which is largely generated by fatty acid (FA) β-oxidation. Under pathological conditions, the precise balance between cardiac FA uptake and metabolism is perturbed so that excessive FA is accumulated, thereby predisposing to myocardial dysfunction (cardiac lipotoxicity). In this review, we summarize the current evidence that suggests the involvement of IL-6 in lipid metabolism. Cardiac metabolic features and consequences of myocardial lipotoxicity are also briefly analyzed. Finally, the roles of IL-6 in cardiac FA uptake (i.e., serum lipid profile and myocardial FA transporters) and FA metabolism (namely, β-oxidation, mitochondrial function, biogenesis, and FA de novo synthesis) are discussed. Overall, understanding how IL-6 transmits signals to affect lipid metabolism in the heart might allow for development of better clinical therapies for obesity-associated cardiac lipotoxicity.
Collapse
Affiliation(s)
- Yitao Xu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London W120NN, UK.
| | - Yubin Zhang
- State Key laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| | - Junmei Ye
- State Key laboratory of Natural Medicines, Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210006, China.
| |
Collapse
|
169
|
Brown S, Boules M, Hamza N, Wang X, Whalen M. Synthesis of interleukin 1 beta and interleukin 6 in human lymphocytes is stimulated by tributyltin. Arch Toxicol 2018; 92:2573-2586. [PMID: 29951691 PMCID: PMC6082394 DOI: 10.1007/s00204-018-2248-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Tributyltin (TBT) is a widespread environmental contaminant that is present in human blood and other tissues. It has been shown to disrupt the immune function of human natural killer (NK) cells and to alter the secretion of a number of pro-inflammatory cytokines from immune cells. Secretion of both interleukin 1β (IL-1β) and interleukin 6 (IL-6) from human lymphocytes can be increased dependent upon the level of TBT exposure. This study shows that the TBT-induced increases in secretion of both cytokines are due to TBT-induced increases in the synthesis of these proteins and not simply because of the release of pre-existing cytokine. Furthermore, the data indicate that these TBT-induced increases in IL-1β and IL-6 synthesis require MAP kinase signaling pathways. Additionally, elevated synthesis of IL-1β and IL-6 seen at the highest exposures to TBT (200, 200, 50 nM) were accompanied by increases in the mRNA for these cytokines. TBT-induced increases in IL-1β and IL-6 mRNAs were also shown to be dependent on MAP kinase signaling. The study suggests that TBT has the capacity to increase immune cell production of these 2 important pro-inflammatory cytokines and that this increase is in part explained by increased mRNA for the cytokines.
Collapse
Affiliation(s)
- Shyretha Brown
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Mariam Boules
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Nafisa Hamza
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Margaret Whalen
- Department of Chemistry, Tennessee State University, 3500 John A. Merritt Blvd., Nashville, TN, 37209, USA.
| |
Collapse
|
170
|
Choi BK, Hwang SH, Kim YI, Singh R, Kwon BS. The hyaluronic acid-rich node and duct system is a structure organized for innate immunity and mediates the local inflammation. Cytokine 2018; 113:74-82. [PMID: 29907431 DOI: 10.1016/j.cyto.2018.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 11/28/2022]
Abstract
The Hyaluronic Acid-rich Node and Duct System (HAR-NDS or NDS), Primo Vascular System (PVS) or Bonghan System (BHS), is thought to be a third circulatory system independent of the blood and lymphatic systems and a structure of connected nodes and ducts. Although it seems to be part of the immune system as it is enriched with cells of innate immunity, little is known about its immunological roles. We performed cellular profiling and secretome analysis of NDS in a steady state and under TLR2- or TLR4-mediated local inflammation, and found that the NDS is pre-dominantly enriched with the myeloid cells, selectively attracts the inflammatory macrophages and neutrophils, has a flexible structure just like the lymph node, and is structured with the fibroblastic reticular cells and reticular network. NDS dominantly harbored the myeloid cells in both steady and activated status, and secreted various types of inflammatory cytokines by proinflammatory stimuli. These results suggest that NDS is the lymphoid structure for the innate immunity and plays an intermediary role in the innate immune cell-mediated local inflammation.
Collapse
Affiliation(s)
- Beom K Choi
- Biomedicine Production Branch, National Cancer Center Institute, Goyang 10408, Republic of Korea
| | - Sun H Hwang
- Eutilex, Co., Ltd., Suite# 1401, Daeryung Technotown 17 Gasan digital 1-ro 25, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Yu I Kim
- Graduate School of Cancer Science and Policy, National Cancer Center Institute, Goyang 10408, Republic of Korea
| | - Rohit Singh
- Immunotherapeutics Branch, Division of Convergence Technology, National Cancer Center Institute, Goyang 10408, Republic of Korea
| | - Byoung S Kwon
- Eutilex, Co., Ltd., Suite# 1401, Daeryung Technotown 17 Gasan digital 1-ro 25, Geumcheon-gu, Seoul 08594, Republic of Korea; Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
171
|
Jevnikar Z, Östling J, Ax E, Calvén J, Thörn K, Israelsson E, Öberg L, Singhania A, Lau LCK, Wilson SJ, Ward JA, Chauhan A, Sousa AR, De Meulder B, Loza MJ, Baribaud F, Sterk PJ, Chung KF, Sun K, Guo Y, Adcock IM, Payne D, Dahlen B, Chanez P, Shaw DE, Krug N, Hohlfeld JM, Sandström T, Djukanovic R, James A, Hinks TSC, Howarth PH, Vaarala O, van Geest M, Olsson H. Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation. J Allergy Clin Immunol 2018; 143:577-590. [PMID: 29902480 DOI: 10.1016/j.jaci.2018.05.026] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/15/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. OBJECTIVE We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. METHODS An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. RESULTS Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1β, IL-8, and IL-1β. CONCLUSIONS Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
Collapse
Affiliation(s)
- Zala Jevnikar
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jörgen Östling
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Ax
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Calvén
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Israelsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Akul Singhania
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Laurie C K Lau
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom
| | - Susan J Wilson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jonathan A Ward
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; Histochemistry Research Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anoop Chauhan
- Portsmouth Hospitals NHS Trust, Portsmouth, United Kingdom
| | - Ana R Sousa
- Discovery Medicine, GlaxoSmithKline, Brentford, United Kingdom
| | - Bertrand De Meulder
- European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, Lyon, France
| | | | | | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Kai Sun
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Yike Guo
- Department of Computing & Data Science Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London UK & Royal Brompton Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, London, United Kingdom
| | - Debbie Payne
- Centre for Integrated Genomic Medical Research, University of Manchester, Manchester, United Kingdom
| | - Barbro Dahlen
- Karolinska University Hospital & Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
| | | | - Dominick E Shaw
- Respiratory Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Norbert Krug
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany
| | - Jens M Hohlfeld
- Fraunhofer Institute of Toxicology and Experimental Medicine, Member of the German Center for Lung Research, Hannover, Germany; Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Ratko Djukanovic
- NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Anna James
- Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Timothy S C Hinks
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom; Respiratory Medicine Unit, NDM Experimental Medicine, University of OxfordJohn Radcliffe Hospital, Oxford, United Kingdom
| | - Peter H Howarth
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton University Hospital, Southampton, United Kingdom; NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, United Kingdom
| | - Outi Vaarala
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marleen van Geest
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Department of Bioscience, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | |
Collapse
|
172
|
Thymol alleviates lipopolysaccharide-stimulated inflammatory response via downregulation of RhoA-mediated NF-κB signalling pathway in human peritoneal mesothelial cells. Eur J Pharmacol 2018; 833:210-220. [PMID: 29883671 DOI: 10.1016/j.ejphar.2018.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023]
Abstract
Thymol is one of the most important dietary constituents in the thyme species and has been shown to possess anti-inflammatory properties both in vivo and in vitro. We investigated the protective effects of thymol on the lipopolysaccharide (LPS)-induced inflammatory responses in the human peritoneal mesothelial cell line (HMrSV5) to clarify the potential mechanism. HMrSV5 cells were stimulated with LPS in the presence or absence of thymol. Our results showed that thymol markedly suppressed the production of cytokines such as tumour necrosis factor α (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1) and α-smooth muscle actin (α-SMA) in a dose-dependent manner. Western blot analysis indicated that RhoA and ROCK activation; Toll-like receptor 4 (TLR4) expression; and Nuclear factor -kappa B (NF-κB) p65, IKK and IκBα phosphorylation were also inhibited by thymol. Moreover, siRNA knockdown of RhoA suppressed the expression of pro-inflammatory cytokines and phosphorylation of NF-κB p65 and IκBα proteins in LPS-stimulated HMrSV5 cells, but did not affect TLR4 expression. In conclusion, thymol inhibits LPS-induced inflammation in HMrSV5 cells by suppressing TLR4-mediated RhoA-dependent NF-κB signalling pathway. Our study suggests that thymol may be a promising therapeutic agent against peritonitis.
Collapse
|
173
|
Yang X, Tong Y, Yan H, Ni Z, Qian J, Fang W. High Intraperitoneal Interleukin-6 Levels Predict Peritonitis in Peritoneal Dialysis Patients: A Prospective Cohort Study. Am J Nephrol 2018; 47:317-324. [PMID: 29779030 DOI: 10.1159/000489271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/13/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND To evaluate the predictive value of dialysate interleukin-6 (IL-6) representing local subclinical intraperitoneal inflammation for the development of peritonitis in continuous ambulatory peritoneal dialysis (CAPD) patients. METHODS Stable prevalent CAPD patients were enrolled in this prospective study. IL-6 concentration in the overnight effluent was determined and expressed as the IL-6 appearance rate (IL-6AR). Patients were divided into 2 groups according to the median of IL-6AR and prospectively followed up until the first episode of peritonitis, cessation of PD, or the end of the study (December 30, 2017). The utility of IL-6AR in predicting peritonitis-free survival was analyzed using the Kaplan-Meier and Cox proportional hazards models. RESULTS A total of 149 patients were enrolled, including 72 males (48%) with mean age 52.0 ± 13.6 years and median PD duration 26 (5.9-45.5) months. During follow-up, 7,923 patient months were observed and 154 episodes of peritonitis occurred in 82 patients. Previous peritonitis episodes were significantly associated with log dialysate IL-6AR levels (β = 0.187 [0.022-0.299], p = 0.023). Patients in the high IL-6AR group showed a significantly inferior peritonitis-free survival when compared with their counterparts in the low IL-6AR group (48.8 vs. 67.7 months, p = 0.026), as well as higher treatment failure percentage of peritonitis (20.3 vs. 9.3%, p = 0.049). A multivariate Cox regression showed that high dialysate IL-6AR (hazard ratio [HR] 1.247 [1.052-1.478]; p = 0.011) and high serum C-reactive protein (HR 1.072 [1.005-1.144]; p = 0.036) were independent risk factors for inferior peritonitis-free survival. CONCLUSION This prospective study suggested that the intraperitoneal inflammation marker, dialysate IL-6 level, might be a potential predictor of peritonitis development in patients undergoing PD.
Collapse
|
174
|
Wilkinson AN, Gartlan KH, Kelly G, Samson LD, Olver SD, Avery J, Zomerdijk N, Tey SK, Lee JS, Vuckovic S, Hill GR. Granulocytes Are Unresponsive to IL-6 Due to an Absence of gp130. THE JOURNAL OF IMMUNOLOGY 2018; 200:3547-3555. [DOI: 10.4049/jimmunol.1701191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
|
175
|
Prominent Levels of the Profibrotic Chemokine CCL18 during Peritonitis: In Vitro Downregulation by Vitamin D Receptor Agonists. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6415892. [PMID: 29850544 PMCID: PMC5904802 DOI: 10.1155/2018/6415892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Peritoneal dialysis (PD) is used as a renal replacement therapy, which can be limited by peritoneal membrane ultrafiltration failure (UFF) secondary to fibrotic processes. Peritonitis, a frequent complication of PD, is a major risk factor for peritoneal membrane fibrosis and UFF. Low peritoneal levels of the chemokine CCL18 are associated with preservation of peritoneal membrane function in PD. Given that CCL18 is involved in fibrotic processes and recurrent peritonitis, it is a risk factor for peritoneal membrane failure; thus, we evaluated CCL18 concentrations in peritoneal effluents from patients undergoing peritonitis episodes. Pharmacological interventions aimed at diminishing the production of CCL18 were also explored. Fivefold higher CCL18 peritoneal concentrations were found during acute bacterial peritonitis, in parallel with the increased infiltration of macrophages. Unexpectedly, CCL18 was also highly (50-fold) increased during sterile eosinophilic peritonitis, and peritoneal eosinophils were found to express CCL18. In vitro treatment of peritoneal macrophages with the vitamin D receptor agonist paricalcitol was able to reduce the secretion and the expression of CCL18 in isolated peritoneal macrophages. In conclusion, our study suggests that the chemokine CCL18 can be a mediator of peritoneal membrane failure associated with peritonitis episodes as well as providing a new potential therapeutic target.
Collapse
|
176
|
Bui VL, Brahn E. Cytokine targeting in rheumatoid arthritis. Clin Immunol 2018; 206:3-8. [PMID: 29621613 DOI: 10.1016/j.clim.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Viet L Bui
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ernest Brahn
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
177
|
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a key regulator of numerous physiological functions, including the immune response. As pathogens elicit an acute phase response with concerted activation of STAT3, they are confronted with two evolutionary options: either curtail it or employ it. This has important consequences for the host, since abnormal STAT3 function is associated with cancer development and other diseases. This review provides a comprehensive outline of how human viruses cope with STAT3-mediated inflammation and how this affects the host. Finally, we discuss STAT3 as a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Nicolaas Van Renne
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
178
|
Könnecke M, Klimek L, Mullol J, Gevaert P, Wollenberg B. Subtypisierung der Polyposis nasi: Phänotypen, Endotypen und Komorbiditäten. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1542-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
179
|
Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford) 2018; 57:ii43-ii50. [DOI: 10.1093/rheumatology/kex513] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
180
|
Jung TD, Choi SI, Choi SH, Cho BY, Sim WS, Xionggao H, Lee SJ, Park SJ, Kim DB, Kim YC, Lee JH, Lee OH. Changes in the Anti-Allergic Activities of Sesame by Bioconversion. Nutrients 2018; 10:E210. [PMID: 29443928 PMCID: PMC5852786 DOI: 10.3390/nu10020210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
Sesame is an important oilseed crop, which has been used as a traditional health food to ameliorate the prevention of various diseases. We evaluated the changes in the anti-allergic activities of sesame by bioconversion. SDS-PAGE of non-fermented sesame proteins showed major allergen bands, while that of fermented sesame showed only a few protein bands. Additionally, we investigated the effectiveness of fermented sesame by bioconversion in tumor necrosis factor-α (TNF-α)- and interferon-γ (IFN-γ)-induced HaCaT cells. In HaCaT cells, fermented sesame inhibited the mRNA expression of interleukin-6 (IL-6) and interleukin-1β (IL-1β), thymus and macrophage-derived chemokine (MDC/CCL22), activation-regulated chemokine (TARC/CCL17), and intercellular adhesion molecule-1 (ICAM-1). Moreover, fermented sesame inhibited the activation of nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 1 (STAT1). Fermented sesame exerts anti-allergic effects by suppressing the expression of chemokines and cytokines via blockade of NF-κB and STAT1 activation.
Collapse
MESH Headings
- Agaricales
- Allergens/adverse effects
- Allergens/analysis
- Allergens/metabolism
- Cell Line
- Chemokines/antagonists & inhibitors
- Chemokines/genetics
- Chemokines/metabolism
- Crops, Agricultural/adverse effects
- Crops, Agricultural/chemistry
- Crops, Agricultural/growth & development
- Crops, Agricultural/microbiology
- Cytokines/antagonists & inhibitors
- Cytokines/genetics
- Cytokines/metabolism
- Dermatitis, Atopic/etiology
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/prevention & control
- Fermentation
- Fermented Foods/adverse effects
- Fermented Foods/analysis
- Fermented Foods/microbiology
- Food Handling
- Food Hypersensitivity/etiology
- Food Hypersensitivity/immunology
- Food Hypersensitivity/prevention & control
- Fruiting Bodies, Fungal
- Gene Expression Regulation, Neoplastic
- Humans
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Plant Proteins, Dietary/adverse effects
- Plant Proteins, Dietary/analysis
- Plant Proteins, Dietary/metabolism
- Republic of Korea
- Seeds/adverse effects
- Seeds/chemistry
- Seeds/growth & development
- Seeds/microbiology
- Sesamum/adverse effects
- Sesamum/chemistry
- Sesamum/growth & development
- Sesamum/microbiology
- Shiitake Mushrooms/isolation & purification
- Shiitake Mushrooms/metabolism
Collapse
Affiliation(s)
- Tae-Dong Jung
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sun-Il Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Seung-Hyun Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Bong-Yeon Cho
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Wan-Sup Sim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Han- Xionggao
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Sang Jong Lee
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Seon Ju Park
- STR Biotech Company, LTD., Chuncheon 24232, Korea; or l (S.J.L.); (S.J.P.)
| | - Dan-Bi Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Korea;
| | - Young-Cheul Kim
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jin-Ha Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, Korea; (T.-D.J.); (S.-I.C.); (S.-H.C.); (B.-Y.C.); (W.-S.S.); (H.-X.)
| |
Collapse
|
181
|
Alivernini S, Tolusso B, Ferraccioli G, Gremese E, Kurowska-Stolarska M, McInnes IB. Driving chronicity in rheumatoid arthritis: perpetuating role of myeloid cells. Clin Exp Immunol 2018; 193:13-23. [PMID: 29315512 PMCID: PMC6038003 DOI: 10.1111/cei.13098] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022] Open
Abstract
Acute inflammation is a complex and tightly regulated homeostatic process that includes leucocyte migration from the vasculature into tissues to eliminate the pathogen/injury, followed by a pro‐resolving response promoting tissue repair. However, if inflammation is uncontrolled as in chronic diseases such as rheumatoid arthritis (RA), it leads to tissue damage and disability. Synovial tissue inflammation in RA patients is maintained by sustained activation of multiple inflammatory positive‐feedback regulatory pathways in a variety of cells, including myeloid cells. In this review, we will highlight recent evidence uncovering biological mechanisms contributing to the aberrant activation of myeloid cells that contributes to perpetuation of inflammation in RA, and discuss emerging data on anti‐inflammatory mediators contributing to sustained remission that may inform a novel category of therapeutic targets.
Collapse
Affiliation(s)
- S Alivernini
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - B Tolusso
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - G Ferraccioli
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - E Gremese
- Institute of Rheumatology, Fondazione Policlinico Universitario A. Gemelli - Catholic University of the Sacred Heart, Rome, Italy
| | - M Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| | - I B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, UK
| |
Collapse
|
182
|
Koennecke M, Klimek L, Mullol J, Gevaert P, Wollenberg B. Subtyping of polyposis nasi: phenotypes, endotypes and comorbidities. ALLERGO JOURNAL INTERNATIONAL 2018; 27:56-65. [PMID: 29564208 PMCID: PMC5842507 DOI: 10.1007/s40629-017-0048-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a heterogeneous, multifactorial inflammatory disease of the nasal and paranasal mucosa. It has not been possible to date to develop an internationally standardized, uniform classification for this disorder. A phenotype classification according to CRS with (CRSwNP) and without polyposis (CRSsNP) is usually made. However, a large number of studies have shown that there are also different endotypes of CRS within these phenotypes, with different pathophysiologies of chronic inflammation of the nasal mucosa. This review describes the central immunological processes in nasal polyps, as well as the impact of related diseases on the inflammatory profile of nasal polyps. MATERIALS AND METHODS The current knowledge on the immunological and molecular processes of CRS, in particular CRSwNP and its classification into specific endotypes, was put together by means of a structured literature search in Medline, PubMed, the national and international guideline registers, and the Cochrane Library. RESULTS Based on the current literature, the different immunological processes in CRS and nasal polyps were elaborated and a graphical representation in the form of an immunological network developed. In addition, different inflammatory profiles can be found in CRSwNP depending on related diseases, such as bronchial asthma, cystic fibrosis (CF), or NASID-Exacerbated Respiratory Disease (N‑ERD). CONCLUSION The identification of different endotypes of CRSwNP may help to improve diagnostics and develop novel individual treatment approaches in CRSwNP.
Collapse
Affiliation(s)
- Michael Koennecke
- Lübeck Campus, Department of Otorhinolaryngology, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Joaquim Mullol
- Rhinology Unit and Smell Clinic, Department of Otorhinolaryngology, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, CIBERES Spain
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Ghent University, Ghent, Belgium
| | - Barbara Wollenberg
- Lübeck Campus, Department of Otorhinolaryngology, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
183
|
Appenheimer MM, Evans SS. Temperature and adaptive immunity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:397-415. [DOI: 10.1016/b978-0-444-63912-7.00024-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
184
|
Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res 2018; 191:29-44. [PMID: 29154757 PMCID: PMC5776711 DOI: 10.1016/j.trsl.2017.10.004] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
Chronic overnutrition and obesity induces low-grade inflammation throughout the body. Termed "meta-inflammation," this chronic state of inflammation is mediated by macrophages located within the colon, liver, muscle, and adipose tissue. A sentinel orchestrator of immune activity and homeostasis, macrophages adopt variable states of activation as a function of time and environmental cues. Meta-inflammation phenotypically skews these polarization states and has been linked to numerous metabolic disorders. The past decade has revealed several key regulators of macrophage polarization, including the signal transducer and activator of transcription family, the peroxisome proliferator-activated receptor gamma, the CCAAT-enhancer-binding proteins (C/EBP) family, and the interferon regulatory factors. Recent studies have also suggested that microRNAs and long noncoding RNA influence macrophage polarization. The pathogenic alteration of macrophage polarization in meta-inflammation is regulated by both extracellular and intracellular cues, resulting in distinct secretome profiles. Meta-inflammation-altered macrophage polarization has been linked to insulin insensitivity, atherosclerosis, inflammatory bowel disease, cancer, and autoimmunity. Thus, further mechanistic exploration into the skewing of macrophage polarization promises to have profound impacts on improving global health.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Maria M Xu
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Kepeng Wang
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Adam J Adler
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn
| | - Anthony T Vella
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut, School of Medicine, Farmington, Conn.
| |
Collapse
|
185
|
Zeng N, Wan C, Qin J, Wu Y, Yang T, Shen Y, Wen F, Chen L. Diagnostic value of interleukins for tuberculous pleural effusion: a systematic review and meta-analysis. BMC Pulm Med 2017; 17:180. [PMID: 29216864 PMCID: PMC5721598 DOI: 10.1186/s12890-017-0530-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/24/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The ability of interleukins (ILs) to differentiate tuberculous pleural effusion from other types of effusion is controversial. The aim of our study was to summarize the evidence for its use of ruling out or in tuberculous pleural effusion. METHODS Two investigators independently searched PubMed, EMBASE, Web of Knowledge, CNKI, WANFANG, and WEIPU databases to identify studies assessing diagnostic role of ILs for tuberculous pleural effusion published up to January, 2017. Study quality was assessed using Quality Assessment of Diagnostic Accuracy Studies-2. The pooled diagnostic sensitivity and specificity of ILs were calculated by using Review Manager 5.3. Area under the summary receiver operating characteristic curve (AUC) was used to summarize the overall diagnostic performance of individual markers. RESULTS Thirty-eight studies met our inclusion criteria. Pooled sensitivity, specificity and AUC for chosen ILs were as follows: IL-2, 0.67,0.76 and 0.86; IL-6, 0.86, 0.84 and 0.90; IL-12, 0.78, 0.83 and 0.86; IL-12p40, 0.82,0.65 and 0.76; IL-18, 0.87, 0.92 and 0.95; IL-27, 0.93, 0.95 and 0.95; and IL-33, 0.84, 0.80 and 0.88. CONCLUSIONS Some of these ILs may assist in diagnosing tuberculous pleural effusion, though no single IL is likely to show adequate sensitivity or specificity on its own. Further studies on a large scale with better study design should be performed to assess the diagnostic potential of ILs.
Collapse
Affiliation(s)
- Ni Zeng
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Chun Wan
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Jiangyu Qin
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Yanqiu Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Yongchun Shen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| | - Lei Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University and Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, Chengdu, 610041 China
| |
Collapse
|
186
|
Hernández-Caldera A, Vernal R, Paredes R, Veloso-Matta P, Astorga J, Hernández M. Human periodontal ligament fibroblasts synthesize C-reactive protein and Th-related cytokines in response to interleukin (IL)-6 trans-signalling. Int Endod J 2017; 51:632-640. [PMID: 29106735 DOI: 10.1111/iej.12872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022]
Abstract
AIM To characterize the potential of human periodontal ligament fibroblasts (HPLF) to synthesize CRP and Th-related cytokines in response to IL-6 in periodontal health and apical inflammation. METHODOLOGY Primary HPLF stimulated with IL-6, soluble(s) IL-6 receptor (R) and controls were assayed for CRP, Th1, Th2, Th17 and Treg-related cytokines by quantitative real-time PCR and ELISA, respectively. IL-6R mRNA expression and its soluble protein levels were screened in HPLF cultures, and ex vivo samples of healthy periodontal ligaments (n = 5) and apical lesions (n = 13). Data were analysed with ANOVA or unpaired t-test. RESULTS 0.5 ng mL-1 IL-6 plus 1 ng mL-1 of its soluble receptor (sIL-6R) for 24 h was effective in inducing CRP production. IL-6 alone had a mild dose-dependent effect; co-stimulation with sIL-6R significantly enhanced this effect, whereas it was completely abolished by the addition of IL-6R blocking antibody (P < 0.05). Similarly, higher mRNA expression and protein levels of Th1, Th17 and partially Treg-related cytokines were found for IL-6 combined with its soluble receptor versus the nonstimulated group and IL-6R antibody (P < 0.05). IL-6R mRNA expression was slightly induced by IL-6 compared to THP-1 cells, but sILR-6 protein could not be detected in HPLF. High sIL-6R levels were detected in apical lesions and were immunolocalized to mononuclear inflammatory cells and proliferating epithelium. CONCLUSION IL-6 trans-signalling induced Th1 and Th17-related cytokines and represents an extra-hepatic mechanism for PCR synthesis in human periodontal ligament fibroblasts, contributing to explain the bone-destructive phenotype of apical lesions and eventually its systemic complications.
Collapse
Affiliation(s)
- A Hernández-Caldera
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - R Vernal
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - R Paredes
- Escuela Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - P Veloso-Matta
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - J Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - M Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
187
|
Da Cunha AP, Zhang Q, Prentiss M, Wu XQ, Kainz V, Xu YY, Vrouvlianis J, Li H, Rangaswamy N, Leehy B, McGee TL, Bell CL, Bigelow CE, Kansara V, Medley Q, Huang Q, Wu HY. The Hierarchy of Proinflammatory Cytokines in Ocular Inflammation. Curr Eye Res 2017; 43:553-565. [PMID: 29199855 DOI: 10.1080/02713683.2017.1410180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The concept of tissue-dependent cytokine hierarchy has been demonstrated in a number of diseases, but it has not been investigated in ophthalmic diseases. Here, we evaluated the functional hierarchy of interleukin-1β (IL-1β), IL-6, IL-17A, and tumor necrosis factor (TNF) in the induction of ocular inflammation. MATERIALS AND METHODS We delivered adeno-associated virus (AAV) vectors expressing IL-1β, IL-6, IL-17A, or TNF intravitreally in naïve C57/BL6 mice and compared and contrasted the inflammatory effects in the eye 5 weeks after AAV-mediated gene transfer. We also used an in vitro human system to test the effect of cytokines on barrier function. RESULTS We found that IL-1β had the highest ability to initiate ocular inflammation. The continuous overexpression of IL-1β resulted in a significant upregulation of additional proinflammatory mediators in the eye. Using scanning laser ophthalmoscope and optical coherence tomography imaging techniques, we showed that a low dose of AAVIL-1β was sufficient and was as pathogenic as a high dose of TNF in inducing vascular leakage, retinal degeneration, and cellular infiltration. Furthermore, only a marginal increase in IL-1β was enough to cause cellular infiltration, thus confirming the highly pathogenic nature of IL-1β in the eye. Contrary to our expectation, IL-6 or IL-17A had minimal or no effect in the eye. To examine the clinical relevance of our findings, we used an impedance assay to show that IL-1β alone or TNF alone was able to cause primary human retinal endothelial cell barrier dysfunction in vitro. Again, IL-6 alone or IL-17A alone had no effect on barrier function; however, in the presence of IL-1β or TNF, IL-17A but not IL-6 may provide additive proinflammatory effects. CONCLUSIONS Our studies demonstrate the existence of a functional hierarchy of proinflammatory cytokines in the eye, and we show that IL-1β is the most pathogenic when it is continuously expressed in the eye.
Collapse
Affiliation(s)
- A P Da Cunha
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - Q Zhang
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - M Prentiss
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - X Q Wu
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - V Kainz
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - Y Y Xu
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - J Vrouvlianis
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - H Li
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - N Rangaswamy
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - B Leehy
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - T L McGee
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - C L Bell
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - C E Bigelow
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - V Kansara
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - Q Medley
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - Q Huang
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| | - H Y Wu
- a Department of Ophthalmology , Novartis Institutes for Biomedical Research , Cambridge , Massachusetts , USA
| |
Collapse
|
188
|
Dadarwal D, Palmer C, Griebel P. Mucosal immunity of the postpartum bovine genital tract. Theriogenology 2017; 104:62-71. [DOI: 10.1016/j.theriogenology.2017.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
|
189
|
Cellular and Oxidative Mechanisms Associated with Interleukin-6 Signaling in the Vasculature. Int J Mol Sci 2017; 18:ijms18122563. [PMID: 29186034 PMCID: PMC5751166 DOI: 10.3390/ijms18122563] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species, particularly superoxide, promote endothelial dysfunction and alterations in vascular structure. It is increasingly recognized that inflammatory cytokines, such as interleukin-6 (IL-6), contribute to endothelial dysfunction and vascular hypertrophy and fibrosis. IL-6 is increased in a number of cardiovascular diseases, including hypertension. IL-6 is also associated with a higher incidence of future cardiovascular events and all-cause mortality. Both immune and vascular cells produce IL-6 in response to a number of stimuli, such as angiotensin II. The vasculature is responsive to IL-6 produced from vascular and non-vascular sources via classical IL-6 signaling involving a membrane-bound IL-6 receptor (IL-6R) and membrane-bound gp130 via Jak/STAT as well as SHP2-dependent signaling pathways. IL-6 signaling is unique because it can also occur via a soluble IL-6 receptor (sIL-6R) which allows for IL-6 signaling in tissues that do not normally express IL-6R through a process referred to as IL-6 trans-signaling. IL-6 signaling mediates a vast array of effects in the vascular wall, including endothelial activation, vascular permeability, immune cell recruitment, endothelial dysfunction, as well as vascular hypertrophy and fibrosis. Many of the effects of IL-6 on vascular function and structure are representative of loss or reductions in nitric oxide (NO) bioavailability. IL-6 has direct effects on endothelial nitric oxide synthase activity and expression as well as increasing vascular superoxide, which rapidly inactivates NO thereby limiting NO bioavailability. The goal of this review is to highlight both the cellular and oxidative mechanisms associated with IL-6-signaling in the vascular wall in general, in hypertension, and in response to angiotensin II.
Collapse
|
190
|
Döring Y, Megens R, Soehnlein O, Drechsler M. Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thromb Haemost 2017; 106:839-48. [DOI: 10.1160/th11-07-0501] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/28/2011] [Indexed: 12/23/2022]
Abstract
SummaryNeutrophils, as part of the innate immune system, are classically described to be main actors during the onset of inflammation enforcing rapid neutralisation and clearance of pathogens. Besides their wellstudied role in acute inflammatory processes, recent advances strongly indicate a so far underappreciated importance of neutrophils in initiation and development of atherosclerosis. This review focuses on current findings on the role of neutrophils in atherosclerosis. As pro-inflammatory mechanisms of neutrophils have primarily been studied in the microvascular environment; we here aim at translating these into the context of macrovascular inflammation in atherosclerosis. Since much of the pro-inflammatory activities of neutrophils stem from instructing neighbouring cell types, we highlight the promiscuous interplay between neutrophils and platelets, monocytes, T lymphocytes, and dendritic cells and its possible relevance to atherosclerosis.
Collapse
|
191
|
Liu Y, Song F, Wu S, He S, Meng M, Lv C, Yang Q, Chen S. Protein and mRNA expressions of IL-6 and its key signaling factors under orthodontic forces in mice: An in-vivo study. Am J Orthod Dentofacial Orthop 2017; 152:654-662. [PMID: 29103443 DOI: 10.1016/j.ajodo.2017.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the mechanical loading-induced changes in protein and mRNA expressions of interleukin-6 (IL-6) and its key signaling factors glycoprotein 130 (gp130), signal transducer and activator of transcription 3 (STAT3), and the Src homology phosphotyrosine phosphatase (SHP2) at the tension and compression sides of the teeth in mouse models. METHODS A total of 55 C57B/6 mice (10 weeks old) were divided into 3 groups. Orthodontic force was applied in group A (experimental group, n = 30); the tooth movement device was placed without activation in group B (sham control group, n = 15), and group C (blank control group, n = 10). Tooth movement was induced by a nickel-titanium coil spring inserted between the maxillary left incisor and the first molar with a force of approximately 4 g. The animals were killed 12 days after the interventions; protein and mRNA expressions of IL-6, gp130, STAT3, and SHP2 in the periodontal tissues were observed with immunohistochemistry and in-situ hybridization, respectively. RESULTS In contrast with the control groups, we observed enhanced expressions of IL-6, gp130, STAT3, and SHP2 protein and mRNA at the mesial and distal sides of the teeth with application of orthodontic forces in the experimental group. In contrast with the distal side, we observed enhanced expression of gp130 protein and mRNA at the mesial side in the experimental group. CONCLUSIONS We observed enhanced expression of IL-6 and its key signaling factors gp130, STAT3, and SHP2 protein and mRNA at the tension and compression sides of the teeth with application of orthodontic forces. The mechanical loading applied for orthodontic tooth movement might induce changes in protein localization and mRNA expression patterns of IL-6 and its key signaling factors gp130, STAT3, and SHP2 at the tension and compression sides of the periodontal ligaments of the teeth in mouse models. The result might demonstrate the special role of IL-6 and its key signaling factors in the alveolar bone-modeling process.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fang Song
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shu Wu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qingqing Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
192
|
Lokau J, Agthe M, Flynn CM, Garbers C. Proteolytic control of Interleukin-11 and Interleukin-6 biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
193
|
Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet. Lipids Health Dis 2017; 16:194. [PMID: 28985743 PMCID: PMC6389121 DOI: 10.1186/s12944-017-0585-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/28/2017] [Indexed: 11/27/2022] Open
Abstract
Background Hypercholesterolemia associated with cardiovascular diseases is a global health issue that could be alleviated by functional foods. This study aimed to explore the effects of a high-cholesterol diet on lipid profile, cardiac, inflammatory, and endothelial dysfunction biomarkers, and the possible improvement by functional foods mixture. Methods Male albino rats weighing 100–150 g were randomly divided into four equal groups: 1st control, giving a normal diet; the 2nd received high-cholesterol diet for 8 weeks, the 3rd received the high-cholesterol diet + functional foods mixture, and the 4th administered high-cholesterol diet +atorvastatin (20 mg) orally. Results The results showed a significant increase in lipid profile and cardiac biomarkers levels (lactate dehydrogenase, creatine kinase and homocystein), also inflammatory markers, as, tumor necrotic factor alpha and chronic reactive proteins were elevated, moreover, vascular adhesion molecule-1 and nitric oxide synthase were disturbed in high-cholesterol diet compared with normal group. While administration of atorvastatin and functional foods mixture ameliorated these alterations. Conclusions Administration of functional foods mixture and atorvastatin were effective in treating hypercholesterolemia, reduce the risk of inflammation and cardiovascular biomarkers with a high safety margin. These efficiencies may be due to its active ingredient that improve the imbalance in the measured biomarkers.
Collapse
|
194
|
Danesh Mesgaran S, Gärtner MA, Wagener K, Drillich M, Ehling-Schulz M, Einspanier R, Gabler C. Different inflammatory responses of bovine oviductal epithelial cells in vitro to bacterial species with distinct pathogenicity characteristics and passage number. Theriogenology 2017; 106:237-246. [PMID: 29096271 DOI: 10.1016/j.theriogenology.2017.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
The bovine oviduct provides the site for fertilization and early embryonic development. Modifications to this physiological environment, for instance the presence of pathogenic bacterial species, could diminish reproductive success at early stages of pregnancy. The aim of this study was to elucidate the inflammatory responses of bovine oviductal epithelial cells (BOEC) to a pathogenic bacterial species (Trueperella pyogenes) and a potentially pathogenic bacterium (Bacillus pumilus). BOEC from four healthy animals were isolated, cultured in passage 0 (P0) and passaged until P3. Trypan blue staining determined BOEC viability during 24 h co-culture with different multiplicities of infection (MOI) of T. pyogenes (MOI 0.01, 0.05, 0.1 and 1) or B. pumilus (MOI 1 and 10). BOEC remained viable when co-cultured with T. pyogenes at MOI 0.01 and with B. pumilus at MOI 1 and 10. Extracted total RNA from control and bacteria co-cultured samples was subjected to reverse transcription-quantitative polymerase chain reaction (RTq-PCR) to determine mRNA expression of various studied genes. The rate of release of interleukin 8 (IL8) and prostaglandin E2 (PGE2) from BOEC was measured by ELISA after 24 h co-culture with bacteria. RT-qPCR of various selected pro-inflammatory factors revealed similar mRNA expression of pro-inflammatory factors in BOEC co-cultured with T. pyogenes and in the controls. Higher mRNA expression of IL 1A, -1B, tumor necrosis factor alpha and CXC ligand (CXCL) 1/2, -3, -5 and IL8 and PG synthesis enzymes in BOEC co-cultured with B. pumilus was observed. In the presence of B. pumilus a higher amount of IL8 and PGE2 was released from BOEC than from controls. The viability and pro-inflammatory response of P3 BOEC incubated with bacteria was lower than in P0 BOEC. These findings illustrate the pathogenicity of T. pyogenes towards BOEC in detail and the potential role of B. pumilus in generating inflammation in oviductal cells. Culturing conditions influenced the pro-inflammatory responses of BOEC towards bacteria. Therefore, researchers conducting epithelial-bacterial in vitro co-culture should not underestimate the effects of these parameters.
Collapse
Affiliation(s)
- S Danesh Mesgaran
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - M A Gärtner
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - K Wagener
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Drillich
- University Clinic for Ruminants, Clinical Unit for Herd Health Management in Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - M Ehling-Schulz
- Institute of Microbiology, Functional Microbiology, Department for Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - R Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - C Gabler
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
195
|
Neog MK, Joshua Pragasam S, Krishnan M, Rasool M. p-Coumaric acid, a dietary polyphenol ameliorates inflammation and curtails cartilage and bone erosion in the rheumatoid arthritis rat model. Biofactors 2017; 43:698-717. [PMID: 28742266 DOI: 10.1002/biof.1377] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/17/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
This study was designed to explore the underlying mechanism of p-coumaric acid (CA), a dietary polyphenol in adjuvant-induced arthritis (AIA) rat model with reference to synovitis and osteoclastogenesis. Celecoxib (COX-2 selective inhibitor) (5 mg/kg b.wt) was used as a reference drug. CA remarkably suppressed the paw edema, body weight loss and inflammatory cytokine and chemokine levels (TNF-α, IL-1β, IL-6, and MCP-1) in serum and ankle joint of arthritic rats. Consistently, CA reduced the expression of osteoclastogenic factors (RANKL and TRAP), pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-17), and inflammatory enzymes (iNOS and COX-2) in arthritic rats. However, OPG expression was found elevated. Besides, the abundance of transcription factors (NF-κB-p65, and p-NF-κB-p65, NFATc-1, and c-Fos) and MAP kinases (JNK, p-JNK, and ERK1/2) expression was alleviated in CA administered arthritic rats. In addition, CA truncated osteoclastogenesis by regulating the RANKL/OPG imbalance in arthritic rats and suppressing the RANKL-induced NFATc-1 and c-Fos expression in vitro. Radiological (CT and DEXA scan) and histological assessments authenticated that CA inhibited TRAP, bone destruction and cartilage degradation in association with enhanced bone mineral density. Taken together, our findings suggest that CA demonstrated promising anti-arthritic effect and could prove useful as an alternative drug in RA therapeutics. © 2017 BioFactors, 43(5):698-717, 2017.
Collapse
Affiliation(s)
- Manoj Kumar Neog
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| | - Samuel Joshua Pragasam
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India
| |
Collapse
|
196
|
Theodoraki M, Lorenz K, Lotfi R, Fürst D, Tsamadou C, Jaekle S, Mytilineos J, Brunner C, Theodorakis J, Hoffmann T, Laban S, Schuler P. Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis Photodyn Ther 2017; 19:194-201. [DOI: 10.1016/j.pdpdt.2017.05.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/02/2017] [Accepted: 05/18/2017] [Indexed: 12/23/2022]
|
197
|
Basu A, Das AS, Sharma M, Pathak MP, Chattopadhyay P, Biswas K, Mukhopadhyay R. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem Biophys Rep 2017; 12:54-61. [PMID: 28955792 PMCID: PMC5613220 DOI: 10.1016/j.bbrep.2017.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 01/16/2023] Open
Abstract
Cycloxygenase-2 (COX-2) is the inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins, and therefore, can be targeted by anti-inflammatory drugs. Here, we showed a plant polyphenol, kaempferol, attenuated IL-6-induced COX-2 expression in human monocytic THP-1 cells suggesting its beneficial role in chronic inflammation. Kaempferol deactivated and prevented nuclear localization of two major transcription factors STAT3 and NF-κB, mutually responsible for COX-2 induction in response to IL-6. Moreover, STAT3 and NF-κB were simultaneously deactivated by kaempferol in acute inflammation, as shown by carrageenan-induced mouse paw edema model. The concomitant reduction in COX-2 expression in paw tissues suggested kaempferol’s role in mitigation of inflammation by targeting STAT3 and NF-κB. IL-6-induced COX-2 expression was attenuated by kaempferol in macrophages. The attenuation is attributed to simultaneous deactivation of STAT3 and NF-κB. The nuclear translocation of both transcription factors are prevented by kaempferol treatment. Kaempferol targets STAT3 and NF-κB and inhibits COX-2 expression to reduce carrageenan-induced mouse paw edema.
Collapse
Affiliation(s)
- Anandita Basu
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Anindhya Sundar Das
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manoj Sharma
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Manash Pratim Pathak
- Division of Pharmaceutical Technology, Defense Research Laboratory, Tezpur 784001, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defense Research Laboratory, Tezpur 784001, Assam, India
| | - Kaushik Biswas
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Rupak Mukhopadhyay
- Cellular, Molecular and Environmental Biotechnology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
198
|
Brown S, Wilburn W, Martin T, Whalen M. Butyltin compounds alter secretion of interleukin 6 from human immune cells. J Appl Toxicol 2017; 38:201-218. [PMID: 28840599 DOI: 10.1002/jat.3514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/13/2023]
Abstract
Butyltins (BTs), tributyltin (TBT) and dibutyltin (DBT) are organotin compounds that have been used in a variety of industrial applications; as a result, these compounds have been found in human blood. Interleukin (IL)-6 is a proinflammatory mediator that is produced by T lymphocytes and monocytes. It is responsible for immune response regulation as well as tissue repair and cellular growth. Both BTs decrease the ability of human natural killer cells to destroy tumor cells and alter the secretion of proinflammatory cytokines tumor necrosis factor alpha, interferon gamma and IL-1 beta (β) from human lymphocytes ex vivo. Here, we show that BTs alter the secretion of IL-6 from increasingly reconstituted preparations of human immune cells. IL-6 secretion was examined after 24 hour, 48 hour or 6 day exposures to TBT and DBT in highly enriched human natural killer cells, monocyte-depleted peripheral blood mononuclear cells (PBMCs), PBMCs, granulocytes and a preparation combining both PBMCs and granulocytes (PBMCs + granulocytes). The results indicated that both BTs altered IL-6 secretion from all cell preparations. Significant decreases of IL-6 secretion were seen at the highest concentration of TBT (200 nm) and DBT (5-2.5 μm) while the lower concentrations of DBT (0.05 and 0.1 μm) caused elevation of IL-6 secretion. The data indicate that BT-induced alterations of IL-6 secretion from immune cells may be a significant consequence of BT exposures that may potentially affect immune competence.
Collapse
Affiliation(s)
- Shyretha Brown
- Departments of Biological Sciences and Chemistry, Tennessee State University, Nashville, Tennessee, 37209, USA
| | - Wendy Wilburn
- Departments of Chemistry, Tennessee State University, Nashville, Tennessee, 37209, USA
| | - Tyesha Martin
- Departments of Chemistry, Tennessee State University, Nashville, Tennessee, 37209, USA
| | - Margaret Whalen
- Departments of Chemistry, Tennessee State University, Nashville, Tennessee, 37209, USA
| |
Collapse
|
199
|
Interleukin-6 as a Multifunctional Regulator: Inflammation, Immune Response, and Fibrosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000265] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin 6 (IL-6) is a 184-amino acid protein cytokine that is produced by many types of cells and is expressed during states of cellular stress, such as inflammation, infection, wound sites, and cancer. IL-6 levels may increase several thousand-fold in these states and may help to coordinate the response to dysregulation of tissue homeostasis. IL-6 acts through a membrane-bound IL-6 receptor (mIL-6R), which, together with a second receptor, glycoprotein 130 (gp130), leads to the initiation of intracellular signaling (classic signaling). Given that IL-6R is expressed on only a few types of cells, though all cells express gp130, direct stimulation by IL-6 is limited to cells that express mIL-6R. However, IL-6R is also produced as a soluble, secreted protein that, together with IL-6, can stimulate all gp130-expressing cells by a process termed IL-6 trans-signaling. IL-6 trans-signaling can be blocked without affecting IL-6 classic signaling through mIL-6R. IL-6 has major effects on the adaptive and innate immune system and on mesenchymal and stromal responses during inflammation. It promotes the development of pathogenic T-helper 17 T cells and the maturation of B lymphocytes. Many innate immune cells, neutrophils, and monocytes/macrophages produce and respond to IL-6, resulting in autocrine feedback loops that amplify inflammation. IL-6 has been implicated in the pathogenesis of fibrotic diseases in which IL-6 trans-signaling has been shown to stimulate the proliferation of fibroblasts and the release of procollagen and fibronectin.
Collapse
|
200
|
An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 2017; 23:279-287. [PMID: 28267716 DOI: 10.1038/nm.4294] [Citation(s) in RCA: 794] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
The production of neutrophil extracellular traps (NETs) is a process that enables neutrophils to help catch and kill bacteria. However, increasing evidence suggests that this process might also occur in noninfectious, sterile inflammation. In this Review, we describe the role of NETosis in autoimmunity, coagulation, acute injuries and cancer, and discuss NETs as potential therapeutic targets. Furthermore, we consider whether extracellular DNA is always detrimental in sterile inflammation and whether the source is always NETs.
Collapse
|